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Autism spectrum disorders

The term autism spectrum disorders (ASD) refers to neu-
rodevelopmental diseases that affect 1–2  % of children, 
according to the data on the broad array of ASD (Baron-
Cohen et al. 2009). ASD is characterized by different lev-
els of severity and occurs in all ethnic groups. Noto et al. 
(2014) reported that 1 out of 88 children aged 8 years will 
develop an ASD, with males more at risk than females. 
Blumberg et al. (2013) showed that the prevalence of ASD 
had risen 75  % from 2007 to 2012 in the United States. 
Feng et  al. (2013) identified 12 studies when searching 
Chinese databases in 2013; the prevalence in these studies 
varied from 2.8 to 29.5/10,000.

ASD is characterized by impaired social interaction 
skills combined with restrictive/repetitive behaviors (Amer-
ican Psychiatric Association 2013). Genetic predisposition 
and environmental factors undoubtedly have effects on 
the pathophysiology of ASD, but the precise mechanisms 
related to the pathophysiology of ASD are unknown and 
definitive methods for prevention or treatment are lacking 
(Blaylock 2008). DSM-5 proposes that ASD symptoms 
must appear in the early childhood (infant) (American Psy-
chiatric Association 2013). Receiving diagnosis at an early 
stage of development could contribute to the early interven-
tion and therapy, benefiting both patients and their fami-
lies (Zwaigenbaum et  al. 2015; Sacrey et  al. 2015; Brian 
et  al. 2015). However, behavioral abnormalities are often 
overlooked in the early stage of ASD, even experienced 
professionals involved in pediatric healthcare (Howlin and 
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Asgharian 1999). Therefore, many researchers have been 
trying to establish quantitative diagnostic criteria that could 
contribute to an early and more accurate ASD diagnosis. 
Many interacting factors are probably contributing to the 
etiology of ASD, and these potential factors are described 
in several excellent review articles (Lam et al. 2006; Pardo 
and Eberhart 2007; Aoki et al. 2012; Parellada et al. 2014; 
Lozano et al. 2015; Rozas et al. 2015; Subramanian et al. 
2015; Zhang et al. 2015; Martin et al. 2016; Muller et al. 
2016; Park et al. 2016); this review focuses on amino acids.

Neuroactive amino acids

Several lines of evidence have shown that changes (e.g., avail-
ability, metabolism, and/or receptor activity) in neuroactive 
amino acids associated with central brain functions may play 
a role in the pathogenesis and/or pharmacotherapy of several 
psychiatric disorders (e.g., schizophrenia and mood disorders) 
that have symptoms, such as cognitive impairment and prob-
lems with social interactions, in common with ASD (Coyle 
2006; Grant et al. 2006; Lam et al. 2006; Labrie et al. 2008; 
Ongür et  al. 2008; Yüksel and Öngür 2010; Durrant and 
Heresco-Levy 2014). Several preclinical and clinical stud-
ies have implicated neuroactive amino acids in the etiology 
of ASD, fragile X syndrome, and tuberous sclerosis complex 
(TSC), but most of these studies have focused on glutamate, 
GABA, and/or glutamine (El-Ansary and Al-Ayadhi 2014; 
Rojas 2014; Santini et  al. 2014; Rozas et  al. 2015; Cochran 
et al. 2015; Lozano et al. 2015; Robertson et al. 2016). Other 
amino acids could also be involved and it may be important 
to conduct comprehensive studies in which a number of these 
amino acids are investigated simultaneously. Due to the poten-
tial role of neuroactive amino acids in the pathogenesis and 
treatment of ASD, monitoring changes in their concentrations 
in body fluids are also important in case they may be relevant to 
the early diagnosis and intervention in patients with ASD. This 
paper reviews the literature on such measurements of several 
of these important compounds in body fluids in ASD subjects.

