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Abstract The development of new vaccines remains an

attractive goal for disease prevention and therapy, in

combination or alternative to drug-based treatment. In

parallel, a growing awareness of the importance of early

diagnosis in successful disease management is driving the

demand for new reliable diagnostic tools. As a conse-

quence, over the last decades an impressive amount of

work has been directed toward the search for new solutions

to address vaccine design and biomarker discovery. In this

context, peptides have generated considerable interest

thanks to their general accessibility and ease of manipu-

lation. The aim of this review is to provide the reader a

general picture of the traditional peptide-based strategies

adopted in immunology and to report on recent advances

made in this field, highlighting advantages and limitations

of classic versus innovative approaches. Case studies are

described to provide illustrative examples, and cross ref-

erences to more topic-focused and exhaustive reviews are

proposed throughout the text.

Keywords Antigenic peptides � In silico epitope

predictions � Vaccine development � Biomarker discovery �
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General concepts to epitope prediction and design

Disclosing the molecular mechanisms that drive biologi-

cally relevant processes is a fundamental goal for

biological chemistry. Understanding how biomolecules

interact, unveiling which key interactions are involved in

cellular pathways and revealing which of them are mis-

regulated in the development of a pathological condition

may help defining new targets for pharmacological inter-

vention. As proteins modulate the majority of biological

functions, exploiting structural information on how pro-

tein–protein interactions (PPIs) are controlled at the atomic

level can pave the way toward their rational manipulation.

In this context, the popularity of peptides as modulators/

inhibitors of PPIs has consistently grown over the last few

years, thanks to the synthetic accessibility and flexible

application potential of these molecules. For instance,

peptides and peptidomimetics with different conforma-

tional dynamic properties and designed structural prefer-

ences have been used to probe the role of conformational

selection and preorganization in regulating key interactions

involving proteins (Bock et al. 2013; Chatterjee et al. 2008;

Goodman et al. 2007; Haridas 2009; Pedersen and Abell

2011; Souroujon and Mochly-Rosen 1998). The amount of

knowledge generated by experimentally determined

sequence–structure–function relationships contributed to

lay the foundations for computational design methods. In

general, computational peptide or protein design entails the

search for peptidic sequences and amino acids that adopt

defined structures and functions (Floris and Moro 2012;

Fung et al. 2008; Nikiforovich 2009; Renfrew et al. 2012;

Yin et al. 2007). Computational methods have further

evolved into the re-design of protein–protein interfaces.

The work of Kortemme (Mandell and Kortemme 2009;

Smith and Kortemme 2010), Kuhlman (Der et al. 2012;

Lewis and Kuhlman 2011; Sammond et al. 2011), Baker

(Fleishman et al. 2011; Koga et al. 2012; Richter et al.

2012) provides elegant examples of how interfaces can be

redesigned to modulate in vitro functions. These efforts

A. Gori � R. Longhi � C. Peri � G. Colombo (&)

Istituto di Chimica del Riconoscimento Molecolare,

Consiglio Nazionale delle Ricerche, Via Mario Bianco 9,

20131 Milan, Italy

e-mail: g.colombo@icrm.cnr.it

123

Amino Acids (2013) 45:257–268

DOI 10.1007/s00726-013-1526-9



brought about the realization that functional protein/pep-

tide interactions are determined by a well-balanced inter-

play of sequence, physico-chemical, structural and

conformational properties. As a consequence, predictions

of protein interaction properties aimed at supporting the

design of functional molecules should take into account not

only sequence and structural similarities or homologies, but

also the dynamic and energetic properties that occur at

protein interfaces (Hoffman et al. 2005; Keskin 2007;

Sheinerman et al. 2000; Ulucan et al. 2012; Zen et al.

2010).

Among other fields, these concepts find application in

immunology where considerable effort has been put into

developing platforms to screen candidate protein antigens

and to identify/predict minimal antigenic regions (epitopes)

responsible for immunoreactivity. In particular, a lot of

interest has been conveyed toward the antibody-mediated

(humoral) components of the immune system since, due to

their peculiar role and activity, antibodies can represent

valuable tools for both therapy and diagnosis (Peters 2000;

Waldmann 1991). Indeed, the identification of reactive

antigen regions that are determinant for antibody elicitation

and recognition still represents an attractive and challeng-

ing opportunity for predictive rational-based computational

methods. Epitopes are conventionally classified as contin-

uous, i.e., sequential and relatively short peptides from the

protein sequence able to bind anti-antigen antibodies, or

discontinuous, i.e., patch of atoms/fragments from not-

contiguous protein regions which are brought to close

proximity by protein folding and whose antigenicity

depends upon the protein conformation. It is worth

underlining that epitopes do not exist as discrete and

structured entities, but rather have fuzzy boundaries and are

defined by their functional ability to bind antibodies (Van

Regenmortel 2009a). While continuous epitopes can in

theory be predicted out of the protein sequence by con-

sensus of available datasets of immunogenic peptides

(Greenbaum et al. 2007), the prediction of discontinuous

epitopes relies upon the knowledge of the protein 3D

structure. Over the last few decades, several approaches

have been tested to run epitope prediction from protein

structure. Some groups attempted to correlate antigenicity

with protein region properties such as solvent accessibility

or flexibility (Novotný et al. 1986; Westhof et al. 1984).

