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Abstract
One reason why iron is an essential element for most organisms is its presence in prosthetic groups such as hemes or iron–
sulfur (Fe–S) clusters, which are notably required for electron transfer reactions. As an organelle with an intense metabolism 
in plants, chloroplast relies on many Fe–S proteins. This includes those present in the electron transfer chain which will 
be, in fact, essential for most other metabolic processes occurring in chloroplasts, e.g., carbon fixation, nitrogen and sulfur 
assimilation, pigment, amino acid, and vitamin biosynthetic pathways to cite only a few examples. The maturation of these 
Fe–S proteins requires a complex and specific machinery named SUF (sulfur mobilisation). The assembly process can be 
split in two major steps, (1) the de novo assembly on scaffold proteins which requires ATP, iron and sulfur atoms, electrons, 
and thus the concerted action of several proteins forming early acting assembly complexes, and (2) the transfer of the pre-
formed Fe–S cluster to client proteins using a set of late-acting maturation factors. Similar machineries, having in common 
these basic principles, are present in the cytosol and in mitochondria. This review focuses on the currently known molecular 
details concerning the assembly and roles of Fe–S proteins in plastids.
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Introduction

Iron (Fe) and sulfur are critical elements for plant growth 
and development. Sulfur is notably required for cysteine 
and methionine synthesis, and is present in a large number 
of molecules, whereas Fe atoms are associated with many 
proteins as part of hemes, mono- or di-iron non-heme cent-
ers, or iron–sulfur (Fe–S) clusters. Chloroplasts and plastids 
in general, are highly demanding organelles for both ele-
ments due notably to the presence of a translation machinery 
and of the photosynthetic electron transfer chain. Besides, 

numerous metabolic pathways occurring totally or partially 
in this organelle are directly or indirectly dependent on the 
functioning of Fe–S proteins. This review is organized in 
three parts, describing how Fe and sulfur species get reduced 
and imported in chloroplasts, how the various types of Fe–S 
clusters are built from Fe and cysteine and incorporated into 
the tenths of client proteins, and finally which chloroplastic 
pathways/processes are dependent on these cofactors.

Supply of iron and sulfur to plastids

Iron transport

Chloroplasts, where photosynthesis and heme synthe-
sis occur, represent the major subcellular Fe sink in plant 
leaves [1]. Photosynthetic organisms uptake Fe from the soil 
using a sophisticated pumping system that differs between 
Poaceae and dicotyledon species, which developed, respec-
tively, either a phytosiderophore-dependent chelation-based 
strategy or a reduction-based strategy (see [2] for an over-
view). In Arabidopsis thaliana, Fe is acquired in several 
steps. By extruding protons via the  H+-ATPase AHA2 and 
coumarins via the PDR9 ABC transporter, A. thaliana can 
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solubilize and chelate  Fe3+ forms by lowering the soil pH. 
Then, the reduction of  Fe3+ to  Fe2+ is performed by the fer-
ric reductase-oxidase (FRO) family protein, FRO2, before 
its uptake by the plasma membrane Fe transporter named 
iron-regulated transporter 1 (IRT1) [2]. In the cytosol of root 
cells, Fe complexes are formed with organic acids (malate 
or citrate) or nicotianamine before being translocated to 
the shoots and unloaded in the cytosol of mesophyll cells 
[3]. After this step, little is known concerning Fe acquisi-
tion by chloroplasts, its subsequent storage, and delivery 
to dedicated proteins and machineries. It is possible that 
a voltage-dependent transport system allows  Fe3+-citrate 
complexes to pass the outer membrane of the plastid enve-
lope [4]. Once in the chloroplastic intermembrane space, 
FRO7 may reduce ferric  (Fe3+) to ferrous iron  (Fe2+) via 
its reductase activity [5]. Several transporters located in the 
inner membrane of the chloroplast envelope are candidates 
for Fe import into the stroma (Fig. 1). The first one is named 
permease in chloroplast 1 (PIC1) [6]. Both knock-out and 

overexpression lines for this gene show abnormal chloro-
plast development and perturbed iron homeostasis and avail-
ability [6, 7]. The loss-of-function mutants are dwarf and 
chlorotic (even white), and they grow only heterotrophically. 
Moreover, they accumulate Fe into ferritins, the function of 
which is normally to protect this organelle from oxidative 
stress by sequestering Fe. The PIC1-overexpressing plants 
suffer from oxidative stress and leaf chlorosis likely due to 
a Fe overload in chloroplasts. Although this permease is 
mentioned to be part of the translocase of the outer/inner 
chloroplast membrane (Tic–Toc) complex in other studies, 
a Fe transport function is clear from the complementation 
of a yeast fer3fer4 mutant which is defective in Fe uptake, 
leading to the conclusion that PIC1 may have a dual function 
[6]. Another putative Fe transporter, named NAP14 (non-
intrinsic ABC protein 14), was identified from its homology 
with the ABC transporter FutC belonging to the FutABC 
iron uptake system in cyanobacteria [8]. As observed for 
pic1, a nap14 knock-out mutant accumulates Fe in shoots, 
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Fig. 1  Working model for iron uptake and maturation of Fe–S pro-
teins by the SUF machinery in plastids of eukaryotic photosynthetic 
organisms. Besides the putative Fe transporters located at the mem-
brane of the chloroplast envelope, which would serve for providing 
the required Fe atoms to the SUF machinery, this scheme integrates 
the 17 putative SUF components. In the absence of stronger evidence 
concerning the implication of frataxin, it is not integrated among SUF 
components and is represented by a dashed circle. The color code 

associated with each protein function is indicated directly on the fig-
ure. The detailed description of the maturation process and the con-
nections between the SUF proteins are described in the text. Except 
NFU2, NFU3, and HFC101, all maturation factors have been grouped 
in a blue circle in the absence of information concerning their precise 
function, but two-way arrows indicate that physical interactions have 
been observed between some proteins
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exhibits abnormal chloroplast structures, and shows deregu-
lated levels of Fe homeostasis-related genes. However, in the 
absence of other Fut orthologs in A. thaliana, the question of 
whether NAP14 can work alone or in pair with other uniden-
tified partners remains open. A third candidate transporter 
for Fe uptake in chloroplasts is mitoferrin-like1 (MFL1) [9]. 
However, although its gene expression is dependent on Fe 
supply and the protein is in principle located to the inner 
membrane of the chloroplast envelope, the growth of knock-
out mutants is only moderately affected. While all these pro-
teins seem to be involved in Fe homeostasis in chloroplasts, 
further characterization is urgently needed to clarify their 
exact function and respective importance.

Sulfate import and reduction in plastids 
for the synthesis of cysteine, the sulfur donor 
of Fe–S clusters

Photosynthetic organisms use sulfate present in the soils as 
a primary source of sulfur. Sulfate is incorporated into the 
roots through an active proton/sulfate co-transport system 
located at the plasma membrane [10]. Once in the xylem, 
sulfate is transported to the shoots, unloaded into the cytosol 
of mesophyll cells, and then transported in the chloroplasts 
for its ATP-dependent reductive assimilation into sulfide 
(see [10] for review). The involved transporters all along 
these steps belong to the sulfate transporter (SULTR) family, 
which is composed of 12 members in A. thaliana that can be 
grouped into four classes. The SULTR3 class comprises the 
chloroplast-localized sulfate transporters [11]. The sulfide 
generated by the ferredoxin (FDX)-dependent sulfite reduc-
tase (SIR) will be used for cysteine biosynthesis by cysteine 
synthase, a complex of two enzymes, serine acetyltrans-
ferase (SAT) that uses acetyl-coA to form O-acetylserine 
(OAS) from serine and O-acetylserine-(thiol)-lyase (OAS-
TL) which can substitute the acetyl moiety by sulfide to form 
cysteine. While the first steps of sulfate reduction into sulfide 
are clearly restricted to the chloroplasts, cysteine synthesis 
can also occur in the cytosol and in mitochondria owing to 
the ubiquitous expression of SAT and OAS-TL and exchange 
of sulfide across organelle membranes [10].

