
1 3

DOI 10.1007/s00726-017-2450-1
Amino Acids (2017) 49:1277–1291

REVIEW ARTICLE

Roles of amino acids in preventing and treating intestinal 
diseases: recent studies with pig models

Yulan Liu1 · Xiuying Wang1 · Yongqing Hou1 · Yulong Yin2,3 · Yinsheng Qiu1 · 
Guoyao Wu4 · Chien‑An Andy Hu1,2,3,5 

Received: 28 March 2017 / Accepted: 5 June 2017 / Published online: 14 June 2017 
© Springer-Verlag GmbH Austria 2017

significant physiological effects in regulating immunity, 
anti-oxidation, redox regulation, energy metabolism, signal 
transduction, and animal behavior. Recent studies in pigs 
have shown that specific dietary amino acids can improve 
intestinal integrity and function under normal and patho-
logical conditions that protect the host from different dis-
eases. In this review, we summarize several pig models 
in intestinal diseases and how amino acids can be used as 
therapeutics in treating pig and human diseases.

Keywords  Pig models · Intestinal disease · Amino acids · 
Therapeutics
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AMPK	� AMP-activated protein kinase
APC	� Adenomatous polyposis coli
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DAO	� Diamine oxidase
DSS	� Dextran sodium sulphate
ERK	� Extracellular signal-regulated kinase
FAP	� Familial adenomatous polyposis
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IBD	� Inflammatory bowel disease
IL	� Interleukin
LPS	� Lipopolysaccharide
mTOR	� Mammalian target of rapamycin
NAC	� N-Acetylcysteine
NOD	� Nucleotide-binding oligomerization domain 

protein
OAT	� Ornithine-δ-aminotransferase
PI3K	� Phosphatidylinositol 3-kinase
P5C	� ∆1-Pyrroline-5-carboxylate

Abstract  Animal models are needed to study and under-
stand a human complex disease. Because of their similari-
ties in anatomy, structure, physiology, and pathophysiol-
ogy, the pig has proven its usefulness in studying human 
gastrointestinal diseases, such as inflammatory bowel dis-
ease, ischemia/reperfusion injury, diarrhea, and cancer. To 
understand the pathogenesis of these diseases, a number 
of experimental models generated in pigs are available, for 
example, through surgical manipulation, chemical induc-
tion, microbial infection, and genetic engineering. Our 
interests have been using amino acids as therapeutics in 
pig and human disease models. Amino acids not only play 
an important role in protein biosynthesis, but also exert 
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ROS	� Reactive oxygen species
TLR	� Toll-like receptor
TNBS	� Trinitrobenzene sulfonic acid
TNF	� Tumor necrosis factor
ZO	� Zonula occludens

Introduction

Rodents have been widely used as models of human nutri-
tion, physiology and pathophysiology in health and in dis-
ease. However, in numerous cases rodents cannot accu-
rately replicate the human conditions. Compared to rodents, 
the pig has a closer match of human biochemistry, cell 
biology, anatomy, physiology, and pathophysiology. The 
pig shows a high homology in DNA sequence and chromo-
somal structure with those of humans (Verma et al. 2011), 
and there are considerable anatomical and physiological 
similarities of the organ systems, for example, the intestine, 
between pigs and humans (Clouard et  al. 2012; Heinritz 
et al. 2013). Furthermore, pigs are monogastric omnivores, 
and their dietary requirements and physiology in digestion 
and nutrient absorption are closely resembled to those of 
humans (Clouard et al. 2012). Moreover, pigs have an abil-
ity to ferment nutrients in the colon, and possess similar 
intestinal microbial ecosystem and microbiota to those of 
humans (Heinritz et al. 2013; Gonzalez et al. 2015). Taken 
together, these characteristics have made the pig an ideal 
model for investigating human intestinal diseases, such as 
inflammatory bowel disease (IBD) (Pouillart et  al. 2010), 
ischemia/reperfusion (I/R) injury (Spanos et al. 2007), diar-
rhea (Kocher et  al. 2014), necrotizing enterocolitis (Jiang 
and Sangild 2014), short bowel syndrome (Jiang and San-
gild 2014; Gonzalez et  al. 2015), stress-induced intestinal 
dysfunction (Gonzalez et  al. 2015; Wu et  al. 1996b), and 
cancer (Flisikowska et al. 2012).

In general, amino acids are absorbed and used by the 
host to synthesize proteins and other important substances, 
and are oxidized as a source of energy (Wu 2013b). Recent 
studies indicated that amino acids possess additional, 
novel functions in growth, health, and disease. For exam-
ple, some amino acids can attenuate intestinal damage, 
maintain barrier function and intestinal integrity, restore 
mucosal immune homeostasis, reduce oxidative stress and 
inflammatory cytokine production, and increase the level of 
immune regulatory cytokines (Li et al. 2016; Ruth and Field 
2013; Wu et al. 2015; Yi et al. 2016). Based on our and oth-
er’s findings in pig models, amino acids, such as arginine 
(Liu et al. 2008), glutamine (Ewaschuk et al. 2011), glycine 
(Wu 2015), cysteine (Song et  al. 2016), N-acetylcysteine 
(NAC) (Hou et al. 2012; Yi et al. 2016), and proline (Kang 
et  al. 2014), are beneficial to gut health and hold great 
promise in treating a wide array of gut-related disorders in 

both pigs and humans. In this article, we highlight several 
intestinal diseases, pig models, and the potential therapeu-
tic roles of amino acids in diseases of the gut.