Glutamate (GLU)

GLU, which is highly concentrated in brain, is the primary 
excitatory neurotransmitter (Naaijen et  al. 2015). GLU nor-
mally has a protective effect with regard to neural plasticity 
and cognitive function, but excessive GLU may be neurotoxic, 
leading to death of neurons and glia (Olney 1969; Manev 
et al. 1989) and may possibly play a role in the pathogenesis 
of psychiatric disorders, such as ASD (Sheldon and Robin-
son 2007). Ghanizadeh (2011) and El-Ansary and Al-Ayadhi 
(2014) showed that GLU is involved in neuroinflammation in 
ASD, and Ghanizadeh and Namazi (2010) proposed GLU and 

homocysteine as targets for therapy of ASD patients’ irritabil-
ity and aggression. A hyperglutamatergic hypothesis of ASD 
has been proposed (Fatemi 2008; Blaylock and Strunecka 
2009). Fatemi et  al. (2002) showed that the levels of GAD 
65 kDa and GAD 67 kDa proteins, both of which are involved 
in converting GLU to gamma-aminobutyric acid (GABA), are 
reduced in the brains of patients with ASD, resulting in the 
increased levels of GLU in the brain.

Studies on GLU levels in the plasma of patients with 
ASD compared to healthy controls (HCs) are contradic-
tory, with some reporting increased levels (Moreno-Fuen-
mayor et  al. 1996; Aldred et  al. 2003; MacDermot et  al. 
2005; Shimmura et  al. 2011; Tirouvanziam et  al. 2011; 
Naushad et  al. 2013; El-Ansary and Al-Ayadhi 2014; Cai 
et  al. 2016) and some decreased levels (El-Ansary 2016). 
In addition, increased levels have been reported in serum 
(Shinohe et al. 2006) and decreased levels in platelets (Rolf 
et al. 1993) and urine samples (Evans et al. 2008; Yap et al. 
2010; Nadal-Desbarats et  al. 2014). Some studies have 
used magnetic resonance spectroscopy (MRS) to measure 
amino acid levels in patients with ASD and have reported 
that patients with ASD have increased GLU levels in brain 
(Page et  al. 2006; Joshi et  al. 2012; Hassan et  al. 2013). 
Cochran et  al. (2015) showed that, compared with HCs, 
patients with ASD had increased glutamine (GLN) levels, 
decreased GABA levels, and no difference in GLU levels 
in brain. However, van Elst et al. (2014) reported that GLU 
and GLN levels were decreased in ASD brains.

Glutamine (GLN)

GLU is stored in the form of GLN in astrocytes until it is 
transferred to presynaptic terminals and converted back to 
GLU (Magistretti and Pellerin 1999). Ghanizadeh (2010) 
reported that a glutamine (GLN) synthetase inhibitor may 
improve inflammation in ASD. Shimmura et al. (2011) sug-
gested that the level of GLN in plasma could be a screening 
test for detecting ASD in children, especially those with a 
normal intelligence quotient (IQ). In studies of GLN levels 
in ASD patients compared to HCs, plasma (Moreno-Fuen-
mayor et al. 1996; Aldred et al. 2003; Shimmura et al. 2011; 
Tirouvanziam et al. 2011; Good 2011a; Tu et al. 2012; El-
Ansary 2016) and platelet (Rolf et  al. 1993) levels have 
been reported to be decreased, serum levels to be no differ-
ent (Shinohe et al. 2006), and urine levels either increased 
(Noto et al. 2014) or decreased (Evans et al. 2008).

Taurine (TAUR)

TAUR is an osmoregulator and neuromodulator that sup-
presses vasopressin and has been reported to be depleted in 
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urine of autistic children (Good 2011a). However, in other 
studies on TAUR levels in ASD patients compared to HCs, 
plasma levels have been reported to be increased (Moreno-
Fuenmayor et  al. 1996; Shimmura et  al. 2011; Kuwabara 
et  al. 2013) or decreased (Geier et  al. 2009; Kern et  al. 
2011; Tu et  al. 2012), and levels in urine samples to be 
increased (Yap et al. 2010; Nadal-Desbarats et al. 2014) or 
decreased (Ming et al. 2012). Although the results reported 
on TAUR levels in plasma and urine samples are contradic-
tory, there is a consistent opinion that TAUR plays a protec-
tive role in patients with ASD (Good 2011a, b; Omura et al. 
2015). Kuwabara et  al. (2013) showed elevated plasma 
TAUR levels in adults with ASD and proposed that TAUR 
is compensatory against pathogenesis of ASD, such as that 
caused by oxidative stress.