The biogenesis of Fe–S proteins 
in chloroplasts by the SUF machinery

Several dozen of proteins containing Fe–S clusters are found 
in various subcellular compartments in the model plant A. 
thaliana as in other plants. Accordingly, in plant cells, three 
assembly machineries exist in plastids, in mitochondria, 
and in the cytosol, the latter being dedicated to the mat-
uration of Fe–S proteins found both in the cytosol and in 
the nucleus. Whereas the chloroplastic sulfur mobilisation 

(SUF) machinery is autonomous, the cytosolic iron–sulfur 
assembly (CIA) machinery is dependent on the mitochon-
drial iron–sulfur cluster (ISC) machinery as it relies on a 
sulfur-containing compound generated in the first steps and 
exported from mitochondria by an ABC transporter. We 
invite the readers interested in the ISC and CIA machineries 
in plants to refer to the following recent reviews [12, 13]. For 
all these machineries and in particular the chloroplastic SUF 
machinery, the biosynthesis and delivery of Fe–S clusters 
can be separated in two major steps: their de novo assembly 
on scaffold proteins and their incorporation into final client 
proteins. This second step may necessitate the exchange and 
possibly conversion of Fe–S clusters between scaffold pro-
teins and maturation factors including Fe–S cluster transfer 
proteins and targeting/recruiting factors. Repair mechanisms 
may eventually account for the recycling of damaged Fe–S 
clusters, which could be important in chloroplasts consider-
ing the presence of reactive oxygen and nitrogen species, but 
this will not be discussed further as information in plants is 
very scarce.

The de novo Fe–S cluster assembly on scaffold 
protein

In chloroplasts, it seems now clear that the sole scaffold 
system is formed by the SUFBCD proteins (Fig. 1) [14]. 
The assembly of a Fe–S cluster on this scaffold complex 
theoretically requires the concerted action of several proteins 
as it requires the polypeptide backbones, ATP, Fe, and sul-
fur atoms and electrons. There are still many uncertainties 
about the involved actors in plants and the molecular details. 
Thus, we will often make analogies to the Escherichia coli 
SUF system, which has been better characterized. The best, 
not to say the only, well-characterized actors in plants of 
this assembly complex are proteins required for the produc-
tion and transfer of the required sulfur. The NFS2 protein 
(formerly referred to as CpNifS) is a pyridoxal-l-phosphate 
(PLP)-dependent cysteine desulfurase, which catalyzes the 
extraction of the sulfur atoms from cysteine, producing a 
persulfide group on a catalytic cysteine with the concomitant 
release of an alanine (Fig. 1) [15]. As a class II cysteine des-
ulfurase, similar to the bacterial SufS orthologs, the acces-
sibility of the persulfide group is limited by the presence 
of a β-hairpin near the catalytic cysteine [16, 17]. For this 
reason, the transfer of sulfur atoms to the scaffold complex 
relies on an additional protein named SUFE. In A. thaliana, 
there are three SUFE proteins (SUFE1-3) targeted to chlo-
roplasts [18]. In addition to the SUFE domain, SUFE1 has a 
C-terminal BOLA domain, the role of which is unknown but 
may prefigure a control by glutaredoxins (GRXs, see below) 
and SUFE3 possesses a quinolinate synthase (NadA) domain 
at the C-terminus, which is involved in NAD biosynthesis 
[18, 19]. As shown for the corresponding E. coli couple 
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[20], each SUFE protein enhances the cysteine desulfurase 
activity of NFS2 by accepting the persulfide group on its 
own catalytic cysteine, thus serving as a relay to the scaffold 
system [18, 19]. At the structural level, A. thaliana NFS2 is 
a dimeric protein with two distant active sites, which sug-
gests that the functional NFS2-SUFE unit should be a het-
erotetramer [17]. In addition to the existence of additional 
domains in SUFE1 and SUFE3, the existence of three SUFE 
isoforms may be also linked to their expression pattern as 
for instance SUFE2 is mostly expressed in flowers [18]. The 
central role of these proteins has been validated by genetic 
studies, since the study of knock-out A. thaliana lines proved 
that NFS2, SUFE1, SUFE3, and SUFBCD genes are essen-
tial [14, 18, 21, 22]. The use of RNAi lines showed that 
NFS2 and SUFBCD are required for the maturation of all 
plastidial Fe–S proteins tested so far [14, 22].

In E. coli as in A. thaliana, the scaffold complex is prob-
ably composed by three subunits, SUFB, SUFC, and SUFD, 
very likely in a 1:2:1 stoichiometry and will be referred to 
as  SUFBC2D (Fig. 1) [14, 20]. It seems that NFS2, SUFEs, 
and SUFBCD do not form a large and stable complex as 
recently shown in the case of the mitochondrial ISC system 
in yeast and human [23, 24]. Indeed, some in vitro biochemi-
cal analyses using the bacterial SufS, SufE, and SufBCD 
enzymes indicated that SufS does not seem to make stable 
interactions with SufBCD, unlike SufE whose presence is 
absolutely required for an efficient Fe–S cluster reconsti-
tution in vitro on SufBCD [20, 25]. Besides, it has been 
shown that the presence of SufC, but not SufD, is required 
for the transfer of the sulfur atoms bound to E. coli SufE to 
SufB. Upon ATP binding, the SufC ATPase would induce 
structural changes on SufB and SufD that are necessary for 
Fe–S cluster binding [26]. Some residues important for these 
interactions have been identified from the 3D structures and 
validated by mutagenesis [26, 27]. Among the numerous 
cysteines present in SufB, the primary sulfur acceptor would 
be the conserved Cys254 (E. coli numbering). This sulfur 
atom would then be transferred to Cys405, one of the Fe–S 
cluster ligands owing to the existence of a tunnel inside the 
β-helix core domain of SufB [27]. The question of which 
type of Fe–S clusters is bound to this complex has been 
investigated in detail. It was shown that E. coli SufB alone 
can assemble both  [Fe2S2] and  [Fe4S4] clusters in vitro and 
that a conversion from the  [Fe4S4]-loaded SufB form to a 
stable  [Fe2S2]-loaded form is possible upon exposure to air 
[25, 28]. However, based on the structure of an apoSufBCD 
complex, it was proposed that a histidine of SufD may be 
a Fe–S cluster ligand [26]. Consistently, a mutated variant 
for this histidine lost the ability to assemble a Fe–S clus-
ter in vivo, and both SufC and SufD were required for the 
in vivo maturation of SufB [29]. In this cellular context, E. 
coli  SufBC2D complex mostly binds a  [Fe4S4] cluster with 
some residual amount of linear  [Fe3S4] clusters [29]. Hence, 

it is very likely that the  SufBC2D scaffold binds a  [Fe4S4] 
cluster in vivo and considering the conservation between 
A. thaliana and E. coli sequences, we anticipate that this 
mechanism should also prevail for plant proteins. However, 
we cannot completely rule out that  SufBC2D or other forms, 
such as the  SufB2C2 form detected with E. coli proteins 
[29], can bind other cluster types in some conditions. For 
instance, transcriptomic data indicate that the SUFB, SUFC, 
and SUFD genes may not be co-expressed in all organs and 
cell types of A. thaliana.

At this stage of the assembly process, there are many 
other crucial questions concerning the source of electrons 
required for the reduction of  Fe3+ to  Fe2+ or of the persulfide 
 (S0) to a sulfide  (S2−), the source of Fe, and the control of 
its entry in the complex. In this respect, it is important to 
note that the  SufBC2D complex was purified with a bound 
reduced flavin-adenine dinucleotide  (FADH2) molecule [29, 
30]. While SufB alone can bind the flavin in vitro [30], SufD 
is also required in vivo [29]. It is currently believed that 
this  FADH2 provides the necessary reducing equivalents for 
the reduction of ferric iron. Since FAD is released from the 
complex upon oxidation, an external regeneration system 
is needed, which could be possibly an FDX or an NADPH-
dependent flavin reductase.

The mechanisms and actors involved in the delivery of 
Fe for Fe–S cluster biosynthesis in plastids are completely 
unknown. The Fe–Storage proteins, ferritins, have been 
excluded from Fe donor candidates, because an Arabidopsis 
mutant (fer1-3-4) for the three ferritins found in leaves has 
no apparent phenotype [31], while mutant plants modified 
for the expression of these early biogenesis factors are either 
lethal or at least strongly affected. Another candidate for Fe 
delivery is a small acidic protein with iron-binding proper-
ties named frataxin. In the mitochondrial ISC machinery, 
frataxin controls iron entry in the assembly complex by acti-
vating sulfide formation by the cysteine desulfurase [32, 33]. 
In this complex, frataxin can interact both with the cysteine 
desulfurase and the ISCU scaffold protein. Except for a few 
organisms like Z. mays, there is usually a single gene cod-
ing for frataxin (FH) in plants. While frataxin was believed 
for a long time to be exclusively located in mitochondria, it 
was recently reported that A. thaliana FH (AtFH) and two 
isoforms from Z. mays may have a dual targeting into both 
mitochondria and plastids [34, 35]. According to this pos-
sible chloroplastic localization, Arabidopsis FH-deficient 
plants show a decrease in the heme content [36]. Moreover, 
they present a decrease in the total chlorophyll content, in 
the levels of two plastidial FDXs and in nitrite reductase 
(NIR, a siroheme-containing enzyme) activity which could 
explain the observed changes in the rate of the photosyn-
thetic electron transport chain [35]. The impact on heme 
content would be in good agreement with the described 
interaction between yeast frataxin and ferrochelatase, the 
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terminal enzyme of heme synthesis performing porphyrin 
metalation [37]. All these observations suggest an impair-
ment of the plastidial Fe–S cluster biosynthesis and/or of the 
heme or siroheme biosynthesis, although stronger and more 
direct biochemical evidence is still required.

