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Abstract
An approach based on time-domain nuclear magnetic resonance (TD-NMR) enables 
the estimation of the molecular properties of fatty acid mixtures—kinematic viscos-
ity (µ), heating value (δ), cetane number (CN), and carbon chain length (CL). In 
this approach, the 1H NMR spin–spin relaxation rates R2 or times T2 were used to 
determine these molecular properties. Online monitoring of the µ, δ, CN, and CL of 
fatty acid mixtures was performed using an online TD-NMR system that had been 
modified for flowing samples. The presented results show the potential of TD-NMR 
for online quality control during the production of liquid fuels.

1  Introduction

The determination of liquid fuel quality parameters has become more important 
because of stricter environmental legislation. The main properties of liquid fuels, 
such as the carbon chain length (CL), viscosity (µ), high heating value (heat of com-
bustion) (δ), cetane number (CN), density, pour point, and cloud point [1, 2], change 
during processing. To control the production of petroleum fractions or biofuels, 
which are alternatives to traditional fossil fuels [2–4], the changes in their molecular 
properties should be tracked. Quality parameters of liquid fuels are typically deter-
mined by international standards, such as ASTM D445-06, ASTM D240-02, and 
ASTM 613-05 for the estimation of the µ, δ and CN of biodiesel [5]. However, the 
standard measurement methods for liquid fuel parameters are time-consuming and 
labourious; thus, they are difficult to apply to online process control.

High-resolution nuclear magnetic resonance (NMR) spectroscopy is a standard 
technique for molecular structure and molecular mobility investigations of different 
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substances and is well established in the chemical analysis of liquid fuels [3, 6–10]. 
However, traditional high-resolution NMR spectrometers are hardly applied to 
industrial process control due to their open magnetic field, large size and high price 
and the required cryogen use. Recently developed low-field benchtop spectrometers 
with permanent magnets (up to 2 T) are less expensive and more compact and pro-
vide sufficient accuracy for chemical analysis, making them competitive with tradi-
tional high-resolution spectrometers [11, 12]. A compact NMR spectrometer was 
applied to the determination of several quality parameters of diesel fuel in the paper 
by Killner et al. [13].

Time-domain nuclear magnetic resonance (TD-NMR) is a versatile analysis tool 
for determining the chemical and physical properties of a wide variety of materi-
als with a constantly growing area of application, including laboratory and indus-
trial analyses [14, 15], although TD-NMR does not give the same level of detail of 
chemical structures as high-resolution NMR spectroscopy. However, TD-NMR has 
proven usable in industrial applications due to its mobility, low price, robustness, 
non-destructive analysis, and lack of sample preparation [11, 15, 16]. Furthermore, 
online process monitoring by NMR is also an increasingly used technique [11, 12, 
17]. In one study [18], the TD-NMR technique was applied to the online determina-
tion of metal ion precipitation in mine water and was subsequently tested in a mine 
environment. The promising results obtained in this study illustrate the potential of 
TD-NMR for real process control.

TD-NMR has been proposed as an alternative technique to predict several liquid 
fuel properties, such as the cetane index, density, flash point, temperature to achieve 
50% distillation of a sample (T50) [19], biodiesel content of diesel fuel [14], vis-
cosity, refractive index, American Petroleum Institute (API) gravity [20], total acid 
number [20, 21], and sulphur content [21] in petroleum fractions. The fatty acid 
composition, viscosity, CN, and iodine content of different intact oilseeds were esti-
mated using 1H transverse relaxation time T2 data combined with chemometric tech-
niques [22]. The transesterification reaction of oil was monitored in situ by meas-
uring the transverse relaxation decay in the work by Cabeça et al. [23]. Moreover, 
TD-NMR can be used to determine the CLs of fatty acid mixtures [24]. Because 
the CL strongly affects the µ, δ, and CN of liquid fuels [2, 5], TD-NMR could be 
applied to evaluate the quality parameters of liquid fuels.

In the current work, a general dependence between the molecular properties of 
fatty acid mixtures and the spin–spin relaxation times or rates measured by TD-
NMR is presented. The possibility of using online TD-NMR for the rapid measure-
ment of several quality parameters of liquid fuels, such as the µ, δ, CN and CL, is 
shown.