Gamma‑aminobutyric acid (GABA)

The balance between GABA and GLU, inhibitory and 
excitatory neurotransmitters, respectively, is very impor-
tant for brain function, and many psychiatric and neuro-
logical disorders may be the result of imbalance between 
GABA and GLU (Erickson et al. 2013; Rojas 2014; Rob-
ertson et al. 2016). Reduced GABAergic action in human 
and animal models of ASD has been proposed to be one 
of the reasons for an imbalance between excitation and 
inhibition (Rubenstein and Merzenich 2003; Gogolla 
et al. 2009; Blatt and Fatemi 2011; Ito 2016; Robertson 
et  al. 2016). However, compared with HCs, GABA lev-
els in plasma have been reported to be increased in ASD 
subjects (Dhossche et  al. 2002; El-Ansary and Al-Aya-
dhi 2014). Dhossche et  al. (2002) reported that plasma 
GABA levels tended to decrease with age in ASD. Com-
pared with HCs, GABA levels in platelets have been 
reported to be decreased in ASD (Rolf et al. 1993) while 
those in urine samples increased (Cohen 2002). Neuro-
imaging techniques reported decreased GABA in brains 
of ASD patients (Kubas et  al. 2012; Gaetz et  al. 2014; 
Rojas et  al. 2014; Omura et  al. 2015; Cochran et  al. 
2015). Rojas et  al. (2014) reported that the left perisyl-
vian GABA levels were decreased in patients with ASD 
and their unaffected siblings. Recently, studies using 
oxytocin to treat animal models of ASD reported that 
oxytocin can increase excitatory GABA and enhance 
hyperglutamatergic activity (Tyzio et al. 2014; Young and 
Barrett 2015).

Glycine (GLY)

GABA and GLY are major inhibitory neurotransmitters in 
the central nervous system (CNS). They act on receptors 

coupled to chloride channels which play an important 
role in normal function of the CNS (Ito 2016). GABA and 
GLY depolarize membrane potentials, acting as excitatory 
neurotransmitters during early development (Wang et  al. 
2002; Yamada et  al. 2004; Kaila et  al. 2014). They shift 
from excitatory to inhibitory neurotransmitters at birth and 
in maturation, and if that does not happen it may result in 
neurological disorders, including ASD (Tyzio et  al. 2006, 
2014). However, in some parts of the brain, GLY acts as a 
coagonist at NMDA GLU receptors (Martina et  al. 2003; 
Baptista and Varanda 2005; Kim et  al. 2005; Basu et  al. 
2009), and it has been suggested that the GLY/d-serine site 
on the NMDA receptor could be a target for ASD therapy. 
Compared with HCs, GLY levels in plasma (Tirouvanziam 
et al. 2011) and serum (Shinohe et al. 2006) of ASD sub-
jects have been reported to be unchanged, and levels in 
urine samples reported to be increased (Nadal-Desbarats 
et  al. 2014; Noto et  al. 2014) or decreased (Evans et  al. 
2008; Ming et al. 2012).

Tryptophan (TRP)

Serotonin (5-hydroxtryptamine, 5-HT) is an important 
neurotransmitter, and TRP is the precursor of serotonin 
(Zhang et al. 2015). Dysfunction of serotonin systems are 
implicated in some forms of ASD, and may contribute to 
social interaction impairments (Lam et  al. 2006; Rubin 
et  al. 2013; Yang et  al. 2014). Whole blood serotonin has 
been reported to be elevated in at least 25 % of ASD chil-
dren (Muller et  al. 2016). However, reducing TRP in the 
diet can impair social behavior in patients (McDougle et al. 
1996) and mice (Zhang et al. 2015) and increasing TRP in 
the diet has been reported to improve social behavior in 
mice (Zhang et al. 2015). Compared with HCs, TRP levels 
in plasma have been reported to be decreased in ASD (Tir-
ouvanziam et al. 2011; Tu et al. 2012; Naushad et al. 2013), 
while Noto et  al. (2014) reported levels to be increased 
in urine samples and Kałużna-Czaplińska et  al. (2014) 
reported them to be decreased.