Delivery and trafficking of preformed Fe–S clusters 
by maturation factors

The preformed Fe–S cluster on the  SUFBC2D complex, be 
it a  [Fe2S2] or a  [Fe4S4] cluster, has then to be correctly 
targeted to client apoproteins. This requires several other 
proteins referred to as maturation factors. Among these, one 
could differentiate the so-called Fe–S cluster transfer/carrier 
proteins (belonging to NFU, SUFA, GRX, and HCF101 fam-
ilies) from targeting factors (belonging to BOLA and IBA57 
families) which, contrary to the proteins of the first group, 
are not able to bind Fe–S clusters by themselves, although 
BOLAs do it in complex with GRXs [38, 39]. It is interest-
ing to note that all proteins of these families have mitochon-
drial counterparts in the ISC machinery, whereas the compo-
nents forming the eukaryote-specific CIA machinery usually 
belong to different protein families [12]. This analogy to 
the mitochondrial system is the reason why some of these 
plastidial members, whose role in the maturation of Fe–S 
proteins in plastid has not been yet established, have been 
included in this section. The current model for these steps in 
the plant mitochondrial ISC machinery derives mainly from 
studies conducted in yeast and human and can be summa-
rized as follows [40]. A glutaredoxin (GRXS15 in plants) is 
the primary transfer protein receiving a  [Fe2S2] cluster from 
ISCU proteins. This cluster can be either directly inserted 
into  [Fe2S2]-recipient apoproteins or used to build  [Fe4S4] 
clusters on a heterocomplex formed by ISCAs and possibly 
IBA57. Some mechanistic and structural aspects of the clus-
ter conversion from the  [Fe2S2]-loaded GLRX5 form to the 
 [Fe4S4]-loaded ISCA1-2 form have been recently delineated 
using human proteins [41, 42]. Then, the insertion of the 
 [Fe4S4] clusters into client Fe–S proteins might be direct or 
facilitated by NFU and BOLA proteins that likely act in con-
cert for the maturation of specific targets notably the lipoate 
synthase or by IND1/INDH, a close HCF101 homolog, 
which seems specific for the respiratory chain complex I.

The current genetic and biochemical evidence indicate 
that this sequence of events should be very different for the 
plastidial SUF machinery (Fig. 1). Although the two plastid-
ial isoforms, named GRXS14 and GRXS16, have the ability 
to bind the regular  [Fe2S2] cluster in homodimer (or in heter-
odimer with BOLA, see below) and to complement a yeast 
mutant for the mitochondrial Grx5 [43], strong genetic and 
physiological evidence for a similar involvement in plants is 
still missing. Single mutants for each of these genes have no 
phenotype when grown under standard conditions, whereas 

plants overexpressing GRXS14 have a decreased chlorophyll 
content [44]. Considering that several enzymes involved in 
chlorophyll catabolism require Fe–S clusters, this may con-
stitute a first hint towards a role of GRXS14 in the matu-
ration of specific client proteins in this pathway. Counter-
intuitive to this first observation, plants lacking GRXS14 
showed accelerated chlorophyll loss compared to wild-type 
plants when exposed to prolonged darkness, suggesting more 
complex connections [44]. A redundancy may exist between 
both plastidial GRXs, since a double mutant with about 20% 
GRXS16 remaining exhibits a 20% biomass reduction in 
standard conditions compared to wild-type plants. How-
ever, this phenotype is not exacerbated under stress condi-
tions. Overall, unlike the knock-out mutant of mitochondrial 
GRXS15 which is embryo-lethal [45], these results point 
either to non-essential roles of these isoforms or to a redun-
dant function with the remaining GRXS16 level being suf-
ficient to sustain an essential role similar to GRXS15.

Concerning BOLA proteins, several roles have been pro-
posed, but only those connected to their participation in Fe 
metabolism have been really validated [46]. Their involve-
ment in Fe–S cluster biogenesis was demonstrated from 
the study of bol1/3 mutant in yeast and of human patients 
defective for the mitochondrial BOLA3. Both types of cells 
display protein lipoylation defects due to the incorrect matu-
ration of lipoate synthase and a decrease in activity for some 
other  [Fe4S4] proteins as aconitase and succinate dehydro-
genase [47–49], whereas human patients also have defects 
in the mitochondrial respiratory complexes I and III [49]. 
Three isoforms with a BOLA domain are found in plant 
chloroplasts. As already mentioned, the C-terminal region 
of SUFE1 contains a BOLA domain. The two other iso-
forms, BOLA1 and BOLA4, comprise a single domain. Both 
BOLA4 and SUFE1 could also be targeted to mitochondria 
[21, 50]. Interactions between these plastidial BOLA pro-
teins and GRXS14 and GRXS16 have been demonstrated 
both in vitro and in planta [38, 50]. These proteins can in fact 
form both apo-heterodimers and holo-heterodimers bridging 
a  [Fe2S2] cluster [39], as also demonstrated for bacterial, 
yeast, and mammalian isoforms [46]. In this respect, it is 
interesting to note that adding BOLA to a GRX homodi-
mer converts it to a more stable holo GRX-BOLA heter-
odimer. This interconversion might represent a regulatory 
mechanism either to shut down or activate some specific 
pathways by favouring one target over another. At the struc-
tural level, all BOLA isoforms have a similar well-conserved 
fold [39]. Two subgroups can, however, be distinguished 
based on the length of the β1–β2 loop referred to as the 
variable [C/H] loop, because it contains one of the ligands 
provided by BOLA either a cysteine or a histidine, the sec-
ond ligand being a totally conserved histidine found in the 
α3–β3 loop [39, 48]. Other cysteine ligands are provided 
by a glutathione molecule and by the one present in the 
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conserved CGFS signature of the GRX partner, as in regular 
GRX homodimers [51]. While there is no true ortholog of 
yeast Bol3 in plants, the observation that Bol3 might interact 
with Nfu1 rather than with Grx5 in yeast could point to a 
different role in the late steps of the mitochondrial system 
[47, 48]. Although single bol1 and bol3 mutants do not have 
phenotypes and the respective molecular roles of Bol1 and 
Bol3 are still unclear, a connection between Bol3 and Nfu1 
is also evident from the quite similar phenotype of the bol1/3 
and nfu1 mutant cells [47].

In mitochondria, ISCA proteins are central for the matu-
ration of  [Fe4S4] proteins, presumably ensuring the con-
version of  [Fe2S2] centers into  [Fe4S4] centers. In bacteria, 
the different A-type isoforms (IscA, SufA, ErpA) are also 
required for the maturation of  [Fe4S4] proteins, even though 
in vitro studies demonstrated that Azotobacter vinelandii 
IscA, for example, can reversibly cycle between  [Fe2S2] 
and  [Fe4S4] forms through electron reductive coupling or 
oxidative cleavage [52]. Some biochemical redundancy 
seems to exist between them as demonstrated for the Fe–S 
cluster assembly of IspG and IspH, two enzymes involved 
in isoprenoid synthesis and also present in plant chloroplasts 
[53, 54]. In plastids, the only representative of this family 
should be SUFA1, also referred previously to as CpISCA 
and ISCA-I [55, 56]. As an A-type carrier protein, SUFA1 
possesses the three characteristic conserved cysteines [54, 
55] that allow the binding of a  [Fe2S2] center in a dimer as 
observed upon in vitro Fe–S cluster reconstitution assays 
[55–57]. According to the ISC model, Fe–S cluster transfer 
experiments showed that GRXS14 can efficiently and uni-
directionally transfer its  [Fe2S2] cluster to SUFA1; however, 
there was no sign of a  [Fe4S4] cluster formation [57]. Using 
recombinant proteins, it was shown in vitro that an apo-SufA 
from E. coli could promote the maturation of an apo-FDX 
from a  [Fe4S4]-loaded  SufBC2D scaffold, indicating that 
SUFA proteins would directly interact with the scaffold but 
also that it facilitates Fe–S cluster conversion. Nevertheless, 
knock-out mutants have no visible phenotype when grown 
under standard conditions, indicating that the role of SUFA1 
is dispensable [55, 56]. Whether it is involved in the matu-
ration of  [Fe2S2] proteins,  [Fe4S4] proteins or both remains 
thus to be determined.

