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tight junction protein levels in the upper parts of the small 
intestine, increased levels of bacterial endotoxin in portal 
plasma as well as increased hepatic toll-like receptor-4 
mRNA and 4-hydroxynonenal protein adduct levels. In 
conclusion, Arg supplementation may protect mice from 
the development of NASH.
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barrier function · Lipogenesis · Non-alcoholic 
steatohepatitis

Abbreviations
4-HNE	� 4-Hydroxynonenal
Acc	� Acetyl-CoA carboxylase
ALT	� Alanine aminotransferase
Arg	� Arginine
AST	� Aspartate aminotransferase
Bax	� BCL2-associated X protein
Bcl-xl	� B cell lymphoma extra-large
Cpt-1	� Carnitine palmitoyltransferase 1
Fasn	� Fatty acid synthase
NO	� Nitric oxide
NOS	� Nitric oxide synthase
Ir	� Insulin receptor
Irs-1	� Insulin receptor substrate 1
NAFLD	� Non-alcoholic fatty liver disease
NAS	� NAFLD Activity Score
NASH	� Non-alcoholic steatohepatitis
Scd-1	� Stearoyl-CoA desaturase-1
SPF	� Specific pathogen free
Srebp-1c	� Sterol regulatory element-binding protein 1c
Tlr-4	� Toll-like receptor 4
TNFα	� Tumor necrosis factor α
WSD	� Western-style diet
ZO-1	� Zonula occludens-1

Abstract  Dietary arginine (Arg) supplementation has 
been proposed to have positive effects on the development 
of liver diseases. In the present study, we investigate if an 
oral Arg supplementation in diet protects mice fed a fruc-
tose, fat and cholesterol enriched Western-style diet (WSD) 
from the development of non-alcoholic steatohepatitis 
(NASH). Female C57BL/6J mice were fed a liquid con-
trol diet or a liquid WSD ± Arg (2.49 g/kg body weight/
day) for 6 weeks. Indices of liver injury, glucose metabo-
lism and intestinal permeability were determined. While 
Arg supplementation had no effects on body weight gain, 
fasting blood glucose levels were significantly lower in 
WSD+Arg-fed mice than in C+Arg-fed animals. WSD-fed 
mice developed liver steatosis accompanied with inflam-
mation, both being significantly attenuated in WSD+Arg-
fed mice. These effects of Arg supplementation went 
along with a protection against WSD-induced decreased 
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Introduction

Besides the metabolic syndrome, conditions like obesity, 
type 2 diabetes and dyslipidemia are also strongly asso-
ciated with non-alcoholic fatty liver disease (NAFLD), 
which is increasingly becoming a worldwide health prob-
lem (for overview see Zhang and Lu 2015). Indeed, it has 
recently been suggested that in the United States NAFLD 
might even become the leading cause of liver transplanta-
tion by 2020 (Mahady and George 2016). Genetic predis-
position, low physical activity and general overnutrition 
are accounted to be the main risk factors for the develop-
ment of NAFLD (Liu 2012). However, results of human 
and animal studies suggest that dietary pattern and altera-
tions in the intestine like changes in microbiota and bar-
rier function, may also contribute to the development of 
the disease (Boursier et al. 2016; Tilg and Moschen 2010; 
Volynets et  al. 2012). Mechanisms involved in the onset 
and progression of NAFLD are still not fully understood 
and universally accepted treatment and prevention strat-
egies are not yet available (Mahady and George 2016; 
Rinella 2015).

The proteinogenic amino acid arginine (Arg) is found 
in a wide variety of foods such as dairy products and sea-
foods but also grains and legumes and is considered to 
be essential in human and animal nutrition (Hou and Wu 
2017). Arg can be synthesized in  vivo from glutamine, 
glutamate and proline via the intestinal-renal axis (Wu 
and Morris 1998) and it has been shown that Arg plays an 
integral role in the regulation of blood flow but also host 
defense (for overview see (Gogoi et al. 2015; Hou and Wu 
2017). Indeed, nitric oxide (NO) produced during nitric 
oxide synthase (NOS)-mediated metabolism of Arg to cit-
rulline plays a key role in inflammatory processes while 
ornithine being formed from Arg through arginase is a 
precursor for polyamines and proline, both being involved 
in tissue repair and cell proliferation (Rath et  al. 2014). 
Oral Arg supplementation has been shown to attenuate 
lipopolysaccharide-induced inflammatory response (Tan 
et  al. 2014) and to decrease bacterial translocation in the 
intestine in animal models (Quirino et al. 2013). However, 
whether an oral supplementation of Arg possesses protec-
tive effects against the onset of non-alcoholic steatohepa-
titis (NASH) has not yet been clarified. We hypothesized 
that via its role in inflammatory process and gut functions, 
Arg supplementation may limit the progression of early 
stages of NAFLD to NASH. Accordingly, the present 
study aimed to investigate if an oral Arg supplementa-
tion protects mice from the onset of a Western-style diet 
(WSD)-induced NASH and if so, to delineate responsible 
molecular mechanisms.