For instance, electrostatic desolvation profiles (EDP)

method hypothesizes that surface protein regions with a

small free energy penalty for water removal may corre-

spond to preferred interaction sites and may, accordingly,

in the case of antigens, constitute binding sites for anti-

bodies (Fiorucci and Zacharias 2010). Others based their

approach on identifying those regions that protrude out of

the protein globular surface and relating them to antige-

nicity (Ponomarenko et al. 2008; Thornton et al. 1986). In a

reverse approach, Molina and colleagues targeted the

identification of epitopes within the protein structure

through a bioinformatic analysis of sets of mimitope

sequences, i.e., randomly generated peptides mimicking

epitopes functional antibody recognition properties

(Moreau et al. 2006). By integrating mimitopes’ align-

ments and consensus, the authors were able to identify the

original epitope regions targeted by antibodies within the

native antigen in a series of case models where antibody–

antigen crystal structures were available. In this direction,

our group has recently developed a new way to approach in

silico epitope prediction based on the integrated analysis of

the dynamical and energetic properties of an antigen,

namely matrix of local coupling energies (MLCE)

(Scarabelli et al. 2010). The key assumption of MLCE

method is that epitopes may correspond to protein regions

that are not involved in stabilizing interactions within the

protein fold, since they must continuously evolve to escape

recognition by the immune system without affecting pro-

tein functional structure. To be recognized by a (antibody)

binding partner, these regions should also well tolerate

conformational changes with minimal energetic expense.

Accordingly, MLCE prediction is based on antigen struc-

ture analysis identifying those localized regions that are

less energetically coupled with the rest of the protein, and

that consequentially fit basic criteria for representing epi-

tope candidates. To date, the MLCE method found suc-

cessful application in epitopes prediction for proteins

FABP3 and S100B (Peri et al. 2013) and for the discovery

of biomarker and vaccine candidates for the Burkholderia

Pseudomallei pathogen (Lassaux et al. 2013). MCLE and

EDP methods, along with many others, are intrinsically

limited to predict regions exposed on the protein surface.

As a methodological evolution, in silico dissection of

proteins into domains prior to epitope prediction may

expose low-accessibility regions that may be targeted by

antibodies under conditions of partial unfolding/degrada-

tion, thus improving prediction performances (Genoni et al.

2012). By applying this strategy, we indeed showed an

improved match between theoretical and experimental

epitope mapping (Lassaux et al. 2013).

A landmark integration of atomic-resolution information

with computational techniques was reported by Schief and

collaborators working on a hybrid method for the grafting

of functional motifs onto unrelated protein scaffolds to

accurately replicate the antigenic surface recognized by

target antibodies (Azoitei et al. 2011; Correia et al. 2010;

Ofek et al. 2010). Epitope scaffolding strategy, by mim-

icking complex antigenic targets, might be particularly

useful to reproduce discontinuous epitopes and enhance the

extent of the immune response against antigens for which

elicitation of antibodies has been demonstrated to be par-

ticularly challenging (e.g., transient, immunorecessive,
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cryptic). Indeed, the scaffold-supported antigen is ‘pre-

sented’ in a context that lacks pathogen defensive mecha-

nisms that have evolved to elude the immune response

(Burton 2010). In one case example, the authors’ work

focused on transplanting a two-segment discontinuous HIV

gp120 epitope on a suitable scaffold that may accommo-

date the entering motif without altering its original func-

tional conformation (Azoitei et al. 2011). Scaffold

selection and design for optimal motif transplantation were

computationally assisted, as well as the generation of a

small set of mutagenesis libraries to undergo functional

screening. The authors were able to generate a scaffold-

bound motif displaying specificity and affinity for antibody

recognition similar to the original gp120. This strategy may

be then potentially suitable for using grafted epitopes as

immunogens to elicit neutralizing antibodies.