It is getting clear that, in yeast and human mitochondria, 
ISCA proteins interact with IBA57 (Iron–Sulphur cluster 
assembly factor for Biotin synthase- and Aconitase-like 
mitochondrial proteins with a mass of 57 kDa). They form 
a complex involved in the maturation of several  [Fe4S4] pro-
teins including radical-S-adenosylmethionine (SAM) pro-
teins, homoaconitase, aconitase, biotin synthase, and lipoic 
acid synthase [58, 59]. Depletion of the E. coli ortholog 
YgfZ also affects some  [Fe4S4] proteins such as succinate 
dehydrogenase, fumarase, dimethylsulfoxide reductase, and 
MiaB, an enzyme involved in tRNA thiolation [58–60]. The 

two orthologs found in A. thaliana, IBA57.1 and IBA57.2, 
are, respectively, localized in mitochondria and plastids [61]. 
It is interesting to note that both isoforms can complement 
the growth defects of an E. coli ygfZ mutant observed on a 
minimal medium or upon oxidative stress [60]. This is the 
only physiological information obtained so far for these plant 
isoforms, since an Arabidopsis iba57.1 mutant is embryo-
lethal and an iba57.2 mutant has not been described. While 
the exact function of IBA57 is still unknown, it is important 
to note that there is a conserved cysteine residue in a KGCY-
x-GQE-x3-R/K motif, which is almost the only conserved 
motif in this protein family [62]. Moreover, consistent with 
the structural similarity of IBA57 with folate-dependent 
enzymes [63], E. coli YgfZ can bind tetrahydrofolate [60].

Another category of proteins strictly required for the mat-
uration of  [Fe4S4] clusters is the NFU family that exists in 
all kingdoms. In mitochondria, the study of the yeast mutant 
and several human patients indicates that NFU1 is required 
for the maturation of lipoate synthase, which affects several 
ketoacid dehydrogenases dependent on lipoic acid, and for 
the maturation of complexes I, II or III depending on the 
patients [49, 64]. A. thaliana encodes five NFU isoforms, 
two (NFU4 and NFU5) should be targeted to mitochondria, 
and three (NFU1, NFU2, and NFU3) are localized in chloro-
plasts [65, 66]. All these proteins share an NFU domain pos-
sessing a CXXC motif necessary for the binding of a  [Fe4S4] 
in a dimer [67]. Chloroplastic isoforms have an additional 
NFU domain in the C-terminal extremity which does not 
have the cysteine residues, whereas mitochondrial isoforms 
have an additional N-terminal domain of unknown function 
(Fig. 2) [65, 68]. Loss-of-function nfu2 and nfu3 mutants 
have a dwarf phenotype with pale green leaves [69, 70]. 
By coupling chlorophyll fluorescence and P700 absorption 
measurements to western blot analyses, it was shown that 
this phenotype is due to the impairment of photosystem I 
(PSI) architecture and activity which is explained by a defect 
in the maturation of the three  [Fe4S4] clusters assembled in 
the psaA, psaB, and psaC subunits. The only other nota-
ble and robust molecular default observed is that the SIR 
level and activity are decreased in nfu2 [14, 65, 70, 71]. The 
fact that a double nfu2-nfu3 mutant is lethal [69] indicates 
that both NFU isoforms should have partially overlapping 
functions. This raises also the question of their contribu-
tion relatively to the high chlorophyll fluorescence 101 
(HCF101) protein, a plastidial 51 kDa protein belonging to 
the NTPase protein family (Fig. 2). The hcf101 Arabidop-
sis mutant plants have globally similar molecular defects, 
although this is exacerbated as the strongest allele is lethal 
at the seedling stage and the decrease in the amounts of PSI 
subunits is stronger, almost complete [72–74]. Besides, there 
is a decrease in the ferredoxin-thioredoxin reductase (FTR) 
levels, another  [Fe4S4] protein [72]. Overall, in accordance 
with the capacity of Arabidopsis NFU2 and HCF101 to bind 
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 [Fe4S4] cluster in vitro [67, 73], this indicates that all these 
proteins are required for the maturation of  [Fe4S4] proteins, 
particularly PSI subunits, and that HCF101 would act down-
stream of NFU2 and NFU3 (Fig. 1).

In summary, there are currently ten putative maturation 
factors in the SUF machinery for several dozens of plastidial 
client proteins. The role of some of these maturation factors 
still awaits confirmation not to speak about their connections 
and hierarchical organization. There is also an urgent need 
to learn more about how specificity towards target proteins 
is achieved and about the molecular and structural aspects 
of these interactions.

Functional diversity among client Fe–S 
proteins in plastids

Fe–S clusters in the functioning and protection 
of the photosynthetic electron transport chain

Among other functions, Fe–S clusters have a crucial role 
in electron transfer reactions, and thus, several Fe–S pro-
teins are found in the thylakoid membrane as part of the 
photosynthetic electron transport chain. A Rieske-type 
Fe–S cluster, i.e., a  [Fe2S2] cluster ligated by two cysteines 

and two histidines, is found in the Rieske protein of the 
cytochrome  b6f complex. In the genome of eukaryotes and 
in some cyanobacteria, the Rieske protein is encoded by 
a single gene named photosynthetic electron transfer C 
(petC), whereas in most cyanobacteria, there are additional 
isoforms whose physiological function is still uncertain 
[75]. The absence of the petC proteins is lethal in the early 
developmental stages both in A. thaliana and cyanobacte-
ria (Table 1) [75, 76]. Three low potential  [Fe4S4] clusters 
are attached to the thylakoid membrane but face the reduc-
ing, stromal side of PSI, and function in series. The first, 
referred to as  FX, is associated with a PsaA–PsaB heter-
odimer via cysteine residues, while the two others, named 
 FA and  FB, are bound to PsaC [77]. These clusters transfer 
electrons to FDXs, small soluble proteins, which contain 
a classical  [Fe2S2] cluster, e.g., rhombic cluster ligated by 
four cysteines. The nuclear genome of algae and plants har-
bours a variable number of FDX homologs, differentially 
expressed in plant organs or at different development stages 
or in response to different stimuli [78]. The A. thaliana 
genome contains four genes encoding four well-described 
plastidial FDXs (Fd1 to Fd4) and at least two additional 
genes, referred to as FdC1 and FdC2, encoding proteins 
bearing C-terminal extensions and whose functions remain 
elusive [79, 80]. In specific physiological situations such as 

CGFS 

SUFA1 
CXC 

432 AA 
KGCY-X-GQE 

IBA57.2 

HCF101 

NFU1 
NFU2 
NFU3 CXXC 

SUFE1 

BOLA1 
BOLA4 

GRXS14 

CGFS 
GRXS16 

180 AA 

532 AA 
DUF59 DUF971 

P-loop NTPase mo�f 

Degenerated NFU domain 

NFU domain 

231/235/236 AA 

371 AA 

SUFE domain 

BOLA domain 
160/177 AA 

173 AA 

293 AA 

Endonuclease domain 

Monothiol glutaredoxin domain 

YgfZ signature 

Domain of unknown func�on 

SUFE2 

SUFE3 

258 AA 

718 AA 

NFS2 463 AA 

SUFB 557 AA 

SUFC 338 AA 

SUFD 475 AA 

Fig. 2  Protein domain organization of SUF components. The 
domains (identified using pfam or the NCBI conserved domain tools) 
present in SUF components have been represented using the color 
code defined on the figure. Except for the chloroplastic targeting 
sequence (light green boxes), the domains are represented at scale, 

with the length in amino acids of the Arabidopsis proteins indicated. 
The Fe–S binding cysteine and histidine residues are represented in 
yellow and black, respectively, while other conserved cysteines are in 
orange, although their function is sometimes unclear if any
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environmental constraints, FDXs can recycle electrons to 
the plastoquinone pool, contributing to the so-called cyclic 
electron flow [81]. The major cyclic pathway is dependent 
on the PGR5 (proton gradient regulation 5)/PGRL1 (PGR5-
like photosynthetic phenotype 1) proteins [82]. The other 
involves the NAD(P)H dehydrogenase (NDH) complex. In 
higher plants, it forms a large complex associated with PSI, 
which is composed of 11 plastid-encoded subunits, some 
additional nuclear-encoded subunits, and auxiliary factors 
[83]. Among these, the NDH-I and NDH-K subunits bind 
two and one  [Fe4S4] clusters, respectively [84]. While Arabi-
dopsis knock-out mutants for NDH-I and NDH-K genes have 
not been characterized, tobacco knock-out mutants of ndh 
genes usually have no phenotype under standard conditions 
but are sensitive to environmental stresses [82].