Intestinal diseases and models

Due to the multifactorial etiology of disease, many differ-
ent experimental strategies (such as surgical manipulation, 
and feeding or injection with chemicals or microorganisms) 
have been used to induce intestinal lesions in pig models 
for the study of molecular changes, histopathology, mecha-
nisms, and treatment strategies (Table 1).

IBD

IBD, a chronic, remitting and relapsing intestinal inflam-
matory response, harbors two diseases, ulcerative colitis 
and Crohn’s disease (Randhawa et al. 2014). IBD can affect 
the entire gastrointestinal tract and mucosal layer, which 
may increase the risk of colorectal cancer (CRC) (Clevers 
2004; Kaser et al. 2010). Clinically, severe diarrhea, bleed-
ing, abdominal pain, loss of fluid and electrolytes are the 
characteristics of IBD (Randhawa et al. 2014). Though the 
etiology of IBD remains undetermined, several factors, 
including immunologic abnormalities, loss of tolerance 
to commensal bacteria, disruption of mucosal barrier, and 
increase in inflammatory mediators and oxidative stress, 
are related to the pathogenesis of IBD (Goyal et al. 2014).

To date, multiple models, such as spontaneous, chem-
ical-induced, bacteria-induced, genetically engineered, 
transgenic, mutation knock-in and gene knock-out have 
been established to study IBD and their related compli-
cations (Goyal et  al. 2014). Among the various mod-
els, chemical [for example, trinitrobenzene sulfonic acid 
(TNBS), dextran sodium sulphate (DSS) and acetic acid]-
induced and bacteria (for example, Salmonella)-induced 
colitis models in the pig are extensively used: (1) Crohn’s 
disease can be induced by rectal instillation of TNBS 
(15 mg/kg in 5 mL 50% ethanol solution) (Pouillart et al. 
2010). The pathologic changes include extensive ulcera-
tion, inflammation, and bloody stools (Pouillart et  al. 
2010). (2) Ulcerative colitis can be induced by injection 
of DSS at 1.25 g/kg BW/day for 5 days (Kim et al. 2010) 
or 0.75 g/kg BW/day for 7 days (O’Shea et al. 2016). The 
signs of DSS-induced ulcerative colitis include severe and 
bloody diarrhea, elevated gut permeability and concentra-
tions of cytokines [for example, interleukin (IL)-6 and 
tumor necrosis factor (TNF)-α] (Kim et al. 2010), increased 
proximal colon pathology score and colonic Enterobacte-
riaceae (O’Shea et al. 2016). The distorted crypt architec-
ture, infiltration of inflammatory cells into the mucosa and 
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submucosa, crypt abscesses and cryptitis are observed in 
the hematoxylin and eosin-stained colon sections in DSS-
treated pigs (Kim et  al. 2010). (3) Colitis can be induced 
by intrarectal administration of 10 mL of 10% acetic acid 
to the pig (Wang et  al. 2013a). It was found that acetic 
acid administration caused increase in the histopathology 
score, intraepithelial lymphocyte number and density of 
colon, myeloperoxidase activity, concentrations of malon-
dialdehyde and pro-inflammatory mediators in the plasma 
and colon, and reduction in goblet cell number in colonic 
mucosa (Wang et  al. 2013a). (4) Ulcerative colitis can be 
induced by Salmonella typhimurium (Cho and Chae 2004). 
Salmonella typhimurium DT104 infection (1011 cells per 
animal) decreases transepithelial ion conductance, hista-
mine flux and histamine N-methyltransferase activity, and 
increases diamine oxidase (DAO) activity (Aschenbach 
et  al. 2007). The pathophysiologic processes of this dis-
ease may be association with the expression of cyclooxy-
genase-2 and nitric oxide synthase 2 (Cho and Chae 2004).

I/R injury

I/R injury, a crucial research field for studying small bowel 
transplantation, is known to cause allograft rejection, tissue 
injury, and organ dysfunction (Yandza et al. 2012; Lenaerts 
et  al. 2013). I/R injury is characterized by altered perme-
ability of vascellum and epithelium, and dramatical dam-
age of villus (Spanos et  al. 2007). The pig model of I/R 
injury is commonly used to capture the disease process in 
humans. A surgical model in pigs showed that ischemia 
can be established by clamping the superior mesenteric 
artery at its origin and is sustained for 2 h, and duration of 
reperfusion is 2 h after release of the clamp (Spanos et al. 
2007). The related studies found that I/R induces inflam-
mation and tissue injury by producing reactive oxygen spe-
cies (ROS) and pro-inflammatory cytokines (Spanos et al. 
2007). Similarly, Kostopanagiotou et  al. (2011) reported 
that I/R affected the function and structure of small bowel 
transplantation and induced inflammatory cascades by the 
production of cytokines (e.g., TNF-α, IL-8), hyaluronic 
acid, and reactive nitrogen species (e.g., nitric oxide).