Overall, many different approaches have been exploited

toward epitope identification, prediction and design. The

need to overcome limits associated to mere (time con-

suming) experimental methods has strongly oriented

research in this area toward computationally assisted

schemes, where information from experimental evidence is

merged with in silico methodologies to investigate protein

‘interactome’. As general knowledge is progressing, new

perspectives and solutions are expected to come to light.

The generation of more and more reliable methods to

approach complex models might then represent a closer

step toward the full realization of rational-based manipu-

lation of PPIs. In this scenario, the fast prediction and

successful design of epitope candidates aimed to finalize

their therapeutical/diagnostic application is not out of

reach.

Peptides as vaccine candidates

Despite the progresses made in the field of drug discovery,

vaccination still remains an inescapable approach in

modern medicine. Indeed, the increasing incidence of drug

resistance, which conventional antibiotic therapies are

facing, poses a serious threat to maintaining the current

public health status (Loddenkemper and Hauer 2010;

Nikaido 2009). In addition, a strong demand for vaccine

development is arising for the prevention of noninfectious

diseases such as cancer, for which immunotherapy may

represent a valid alternative/adjuvant to pharmacological

treatment (Sharav et al. 2007; Tsunoda 2004). Last but not

least, the access to prolonged and expensive drug-based

therapies still remains a major issue in the less developed

countries, making disease prevention more desirable.

Vaccines have traditionally consisted of attenuated or

inactivated microorganisms delivered by injection. How-

ever, since a series of inherent practical issues is associated

to this approach along with increasing safety demands from

regulation authorities, research in the vaccine field has

witnessed a growing interest toward attempts to develop

protein- and peptide-based vaccine candidates (Purcell

et al. 2007). In this context, reverse vaccinology (RV)

(Masignani et al. 2002) and structure-based antigen design

(Dormitzer et al. 2008), a.k.a. structural vaccinology (SV)

techniques, have generated high expectations toward a

‘new era’ of fast and safe vaccine development (Fig. 1).

RV encompasses in silico pathogen genome analysis aimed

to identify those protein antigens that, among all, are most

likely to represent vaccine candidates (e.g., cell-surface

exposure, protein stability). Candidate identification disre-

gards traditional limitations such as whether an antigen is

abundantly or modestly expressed, whether it is constantly

or temporarily expressed and whether it is easily isolated or

not. Virtually, all genes of a pathogen can be screened,

enabling this platform to generate vaccine candidates in a

fast, safe and effective way even for pathogens against

which classical approaches have failed. With regard to SV,

the approach relies on the concept that by knowing which

parts of an antigen are effectively responsible for antige-

nicity, it is possible to engineer the native antigen to

improve its feasibility as vaccine candidate. In particular,

identifying those components within the antigen structure

that elicit protecting immunity allows performing antigen

manipulation driven by structural considerations (e.g.,

domain stabilization, conformational constraints). In this

way, efforts toward vaccine optimization can be focused on

those antigen regions that play a significant role in

immunity. As a further development of the SV approach, it

may then be viable to select only the antigen regions able

to elicit an immune response and translate them in the form

of peptides as potential vaccine candidates. Although often

underestimated, there are several advantages to peptide-

based vaccine approaches over traditional ones, ranging

from avoiding the injection of infectious and potentially

harmful material to the ease of synthesis, manipulation and

storage with respect to in vitro culture and handling of

dangerous pathogens and to the possibility of focusing on

the use of minimal immunogenic regions of a protein

antigen (Purcell et al. 2007). While very promising,

regardless of the considerable efforts, the full realization of

peptide-based approach toward vaccine development is

still to be fulfilled (Van Regenmortel 2009b). Nevertheless,

the search for new strategies to deliver peptide vaccines

remains vivid, as potential advantages may overcome

current limitations.

The goal of vaccination is to stimulate an antigen-spe-

cific response, possibly involving both the cellular (CD8?

cytotoxic and CD4? helper T cells) and humoral (antibody)

components of the immune system. The antigen specificity

resides in its minimal regions that are responsible for
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immunoreactivity, namely epitopes. Due to the different

mechanism by which humoral and cellular responses are

generated (Fig. 2), requirements for peptide epitope design

differ substantially. As the T cell-mediated response fol-

lows a complex intracellular antigen processing pathway,

only little conformational requirements, if any, have to be

taken into account in designing epitopes to induce a CTL-

mediated response (Purcell et al. 2007). On the contrary, to

elicit a specific antibody response that recognizes the parent

antigen, a peptide epitope should in principle trace the

conformational properties of the native antigenic region.