In eukaryotic microalgae and cyanobacteria, an additional 
pathway directly coupled to the photosynthetic electron 
transport chain and involving hydrogenases allows the pho-
toproduction of ATP at the expense of reductant synthesis 
in specific conditions such as the response to anaerobiosis 
or anoxia. Chlamydomonas reinhardtii contains two [FeFe]-
hydrogenases, namely HYDA1 and HYDA2, which will 
produce molecular hydrogen  H2 from protons by accepting 
electrons from FDXs. These HYDA contain a complex Fe–S 
cluster at their active sites, the H-cluster that is essential for 
catalytic activity [85]. It consists of a classic  [Fe4S4] clus-
ter linked to a complex 2Fe sub-cluster [86]. Whereas the 
 [Fe4S4] cluster is assembled by the regular SUF machinery, 
the sub-cluster requires specific maturation proteins, HYDE, 
HYDF, and HYDG, for this assembly. The HYDE and 
HYDG gene products are radical-SAM enzymes, whereas 
HYDF is a P-loop NTPase protein constituting a scaffold 
assembly platform. These proteins incorporate themselves 
 [Fe4S4] clusters that are required for their activity.

As oxygenic photosynthesis releases massive amounts 
of oxygen from water, reactive oxygen species are rou-
tinely generated and damage some proteins in many physi-
ological conditions. Thus, several proteins are implicated 
in the repair and protection of the photosystems and their 
antennae. One of these, photosystem II protein33 (PSB33), 
is an integral membrane protein, which contributes to the 
maintenance of PSII-light-harvesting complex II (LHCII) 
supercomplex organization in response to changing light 
levels [87]. Whereas the Arabidopsis protein is annotated 
as containing a Rieske-type Fe–S cluster by analogy to some 
bacterial counterparts, it does not have the Fe–S binding 
residues contrary to C. reinhardtii ortholog. Other Chla-
mydomonas proteins, referred to as CDJ3-5 for chloroplast-
targeted DnaJ-like proteins, might be important for PSII pro-
tection. It was shown that CDJ3 and CDJ4 which interact 
with chloroplast ATP-bound HSP70B (heat-shock protein 
70B) and are located either in the stroma or attached to thy-
lakoids, respectively, are able to bind a  [Fe4S4] cluster [88]. 

Based on the fact that HSP70B plays a role in the repair and 
protection of PSII (Photosystem II) from photoinhibition 
[89], and together with the CDJ2 paralog in the biogenesis/
maintenance of thylakoid membranes [90], we could specu-
late that CDJ3-5 may have a similar role. However, this has 
not been addressed so far for Arabidopsis orthologs, DjC17 
and DjC18. There is no biochemical information on these 
proteins and genetic evidence has been obtained only for 
DjC17, the mutation of which results in an altered root hair 
development and reduced hair length due to aberrant cortical 
cell division [91].

A multitude of ferredoxin‑dependent Fe–S proteins 
and pathways

The formation of reducing equivalents

FDXs are soluble proteins positioned at a metabolic cross-
road, controlling the electron flow necessary for  CO2 fixa-
tion, nitrogen, and sulfur assimilation but also chlorophyll 
metabolism to cite a few examples (Fig. 3). Their primary 
role is to transfer electrons to various acceptors in the 
stroma, in the thylakoids, and in the inner membrane, includ-
ing a large variety of Fe–S proteins but also proteins contain-
ing heme and non-heme iron centers and flavoproteins [92, 
93]. Among the latter category, ferredoxin-NADP reductase 
(FNR) may be the most important one, since it will drive 
most of these electrons for the regeneration of NAPDH, 
which will then supply in particular the Calvin–Benson 
cycle. It is worth nothing that a significant fraction of FNR 
is bound to the thylakoid membrane and it could partici-
pate to the cyclic electron flow via the PGR5-dependent 
pathway by interacting with PGLR1 and recruiting FDXs. 
Another enzyme crucial for carbon fixation and metabolism, 
in general, is the FTR. This key enzyme, which is almost 
uniquely found in photosynthetic organisms, catalyzes the 
reduction of most thioredoxins (TRXs) found in plastids, 
thus indirectly participating to the regulation of all TRX-
dependent targets in a light-dependent manner [94]. FTR is 
a heterodimer composed of a catalytic and a variable subunit 
[95]. In A. thaliana, there is a single gene for the catalytic 
subunit (FTRB) but two for the variable subunits (FTRA1 
and FTRA2). The function of the  [Fe4S4] cluster found in the 
catalytic subunit is to aid for the reduction of a redox-active 
disulfide, which reduces, in turn, the TRX disulfide [96]. 
Given the numerous functions played by plastidial TRXs, it 
is not surprising that an ftr knock-out mutant for the catalytic 
subunit is lethal. However, a virus-induced gene silencing 
(VIGS) approach led to plants exhibiting a sectored chlorotic 
leaf phenotype [97]. It could be observed that these plants 
have (1) an abnormal chloroplast biogenesis, (2) a reduced 
photosynthetic performance as measured by the photochemi-
cal activities, the amount of assembled photosystems and 
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 CO2 assimilation rates, and (3) a defective PEP (plastid 
RNA polymerase)-dependent plastid gene expression, very 
likely because of FTR connection with TRX z [98]. Besides 
the redox regulation of carbon metabolism enzymes, other 
important functions of TRXs in chloroplasts are their par-
ticipation to stress response by regenerating thiol-dependent 
peroxidases and methionine sulfoxide reductases [99] and to 
the chlorophyll metabolism by regulating several enzymes 
of the tetrapyrrole biosynthesis pathway [100].

Beyond tetrapyrrole: chlorophyll and phytochromobilin

Interestingly, several enzymes of the chlorophyll metabo-
lism are FDX targets and/or possess Fe–S clusters. The 
7-hydroxymethyl chlorophyll a reductase (HCAR) is an 
enzyme binding two  [Fe4S4] clusters and an FAD [101]. 
Besides there are four non-heme oxygenases, namely, 
pheophorbide a oxygenase (PAO), chlorophyll a oxyge-
nase (CAO), translocon at the inner envelope membrane 
of chloroplasts 55 (TIC55), and protochlorophyllide 

(pchlide)-dependent translocon component of 52  kDa 
(PTC52) [102]. All possess a Rieske-type  [Fe2S2] cluster 
and a mononuclear iron-binding domain. While the five 
enzymes are dependent on FDX, HCAR, CAO, and PTC52 
are involved in chlorophyll synthesis, whereas PAO and 
TIC55 operate in its degradation. More precisely, CAO 
and HCAR are part of the chlorophyll cycle, the process 
of interconversion between chlorophyll a and chlorophyll 
b. The balance between chlorophyll a/b is important for 
both the stabilization and turnover of chlorophyll in the 
light-harvesting complexes (LHCs) in diverse physiologi-
cal situations, notably during greening and senescence 
when LHCII is massively synthesized or degraded. CAO 
is a thylakoid membrane-anchored enzyme catalyzing 
the two steps of chlorophyll a-to-chlorophyll b oxidation 
[103]. PTC52 would catalyze an analogous oxidation, but 
using protochlorophyllide a as substrate. However, PTC52 
is localized at the envelope [104], suggesting that it may 
have another dispensable function, being part of a translo-
cation complex for the import of the protochlorophyllide 
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oxidoreductase A (PORA) precursor in plastids [105]. 
Indeed, A. thaliana ptc52 knock-out lines have a growth 
indistinguishable from wild-type plants (Table 1) [106]. 
On the contrary, an Arabidopsis mutant for CAO, named 
chlorina1, exhibits a pale green phenotype characterized 
by a chlorophyll b decrease [103] and is extremely sensi-
tive to photooxidation due to the lack of chlorophyll–pro-
tein antenna complexes in PSII and to an increased pro-
duction of singlet oxygen [107]. HCAR catalyzes the 
second half-reaction in chlorophyll b-to-chlorophyll a 
conversion, the first one being catalyzed by chlorophyll 
b reductases (CBR) [101]. While hcar mutants have no 
phenotype under standard growth conditions, they exhibit 
a stay-green phenotype after transfer to darkness (Table 1) 
[108].