Materials and methods

Animals and treatment

As it has been shown before that female mice develop 
more pronounced liver damage, e.g., severe steatosis and 
signs of hepatic inflammation after 8–12 weeks of feed-
ing a diet rich in fructose or different sugars and fat than 
male mice (Marin et  al. 2016; Spruss et  al. 2012a) and 
in the present study we aimed to determine the effects of 
Arg on the progression of steatosis to steatohepatitis, only 
female C57BL/6J mice (6–8  weeks old, Janvier S.A.S., 
Le-Genest-St-Isle, France) were used in the experi-
ments. After all procedures were approved by the local 
Institutional Animal Care and Use Committee (IACUC), 
our experiments were carried out in a facility accredited 
by the Association for Assessment and Accreditation of 
Laboratory Animal Care (AAALAC). Mice (4 groups, 
n = 7–8) had free access to plain tap water at all times. 
For 6  weeks animals were pair-fed a liquid fructose-, 
fat-, and cholesterol-rich diet (Western-style diet, WSD; 
17.8  MJ/kg dry diet: 60 E% carbohydrates, 25 E% fat, 
15 E% protein with 50% wt/wt fructose and 0.16% wt/
wt cholesterol, source of fat: butter, source of protein: 
casein) or a respective liquid control diet (C; 15.7 MJ/kg 
dry diet: 69 E% carbohydrates, 12 E% fat, 19 E% pro-
tein, source of fat: soybean oil, source of protein: casein) 
(Ssniff®, Germany)  ±  L-Arg (2.49  g/kg body weight 
(bw)/day) (Sigma-Aldrich Chemie GmbH, Germany, 
purity ≥98%) (C+Arg and WSD+Arg, respectively) as 
described previously and detailed in Online Resource 
Table 1 (Jin et  al. 2015). In the mixed control diet, Arg 
concentration was 6.7  g/kg diet resulting in an average 
daily intake of 1.0 g Arg/kg bw, while in the control diet 
enriched with Arg the concentration was 23.8  g/kg diet 
resulting in an average daily intake of 3.5 g Arg/kg bw. In 
the mixed WSD diet, Arg concentration was 6.2 g/kg diet 
with an average daily intake of 0.8 g Arg/kg bw whereas 
in the mixed WSD enriched with Arg, concentration was 
24.6 g/kg diet resulting in a daily intake of 3.3 g Arg/kg 
bw. To determine blood glucose levels, mice were fasted 
for 6  h and fasting blood samples were obtained from 
the retrobulbar venous plexus in the fifth week of feed-
ing. Blood glucose levels were directly measured with 
a standard glucometer (Contour®, Bayer Vital GmbH, 
Germany). Anesthesia was performed with 100  mg of 
ketamine and 16 mg of xylazine/kg bw by intraperitoneal 
injection. Blood was collected from the portal vein just 
before killing and samples of liver as well as the upper 
part of the small intestine were snap-frozen or fixed in 
neutral-buffered formalin.
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Liver histology and clinical chemistry

As previously described in detail (Sellmann et  al. 2015), 
sections of liver tissue embedded in paraffin (4 µm) were 
stained with hematoxylin and eosin to evaluate the NAFLD 
Activity Score (NAS). Staining for naphthol AS-D chloro-
acetate esterase (kit: Sigma–Aldrich Chemie GmbH, Stein-
heim, Germany) was used to determine the number of neu-
trophil granulocytes. Activities of alanine aminotransferase 
(ALT) and aspartate aminotransferase (AST) were meas-
ured in the routine laboratory at the University Hospital of 
Jena (Architect®, Abbott, Germany).