Unfortunately, only in few cases short peptides extracted

out of their original context possess a conformation that

mimics the one they adopt within the native antigen (Van

Regenmortel 2009b). Thus, despite that in any case an

antibody response might be generated against a peptide

epitope, antibodies might not be cross-reactive toward the

parent antigen. Consequently, unless the peptide used for

immunization mimics or is forced to mimic the conforma-

tion of the corresponding native antigenic region, elicited

antibodies are unlikely to cross-react specifically with the

parent protein. Several approaches are available to induce a

correct folding of free peptides, but previous knowledge of

the whole antigen structure is therefore necessary (Purcell

et al. 2003). Moreover, the fact that most protein epitopes

are actually discontinuous, i.e., are formed by groups of

atoms belonging to residues located on not-contiguous

protein segments that are brought together by the peptide

chain folding, is often underestimated (Van Regenmortel

2009a). Thus, it is not surprising that most continuous

epitopes are not able to elicit really neutralizing antibodies.

In recent years, the work of some groups has focused on

attempts to reproduce complex discontinuous epitopes by

means of synthetic constructs. This approach is usually

based on anchoring different peptide sequences to synthetic

scaffolds, to contemporarily block peptide conformations

and bring in close contact sequences which are assumed to

be part of a discontinuous epitope. In this context, it is worth

citing the work by Liskamp and collaborators on antigen

surface mimicking by the use of a triazacyclophane (TAC)

scaffold (Fig. 3a); (Hijnen et al. 2007; Mul der et al. 2012),

as well as the functional reconstruction of conformational

epitopes by means of the CLIPS technology (Chemical

Linkage of Peptides onto Scaffolds) reported by (Fig. 3b)

Timmerman et al. (2007, 2009). While the potential of these

strategies is still to be fully demonstrated, this kind of

approach appears to be promising. As a further complica-

tion, inherent limitations to peptide-based vaccination come

from the small size of peptide molecules and the low copy

number of peptide-based immunogens, along with their

poor immunogenicity when administered in the absence of a

vaccine adjuvant (Hervé et al. 1997; Van Regenmortel

2001). Traditionally, these problems have been addressed

by the conjugation of peptides to protein carriers (BSA,

KLH, OVA, etc.) to serve both as delivery systems for

multiple epitopes display and as T-helper epitopes source

for response amplification (Chiarella et al. 2010). Despite

this strategy being widely used, it still suffers from poor

homogeneity of peptide-carrier adduct composition and of

possible alterations of epitope integrity following conju-

gation (Briand et al. 1985). Moreover, carrier-induced

antigen suppression, i.e., induction of an antibody response

against the carrier to a much greater extent than toward the

epitope can occur (Herzenberg et al. 1980; Schutze et al.

Fig. 1 Flowchart for RV and SV approaches toward vaccine

development. Computational analysis of pathogen genome identifies

those antigens that present ideal features for vaccine development.

Following structure determination, antigen can directly undergo

optimization or constitute the basis for the identification of its

antigenic regions. Epitopes can in turn undergo optimization to best

display their immunogenic potential
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1985). Multiple antigen display was elegantly pioneered by

Tam and co-workers, who first introduced the concept of

multiple antigen presentation (MAP) by use of branched

oligolysine constructs bearing multiple epitopes (Francis

et al. 1991; Huang et al. 1994). Since then, many groups

have reported on the advantages of branched over linear

peptides as better immunogens (Fitzmaurice et al. 2000;

Rosenthal 2005; Schott et al. 1996), paving the way to the

search for alternative strategies to combine multiple epi-

topes in a controlled way. For instance, Jackson and col-

laborators conceived the synthesis of multi-peptide

polymers, by introducing an N-terminal acrylated residue to

single peptide epitopes followed by radical-free polymeri-

zation to generate a covalently bound platform displaying

several copies of the same epitope/different epitopes

(Brien-simpson et al. 1997; Jackson et al. 1997; Sadler et al.