In higher plants, chlorophyll is broken down to colour-
less linear tetrapyrroles in a series of reactions. One of 
these steps, the porphyrin ring opening of pheophorbide a, 
is catalyzed by PAO. This step occurs in senescent leaves 
and fruits, and requires FDXs and NADPH [109–111]. The 
PAO proteins possess a C-terminal transmembrane domain 
for their binding to the thylakoid membrane [104]. The 
PAO gene was identified by genetic studies and was initially 
referred to as accelerated cell death 1 (ACD1) in Arabidopsis 
[112] or LLS1 (Lethal leaf spot 1) in maize [113]. Extinction 
of PAO in knock-out mutants or in antisense lines from dif-
ferent plant species leads to a light-dependent premature cell 
death phenotype, most likely due to cytotoxic effects of the 
increased pheophorbide a [109, 112, 114]. Similar to hcar 
mutants, pao mutants have a stay-green phenotype in dark 
[109, 114]. The product of the reaction catalyzed by PAO is 
red chlorophyll catabolite, which is then reduced by a FDX-
dependent red chlorophyll catabolite reductase (RCCR) to 
yield the primary fluorescent chlorophyll catabolite (FCC), 
pFCC [115]. From this primary phyllobilin, a large variety 
of other phyllobilins is formed subsequently. Although a 
tic55 mutant in Arabidopsis does not show any detectable 
phenotype, TIC55, which is localized in the inner membrane 
of the chloroplast envelope, is responsible for phyllobilin 
hydroxylation during senescence [104, 106]. This would be 
the last step in this subcellular compartment, and in that 
sense, TIC55 may contribute to chlorophyll catabolite export 
from plastids for their subsequent vacuolar detoxification.

A closely related molecule to chlorophyll and incidentally 
heme is phytochromobilin (PfB), the chromophore usually 
covalently bound to phytochromes of higher plants. All these 
molecules branch from protoporphyrin IX in the tetrapyr-
role synthesis pathway. From the closed tetrapyrrole ring 
of heme, a heme oxygenase catalyzes the oxidative open-
ing of this chain to yield biliverdin IXa. This molecule is 
then reduced into phytochromobilin by a PfB synthase. In 
higher plants, both types of enzymes are soluble and depend 
on FDXs for their activity [116, 117]. While PfB synthase 

is encoded by a single gene (HY2), the heme oxygenase is 
encoded by four members in A. thaliana, HY1/HO1, and 
HO2-4 [118].

Macronutrient assimilation: similarities in nitrogen 
and sulfur assimilation pathways

The reductive assimilations of nitrogen and sulfur constitute 
two other chloroplastic metabolic processes, which rely on 
FDX-dependent Fe–S proteins. As already presented, sul-
fate assimilation is extremely important, because it provides 
cysteine, which is the source of sulfur for many molecules 
but also the substrate of cysteine desulfurases and a protein 
ligand in all plastidial Fe–S proteins known so far. Of the 
four enzymes/complexes, which allow forming cysteine from 
sulfate, two possess a Fe–S cluster. The second reaction, e.g, 
the transformation of adenosine 5′ phosphosulfate (APS) to 
sulfite, is catalyzed by adenosine 5′-phosphosulfate reduc-
tases (APR). There are three isoforms in A. thaliana, APR1-
3, all localized in plastids. The enzymes are formed by two 
domains, a reductase domain, that bears a  [Fe4S4] cluster, 
and a GRX domain at the C-terminus, that makes these 
enzymes glutathione-dependent [10]. The SIR catalyzes 
the next step, the six electron reduction of sulfite to sulfide. 
This FDX-dependent enzyme incorporates a siroheme, e.g, 
a heme whose iron atom is liganded by the thiolate ligand 
of a  [Fe4S4] cluster, which is crucial for its activity. There is 
a single, essential, SIR gene in Arabidopsis and the protein 
is found exclusively in plastids. A weak allele mutant with 
about 25% SIR activity is viable but has a strongly retarded 
growth, pointing to the extreme importance of this enzyme 
for plant development [119].

The assimilation of inorganic nitrogen (mostly in the 
form of nitrate and ammonium) is another essential pro-
cess for plants taking place in part in plastids. Nitrate will 
be reduced in two steps. The first one, catalyzed by nitrate 
reductase, gives nitrite, which is reduced to ammonia by a 
FDX-dependent nitrite reductase (NIR). As the SIR enzyme, 
NIR binds a siroheme that is mandatory for the six elec-
tron reduction of nitrite. This gene is also essential, since a 
mutant in barley does not grow in the absence of an external 
nitrogen source [120]. In the next steps, ammonia, including 
the part coming from the photorespiration process, is assimi-
lated via glutamine synthetase (GS) which catalyzes the con-
densation of glutamate and ammonia into glutamine and via 
glutamate synthase (GOGAT) which forms two molecules of 
glutamate from glutamine and 2-oxoglutarate. There is evi-
dence that NIR, GS, and GOGAT can form a complex within 
the chloroplast [121]. Plants possess two forms of chloro-
plastic GOGAT, which are dependent either on NADH or on 
FDX. All contain an FMN and a  [Fe3S4] cluster. In A. thali-
ana, NADH-GOGAT is encoded by a unique gene (GLT1), 
whereas two genes encode Fd-GOGAT (GLU1 and GLU2), 
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GLU1 is the predominant form in leaves [122]. Arabidopsis 
mutants for GLU2 and GLT1 have no growth phenotype, 
although a decrease in the chlorophyll content was measured 
in the glt1 mutant [123, 124]. An Arabidopsis mutant for 
GLU1 has a respiratory phenotype, i.e, a dwarf and chloro-
tic phenotype in air which is no longer visible under high 
 CO2 conditions [122, 123, 125]. Of importance for these 
pathways, it is worth mentioning that sirohydrochlorin fer-
rochelatase (SIRB), the enzyme responsible for the last step 
of siroheme biosynthesis by inserting ferrous iron into the 
tetrapyrrole ring of sirohydrochlorin, is a  [Fe2S2] enzyme 
unlike bacterial orthologs. In this essential protein, the Fe–S 
cluster is not mandatory for the enzymatic reaction, but it 
might have a regulatory role [126].

Fatty acid biosynthesis

The biosynthesis of fatty acids is another crucial pathway 
occurring in plastids, which depends directly or indirectly 
on Fe–S proteins. First, the acetyl-coenzyme A, that is 
used as a building block for fatty acids, is generated by the 
plastidial pyruvate dehydrogenase (PDH) complex, its E2 
subunit being lipoylated and thus dependent on the Fe–S 
containing lipoate synthase (see below). After the synthe-
sis of saturated fatty acids, their conversion to unsaturated 
forms, which are required for membrane fluidity, is catalyzed 
by fatty acid desaturases. Some of them contain a di-iron 
center and are FDX-dependent proteins [127]. The FAB2 
protein is a soluble stearoyl-ACP desaturase introducing the 
first double bond into stearoyl-ACP between carbons 9 and 
10 to produce oleoyl-ACP (18:1 Delta9-ACP). The FAD5 
protein attached to the chloroplast envelope inner membrane 
catalyzes the earliest step of 16:0 desaturation initiating the 
very rapid 16:0–16:1–16:2–16:3 desaturation of monogalac-
tosyldiacylglycerol (MGDG), one of the four main classes 
of glycerolipids found in the photosynthetic membranes of 
higher plant chloroplasts with the digalactosyldiacylglycerol 
(DGDG), the phospholipid phosphatidylglycerol (PG), and 
the sulfolipid sulfoquinovosyldiacylglycerol (SQDG) [128]. 
Other plastidial linoleate/oleate desaturases (FAD4, 6, 7, 8) 
and the numerous FAD5-like proteins may also be depend-
ent on FDX as they also probably contain di-iron centers.

Other metabolic processes

Additional FDX-dependent proteins are present in chloro-
plasts. Besides PAO, CAO, PTC52, and TIC55, the fifth 
non-heme oxygenase found in plants [102] is referred to as 
choline monooxygenase (CMO), because it was found to 
catalyze the oxidation of choline, the first step of glycine 
betaine biosynthesis in spinach [129]. However, this might 
not be the sole or main function, since Arabidopsis does not 
produce glycine betaine and expression of the Arabidopsis 

CMO-like gene in E. coli does not promote betaine synthesis 
[130]. This protein is unique to eukaryotic photosynthetic 
organisms as it is not found in cyanobacteria, supporting 
a recent evolution of this enzyme. No Arabidopsis mutant 
has been characterized so far, but antisense CMO transgenic 
sugar beet plants are susceptible to salt stress [131].