Immunohistochemical staining of 4‑HNE protein 
adducts in liver tissue and of the tight junction proteins 
occludin and ZO‑1 in the upper part of the small 
intestine

4-Hydroxynonenal (4-HNE) protein adducts in paraffin 
embedded liver sections (4 µm) and tight junction proteins 
occludin and zonula occludens (ZO)-1 in intestinal tissue 
(4  µm sections) were stained using polyclonal antibodies 
(4-HNE: AG Scientific, USA; occludin: Invitrogen, USA; 
ZO-1: Invitrogen, USA). Extent of staining was determined 
as described previously (Sellmann et al. 2015). Briefly, data 
from eight randomly selected microscopic fields (200× for 
liver and 400× for intestine) of each tissue section were 
used to determine staining intensity.

TNFα ELISA and endotoxin levels in portal plasma

Liver tissue was homogenized and protein concentrations 
of tumor necrosis factor (TNF) α were determined with 
a commercially available mouse TNFα kit following the 
instructions of manufacturer (Assaypro, St. Charles, USA). 
Endotoxin levels were measured in heparinized portal 
plasma as detailed before (Spruss et al. 2012b).

RNA isolation and real‑time RT‑PCR

RNA isolation and real-time RT-PCR have been carried 
out as described previously (Spruss et  al. 2012b). Primer 
sequences are summarized in Online Resource Table 2.

Statistical analyses

All statistical analyses were performed using GraphPad 
Prism Software (La Jolla, USA). Results are shown as 
mean ± standard error of means (SEM). Before statistical 
analysis, outliers were identified using Grubb’s test and 
Bartlett’s test was performed to determine homogeneity of 
variances. Raw data were logarithmized in cases of unequal 
variances. Statistical significances between feeding groups 

were determined using two-way ANOVA with Tukey’s post 
hoc test (P ≤ 0.05) as no significant variances of homoge-
neity were found (P > 0.05).

Results

Effect of Arg supplementation on markers of apoptosis 
and injury in liver and body weight

Caloric intake, body weight gain and plasma ALT as well 
as AST activities were similar between all feeding groups. 
Absolute liver weight and liver to body weight ratios were 
significantly higher in both WSD-fed groups when com-
pared to the two control groups (Table 1). Chronic intake 
of the WSD alone led to massive macrovesicular steatosis 
with beginning inflammation. In contrast, in mice fed the 
Arg-supplemented WSD hepatic steatosis but also signs 
of hepatic inflammation were significantly attenuated 
(NAS: WSD vs. WSD+Arg: P  <  0.05). However, NAS 
for hepatic steatosis was still significantly higher in liv-
ers of WSD+Arg-fed mice when compared to the respec-
tive control group (scoring data not shown separately for 
steatosis) (Fig.  1). In line with these findings, number of 
neutrophils was also significantly higher in livers of WSD-
fed mice when compared to controls. TNFα protein levels 
were significantly higher in livers of WSD-fed mice when 
compared to their respective control group, while protein 
levels of TNFα did not differ between groups fed diets sup-
plemented with Arg. Neither mRNA expression of BCL2-
associated X protein (Bax) nor B cell lymphoma extra-large 
(Bcl-xl) differed between groups (Fig. 2).

Effect of Arg supplementation on markers of glucose 
metabolism

In mice fed, the WSD, control diet and WSD+Arg, respec-
tively, fasting blood glucose levels were similar. Fasting 
glucose levels of mice fed C+Arg were significantly higher 
than in mice fed plain control diet and WSD+Arg, respec-
tively (+~40%, P < 0.05 in comparison to both groups). In 
liver tissue, expression of insulin receptor (Ir) was simi-
lar between groups whereas mRNA expression of insulin 
receptor substrate (Irs)-1 was significantly lower in livers 
of WSD+Arg-fed mice when compared to mice fed a plain 
WSD (Table 1).

Effect of Arg supplementation on markers of hepatic 
lipid metabolism

Expression of sterol regulatory element-binding protein 
(Srebp)-1c mRNA in liver tissue was significantly higher 
in both WSD-fed groups regardless of additional treatment 
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while expression did not differ between control groups 
(Fig. 2). In line with these findings, mRNA expression of 
stearoyl-CoA desaturase (Scd)-1 was also higher in livers 
of WSD-fed mice; however, as data varied considerably in 
some groups, level of significance was only reached in mice 
fed plain WSD when compared to the two control groups. 
In livers of WSD+Arg-fed mice Scd-1 expression was only 
higher by trend when compared to the respective control 
group (P =  0.052). While mRNA expression of carnitine 
palmitoyltransferase (Cpt)-1 was similar between groups, 
mRNA expressions of acetyl-CoA carboxylase (Acc) and 
fatty acid synthase (Fasn) were significantly higher in liv-
ers of mice fed a plain WSD when compared to the two 
groups fed diets supplemented with Arg (+~60% for Acc 
and +~80% for Fasn, P < 0.05 for both groups) (Fig. 2).