Diarrhea

Diarrhea is one of the most concerning and important 
public health problems that cause considerable morbid-
ity and mortality among children. In particular, viral 
pathogens, such as norovirus and rotavirus, can cause out-
breaks of gastroenteritis and diarrhea (Heinritz et al. 2013; 
Zhang et al. 2016). Thus, norovirus (or rotavirus)-infected 
pig models have been used to study the mechanisms of 

diarrhea, dehydration, and intestinal lesions in humans 
(Souza et al. 2007; Meurens et al. 2012; Kocher et al. 2014; 
Mao et al. 2015). For example, the gnotobiotic pig is suit-
able for the investigation of pathogenesis, host immunity, 
and vaccine development of viral diarrhea (Meurens et al. 
2012; Kocher et al. 2014), as the gnotobiotic pig model is 
deficient in maternal antibodies and is pathogen free. Souza 
et al. (2007) found that the diarrhea caused by human nor-
ovirus genogroup II.4 (HS66 strain) in gnotobiotic pigs 
was related to systemic and intestinal antibody, antibody-
secreting cells, cytokine and cytokine-secreting cells. Mao 
et  al. (2015) reported that in the rotavirus-infected pigs, 
frequency of diarrhea, serum rotavirus antibody concentra-
tion, and intestinal crypt depth were increased. On the other 
hand, ratios of villus height and crypt depth, concentrations 
of mucin 1 and 2, numbers of goblet cells, and levels of 
phosphorylated mammalian target of rapamycin (mTOR) 
of intestinal mucosa were decreased (Mao et  al. 2015). 
In another trial, the rotavirus infection also altered both 
gut microbial diversity and composition of the microbial 
community (Li et  al. 2014). These may reflect the patho-
biological mechanism of viral diarrhea in infected children. 
In addition, studies using pigs have found that not only 
viruses but also Escherichia coli is associated with diarrhea 
and the release of toxic materials to impair intestinal barrier 
function (Heinritz et  al. 2013; Yang et  al. 2014). In addi-
tion, it has been reported that pigs challenged with E. coli 
K88 showed intestinal barrier damage, increased urinary 
lactulose:mannitol ratio, plasma endotoxin concentration, 
and intestinal mucosal injury, such as shorter villi, deeper 
crypts and the decreased expression of tight junction pro-
tein zonula occludens (ZO)-1 and occludin (Yang et  al. 
2014). Furthermore, the early weaning of piglets provides 
a natural model for the occurrence of diarrhea and its pre-
vention by dietary supplementation with glutamine (Wang 
et al. 2015b; Wu et al. 1996b).

Colorectal cancer (CRC)

This year over 600,000 people worldwide will die of 
CRC. It is the third most frequently diagnosed and third 
most deadly cancer in the United States. Standard treat-
ment for CRC showed some efficacy but fall short in 
terms of increasing long-term survival. CRC is a malig-
nant disease, and its etiology includes genetic back-
ground and environmental risk factors (Gao et al. 2017). 
Recent studies indicate that gut microbiota may be an 
important contributor factor in the initiation and develop-
ment of CRC (Gao et al. 2017). In addition, the familial 
adenomatous polyposis (FAP), a genetic disorder result-
ing from mutations in the adenomatous polyposis coli 
(APC) gene, is one of the major sources of hereditary 
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CRC (Bong et  al. 2016). The vast majority of FAP 
patients will develop CRC if they cannot be treated at an 
early stage (Bong et al. 2016). FAP is classically charac-
terized by hundreds of adenomatous polyps in the rectum 
and colon, which, if not removed, ultimately progress to 
tumor (Croner et  al. 2005). The pig has its advantages 
in human cancer research because of its size, easy han-
dling, and drug delivery in the same way as in human 
patients, and for follow-up blood and imaging work over 
time, as well as its genetic, biochemical, and physiologi-
cal similarities to humans. In addition, high-throughput 
genome sequencing and a collection of precision-genetic 
tools combined with bioinformatics analysis, and pro-
filing of transcriptomics/proteomics/metabolomics/
secretomics/interactomics can be applied in the pig. The 
ability to modify pig genomes through targeted nucle-
ases combined with the development of novel reproduc-
tive technologies including cloning allows researchers 
to create complex and unique models of cancer in pigs 
that are more applicable to human disease. Previously, 
Flisikowska et  al. (2012) produced gene-targeted cloned 
pigs carrying mutations in the APC gene (APC1061 and 
APC1311), which are orthologous to human FAP muta-
tions (APC1061 and APC1309), to model the symptoms 
of FAP patients and to develop diagnostics and therapeu-
tics for CRC. These pigs showed classic features of aber-
rant crypt foci and low- and high-grade dysplastic adeno-
mas in the large bowel (Flisikowska et al. 2012). Without 
a doubt, pig models in cancer help us understand the 
molecular bases of tumorigenesis and to develop immu-
notherapeutic, pharmaceutical, endoscopic, and surgical 
interventions.