To conclude on this part, it is important to note that most 
of these enzymes are also expressed in plastids of non-pho-
tosynthetic tissues. In this context, FDXs are maintained 
reduced by FNR and NADPH generated in the oxidative 
pentose phosphate pathway, the reverse reaction compared 
to photosynthetic organs. A few other enzymes such as 
(1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase 
(HDS), zeaxanthine epoxidase, and β-carotene 3 hydroxylase 
1, 2) have been also described as FDX-dependent proteins, 
but they will be discussed in the next sections. However, 
several additional proteins or pathways are yet unidentified. 
It is for instance worth mentioning that studies devoted to 
the isolation of FDX partners by proteomic approaches led to 
the identification of novel putative targets at least in cyano-
bacteria and Chlamydomonas [132, 133]. In this respect, a 
pyruvate:ferredoxin oxidoreductase (PFO), found in many 
unicellular eukaryotes, decarboxylates pyruvate to acetyl-
coenzyme at the expense of FDXs [134]. The C. reinhardtii 
PFO possesses three distinct  [Fe4S4] clusters. It may also 
contribute to the light-independent  H2 production by passing 
electron to the hydrogenase [135].

Biosynthesis of lipoic acid and thiamin cofactors 
and their dependent pathways

Requirement of two atypical radical‑SAM enzymes

Beyond their role in electron transfer, Fe–S clusters are also 
important for enzyme catalysis, especially during the bio-
synthesis of vitamin B1/thiamin and of lipoic acid. Whereas 
thiamin is only synthesized in chloroplasts a lipoic acid bio-
synthesis pathway is present in both plastids and mitochon-
dria. This is consistent with the existence of two distinct 
genes encoding a mitochondrial (mLIP) and a chloroplastic 
(cLIP) lipoate synthase [136].

Lipoic acid is synthesized from octanoic acid and thus via 
the fatty acid biosynthesis pathway by the addition of two 
sulfur atoms into the octanoyl group bound to an acyl carrier 
protein (ACP) via a radical-SAM mechanism. This reaction 
is catalyzed by lipoic acid synthase [136]. It is important to 
note that lipoic acid is synthesized attached to proteins and 
no free lipoic acid is produced. The E. coli Lip5 binds two 
 [Fe4S4] clusters [137]. One cluster, coordinated by cysteines 
present in a  Cx3Cx2C motif common to all classical radical-
SAM enzymes, is required for the formation of the activated 
adenosyl radical from SAM molecules. The second clus-
ter, coordinated by a  Cx4Cx5C motif specific of lipoic acid 
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synthases, was suggested to provide the sulfur atoms and 
thus to be degraded at each turnover of the enzyme. The 
presence of a Fe–S cluster has not yet been demonstrated 
in plant cLIP, but Arabidopsis cLIP possesses both cysteine 
motifs and is able to complement the E. coli lip5 mutant 
[136]. Plants impaired in cLIP have not been characterized 
yet, but Arabidopsis mutants for genes involved in the syn-
thesis of lipoic acid in mitochondria are lethal [138].

Thiamin is made of pyrimidine and thiazole heterocy-
cles, both being synthesized in the chloroplast. The syn-
thesis of the thiazole moiety involves a 4-methyl-5-b-
hydroxyethylthiazole phosphate (HET-P) synthase (THI1) 
forming an adenylated thiazole intermediate (ADT) at the 
expense of nicotinamide adenine dinucleotide (NAD) and 
glycine, ADT, which is then hydrolyzed to HET-P [139]. 
The pyrimidine heterocycle is derived from purine bio-
synthesis. The first step in the synthesis of the pyrimidine 
moiety is catalyzed by the 4-amino-2-methyl-5-hydroxy-
methylpyrimidine phosphate (HMP-P) synthase (THIC), a 
radical-SAM Fe–S enzyme that forms HMP-P from 5-ami-
noimidazole ribonucleotide (AIR) and SAM. In contrast to 
canonical radical-SAM enzymes, all THIC proteins harbour 
a  Cx2Cx4C motif involved in the binding of a  [Fe4S4] cluster 
in their C-terminal part [140, 141]. Then, an HMP-P kinase/
thiamin monophosphate (ThMP) pyrophosphorylase (TH1) 
phosphorylates HMP-P to HMP-PP but also condenses the 
latter compound to HET-P to form ThMP. This ThMP is 
transformed into the diphosphate form ThDP in the cyto-
sol through the action of two consecutive enzymes before 
being redistributed to mitochondria and plastids. THIC is 
encoded by a single essential gene in Arabidopsis [140]. 
An Arabidopsis thic mutant is lethal at the cotyledon stage 
unless supplemented with thiamin [140, 142]. Another fam-
ily of plastidial Fe–S enzymes is linked indirectly to thia-
min biosynthesis, because they catalyze the first committed 
step of the de novo synthesis of purine in chloroplasts. The 
glutamine phosporibosyl pyrophosphate amidotransferases 
(ATases, also known as GPAT) catalyze the amination of 
5-phosphoribosyl-1-pyrophosphate (PRPP) to 5-phospho-
ribosylamine (PRA) with the concomitant conversion of 
glutamine into glutamate [143]. After four additional steps, 
PRA is transformed into AIR, the THIC substrate. In Arabi-
dopsis, ATase is encoded by a family of three genes (ATase1 
to ATase3) which are expressed in various tissues at dif-
ferent levels [144, 145]. Whereas E. coli ATase does not 
require a Fe–S cluster as cofactor, the human enzyme uses 
a  [Fe4S4] cluster. Based on the conservation of the involved 
cysteines, the three A. thaliana isoforms should also bind a 
Fe–S cluster. Whereas Arabidopsis ATase1 mutant has no 
growth phenotype mutants lacking ATase2 exhibit strong 
growth retardation with bleached leaves (Table 1) [144]. In 
the latter mutant exhibiting a decreased capacity in chlo-
roplast protein import, cells are smaller in size [144, 146].

A single lipoic acid‑dependent enzyme but several 
thiamin‑dependent enzymes in plastids

In plastids, the only known lipoic acid-dependent enzyme 
is PDH. A similar complex is found in plant mitochondria, 
but it uses lipoic acid synthesized in this compartment, as 
does another citric acid cycle enzyme, the α-ketoglutarate 
dehydrogenase or 2-oxoglutarate dehydrogenase complex, 
but also two complexes involved in the amino acid metabo-
lism, the glycine cleavage complex, and the branched-chain 
oxoacid dehydrogenase (BCDH) complex. On the other 
hand, there is a single pathway for the synthesis of ThDP 
which is used as a coenzyme by many enzymes of the pri-
mary metabolism, notably involved in the catabolism of 
sugars and amino acids, and found in the chloroplasts, mito-
chondria, and cytosol [139]. In plastids, besides the PDH 
complex, thiamin is also a cofactor for transketolase (TK) 
of both the Calvin–Benson cycle and the non-oxidative pen-
tose phosphate pathway, for 1-deoxy-d-xylulose 5-phosphate 
synthase (DXS) of the methylerythritol phosphate (MEP) 
pathway and for acetohydroxy acid synthase (AHAS) of the 
branched-chain amino acid (BCAA) biosynthesis pathway 
[139].

The central pyruvate dehydrogenase complex PDH cata-
lyzes the decarboxylation of pyruvate into acetyl-coA that 
is used in particular for fatty acid synthesis as already men-
tioned [128]. It consists of three subunits, E1–E3, each 
requiring a different cofactor. Thiamin is bound to the pyru-
vate dehydrogenase subunit (E1), whereas the lipoic acid 
is covalently attached to the dihydrolipoyl acyltransferase 
subunit (E2) and an FAD is bound to the dihydrolipoam-
ide dehydrogenase subunit (E3). The attached lipoyl moiety 
functions as a carrier of reaction intermediates among the 
active sites of the components of the complex. The E3 subu-
nit has a key regulatory role by reoxidizing the lipoamide 
cofactor and thus completing the catalytic cycle. The dis-
ruption of the gene encoding the E2 subunit of plastidial 
PDH results in an early embryo-lethal phenotype in Arabi-
dopsis [147].