2002). Others explored the use of dendrimers (Kowalczyk

et al. 2010). More in general, with the progressive devel-

opment of chemoselective synthetic and conjugation tech-

niques, many strategies have been applied to multiple

antigen presentation (Fujita and Taguchi 2011). One critical

aspect in the development of peptide vaccines is their low

immunogenicity as single entities, as a consequence of their

weak activation of antigen-presenting cells (APC) such as

dendritic cells (DC) and macrophages, which in turn play a

key role in activating B and T lymphocytes. Thus, con-

ventional peptide vaccine formulations usually include

adjuvants (e.g., complete Freud’s adjuvant, CFA) to favor

the onset of an immune response (Wang 2011). However,

most of the adjuvants commonly used in animal vaccination

protocols are toxic and therefore not suitable for human

administration. The synthesis of platforms bearing both

peptide epitopes and a lipophilic moiety is now considered a

valuable way to produce self-adjuvanting constructs that

allow overcoming intrinsic low peptide immunogenicity

(Moyle and Toth 2008). Indeed, bacterial lipid components

such as tripalmitoyl-S-glyceryl cysteine (Pam3Cys) and

Pam2Cys are known agonists of the Toll-like receptors

(TLRs) family, a class of receptors expressed on the surface

of a wide variety of cells including APC and whose acti-

vation is a key step in the generation of an immune response

(Jackson et al. 2004; Zhu et al. 2004). Therefore,

Fig. 2 Cellular- and humoral-mediated components of the immune

response. a In order to activate CTL-mediated response, antigens

must first undergo cellular internalization by APCs followed by a

complex proteolytic processing pathway. The resulting T-cell

epitopes binding major histocompatiblity complex class I (MHC I)

are presented for recognition by T-cell receptor. Mutual recognition,

along with interaction with T helper cells, triggers activation and

proliferation of naı̈ve CD8? T cells to generate a killing response.

b Upon immunogen recognition and internalization mediated by

B-cell receptor (immunoglobulin receptor), and following activating

interplay with T-helper lymphocytes, B cells differentiate into plasma

cells that secrete antibodies with identical specificity of the immu-

noglobulin receptor. Other co-stimulatory molecules are involved in

each step recognition, as well as cytokine secretion plays a deep role

in determining the type of response that is generated
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lipopeptides have found broad application as candidates for

vaccine development, since in addition to immunogenicity

enhancement none of the side effects associated with the

use of adjuvants is usually encountered (Galdiero et al.

2012; Zeng et al. 2002). Similarly, proteins/peptides gly-

cosylation is known to play an important role in immunity,

especially in the T-cell stimulation, as carbohydrates act

facilitating the cellular uptake through a receptor-mediated

internalization (e.g., mannose receptors) (Rudd et al. 1999,

2004; Rudd 2001). It is then not surprising that a deep

interest in glycopeptides has been found in the field of

synthetic vaccine candidates (Bay et al. 1997; Fujita et al.

2008; Kowalczyk et al. 2012).

In recent years, the field of vaccine development has

experienced a growing awareness of the importance of the

way through which an antigen is presented to fully ‘realize’

its immunogenic potential. Particularly, considerable

interest has been shown in the use of nanoparticles as

vaccine delivery systems (Akagi et al. 2012; Foster et al.

2010; Uto et al. 2009; Yoshikawa et al. 2008; Zolnik et al.

2010). Notably, nanoparticles prepared from biocompatible

and biodegradable polymers have been proposed not only

as mere vaccine carriers, but also as potent immune

response adjuvants. Antigen-loaded nanoparticles are

indeed claimed to target and activate more specifically

APCs, at the same time allowing controlling intracellular

antigen release. As further evolution, the interest of many

groups is now oriented on the development of peptide-

based self-assembling systems, which were shown to be

suitable devices to address multiple antigen presentation

and self-adjuvation. An elegant explanatory case was

reported by Toth and co-workers working on the group A

streptococci (GAS) (Skwarczynski et al. 2010). The

authors synthesized a polyacrylate dendritic structure that

was used as scaffold to attach several copies of a peptide

antigen. The whole construct was shown to self-assemble

in nanoparticles (20 nm in diameter) possessing a poly-

meric core and peripherally exposing the antigenic peptide

epitope on the particle surface (Fig. 3c). Mice immuniza-

tion resulted in the production of high titers of antigen-

specific antibodies without the need of further adjuvants,

validating the initial assumption of a self-adjuvanting

system. More recently, Payne and collaborators reported on

the design and synthesis of a tricomponent cancer vaccine

Fig. 3 a TAC scaffold-

mediated mimicking of antigen

surface. Different segments of

discontinuous epitopes are

anchored to one functionalized

scaffold. Once brought in close

proximity (cyclic), sequences

can provide a good mimicking

of the situation found in the

discontinuous epitope.

b Schematic representation of

CLIPS technology; different

regions of discontinuous

epitopes are synthesized as one

construct and then undergo

cysteine-mediated cyclization

onto a scaffold to provide a

functional mimetic of the native

antigenic region. c Synthesis of

dendrimeric epitope platform

that self-assembles into

nanoparticles. Polymer

dendrimer forms nanoparticle

core, while epitope remains

exposed on particle surface
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candidate that consisted of a glycopeptide or peptide

antigen, a universal T-helper peptide epitope and a lipo-

philic moiety as immunoadjuvant (Wilkinson et al. 2012).

The system spontaneously self-assembled to form discrete

nanoparticles and was shown to be fully self-adjuvanting

and to induce a strong and selective humoral response in

murine models. As proofs of concepts of the effectiveness

of self-adjuvanting and self-assembling systems keep

emerging, the interest toward their further development is

expected to grow over the next few years.