d‑Serine

In the recent years, d-serine in the brain has been the sub-
ject of extensive research (Fuchs et al. 2005, 2011; Nunes 
et al. 2012; Billard 2015; Sacchi et al. 2016). d-Serine is an 
important amino acid in glutamatergic transmission (Fuchs 
et al. 2005) and is a potent coagonist at NMDA receptors in 
some mammalian brain areas and possibly involved in the 
pathogenesis of several psychiatric and neurological disor-
ders, such as schizophrenia (Labrie et al. 2008; Nunes et al. 
2012; Balu and Coyle 2015; Ozeki et  al. 2016), bipolar 
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disorder (Yamada et  al. 2004; Young and Barrett 2015), 
depression (Hashimoto et  al. 2015, 2016; Deutschenbaur 
et al. 2016), Alzheimer’s disease (Paula-Lima et al. 2013; 
Madeira et al. 2015), and addiction (D’Ascenzo et al. 2014; 
Seif et al. 2015; Liu et al. 2016). GLY has high affinity for 
extrasynaptic NMDA receptors, while d-serine has high 
affinity for synaptic NMDA receptors (Vizi et al. 2013).

There is a paucity of studies on body fluid levels of 
d-serine in ASD. In 2006, Shinohe et  al. (2006) showed 
that d-serine and l-serine levels in serum were no different 
between adult patients with ASD and HCs. Comparing with 
HCs, Tirouvanziam et al. (2011) showed that combined ser-
ine levels in plasma were decreased in ASD. In studies on 
urine samples, Kałużna-Czaplińska et  al. (2014) reported 
that l-serine levels were decreased in ASD, and Noto et al. 
(2014) reported that l-serine levels were increased, while 
Evans et al. (2008) and Ming et al. (2012) showed that the 
combined serine levels were decreased. In the studies in 
which combined serine levels were reported, the d-serine 
and l- serine were not measured separately.

Other amino acids

The metabolism of homocysteine is associated closely 
with folic acid and Vitamin B12 (Ghanizadeh et al. 2012; 
Desai et  al. 2016). Desai et  al. (2016) showed that a lack 
of folic acid may be involved in the pathogenesis of ASD. 
Bala et  al. (2016) reported low plasma levels of Vita-
min B12 in ASD compared to values in HCs. James et al. 
(2004), and Bala et al. (2016) reported that the concentra-
tion of homocysteine in plasma with ASD patients is low. 
However, other studies showed that homocysteine levels 
were increased in ASD patients compared with HCs: Tu 
et al. (2012) reported levels in plasma, Ali et al. (2011) and 
Paşca et al. (2006) reported levels in serum, and Noto et al. 
(2014) and Puig-Alcaraz et  al. (2015) reported levels in 
urine samples, and all were reported to be increased. Puig-
Alcaraz et al. (2015) found that increased urinary levels of 
homocysteine correlated directly with the severity of deficit 
in communication skills in ASD.

Arginine is an essential precursor for the synthesis of 
proteins and nitric oxide, and it can spare  GLN, detoxify 
ammonia, and increase brain blood flow (Good 2011a). 
Compared with HCs, arginine levels in plasma of ASD 
patients have been reported to be increased (Kuwabara 
et al. 2013) or no different (Tirouvanziam et al. 2011).

Table 1 shows the reported levels of neuroactive amino 
acids in patients with ASD in comparison with HCs and 
includes some other amino acids not mentioned previously 
in this review (leucine, lysine, citrulline, alanine, valine, 
isoleucine, threonine, proline, methionine, aspartate, aspar-
agine, phenylalanine, tyrosine, and histidine). Leucine, 

isoleucine, and valine are all termed branched-chain amino 
acids (BCAAs) and share a transport system with large, 
neutral amino acids (LNAAs), such as tryptophan, tyrosine, 
and phenylalanine which are the precursors of the neuro-
transmitter amines 5-hydroxytryptamine (5-HT, serotonin) 
and the catecholamines (Fernstrom 2005). Arnold et  al. 
(2003) reported that the level of the essential amino acids 
valine, leucine, phenylalanine, and lysine in ASD was 58 % 
compared to HCs. Although there is a paucity of studies on 
the levels of BCCAs in ASD, most of the studies report a 
reduction of BCAA levels in autistic subjects (see Table 1 
and the references mentioned therein), suggesting that 
future research in this area is warranted.