Effect of Arg supplementation on markers of intestinal 
barrier integrity and hepatic Tlr‑4 signaling

In line with findings of previous studies (Sellmann et  al. 
2016), protein levels of the tight junction proteins occludin 
and ZO-1 were significantly lower in the upper part of the 
small intestine of WSD-fed mice when compared to control 
diet-fed mice, whereas in WSD+Arg-fed mice they were 
at the level of controls (Fig. 3; Online Resource Figure 1). 
Portal endotoxin levels were also significantly higher in 
WSD-fed mice when compared to controls. In WSD+Arg-
fed mice, this alteration was significantly attenuated. In line 
with these results, toll-like receptor (Tlr)-4 mRNA expres-
sion was significantly higher in livers of WSD-fed mice 
when compared to both control groups, whereas in livers 

of WSD+Arg-fed mice, mRNA expression of Tlr-4 was 
almost at the level of controls (NS between control groups 
and WSD+Arg). Concentration of 4-HNE protein adducts 
was significantly higher in livers of plain WSD-fed groups 
when compared to all other groups. 4-HNE protein levels 
did not differ between control groups and WSD+Arg-fed 
mice (Fig. 4).

Discussion

In the present study, in spite of similar total caloric 
intake and absolute body weight gain, we were able to 
show that an oral supplementation of Arg attenuates the 
development of WSD-induced NASH. Indeed, number of 
inflammatory foci, macrovesicular fat accumulation and 
number of neutrophils as well as expression of TNFα 
were all markedly lower in WSD+Arg-fed mice when 
compared to WSD-fed animals. However, as mice only 
developed early signs of NASH, ALT and AST levels 
were not elevated. Others have shown before that treat-
ing rodents with Arg in genetic or diet-induced models 
of obesity is associated with decreased weight gain and 
white adipose tissue mass, whereas brown adipose tissue 
and skeletal muscle mass were increased (Fu et al. 2005; 
Jobgen et al. 2009a, b; Wu et al. 2012) and for overview 
Wu and Morris 1998). In the present study, using an iso-
caloric feeding model, similar effects on bw were not 
found. However, as fat mass was not determined in the 
present study, it cannot be ruled out that the beneficial 
effects of the Arg supplementation at least in part might 

Table 1   Body and liver weights, plasma ALT and AST levels as well as markers of glucose homeostasis in blood and liver in female mice fed a 
C diet or WSD with or without Arg supplementation for 6 weeks

Values represent mean ± SEM

Means without a common letter differ, P < 0.05. NS P ≥ 0.05

ALT alanine aminotransferase, AST aspartate aminotransferase, Arg arginine, C control, Ir insulin receptor, Irs-1 insulin receptor substrate 1, 
WSD Western-style diet, DExAE interaction between diet and arginine, AE arginine effect, DE diet effect
1  Homogeneity of the variances was not significant (P > 0.05)

Diet groups P (2-factor ANOVA)1

C WSD C+Arg WSD+Arg DExAE AE DE

Caloric intake (kcal/mouse/day) 10 ± 0.1a 10 ± 0.2a 10 ± 0.1a 10 ± 0.1a NS NS NS

Weight gain (g) 2.2 ± 0.2a 1.7 ± 0.2a 2.3 ± 0.3a 1.5 ± 0.4a NS NS 0.02

Absolute weight (g) 20.5 ± 0.4a 20.4 ± 0.2a 20.0 ± 0.5a 20.6 ± 0.6a NS NS NS

Liver weight (g) 1.0 ± 0.1b 1.2 ± 0.0a 0.9 ± 0.0b 1.2 ± 0.0a NS NS <0.01

Liver to body weight ratio (%) 5.0 ± 0.1b 6.0 ± 0.1a 4.7 ± 0.1b 5.7 ± 0.2a NS NS <0.01