2 � Materials and Methods

2.1 � Samples

The properties of several fatty acids methyl esters (FAMEs), which are the main 
components of liquid biofuels, are shown in Table  1. These properties are used 



161

1 3

Molecular Properties of Fatty Acid Mixtures Estimated by Online…

for the calculation of reference values in this paper. However, the μ, δ, and CN of 
FAMEs with CLs of 4 and 6 could not be found in the literature. Therefore, these 
values had to be estimated using empirical models. The empirical equations [5] for 
the kinematic viscosity μi, high heating value δi, and cetane number CNi reflect the 
dependence on molecular weight of individual saturated FAMEs MiFAME as follows:

To determine coefficients a0, b0, c0, d0, e0, and f0, the models (1–3) were applied 
to the data found in a previous work [25], which were measured according to bio-
diesel quality standards. Each data set [μ(MFAME), δ(MFAME), CN(MFAME)] was con-
sidered for saturated FAMEs with CLs from 8 to 18. Then, the models were used to 
extrapolate the μi, δi, and CNi values for FAMEs with CLs of 4 and 6 via Eqs. (1–3). 
All estimated values are also presented in Table 1.

The kinematic viscosities µmix, heating values δmix and cetane numbers CNmix of 
fatty acid mixture samples were estimated in terms of simple mixing rules [5, 26, 
27] via the following equations:

where Ai is the relative amount of an individual fatty acid in a mixture, μi is the 
kinematic viscosity, δi is the high heating value, and CNi is the cetane number of an 
individual FAME corresponding to a fatty acid in a mixture.

(1)ln(�i) = a0 + b0ln(MiFAME),

(2)�i = c0−d0∕MiFAME,

(3)CNi = e0 + f0MiFAME.

(4)ln(�mix) =
∑n

i=1
Ailn(�i),

(5)�mix =
∑n

i=1
Ai�i,

(6)CNmix =
∑n

i=1
AiCNi,

Table 1   Data on the μ, δ, CN, and CL of FAMEs determined experimentally in Ref. [25] and estimated 
using Eqs. (1–3)

a Estimated using Eqs. (1–3)

Fatty acid cor-
responded to a 
FAME

Molecular 
weight MFAME 
(g/mol)

Kinematic 
viscosity μ 
(mm2/s)

High heating 
value δ (MJ/
kg)

Cetane number 
CN

Carbon chain 
length CL

C4:0 102.13 0.36a 28.98a 16.38a 4
C6:0 130.18 0.68a 32.63a 28.34a 6
C8:0 158.24 1.20 34.91 39.75 8
C18:1 296.49 4.51 40.09 59.30 18
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Calculation of the carbon chain length CLmix was based on an approach explained 
in a previous paper [24]:

where ai is the portion of i-acid molecules in the mixture, n is the number of acids in 
the mixture, and CLi is the carbon chain length of i-acid.

Mixtures of hexanoic acid (Alfa Aesar, with a purity of 98% +) and oleic acid 
(Alfa Aesar, with a purity of 90%) were used for an online test realized by add-
ing oleic acid (CL = 18) to hexanoic acid (CL = 6) in several steps. Pure samples of 
hexanoic and oleic acids were also measured.

2.2 � NMR measurements

Online measurements of the molecular parameters for mixtures of two fatty acids 
were carried out using a TD-NMR system [28] that had been automated and modi-
fied for flowing samples [18]. The 1H resonance frequency of the system was 
26 MHz, and the temperature of the magnet was 30 °C.

The measurement procedure was as follows:

1.	 A sample was continuously mixed at room temperature (25 °C) in a container.
2.	 The sample was automatically pumped through the magnet system (tube diameter 

of 10 mm).
3.	 When a new sample was being introduced to the system, the pump was stopped.
4.	 A transverse magnetization decay was measured and saved.
5.	 The decay was automatically fitted, and the NMR parameters were solved.
6.	 R2 or T2 values were used for μ, δ, CN, and CL estimation.
7.	 The next sample was pumped.