The impact of amino acids on intestinal diseases

Amino acids are necessary not only for the biosynthe-
sis of various proteins, but also for the regulation of key 
metabolic pathways (Hou et al. 2015a, b; Li et al. 2007). 
Despite these beneficial effects, studies in animals and 
humans with intestinal diseases have demonstrated that 
dietary supplementation with amino acids sustains intes-
tinal integrity and normal immunocompetence, reduces 
oxidative stress, and protects the host from different dis-
eases, thereby decreasing morbidity and mortality (Ruth 
and Field 2013; Li et al. 2007). In this section, we con-
sider their roles in pathological states and display their 
treatment outcomes in intestinal diseases in pig models 
(Table  2). The possible mechanisms responsible for the 
beneficial effects of amino acids in intestine are shown 
in Fig. 1.

Arginine

Arginine is the nitrogenous precursor for synthesiz-
ing nitric oxide. Arginine activates mTOR signaling in 
enterocytes to promote protein synthesis and prevent 
lipopolysaccharide (LPS)-induced cell death (Tan et  al. 
2010). This amino acid also enhances angiogenesis in the 
small intestine to augment nutrient absorption (Yao et al. 
2011), as well as immune status in early-weaned piglets 
(Tan et  al. 2009). Interestingly, a recent finding indi-
cated that arginine played important roles in pig nutri-
tion partially via modulating amino acids utilization and 
metabolism in the small-intestinal microbiota (Dai et al. 
2012). Numerous experiments have shown that arginine 
and nitric oxide play a modulatory role in physiology of 
gastrointestinal tract. We previously demonstrated that 
0.5 or 1.0% arginine ameliorated the adverse effects of E. 
coli LPS on the pig intestine, including improving intes-
tinal morphology (villus height and crypt depth), regulat-
ing cell proliferation and apoptosis, and also decreasing 
the expression of pro-inflammatory cytokines (IL-6 and 
TNF-α) via activating peroxisome proliferator-activated 
receptor γ (Liu et  al. 2008). Zhu et  al. (2013) reported 
that arginine increased the numbers of IgA-secreting 
cells, CD8+ and CD4+ T cells, and decreased mast cell 
number and lymphocyte apoptosis of Peyer’s patches in 
piglets challenged by LPS. In addition to reducing intes-
tinal injury induced by LPS, supplementation with argi-
nine has also been reported to augment intestinal protein 
synthesis in part by p70S6k stimulation in piglet rota-
virus enteritis (Corl et  al. 2008). Besides, Spanos et  al. 
(2007) observed amelioration of intestinal I/R injury with 
administration of arginine. Further, studies in humans 
with CRC have found that oral 30  g of arginine once a 
day can inhibit the formation and development of colo-
rectal tumors (Ma et al. 2007). Thus, arginine supplemen-
tation can ameliorate intestinal diseases.

Glutamate and glutamine

Glutamine and glutamate, along with aspartate, are the 
major energy substrates for enterocytes (Wu 1998). A 
number of animal studies indicated that glutamate and 
glutamine play versatile roles in the metabolism and 
function of gut. As a specific precursor for the synthesis 
of glutathione and other amino acids (alanine, aspartate, 
ornithine, and proline) (Ruth and Field 2013), glutamate 
shows positive effect in improving intestinal mucosa 
morphology (Wu et al. 2012), reducing intestinal hyper-
permeability (Vermeulen et  al. 2011) and enhancing 
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mucosal barrier and anti-oxidative functions (Jiao et  al. 
2015). Moreover, in our previous work, dietary supple-
mentation of 1.0 or 2.0% glutamate appears to be ther-
apeutic in intestine during inflammatory states via (1) 
improving intestinal barrier function by suppression of 
corticotropin-releasing hormone (CRH)/CRH receptor 
1 signalling pathway; (2) decreasing pro-inflammatory 
cytokine production by regulation of toll-like receptor 
(TLR4) and nucleotide-binding oligomerization domain 
protein (NOD) signaling pathways; (3) inhibiting protein 
degradation by maintenance of mTOR signaling (Ren 
2015; Wang 2015). Dietary supplementation of gluta-
mate has been reported to enhance anti-oxidative capac-
ity in the small intestine of weanling piglets and reduce 
the incidence of diarrhea in these neonates (Rezaei et al. 
2013a).

Glutamine exerts key role in the maintenance of intesti-
nal structure and function, regulates amino acid utilization 
by intestinal bacteria, and beneficially alters endogenous 
gut microbiota (Dai et al. 2013; Zhang et al. 2017). Com-
pared to glutamate, much more research on the therapeu-
tic effect of glutamine in gastrointestinal diseases has been 
documented (e.g., Haynes et al. 2009; Wu et al. 1996b; Yi 
et al. 2015). Yi et al. (2005) reported that 2% glutamine mit-
igated villous atrophy, intestinal morphology impairment, 
and diarrhea in weaned pigs challenged with E. coli K88+. 
Similarly, Ewaschuk et al. (2011) found that supplementing 
the weaning diet of piglets with 4.4% glutamine regulated 
the mucosal cytokine response, and decreased damage to 
tight junction proteins and intestinal electrolyte movement 
after E. coli (K88AC or K88 wild-type) challenge. In addi-
tion, glutamine plus transforming growth factor-alpha treat-
ment can synergistically restore mucosal architecture (e.g., 
recovery of villous surface area) via increasing the activity 
of extracellular signal-regulated kinase (ERK) in porcine 
ischemic-injured intestine (Blikslager et  al. 1999). Glu-
tamine also stimulates jejunal sodium and chloride absorp-
tion in pig rotavirus enteritis (Rhoads et  al. 1991). Fur-
thermore, based on the previous results in mouse model, 
glutamine establishes a protective role in colitis-associated 
CRC (Tian et al. 2016). As noted above, glutamine is rec-
ognized as an important dietary component in maintaining 
intestinal health.