Plasma ALT (U/L) 16 ± 1.0a 23 ± 3.2a 16 ± 0.7a 20 ± 3.8a NS NS NS

Plasma AST (U/L) 41 ± 1.9a 49 ± 4.2a 40 ± 1.7a 50 ± 4.5a NS NS 0.02

Blood glucose (mg/dL) 74 ± 5b,c 93 ± 5a,b 104 ± 5a 71 ± 5c <0.01 NS NS

Hepatic Ir mRNA (% of control) 100 ± 11a 105 ± 7a 103 ± 8a 111 ± 11a NS NS NS

Hepatic Irs-1 mRNA (% of control) 100 ± 17a,b 125 ± 24a 84 ± 16a,b 50 ± 6b NS <0.01 NS
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have resulted from changes in body composition, e.g., 
an increase in brown adipose tissue fat mass. Effects of 
supplementing Arg on adipose tissue and skeletal muscle 
in isocaloric feeding models will have to be determined 

in future studies. Furthermore, no modifications in insu-
lin sensitivity were observed. Indeed, in the present 
study, fasting blood glucose levels and hepatic mRNA 
expression of Ir and Irs-1 were similar between WSD 

Fig. 1   Indices of liver damage 
in female mice fed a C diet 
or WSD with or without Arg 
supplementation for 6 weeks. 
a Representative photomicro-
graphs of hematoxylin and eosin 
staining of liver Sections (×100 
and ×400). b Evaluation of 
liver histology using NAS. c 
Number of neutrophils in liver 
tissue. d Hepatic TNFα protein 
concentration. Values are 
mean ± SEM. Means without a 
common letter differ, P < 0.05. 
NS, P ≥ 0.05. Homogeneity of 
the variances was not significant 
(P > 0.05). Arg arginine; C 
control; NAS NAFLD activity 
score; TNFα tumor necrosis fac-
tor α; WSD Western-style diet; 
DExAE interaction between diet 
and arginine; AE arginine effect; 
DE diet effect
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Fig. 2   Hepatic markers of 
apoptosis and lipid metabolism 
in female mice fed a C diet 
or WSD with or without Arg 
supplementation for 6 weeks. 
Hepatic a Bax and Bcl-xl, b 
Srebp-1c, Fasn and Acc as 
well as c Scd-1 and Cpt-1 
mRNA expression. Values are 
mean ± SEM. Means without a 
common letter differ, P < 0.05. 
NS, P ≥ 0.05. Homogeneity of 
the variances was not significant 
(P > 0.05). Acc acetyl-CoA 
carboxylase; Arg arginine; Bax 
BCL2-associated X protein; 
Bcl-xl B cell lymphoma extra-
large; C control; Cpt-1 carnitine 
palmitoyltransferase 1; Fasn 
fatty acid synthase; Scd-1 
stearoyl-CoA desaturase-1; 
Srebp-1c sterol regulatory 
element-binding protein 1c; 
WSD Western-style diet; 
DExAE interaction between diet 
and arginine, AE arginine effect, 
DE diet effect
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and control group; however, expressions as well as blood 
glucose levels varied considerable within groups. Inter-
estingly, blood glucose levels were higher in the C+Arg 
group compared to the controls and the WSD+Arg-fed 
mice. This is in contrast to the findings of Jobgen et al. 

in high fat diet-fed rats showing that supplementing 
1.51% Arg-HCl in drinking water lowered fasting glu-
cose levels (Jobgen et  al. 2009a). Differences between 
the present study and that of Jobgen et  al. might have 
resulted from differences in the diets fed, e.g., high fat 
diet vs. WSD and species used (mouse vs. rat) as well 
as experimental design. Effects of Arg supplementation 
on glucose metabolism in different settings as well as 
mechanisms involved will have to be determined in fur-
ther studies. Our data are also not in line with previous 
findings of Jegatheesan et  al. showing that an oral Arg 
supplementation was not associated with a protection of 
rats against fructose-induced steatosis (Jegatheesan et al. 
2016). However, differences between the present study 
and that of Jegatheesan et  al. might have resulted from 
differences in the animal models used, e.g., rats fed a 
high fructose diet for 4  weeks vs. mice fed a fructose, 
fat and cholesterol-rich diet for 6  weeks in the present 
study and the investigated disease stages (in the present 
study: early phases of NASH vs. onset of steatosis in the 
study of Jegatheesan et al. 2016). In summary, our data 
suggest that an oral Arg supplementation attenuated the 
development of early stages of NASH in mice induced 
by feeding a fructose, fat and cholesterol-rich diet. How-
ever, as in the present study, no isonitrogenous group 
was included and plasma Arg as well as total amino acid 
profile was not determined, it cannot be excluded that 
differences found might have resulted from the higher 
protein intake found in Arg-treated mice (WSD: 15 E% 
protein vs. WSD+Arg: 16.5 E% protein) and a resulting 
altered amino acids plasma profile. This will have to be 
addressed in future studies.