Discussion

Overall, the results on amino acid levels in ASD reported 
in the literature are, with the possible exception of the 
BCAAs, inconclusive, and contradictory. Table 1 is a sum-
mary of reported differences between ASD patients and 
HCs in the levels of amino acids. BCAAs are essential 
amino acids that make up about 1/3 of muscle protein, and 
these deficiencies may affect muscle and connective tissue 
integrity in ASD subjects (Evans et  al. 2008). It has been 
suggested that BCAA deficiencies may be related to poor 
nutrition due to unusual food preferences in ASD children 
(Arnold et al. 2003).

In studies on amino acids levels in ASD subjects 
reported in the literature, there has been considerable varia-
tion in terms of factors such as age, gender, number of sub-
jects, IQ, and psychoactive medication being taken. Future 
studies could be improved by standardizing these factors 
and analyzing levels of several amino acids (including 
d-serine and BCAAs) simultaneously.

Recently, many studies have focused on saliva sam-
ples to detect cortisol which is a good indicator of stress 
pressure and behavior recovery in patients with ASD 
(Putnam et  al. 2012; Tordjman et  al. 2014; Abdulla and 
Hegde 2015; Edmiston et  al. 2015). Because of the ease 
of collecting saliva, it is convenient for caregivers to help 
patients, even infants and toddlers (Putnam et al. 2012), to 
collect samples at home. There should be reduced emo-
tional changes compared to collecting blood samples and 
thus possibly increased accuracy of results (Woods et al. 
2008). Unfortunately, few studies on amino acids in saliva 
with ASD patients have been done. It may be useful to 
employ saliva sampling combined with standardized con-
ditions as mentioned in the discussion above to detect 
amino acids in ASD patients routinely in the future—
this is noninvasive testing that can be readily done more 
frequently than other sampling, thus providing more 
dynamic monitoring.
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Table 1   Reported comparisons of the levels of neuroactive amino acids in patients with ASD and healthy controls

Amino acids Specimen Status

Glutamate Plasma Increased (Moreno-Fuenmayor et al. 1996; Aldred et al. 2003; MacDermot et al. 2005; Shimmura 
et al. 2011; Tirouvanziam et al. 2011; Tu et al. 2012; Naushad et al. 2013; El-Ansary and Al-
Ayadhi 2014; Cai et al. 2016)

Decreased (El-Ansary 2016)

Serum Increased (Shinohe et al. 2006)

Platelets Decreased (Rolf et al. 1993)

Urine Decreased (Evans et al. 2008; Yap et al. 2010; Nadal-Desbarats et al. 2014)

Neuroimaging (Brain) Increased (Page et al. 2006; Joshi et al. 2012; Hassan et al. 2013)

Decreased (van Elst et al. 2014)

No difference (Cochran et al. 2015)

Glutamine Plasma Decreased (Moreno-Fuenmayor et al. 1996; Aldred et al. 2003; Shimmura et al. 2011; Tirouvan-
ziam et al. 2011; Good 2011a; Tu et al. 2012; El-Ansary 2016)

Serum No difference (Shinohe et al. 2006)

Platelets Decreased (Rolf et al. 1993)

Urine Increased (Noto et al. 2014)

Decreased (Evans et al. 2008)

Neuroimaging (Brain) Increased (Cochran et al. 2015)

Decreased (van Elst et al. 2014)

Taurine Plasma Increased (Moreno-Fuenmayor et al. 1996; Shimmura et al. 2011; Kuwabara et al. 2013)

Decreased (Geier et al. 2009; Kern et al. 2011; Tu et al. 2012)

Urine Increased (Yap et al. 2010; Nadal-Desbarats et al. 2014)

Decreased (Ming et al. 2012)

GABA Plasma Increased (Dhossche et al. 2002; El-Ansary and Al-Ayadhi 2014)

Platelets Decreased (Rolf et al. 1993)

Urine Increased (Cohen 2002)

Neuroimaging (Brain) Decreased (Kubas et al. 2012; Gaetz et al. 2014; Rojas et al. 2014; Omura et al. 2015; Cochran 
et al. 2015)