Glycine

Glycine, the simplest amino acid, is the most abundant 
amino acid in the plasma of postnatal pigs (Wang et  al. 
2013b). This amino acid is remarkably deficient in sow’s 
milk (Wu and Knabe 1994) and in plant-based diets for 
postweaning pigs (Wu et  al. 2014). There is evidence 
that endogenous synthesis of glycine is inadequate to Ta
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support optimal intestinal health or maximum growth of 
the whole-body (including the small intestine) in young 
pigs (Wang et  al. 2014a). Of note, glycine has been 
proved to be an anti-inflammatory, immunomodulatory, 
and cytoprotective agent (Zhong et  al. 2003). In  vitro 
studies using intestinal porcine epithelial cells showed 
that glycine inhibits oxidative stress (Wang et al. 2014b) 
and improves intestinal mucosal barrier by regulating 
the expression and distribution of claudin-7 and ZO-3 
(Li et  al. 2016). In recent years, mounting evidence has 
documented the protective effect of glycine in intestinal 
diseases in animals and humans. We reported that sup-
plementing the weaning diet of piglets with 1.0 or 2.0% 
glycine was beneficial in attenuating LPS-induced pro-
tein degradation [by regulation of AMP-activated protein 
kinase (AMPK) and mTOR signaling] and inflamma-
tory response (by regulation of TLR4 and NOD signal-
ing) (Wu 2015). During LPS-induced sepsis, less intes-
tinal hemorrhage is observed in the rats supplemented 
with glycine (Effenberger-Neidnicht et al. 2014). Glycine 
appears to exert great protective effects in preventing I/R 
injury to intestine, which is clearly suggested by a large 
body of researches with experimental animals (Zhong 
et al. 2003; Petrat et al. 2012). Moreover, dietary glycine 
prevents hypoxia–reoxygenation-induced necrotizing 
enterocolitis (Meyer et  al. 2006) and chemical-induced 
colitis (Tsune et al. 2003) in rats. However, the research 
is mainly focused on the rat models, evidence from the 
pig models is limited. Nevertheless, based on the reported 

findings, dietary glycine supplementation may provide an 
effective strategy in keeping intestinal health.

Proline

Proline is an indispensable amino acid in young mam-
mals, due to a limited ability to synthesize proline from 
glutamine, glutamate or arginine in the small intestine of 
young pigs (Wu et al. 1994, 1996a). Proline is a major pre-
cursor for the synthesis of polyamines (Wu et  al. 2000a, 
b) and arginine (Wu 1997) in enterocytes of pigs to sup-
port intestinal cell growth and migration. It has been well 
demonstrated that dietary proline supplementation plays an 
important role in the gut of the weaned piglets regulating 
cell differentiation and de novo synthesis of arginine and 
polyamines (Wu et  al. 2011). Recently, we showed that 
proline supplementation can increase immunostimulatory 
effects on inactivated Pasteurella multocida vaccine-immu-
nized mice (Ren et  al. 2013) and improve growth perfor-
mance, increase superoxide dismutase activities, and has a 
positive effect on the gastrointestinal tract digestibility in 
early-weaned pigs (Kang et al. 2014). In addition, the vil-
lus height, percentage of proliferating cell nuclear antigen-
positive cells, alkaline phosphatase activity, the protein 
expressions of tight junction proteins (ZO-1, occludin and 
claudin-3) and voltage-gated K+ channel (Kv) 1.1 pro-
tein are increased in the intestine of proline-treated piglets 
(Wang et  al. 2015c). Metabolism of proline in mammals 

Intestinal amino acids

GlycineArginine TryptophanGlutamate
Glutamine

Sulphur-
containing
amino acids

Aspartate
Asparagine
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chain
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Fig. 1   Possible mechanisms responsible for the beneficial effects of 
amino acids in intestine. Akt protein kinase B, AMPK AMP-activated 
protein kinase, CRH corticotropin-releasing hormone, CRHR CRH 
receptor, ERK extracellular signal-regulated kinase, Foxo forkhead 
box o, GSK glycogen-synthase kinase, MAPK mitogen-activated pro-
tein kinase, mTOR mammalian target of rapamycin, NF-κB nuclear 