In conclusion, a tremendous amount of work has been

done so far in the search for a peptide-based vaccine

development strategy. Although a truly satisfactory success

has yet to be reached, new valuable approaches and strat-

egies to overcome traditional limitations are becoming

available. Key considerations driving future development

efforts might involve improved antigen candidate selection

and design, a better understanding of the role of epitope

conformation, a more reliable control over it and the

realization of complex but well-defined platforms for

peptide antigen display and delivery.

Peptides: tools for biomarker discovery

A biomarker can be defined as ‘‘a characteristic that is

objectively measured and evaluated as an indicator of

normal biologic processes, pathogenic processes, or phar-

macologic responses to a therapeutic intervention’’ (Bio-

markers definition working group 2001). Over recent years,

the increased diffusion of pathologies such as autoimmune

diseases and of problems related to pathogen drug resis-

tance, along with sustained efforts in cancer and neuro-

logical disorders research, has produced a growing interest

in the discovery of new biomarkers as selective tools for

disease diagnosis, staging, follow-up and personalization of

therapy (Baker 2005; Frank and Hargreaves 2003; Ludwig

and Weinstein 2005). It is now widely assumed that an

early and timely diagnosis can have a deep impact on

disease progression. This is particularly important for those

pathologies for which effective therapies are still missing

or that are susceptible to misdiagnosis, leading to wrong

and potentially harmful treatment. However, biomarkers

identification is not always easy, since for many patholo-

gies the molecular causes that trigger disease onset and

progression are not known. Furthermore, to be fully reli-

able a biomarker should be truly specific for a particular

biological/pathological status, not leaving space for

doubtful interpretation.

In this direction a considerable help comes from the

immune system itself, which is ‘designed’ to selectively

recognize the presence of non-self entities and to evoke a

protective response against them (Gonzalez et al. 2011;

Katsikis et al. 2007). Indeed, an adaptive immune response,

either humoral (B cell mediated) and/or cellular (T cell

mediated), is usually associated with a pathological status,

whether considering cancer, an immune-mediated disease

or an infective pathology. Of particular interest to bio-

marker discovery, the immune system acts amplifying

particular antibodies that recognize disease-specific anti-

gens. In this context, the detection of those antibodies in

the patient biological fluids that are overproduced in a

disease status can represent a valuable diagnostic indicator

to drive its clinical management (Anderson and LaBaer

2005). As a consequence, attempts to identify candidate

biomarkers have traditionally focused on the screening of

putative antigen arrays against easily accessible biological

fluids to capture overproduced antibodies which may rep-

resent good indicators of a pathogenic condition (Blennow

et al. 2010; Robinson et al. 2002). In this scenario, the use

of peptide libraries in place of whole antigens may repre-

sent a faster, more flexible and easily accessible way to

target antibody recognition. A focused approach may be

offered by small peptide libraries that are designed to

represent only those antigen regions that are likely to be

responsible for antigen–antibody interaction, i.e., for

immunoreactivity. An example is given by our recent work

on melioidosis, an endemic and potentially lethal disease

spreading in tropical and subtropical regions, which is

often misdiagnosed as tuberculosis and consequently mis-

treated (How and Liam 2006). Working on a collection of

protein antigens of the B. Pseudomallei pathogen, melioi-

dosis etiological agent (Wiersinga et al. 2006), we used

their 3D structures as the basis for the prediction of

potential antibody-binding regions by means of our

recently developed MCLE method (Scarabelli et al. 2010).

Predictions were then converted in the synthesis of candi-

date peptides, which were spotted on an ELISA plate and

screened for immunoreactivity against sera from healthy

donors, and seropositive and seronegative patients. In the

case of the OppA antigen (Lassaux et al. 2013), we were

able to identify one peptide (COMP3) that showed very

interesting discrimination properties, being differently

reactive with respect to the three patient groups. Thus, an

inherent potential for diagnostic purposes was proven.