Transverse magnetization decays were measured by applying the Carr–Pur-
cell–Meiboom–Gill (CPMG) pulse sequence [29]. The echo time was 6 ms, and the 
number of 180° pulses in the sequence was 600. The relaxation delay was 2 s, and 
the number of scans was equal to 4. The durations of 90° and 180° RF pulses were 
6.5 and 15 μs, respectively.

A Matlab software script written by the authors was used for controlling the 
pump and TD-NMR measurements, fitting the magnetization decays and calculating 
the molecular parameters based on linear models. Three different samples of each 
mixture (i.e., each CL) were pumped into the magnet system, and five measurements 
were performed for each sample. Thus, the total number of online measurements 
was 75.

2.3 � Data analysis

NMR parameters in mono-exponential (8) and bi-exponential (9) functions were fit-
ted to CPMG decays:

(7)CLmix =
∑n

i=1
aiCLi,
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where A0 is the maximal signal magnitude, R2 is the spin–spin relaxation rate, and a0 
is the signal baseline, and

where A1 and A2 are the magnitudes and R21 and R22 are the spin–spin relaxation 
rates of faster and slower decaying components, respectively, and a0 is the signal 
baseline.

Spin–spin relaxation times, T2, T21, and T22, were calculated as inverse values 
of the corresponding R2, R21, and R22 as

Example fittings by the mono-exponential and bi-exponential functions of the 
transverse magnetization decay of a hexanoic and oleic acid mixture measured by 
the automated TD-NMR system are shown in Fig. 1.

(8)A(t) = A0e
−R2t + a0,

(9)A(t) = A1e
−R21t + A2e

−R22t + a0,

(10)T2 =
1

R2

.

Fig. 1   Fittings by the mono-exponential (a) and bi-exponential (b) functions of the transverse magnetiza-
tion decay of a hexanoic and oleic acid mixture (CLmix = 10.05). Decays are marked in black, fitting func-
tions in blue and fitting errors in red
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3 � Results

The online test was performed by adding oleic acid to hexanoic acid in several 
steps and measuring the NMR relaxation values continuously. The NMR param-
eters in mono-exponential (8) and bi-exponential (9) functions were fitted to the 
measured transverse magnetization decays. The average values of the spin–spin 
relaxation rates, R2, R21, and R22, and the corresponding relative standard errors 
(RSEs) calculated for each mixture are shown in Table 2. The RSEs for the mono-
exponential fitting show the smallest deviations.

The reference values of µmix, δmix, CNmix and CLmix for these mixtures are esti-
mated by Eqs. (4–7) and are listed in Table 3. Using linear models, the correlation 
coefficients were calculated between the molecular properties (µmix, δmix, CNmix, 
and CLmix) and NMR relaxation parameters (R2, T2, R21, T21, R22, and T22). The 
coefficients are listed in Table 4 and show better correlations with the relaxation 
rates in the cases of μ and CL and with the relaxation times in the cases of δ and 
CN. R21 and T21 did not give reliable correlations with the molecular properties.

The molecular properties μNMR, δNMR, CNNMR, and CLNMR were derived 
from measured NMR relaxation data using linear models with R2 or T2 and 
R22 or T22. The average RSEs for estimated values of μNMR, δNMR, CNNMR, and 
CLNMR are presented in Table  5. The NMR relaxation data obtained from the 

Table 2   Average values of the spin–spin relaxation rates and RSE values from the mono- (R2) and bi- 
(R21 and R22) exponential fitting of the transverse magnetization decays of fatty acid mixtures measured 
in an online test

a Averaged using three different samples that were measured five times
b Average RSE value

Mixture R2
a (1/s) RSE (%) Ra

21 (1/s) RSE (%) Ra
22 (1/s) RSE  (%)

1 1.53 1.17 6.64 19.02 1.46 1.56
2 2.14 1.78 6.32 13.84 1.94 3.52
3 2.74 1.49 6.89 10.89 2.38 2.50
4 3.41 1.30 8.05 7.86 2.91 2.67
5 5.01 1.92 10.30 16.64 4.14 6.37