factor-κB, NOD nucleotide-binding oligomerization domain pro-
tein, Nrf2 NF erythroid 2-related factor 2, PI3K phosphatidylinosi-
tol 3-kinase, PPAR peroxisome proliferator-activated receptor, P5C 
∆1-pyrroline-5-carboxylate, ROS reactive oxygen species, TLR toll-
like receptor
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involves four other amino acids, glutamate, glutamine, 
ornithine, and arginine, and seven proximal enzymatic 
activities, ∆1-pyrroline-5-carboxylate (P5C), reductase, 
proline oxidase/proline dehydrogenase, P5C dehydroge-
nase, P5C synthase, glutamine synthetase, glutaminase, 
and ornithine-δ-aminotransferase (OAT) (Hu et  al. 2008; 
Hu and Hou 2014). With the exception of OAT, which 
catalyzes a reversible reaction, the other four enzymes are 
unidirectional (Hu et al. 2008; Hu and Hou 2014). In addi-
tion, proline metabolism also links with three other piv-
otal metabolic systems, namely the TCA cycle, the urea 
cycle, and the pentose phosphate pathway (Hu et al. 2008; 
Hu and Hou 2014). Thus, proline metabolism involves in 
NADP+, NAD+, ROS, and ATP production, redox balance, 
and ammonia detoxification in intestinal epithelial cells 
(Hu et al. 2008; Hu and Hou 2014; Phang et al. 2015; Wu 
1998).

Sulfur‑containing amino acids

Methionine and cysteine are involved in the biosynthesis of 
proteins of the immune system (Li et al. 2007). A sufficient 
intake of dietary methionine is important for mucosal integ-
rity (Chen et al. 2014), morphological development (Shen 
et  al. 2014; Zhong et  al. 2016), and intestinal antioxidant 
capacity (Shen et  al. 2014; Zhong et  al. 2016). S-Adeno-
sylmethionine, the activated form of methionine, partici-
pates in plenty of essential metabolic processes, such as the 
methylation of DNA and proteins and the synthesis of sper-
midine and spermine (Li et  al. 2007). In addition, dietary 
methionine intake may be related to reduce the risk of CRC 
(de Vogel et  al. 2008; Zhou et  al. 2013). Moreover, Tang 
et  al. (2015) reported that methionine deficiency inhib-
ited autophagic response and accelerated death in IPEC-1 
cells infected with enterotoxigenic E. coli. However, in 
the methionine restriction experiments in rats, reduction in 
dietary intake of methionine results in improved colon tight 
junction barrier function (Ramalingam et  al. 2010) and 
inhibited colon carcinogenesis (Komninou et al. 2006).

Cysteine is important for normal intestinal function, 
including the immune surveillance of the intestinal epithe-
lial layer and regulation of the mucosal response to foreign 
antigens (Fang et al. 2010). Cysteine also involves in the 
biosynthesis of glutathione and taurine, both of which pos-
sess potent anti-oxidative activity and can suppress oxida-
tive stress during IBD (Kim et al. 2009). Kim et al. (2009) 
reported that cysteine supplementation (0.144  g/kg  BW/
day) improved intestinal permeability, local chemokine 
expression, neutrophil influx and colon histology, and 
regulated the expression of pro-inflammatory cytokines, 
apoptosis initiator, and pro-survival genes in a porcine 
model of colitis, supporting the importance of cysteine in 

attenuating local inflammation and restoring gut homeo-
stasis. Moreover, cysteine in diet (0.25 or 0.5%) protected 
intestinal integrity, as demonstrated by increased prolifer-
ating cell nuclear antigen, occludin and claudin-1 expres-
sion, and down-regulated caspase-3 activity in weaned 
piglets after LPS challenge (Song et  al. 2016). This ben-
eficial effect of cysteine is resulted from its anti-inflamma-
tion, anti-oxidation, and regulatory effect on suppressing 
nuclear factor-κB (p65) nuclear translocation and enhanc-
ing NF erythroid 2-related factor 2 translocation (Song 
et  al. 2016). However, excessive cysteine (5–10 mmol/L) 
may induce vacuole-like cell death by activating endoplas-
mic reticulum stress and mitogen-activated protein kinase 
signaling in intestinal porcine epithelial cells (Ji et  al. 
2016).

Because cysteine is detrimental at a high concentra-
tion, NAC (the precursor of cysteine) is commonly used to 
deliver cysteine. NAC can be rapidly metabolized by the 
small intestine and restore intestinal function (Wang et al. 
2013a). Xu et  al. (2014) reported that NAC can improve 
intestinal bacteria in piglets by enhancing Lactobacillus 
and Bifidobacterium counts and reducing E. coli counts. 
In the acetic acid-induced colitis model, dietary supple-
mentation with 500  mg/kg NAC regulates anti-oxidative 
responses, apoptosis, and epidermal growth factor expres-
sion in colonic mucosa, and thus partially ameliorates the 
adverse effects of acetic acid in pigs (Wang et al. 2013a). In 
addition, NAC preconditioning also attenuates ischemia–
reperfusion injury in piglet small bowel transplantation 
(Kostopanagiotou et  al. 2011). Moreover, results from 
recent studies indicated that NAC alleviates LPS-induced 
intestinal alterations, such as DAO activity (a marker of 
intestinal injury), d-xylose concentration (a marker of intes-
tinal absorption) in the circulation, levels of tight junction 
proteins, and ratios of villus height to crypt depth, RNA/
DNA and protein/DNA (Hou et  al. 2012; Yi et  al. 2017). 
Further examination revealed that NAC attenuates LPS-
induced intestinal inflammation through multiple signaling 
pathways, such as redox, epidermal growth factor, TLR4, 
PI3K/Akt/mTOR, and AMPK signaling (Hou et  al. 2013; 
Yi et al. 2017).