Notably, COMP3 peptide design was successful out of only

three peptides tested, proving the possibility to efficiently

connect antigen structure analysis, peptide synthesis and

immunoreactivity testing. Working on the same target, a

complementary experimental approach based on immuno-

capturing and proteolytic digestion provided more peptide

biomarker candidates (Lassaux et al. 2013). The applica-

tion of this ‘mixed’ method is currently ongoing on other

B. Pseudomallei protein antigens (OmpA, FliC, BPSL

1050, BPSL 0919) with promising preliminary results,

especially for the OmpA antigen for whom we were able to
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deliver a highly and specific immunoreactive synthetic

peptide, which was not only able to distinguish among the

three patient groups, but also even recognized to the same

extent as the whole recombinant protein antigen. As an

obvious limitation, MCLE-based strategy is not suitable for

those cases where antigens that trigger primary immune

response (primary antigens) or their structure are unknown,

and more in general the method is biased by the fact that it

may not take into account the wide range of post-transla-

tional modifications that can be responsible for the devel-

opment of a pathological condition, which finds an

illustrative example in the case of autoimmune diseases

(Lindstrom and Robinson 2011). Autoimmune diseases are

in fact usually generated by either native or aberrant post-

translational modifications of self-proteins that can affect

the tolerance of the immune system toward a protein

antigen (neo-antigen) and lead to the development of a self-

directed immune response (Anderton 2004; Doyle and

Mamula 2001). Partially due to this reason, traditional

proteomic-based approaches aimed at biomarkers’ identi-

fication in autoimmune diseases have often proven unsuc-

cessful. In this case, the use of synthetic peptide libraries

that include a wide range of post-translational modifica-

tions that occur in proteins, thus generating potential

mimetic of the neo-antigens, is surely a valuable approach

[for a more extensive review on the topic see (Papini

2009)]. Modifications such as acetylation, glycosylation

and citrullination, which cover a part of the possible ones

responsible for neo-antigens generation, can indeed be

specifically and more easily introduced into peptides with

respect to recombinant proteins. This offers a powerful tool

to generate candidate biomarkers able to detect autoanti-

bodies in biological fluids. In this strategy, namely

‘chemical reverse approach’ (Alcaro et al. 2007), the

autoantibodies ‘select’ those modified peptides which

resemble the newly generated antigenic regions that trigger

the immune response at the origin of the disease. Thus, the

chemical reverse approach is in principle able to identify

the side-chain modifications effectively responsible for

pathology development. After the identification of candi-

date biomarkers, structure–activity relationship studies can

follow to fully characterize the antigen–antibody binding

and to lead candidate peptide development toward high

specificity of recognition. Examples of this approach val-

idation can be found in the field of systemic lupus ery-

thematosus (Mahler et al. 2005), rheumatoid arthritis

(Girbal-Neuhauser et al. 1999; Vossenaar and Van Ven-

rooij 2004) and in a series of papers by Papini and

co-workers on multiple sclerosis where a glycopeptide

probe for autoantibodies detection was firstly discovered

and then developed by an accurate and extensive refine-

ment work (Carotenuto et al. 2001, 2008; Lolli et al. 2005a,

b; Mazzucco et al. 1999; Papini 2005). More recently,

Kodadek and collaborators tackled biomarker discovery for

pathological conditions for which primary antigens are

unknown from a new point of view (Reddy et al. 2011).

Rather than focusing on attempts to identify the antigen

itself or a close mimic to it, they assumed work in a fully

unnatural chemical space, i.e., to use combinatorial

libraries of unnatural synthetic molecules that may cover a

conformational space not represented by unmodified bio-

molecules. The key concept behind this approach is that, as

the primary immune response to some diseases follows an

initial marked aberration in a biomolecule, unnatural

molecules are more likely to adopt shapes that allow the

binding to antibodies generated in response to the original

structural modification with respect to naturally occurring

molecules, since those shapes cannot be formed by

unmodified molecules. Molecules able to bind selectively

antibodies elicited against their triggering agent can be

seen as antigen surrogates and can display potential for

diagnosis. The authors validated their approach by

screening libraries of peptoids (N-substituted oligogly-

cines) against sera from patients with Alzheimer’s disease

(AD) and were able to identify two candidate antibody

biomarkers. Not being focused on mimicking a particular

antigen, this approach is claimed to be broadly applicable

toward the rapid discovery of antibody biomarkers by high-

throughput screening of synthetic molecules.

In summary, even if in recent years great expectations

have arisen toward modern protein technologies to drive

biomarker discovery, they are still to be fully met. Partic-

ularly in the case of autoimmune diseases, cancer and

neurological disorders, approaches to new candidate bio-

marker identification are now shifting from traditional

antigen arrays toward the application of new strategies

bypassing prior antigen knowledge, similarly to recent

schemes in the field of drug discovery. Nevertheless, in

cases where antigens are known, new design techniques

and rational-driven optimization work may represent an

added value that could enlarge discovery possibilities.

Given their prompt access and ease of manipulation with

respect to more complex antigens, the use of peptides and

their mimics or derivatives as fundamental tools to satis-

factorily address biomarkers discovery is then expected to

keep growing.