The protective effects of an oral Arg supplementation 
are associated with some changes of markers of hepatic 
lipid metabolism

Results of several studies suggest that an altered hepatic 
lipid metabolism, e.g., an increased de novo lipid synthe-
sis and insufficient fatty acid oxidation as well as triglyc-
eride secretion is critical in the development of NAFLD 
(for overview see Kawano and Cohen 2013). Indeed, it has 
been shown that the inhibition of de novo lipogenesis and 
Srebp-1c-dependent signaling cascades and the activation 

Fig. 3   Markers of intestinal barrier function in female mice fed a C 
diet or WSD with or without Arg supplementation for 6 weeks. Den-
sitometric analysis of a occludin and b ZO-1 protein staining in the 
upper parts of the small intestine, c endotoxin levels in portal plasma. 
Values are mean  ±  SEM. Means without a common letter differ, 
P < 0.05. NS, P ≥ 0.05. Homogeneity of the variances was not sig-
nificant (P > 0.05). Arg arginine; C control; WSD Western-style diet; 
ZO-1 zonula occludens 1; DExAE  interaction between diet and argi-
nine; AE arginine effect; DE diet effect

◂
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of fatty acid β-oxidation may exert beneficial effects on 
the development of NAFLD in vitro and in rodent models 
(Rodriguez-Ramiro et  al. 2016). Supplementation of Arg 
but even more so of its endogenous metabolite agmatine, 
has been suggested to modulate markers of lipogenesis, 
e.g., to suppress expression of Srebp-1c and Fasn in dif-
ferent tissues (Sharawy et al. 2016; Tan et al. 2011). Also, 
probably through altering bioavailability of NO, Arg 

has been shown to alter expression of genes involved in 
energy metabolism and particularly β-oxidation (Jobgen 
et al. 2009a, 2006). In the present study, Srebp-1c mRNA 
expression was markedly higher in livers of both WSD-
fed groups while expressions of Fasn, Acc and Scd-1, all 
known to be strongly regulated through Srebp-1c-depend-
ent mechanisms (Serviddio et  al. 2013), were markedly 
higher in livers of mice only fed a WSD. Indeed, all three 

Fig. 4   Tlr-4 mRNA expres-
sion as well as 4-HNE protein 
adduct staining in female mice 
fed a C diet or WSD with or 
without Arg supplementation 
for 6 weeks. Hepatic a Tlr-4 
mRNA expression as well as 
b densitometric analysis and 
c representative photomicro-
graphs of 4-HNE protein adduct 
staining in the liver. Values are 
mean ± SEM. Means without a 
common letter differ, P < 0.05. 
NS, P ≥ 0.05. Homogeneity of 
the variances was not significant 
(P > 0.05). 4-HNE 4-hydrox-
ynonenal; Arg arginine; C 
control; Tlr-4 toll-like receptor 
4; WSD Western-style diet; 
DExAE interaction between diet 
and arginine, AE arginine effect, 
DE diet effect
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markers seemed to be affected by the supplementation of 
Arg regardless of diet fed and independently of Srebp-1c, 
as the latter seemed not to be differently regulated at the 
level of mRNA expression when compared to mice not fed 
Arg. However, as Srebp-1c activity is not only regulated 
at the level of transcription (Lai et al. 2016), it cannot be 
ruled out that Srebp-1c activity might have been affected 
by the supplementation of Arg. Our results are in part con-
trasting the results of Jobgen et  al. (2009a) who did not 
report alterations in controls for Acc, Fasn or Scd-1 in adi-
pose tissue of rats treated with Arg while animals being 
fed a high fat diet were affected by the Arg supplementa-
tion. However, differences between our results and those 
of Jobgen et  al. might have resulted from differences in 
diets used and study design as well as species studied and 
tissues analyzed, e.g., adipose tissue vs. liver tissue. Future 
studies will have to determine how Arg affects Srebp-1c 
and dependent molecules. In contrast, expression of Cpt-1 
was not different between groups, suggesting that contrary 
to the findings of others in settings of high fat diet-induced 
NAFLD (Lai et al. 2016), the development of NAFLD in 
the present study was not associated with marked altera-
tions of long chain fatty acid metabolism. Again, differ-
ences between studies of others and our own might have 
resulted from differences in experimental setup but also 
detection methods used (e.g., real-time PCR vs. Western 
blot) (Lai et al. 2016; Sharawy et al. 2016; Tan et al. 2011). 
Taken together, our data suggest that the beneficial effects 
of an Arg supplementation on the development of NASH 
found in the present study may at least in part have resulted 
from alterations of hepatic lipogenesis. However, molecu-
lar mechanisms involved in the effects of Arg on hepatic 
Fasn, Acc and Scd-1 expression remain to be determined.