Glycine Plasma No difference (Tirouvanziam et al. 2011)

Serum No difference (Shinohe et al. 2006)

Urine Increased (Nadal-Desbarats et al. 2014; Noto et al. 2014)

Decreased (Evans et al. 2008; Ming et al. 2012)

Tryptophan Plasma Decreased (Tirouvanziam et al. 2011; Tu et al. 2012; Naushad et al. 2013)

Urine Increased (Noto et al. 2014)

Decreased (Kałużna-Czaplińska et al. 2014)

d-Serine Serum No difference (Shinohe et al. 2006)

l-Serine Serum No difference (Shinohe et al. 2006)

Urine Increased (Noto et al. 2014)

Decreased (Kałużna-Czaplińska et al. 2014)

Serine (D- and L-) Plasma Decreased (Tirouvanziam et al. 2011)

Urine Decreased (Evans et al. 2008; Ming et al. 2012)

Homocysteine Plasma Increased (Tu et al. 2012)

Decreased (James et al. 2004)

Serum Increased (Paşca et al. 2006; Ali et al. 2011)

Urine Increased (Noto et al. 2014; Puig-Alcaraz et al. 2015)

Arginine Plasma Increased (Kuwabara et al. 2013)

No difference (Tirouvanziam et al. 2011)

Leucine Plasma Decreased (Arnold et al. 2003; Tirouvanziam et al. 2011; Tu et al. 2012)

Cerebrospinal fluid Decreased (Perry et al. 1978)

Urine Decreased (Evans et al. 2008)
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Table 1   continued

Amino acids Specimen Status

Lysine Plasma Increased (Aldred et al. 2003; Arnold et al. 2003; Tu et al. 2012)

No difference (Tirouvanziam et al. 2011)

Urine Increased (Noto et al. 2014)

Citrulline Plasma Decreased (Tirouvanziam et al. 2011)

Alanine Plasma Increased (Aldred et al. 2003)

No difference (Tirouvanziam et al. 2011)

Urine Increased (Nadal-Desbarats et al. 2014; Noto et al. 2014)

Decreased (Evans et al. 2008; Ming et al. 2012)

Valine Plasma Decreased (Arnold et al. 2003; Tu et al. 2012)

No difference (Tirouvanziam et al. 2011)

Urine Decreased (Evans et al. 2008)

Isoleucine Plasma Decreased (Tirouvanziam et al. 2011)

Cerebrospinal fluid Decreased (Perry et al. 1978)

Urine Decreased (Evans et al. 2008)

Threonine Plasma Decreased (Tirouvanziam et al. 2011; Bala et al. 2016)

Urine Decreased (Evans et al. 2008)

Proline Plasma No difference (Tirouvanziam et al. 2011)

Urine Decreased (Evans et al. 2008)

Methionine Plasma Increased (Arnold et al. 2003; Naushad et al. 2013)
Decreased (Bala et al. 2016)

Cerebrospinal fluid Decreased (Perry et al. 1978)

Urine No difference (Puig-Alcaraz et al. 2015)

Aspartate Plasma Increased (Moreno et al. 1992)

No difference (Tirouvanziam et al. 2011)

Platelets Decreased (Rolf et al. 1993)

Urine Decreased (Evans et al. 2008)

Asparagine Plasma Increased (Aldred et al. 2003; Naushad et al. 2013)

Decreased (Moreno-Fuenmayor et al. 1996; Tirouvanziam et al. 2011)

Urine Decreased (Evans et al. 2008)

Phenylalanine Plasma Increased (Aldred et al. 2003)

Decreased (Arnold et al. 2003; Tirouvanziam et al. 2011; Naushad et al. 2013)

Urine Increased (Noto et al. 2014)

Decreased (Evans et al. 2008)

Tyrosine Plasma Increased (Aldred et al. 2003)

Decreased (Tirouvanziam et al. 2011; Tu et al. 2012; Naushad et al. 2013)

Urine Increased (Noto et al. 2014)

Decreased (Evans et al. 2008)

Histidine Plasma
Urine

Increased (Bala et al. 2016)
Decreased (Evans et al. 2008; Ming et al. 2012; Nadal-Desbarats et al. 2014)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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