Branched‑chain amino acid biosynthesis The AHAS pro-
tein is involved in the first steps of BCAA biosynthesis. 
This is a heterodimer, composed of separate catalytic and 
regulatory subunits, which catalyzes the conversion of two 
molecules of pyruvate into 2-acetolactate used for valine 
and leucine synthesis or of one molecule of pyruvate and 
one molecule of 2-oxobutanoate into 2-aceto-2-hydroxy-
butyrate used for isoleucine synthesis [148]. Interestingly, 
two Fe–S enzymes named dihydroxyacid dehydratase 
(DHAD) and isopropylmalate isomerase (IPMI) are 
also required for BCAA synthesis. DHAD catalyzes the 
penultimate step before the formation of isoleucine and 
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valine, e.g., the dehydration of 2,3-dihydroxy-3-isovaler-
ate or 2,3-dihydroxy-3-methylvalerate to the 2-oxo acids 
(3-methyl-2-oxobutanoate or 3-methyl-2-oxopentanoate). 
In Arabidopsis, there is a single essential gene for DHAD 
[149]. However, Arabidopsis mutants with intermedi-
ate DHAD levels obtained by an RNAi approach indeed 
have reduced amounts of BCAA in roots, which cause a 
short root phenotype [149]. The only biochemical charac-
terization performed so far has been done with an enzyme 
purified from spinach leaves. Unlike the E. coli enzyme, 
which incorporates a  [Fe4S4] center, the spinach enzyme 
incorporates a  [Fe2S2] cluster required for activity [150]. 
Leucine biosynthesis requires an additional Fe–S enzyme 
for the late reactions. The isopropylmalate isomerase cata-
lyzes the reversible conversion of 2-isopropylmalate into 
3-isopropylmalate. In plants, IPMI consists of a heterodi-
mer composed of a large (LSU) and a small (SSU) subunit 
encoded by one and three genes in A. thaliana, respec-
tively [151]. The genetic analyses demonstrated that A. 
thaliana knock-down mutants for the large subunit, which 
binds a  [Fe4S4] center, display a severe delay in devel-
opment [151, 152]. Concerning small subunits, the SSU1 
protein is required for viability, unlike SSU2 and SSU3, 
which might be redundant, because A. thaliana mutants 
have no phenotype [151, 153]. In addition to a role in leu-
cine biosynthesis, IPMI is involved in the biosynthesis of 
glucosinolates, sulfur-containing secondary metabolites, 
serving for defence reactions. This is consistent with the 
fact that an identical reaction type exists for the Met chain 
elongation cycle for glucosinolate formation and that A. 
thaliana mutant plants for the large subunit accumulate 
both Leu biosynthesis and Met chain elongation interme-
diates [151].

Isoprenoid biosynthesis and its derived molecules Isopre-
noids are very diverse metabolites, central to plant devel-
opment. We have already discussed the biosynthesis of 
chlorophylls, which consist of a tetrapyrrole ring with an 
attached isoprenoid-derived phytol chain, but many other 
isoprenoids are present in plastids such as α-tocopherol, 
phylloquinone, plastoquinone, and carotenoids to cite 
only the most important. Moreover, several plant hor-
mones are derived from carotenoids. All isoprenoids are 
derived from a prenyl diphosphate (prenyl-PP) precursor, 
which is synthesized by two independent pathways, the 
cytosolic mevalonate (MVA) pathway, and the plastidial 
2-C-methyl-d-erythritol 4-phosphate (MEP) pathway 
[154]. The latter pathway is dependent on both Fe–S and 
thiamin (TK and DXS)-dependent enzymes. In E. coli, the 
Fe–S proteins belonging to this MEP pathway are the only 
one that are completely essential. Indeed, the lethality of 
sufa-isca and erpa mutants observed under aerobiosis is 

suppressed by expressing the eukaryotic mevalonate path-
way, which does not rely on Fe–S proteins [54, 155].

Besides its involvement in the Calvin–Benson cycle 
where it catalyzes the formation of ribose-5-phosphate and 
xylulose-5-phosphate from sedoheptulose-7-phosphate and 
glyceraldehyde-3-phosphate (GA-3P), TK operates in the 
opposite direction in the non-oxidative pentose phosphate 
pathway, forming GA-3P, which is then condensed to pyru-
vate to form 1-deoxy-d-xylulose 5-phosphate (DXP), a reac-
tion catalyzed by DXP synthase (DXS). Although poorly 
characterized in plants, it was demonstrated that antisense 
tobacco plants with variable TK levels have a marked 
shoot weight decrease [156]. For the most affected lines, 
a decrease in chlorophylls and carotenoids was measured 
which is consistent with the importance of DXP for the 
MEP pathway. Surprisingly, overexpression of an A. thali-
ana chloroplastic TK in tobacco leads to chlorosis, which is 
annihilated by thiamin supplementation [157]. In A. thali-
ana, DXS is an essential gene [158]. In sense and antisense 
Arabidopsis lines exhibiting altered levels of DXS, both 
the chlorophylls, carotenoids, tocopherols, gibberellin, and 
abscisic acid contents and the growth and germination rate 
are slightly affected [159]. Finally, downstream of DXS, two 
Fe–S proteins are required to form two key intermediates in 
isoprenoid biosynthesis: isopentenyl diphosphate (IPP) and 
dimethylallyl diphosphate (DMAPP). Both the 1-hydroxy-
2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS/
ISPG) and the 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphos-
phate reductase (HDR/ISPH/LytB) bind a  [Fe4S4] cluster 
[160, 161], FDX being able to provide electrons to HDS 
[162]. Plant mutants disrupted in ISPG or ISPH gene have a 
severely impaired chloroplastic development that causes an 
albino phenotype [163–165].

At least two enzymes participating in the carotenoid 
biosynthesis pathways are dependent on FDXs. With-
out describing all the steps, the β-carotene 3 hydroxylase 
1, 2 which contains a di-iron center catalyzes two suc-
cessive steps, the transformation of all-trans β-carotene 
to β-cryptoxanthin and then to zeaxanthin. Then, the fla-
voprotein zeaxanthin epoxidase catalyzes the conversion 
of zeaxanthin to antheraxanthin and then to violaxanthin 
[166]. These four steps require oxygen and FDX as an elec-
tron donor. Other proteins in this pathway might, in fact, 
be dependent on FDXs. For instance, there are several 
cytochrome P450 monooxygenases participating in this 
pathway (and other pathways) in plastids, whose electron 
donors/acceptors are yet unknown.

Derived from carotenoids, strigolactones (SL) are plant 
hormones having diverse functions in plant growth and 
development. Their biosynthesis begins with the conver-
sion of all-trans β-carotene to 9-cis-β-carotene, a reaction 
performed by a β-carotene isomerase named DWARF27. 
This protein, found from algae to higher plants, and first 
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characterized in rice is a Fe–S enzyme [167]. The Arabidop-
sis genome encodes three orthologs. An Arabidopsis mutant 
for one of these genes and a rice mutant have shoot branch-
ing phenotypes, but it remains relatively weak compared to 
other mutants affected in SL biosynthesis [168].

Are there other plastidial Fe–S proteins to discover?

Some Fe–S proteins, such as NEET, have been recently iden-
tified or characterized in plants. Unlike mitoNEET, which 
is bound to the outer membrane of mitochondria in animals 
owing to a membrane anchoring extension, the Arabidop-
sis NEET protein is located exclusively in the chloroplast 
stroma [169]. As its vertebrate counterparts, Arabidopsis 
NEET forms dimers; each monomer harbouring an atypi-
cal  [Fe2S2] cluster coordinated by three Cys and one His 
[170]. While obtaining knock-out plants may have been 
hampered by the fact, it is an essential gene, Arabidopsis 
lines with reduced AtNEET transcript levels exhibit late 
greening, delayed bolting, and early senescence. Moreover, 
these plants accumulate ROS and have an altered sensitivity 
to Fe levels, which led to the proposal that AtNEET likely 
plays a role in the regulation of Fe homeostasis [170]. From 
its capacity to transfer its Fe–S cluster to a FDX in vitro 
[170], it may be hypothesized that NEET could be part of the 
SUF machinery and facilitate the trafficking of Fe–S clusters 
towards certain client proteins.

Another reason why we expect to discover novel Fe–S 
proteins is that some proteins may be specific to photosyn-
thetic organisms because of their atypical structure organi-
zation or their involvement in specific plastidial functions. 
An interesting example in this regard is SUFE3, a chimeric 
protein formed by an SUFE domain fused to a quinolinate 
synthase domain, NADA [18]. This enzyme, which carries a 
 [Fe4S4] cluster indispensable for its activity and thus crucial 
for NAD biosynthesis, is the sole NADA representative of 
A. thaliana. The fact that the Fe–S cluster in SUFE3 can be 
reconstituted using its own SUFE domain in the presence 
of NFS2, cysteine, and ferrous iron may render this protein 
independent on the SUFBCD scaffold complex [18].

Other Fe–S protein-dependent processes likely remain 
to be identified in plastids as in other subcellular compart-
ments. For instance, the affinity purification strategy used 
for cyanobacterial and algal enzymes indicates that numer-
ous FDX-dependent processes await identification [132, 
133]. The same is true in mitochondria where the roles and 
partners of the two FDXs are unknown. On the other hand, 
novel Fe–S proteins will be undoubtedly identified in the 
future thanks to the dozens of annotated sequenced genomes 
now available for model plants and to the ever larger collec-
tions of available Arabidopsis mutants. The reasons why it 
is not trivial to isolate them is that the sensitivity of these 
metallic cofactors to oxygen may hamper the isolation of 

holoproteins and predictions of Fe–S proteins from the pro-
tein primary sequences are often impossible, because there 
is no universal signature for identifying Fe–S cluster ligands.
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