Threonine

Threonine is of great importance in intestinal health 
needed especially for synthesis of mucin (Mao et al. 2011). 
Increasing dietary threonine intake can increase serum IgG 
concentration and promote a healthy microbiota (Trevisi 
et al. 2015; Wang et al. 2006). Trevisi et al. (2015) reported 
that the diet with 9.0 g threonine/kg reduced E. coli counts 
in feces of pigs and led to favorable impact on average daily 
feed intake in the first week after weaning, as compared 
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to 8.5 g threonine/kg diet. However, either an excess or a 
deficiency of dietary threonine is deleterious to the intes-
tinal mucosal integrity and barrier function (Wang et  al. 
2010). Some of the negative consequences include villus 
atrophy, increased apoptosis, and decreased mucin concen-
tration (Wang et al. 2010). Consistent with these, Hamard 
et al. (2010) reported that paracellular permeability and the 
expression of genes associated with immune and inflamma-
tory responses (e.g., the complement C1s subcomponent, 
the MHC class I antigen, the T cell differentiation antigen 
CD6, the C–C motif chemokine 16, and chemokine recep-
tors) were increased in piglets given to a 30% reduced thre-
onine diet for 2 weeks. Further, threonine requirement may 
be increased under pathological conditions, such as ileitis 
and sepsis (Mao et  al. 2011). Baird et  al. (2013) showed 
that threonine increased heat-shock protein expression 
and decreased apoptosis in heat-stressed intestinal epithe-
lial cells. Wang (2006) also reported that dietary threonine 
increased concentrations of IgG and IgA in jejunal mucosa 
and improved intestinal morphological features in piglets 
after E. coli K88+ challenge. Interestingly, however, very 
little research has been done to investigate the therapeutic 
potential of threonine on intestinal diseases.

Tryptophan

As the precursor of multiple bioactive compounds (e.g., 
kynurenine, serotonin, melatonin, and picolinic acid) 
(Wu 2013b), tryptophan is important to regulate physi-
ological function in the intestine, such as intestinal perme-
ability, motility, and secretion (Wang et al. 2015a; Tossou 
et  al. 2016). Dietary tryptophan also has a role in micro-
biota diversity in the gut of pigs (Messori et al. 2013). Kim 
et al. (2010) showed that tryptophan (0.115 g/kg BW day) 
given to pigs after DSS-induced colitis improved colitis 
symptoms and histological parameters. Furthermore, the 
expression of the pro-inflammatory cytokines (for example, 
TNF-α, IL-6, interferon-γ, IL-12p40, IL-1β, and IL-17) 
and intracellular adhesion molecule-1 was reduced, and 
the expression of apoptosis initiators (caspase-8 and Bax) 
was increased in tryptophan-supplemented pigs (Kim et al. 
2010). Moreover, Trevisi et al. (2009) found that a trypto-
phan-enriched diet (1 g of tryptophan/kg to the basal diet) 
was beneficial in attenuating the changes of feed intake 
and growth performance in susceptible weaned piglets 
orally challenged with E. coli K88. However, Koopmans 
et  al. (2012) compared the basal diet group (apparent 
ileal digestible tryptophan = 1.9 g/kg) with a tryptophan-
enriched basal diet group (+5 g of free tryptophan/kg), and 
found that there was limited effect of surplus dietary tryp-
tophan on stress and immunology in a pig model of sys-
temic endotoxemia. Nevertheless, a recent study conducted 

by Tossou et al. (2016) concluded that dietary tryptophan at 
a high level (0.75%) could negatively influence intestinal 
epithelial morphology and tight junction proteins. Taken 
together, the efficacy and functions of tryptophan on intes-
tinal diseases are controversial, and thus further research 
is warranted to determine the dosage and molecular bases 
of tryptophan functioning in human and animal health and 
disease.

Aspartate and asparagine

Like glutamine and glutamate, aspartate and asparagine are 
abundant in sow’s milk (Rezaei et  al. 2016). Aspartate is 
also one of the major metabolic fuels in mammalian entero-
cytes and metabolize through mitochondrial oxidation (Wu 
2013a). Asparagine, with a similar chemical structure to 
glutamine, can stimulate cell proliferation in intestinal epi-
thelial cells via increasing ornithine decarboxylase activity 
and cellular polyamine levels. Both aspartate and aspara-
gine contribute to mounting a successful immune response 
and attenuating intestinal injury (Li et  al. 2007; Pi et  al. 
2014; Wang et al. 2015d, 2016; Chen et al. 2016). However, 
the evident from pig is limiting. We recently demonstrated 
that a supplementation of aspartate or asparagine (0.5 or 
1.0%) improved intestinal morphological features, devel-
opment, digestion, and barrier function under pathological 
conditions (Pi et al. 2014; Wang et al. 2015d, 2016; Chen 
et  al. 2016). Our previous research showed that aspartate 
or asparagine supplementation improved intestinal mucosal 
energy status and enhanced activities of tricarboxylic acid 
cycle key enzymes through inhibiting the AMPK signaling 
pathway in weaned piglets challenged with LPS (Pi et  al. 
2014; Wang et  al. 2015d). We also found that these ben-
eficial effects are associated with the decrease of intesti-
nal pro-inflammatory cytokine (via TLR4, NODs, and p38 
pathways) and of enterocyte apoptosis (via p38 and ERK 
1/2 pathways) (Chen et al. 2016; Wang et al. 2016).