Oral Arg supplementation attenuates the increased 
translocation of intestinal bacterial endotoxin found 
in WSD‑fed mice

Alterations of intestinal microbiota composition and bar-
rier function resulting in an increased permeation of bacte-
rial endotoxin into the portal blood have repeatedly been 
shown to be associated with the development of NAFLD 
(for overview see Abdul-Hai et  al. 2015; Kirpich et  al. 
2015). Furthermore, studies suggest that an improvement 
of liver status in patients with NAFLD is associated with 
a decrease of peripheral blood endotoxin levels (Volynets 
et al. 2012). Indeed, it has been shown that targeting intes-
tinal barrier integrity attenuates the development of liver 
damage in mouse and rat models of NAFLD and NASH 
(Ritze et al. 2014; Spruss et al. 2012b). Arg is a critical fac-
tor in the regulation of intestinal barrier function (Costa 
et al. 2014; Gogoi et al. 2015); however, molecular mecha-
nisms underlying the protective effects of Arg on intestinal 

barrier function have not yet been fully understood. Indeed, 
it has been discussed that Arg may alter intestinal micro-
biota composition and metabolism but also NO synthesis 
(for overview also see Blachier et  al. 2011; Gogoi et  al. 
2015). Here, the beneficial effects of Arg on the develop-
ment of beginning NASH were associated with a protec-
tion against the WSD-induced loss of tight junction pro-
teins in the upper parts of the small intestine and with an 
increased translocation of bacterial endotoxins into portal 
plasma. In line with previous findings of our group (Spruss 
et al. 2012b), the “normalization” of portal endotoxin levels 
found in mice fed WSD+Arg was associated with a pro-
tection against the induction of Tlr-4 mRNA expression 
and 4-HNE protein adducts levels in the liver. Our findings 
are also in line with other studies using cell culture and 
animals models indicating that a treatment with Arg may 
prevent the loss of the tight junction proteins occludin and 
ZO-1 and subsequently improve intestinal barrier function 
(Beutheu et  al. 2013; Ren et  al. 2014). Results of these 
studies also suggest that the beneficial effects of Arg sup-
plementation on intestinal barrier function involve mecha-
nisms dependent on NO donation and immune function 
(Chapman et al. 2012; Wang et al. 2015). If similar mecha-
nisms were involved in the beneficial effects of Arg supple-
mentation in the present study remains to be determined. 
Taken together, results of the present study suggest that an 
oral Arg supplementation may have protective effects on 
early stages of NASH development and that this is asso-
ciated with a protection against the loss of tight junction 
proteins in the small intestine, the increased permeation of 
endotoxin into the portal blood and induction of Tlr-4-de-
pendent signaling cascades in the liver. However, molecular 
mechanisms underlying the effects of Arg on intestinal bar-
rier integrity remain to be determined.

Conclusion

In summary, our data suggest that an oral Arg supplemen-
tation at least partially protects mice from the development 
of WSD-induced early signs of NASH. Results of our study 
also suggest that the beneficial effects of Arg may have 
resulted from a protection against the enhanced intestinal 
permeability and subsequently increased permeation of bac-
terial endotoxins into the portal blood found in this model 
of NASH. However, several findings of others suggest that 
a supplementation of Arg may also affect many other meta-
bolic and immunological functions (for overview see Jobgen 
et al. 2006; Wu and Morris 1998). Therefore, further studies 
are needed to delineate molecular mechanisms responsible 
for the beneficial effects of Arg on intestinal barrier function 
and metabolism during NAFLD progression and to deter-
mine if similar effects are also found in humans.
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