Conclusion

Over recent years, the scientific community has been

struggling to fully realize the potential and the hopes

which the advent of the ‘-omic era’ has brought with it. In

particular, the development of new and effective method-

ologies to fulfill unmet therapeutic needs has witnessed

a switch from empirical-based to rationally driven
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approaches, a scenario where computational techniques

have found fertile ground. The birth of cutting edge

methodologies to assist and accelerate data analysis and

comprehension of molecular mechanisms involved in

pathological conditions is opening the way for new solu-

tions, for therapeutics and diagnostics. In this context,

peptide science constitutes an appealing resource, since, in

terms of accessibility and flexibility, enormous advantages

are potentially associated with the use of peptides and

derivatives in place of whole proteins. It is then not sur-

prising that the interest peptides have aroused in the

immunology field has considerably grown in recent times.

Although a true feasibility of peptides as vaccine candi-

dates that may lead to their wide application is yet to be

demonstrated, emerging considerations, along with

awareness of current limitations and new strategies to

overcome them, keep this prospective alive. Nonetheless,

peptides are finding increasing application in the discovery

of new biomarkers, which still remains an attractive target

to effectively tackle disease management. Following pre-

vious considerations, interest in peptide immunology is

thus expected to remain vivid in the future, with the hope

of finally achieving worthy goals which current efforts are

attempting to address.
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Hervé M, Maillere B, Mourier G et al (1997) On the immunogenic

properties of retro-inverso peptides. Total retro-inversion of

T-cell epitopes causes a loss of binding to MHC II molecules.

Mol Immunol 34:157–163

Herzenberg LA, Tokuhisa T, Herzenberg LA (1980) Carrier-priming

leads to hapten-specific suppression. Nature 285:664–667. doi:

10.1038/285664a0

Hijnen M, Van Zoelen DJ, Chamorro C et al (2007) A novel strategy

to mimic discontinuous protective epitopes using a synthetic

scaffold. Vaccine 25:6807–6817. doi:10.1016/j.vaccine.2007.06.

027

Hoffman BM, Celis LM, Da Cull et al (2005) Differential influence of

dynamic processes on forward and reverse electron transfer

across a protein–protein interface. Proc Natl Acad Sci USA

102:3564–3569. doi:10.1073/pnas.0408767102

How SH, Liam CK (2006) Melioidosis: a potentially life threatening

infection. Med J Malaysia 61:386–394 quiz 395

Huang W, Nardelli B, Tam JP (1994) Lipophilic multiple antigen

peptide system for peptide immunogen and synthetic vaccine.

Mol Immunol 31:1191–1199

Jackson DC, Brien-simpson NO, Brown LE, Ede NJ (1997) Free

radical induced polymerization of synthetic peptides into poly-

meric immunogens. Vaccine 15:1697–1705

Jackson DC, Lau YF, Le T et al (2004) A totally synthetic vaccine of

generic structure that targets toll-like receptor two on dendritic

cells and promotes antibody or cytotoxic T cell responses. Proc

Natl Acad Sci USA 101:15440–15445

Katsikis PD, Schoenberger SP, Pulendran B (2007) Probing the

‘‘labyrinth’’ linking the innate and adaptive immune systems.

Nat Immunol 8:899–901

Keskin O (2007) Binding induced conformational changes of proteins

correlate with their intrinsic fluctuations: a case study of

antibodies. BMC Struct Biol 7:31

Koga N, Tatsumi-Koga R, Liu G et al (2012) Principles for designing

ideal protein structures. Nature 491:222–227. doi:10.1038/

nature11600

Kowalczyk W, De la Torre BG, Andreu D (2010) Strategies and

limitations in dendrimeric immunogen synthesis. The influenza

virus M2e epitope as a case study. Bioconj Chem 21:102–110.

doi:10.1021/bc9003316

Kowalczyk W, Mascaraque A, Sánchez-Navarro M et al (2012)

Convergent synthesis of glycodendropeptides by click chemistry

approaches. Eur J Org Chem 2012:4565–4573. doi:10.1002/

ejoc.201200428

Lassaux P, Peri C, Ferrer-Navarro M et al (2013) A structure-based

strategy for epitope discovery in Burkholderia pseudomallei OppA

antigen. Structure 21:167–175. doi:10.1016/j.str.2012.10.005

Lewis SM, Ba Kuhlman (2011) Anchored design of protein–

protein interfaces. PloS one 6:e20872. doi:10.1371/journal.pone.

0020872

Lindstrom TM, Robinson WH (2011) Fishing for biomarkers with

antigen mimics. Cell 144:13–15. doi:10.1016/j.cell.2010.12.022

Loddenkemper R, Hauer B (2010) Drug-resistant tuberculosis: a

worldwide epidemic poses a new challenge. Deutsches Ärztebl-
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