Branched‑chain amino acids (BCAA)

BCAA, including valine, leucine, and isoleucine, are essen-
tial amino acids and important regulators of protein metabo-
lism and autophagy (Rezaei et al. 2013b). The growth per-
formance, intestinal development, and expression of amino 
acid transporters in weaned piglets are elevated by BCAA 
supplementation to a low-protein diet (17.1% crude protein) 
(Zhang et al. 2013). In addition, feeding a diet with BCAA 
is found to enhance intestinal immune defense system via 
the improvement of morphological integrity and of immu-
noglobulin production in the intestine (Ren et  al. 2015). 
Furthermore, dietary leucine supplementation promotes 
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intestinal development in young pigs (Sun et al. 2015). Some 
studies indicate that isoleucine induces the expressions of 
β-defensins in human (Konno et al. 2012) and porcine (Mao 
et al. 2013) intestinal epithelial cells, which are essential for 
the mammalian innate immunity. Moreover, BCAA possess 
therapeutic effects on diseases. For example, Alam et  al. 
(2011) reported that adding isoleucine in oral rehydration 
salts solution showed some beneficial effects on decreasing 
stool output of non-cholera acute watery diarrhea in chil-
dren. Other studies in pigs have also shown that 1% leucine 
supplementation attenuated the effects of porcine rotavirus 
infusion on feed efficiency, diarrhea, mucin production, and 
goblet cell numbers in the jejunal mucosa (Mao et al. 2015). 
Of note, these amino acids can activate some signaling 
pathways in intestinal cells. Taking leucine as an example, 
researches in pigs and humans have demonstrated that leu-
cine can reduce mucosal proteasome activity (Coëffier et al. 
2011), enhance cell proliferation via phosphatidylinositol 
3-kinase (PI3K)/protein kinase B (Akt)/glycogen-synthase 
kinase-3α/β-catenin pathway (Coëffier et al. 2011), and up-
regulate amino acid transporter expression by PI3K/Akt/
mTOR and ERK signaling pathways (Zhang et al. 2014) in 
the intestine. Thus, BACC play an important role in intesti-
nal growth, integrity, and function.

Other amino acids

Lysine, histidine, phenylalanine, tyrosine, serine, and 
alanine are required for protein synthesis and important 
for immune function (Li et  al. 2007). These amino acids 
have also been demonstrated to exert beneficial effects 
in intestine. Studies in pigs have shown that lysine in the 
diet influences apparent nutrient digestibility and expres-
sion of cationic amino acid transporter in the small intes-
tine (Wang et  al. 2012). Peterson et  al. (1998) reported 
that histidine protected the mouse intestinal tissue from 
Salmonella-induced injury. In addition, Dietary supply with 
specific amino acids (containing threonine, serine, proline, 
and cysteine) can promote mucin synthesis and improve 
the gut microbiota in DSS-treated rats (Faure et al. 2006). 
However, the effects of these amino acids on intestinal dis-
ease are still rarely studied compared to other amino acids. 
Thus, future studies including the information about the 
molecular mechanisms that regulate the actions of amino 
acids on intestine are needed.

Conclusions

Amino acids serve as the building blocks of protein and also 
regulate metabolic pathways to improve the survival, growth, 
and development of amino acids (Hou et  al. 2015b). They 

are called functional amino acids (Wu 2010). Emerging evi-
dence shows that pigs fed conventional diets cannot synthe-
size many amino acids that are required for optimal intestinal 
health and growth (Hou et al. 2016). Aside from the impor-
tance of generating pig models for the understanding and 
treating pig diseases, considering the similarities in anatomy, 
nutritional needs, immunology and physiology of the gut, the 
pig offers an attractive model to exploit the mechanisms of 
human intestinal diseases. In addition, the size and ease in 
handling piglets allows for drugs to be administered in the 
same way as in human patients and for follow-up blood work 
over time. The pig is also ideal for screening and developing 
new therapeutics. Furthermore, with the new development 
and insights into nutritional research, amino acids show great 
promises in maintaining or improving intestinal integrity and 
functions under pathological events. Recent studies in pigs 
indicate that specific dietary amino acids, in particular, argi-
nine, glutamine, glycine, cysteine, NAC, and proline can reg-
ulate the intestinal microbial milieu and host immune system 
by fine-tuning inflammatory cytokine secretion and the redox 
status of intestinal cells, and thus exert protective effects on 
cells. Of note, arginine, glutamine, glycine, and proline can 
be synthesized de novo in pigs via interorgan metabolism of 
amino acids (Wu 2013b). Although they were traditionally 
considered as “nutritionally nonessential amino acids”, this 
term has now been recognized as a misnomer in nutritional 
sciences (Hou and Wu 2017). Supplementation with peptides 
(Hou et al. 2017) or crystalline amino acids (Wu 2013b) is 
effective in improving intestinal health and alleviating intes-
tinal dysfunction under diseased conditions. More research 
endeavors are warranted in terms of using functional amino 
acids to their full potentials in improving health and treating 
diseases in humans and animals.
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