1.53b 13.65b 3.32b

Table 3   Kinematic viscosities 
μmix, high heating values δmix, 
cetane numbers CNmix, and 
carbon chain lengths CLmix of 
fatty acid mixtures estimated by 
Eqs. (4–7)

a Averaged using three different samples that were measured five 
times

Mixture μa
mix (mm2/s) δa

mix (MJ/kg) CNa
mix CLa

mix

1 0.68 32.63 28.34 6.00
2 1.27 35.10 38.59 8.03
3 1.93 36.75 45.46 10.05
4 2.61 37.94 50.39 12.05
5 4.51 40.09 59.30 18.00
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mono-exponential fittings provide the smallest deviations in the estimations of 
molecular properties (Table 5). These fittings correspond to the best correlation 
coefficients, which were acquired between µmix, δmix, CNmix, and CLmix and R2 or 
T2 and were equal to 0.998, − 0.993, − 0.993, and 0.998, respectively (Table 4). 
The molecular properties estimated by the linear models for all 75 measurement 
points in the online test are shown in Fig. 2a–d. The average RSEs between the 
reference values and the values determined by TD-NMR for μ, δ, CN, and CL 
were 2.4, 0.5, 2.0, and 0.9%, respectively.

4 � Discussion

In the current paper, the possibility of using TD-NMR for the rapid and simultane-
ous estimation of four quality parameters of liquid fuels—μ, δ, CN, and CL—was 
demonstrated. An online determination of these parameters was shown using an 
automated TD-NMR system modified for flowing samples. The results show a very 
good agreement between the reference and NMR-determined values.

Mono- and bi-exponential fittings were applied to the data set from the online 
test, where faster (minor) and slower (major) decaying components were observed 
(Fig.  1). The average RSE for R2 from the mono-exponential fitting was 1.53%, 
whereas the average RSEs for R21 and R22 from the bi-exponential fitting were 13.65 
and 3.32%, respectively (Table 3). The higher deviations of R21 and R22 could have 
been caused by poor stability of the bi-exponential fitting procedure. Moreover, the 

Table 4   Correlation coefficients between the molecular properties μmix, δmix, CNmix, and CLmix estimated 
by Eqs. (4–7) and the spin–spin relaxation rates and times

The best correlations are marked in bold

Model NMR parameter μmix δmix CNmix CLmix

Mono-exponential R2 0.998 0.966 0.966 0.998
Mono-exponential T2 − 0.917 − 0.993 − 0.993 − 0.920
Bi-exponential R21 0.759 0.672 0.672 0.756
Bi-exponential T21 − 0.695 − 0.646 − 0.646 − 0.692
Bi-exponential R22 0.991 0.958 0.958 0.991
Bi-exponential T22 − 0.931 − 0.994 − 0.994 − 0.934

Table 5   Average RSE values for the molecular properties μNMR, δNMR, CNNMR, and CLNMR calculated 
using the NMR parameters from the mono- (R2 or T2) and bi- (R22 or T22) exponential fits

Model NMR parameter μNMR δNMR CNNMR CLNMR

RSE (%) RSE (%) RSE (%) RSE (%)

Mono-exponential R2 2.61 – – 1.44
Mono-exponential T2 – 0.26 1.01 –
Bi-exponential R22 6.00 – – 3.52
Bi-exponential T22 – 0.59 2.12 –
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average RSEs of the molecular properties μNMR, δNMR, CNNMR, and CLNMR calcu-
lated using R22 or T22 values were more than two times larger than those calculated 
using the mono-exponentially fitted R2 or T2 (Table  5). Although the R22 and T22 
values presented similar correlations with the molecular properties as the R2 or T2 
values (Table 4), mono-exponential fitting provided less deviation in the R2 and T2 
values as well as in the calculated values of μNMR, δNMR, CNNMR, and CLNMR. There-
fore, the mono-exponential fitting was a more robust approach and thus was used to 
calculate the quality parameters. In addition, the corresponding values of R2 and T2 
reflect the mean values of faster and slower decaying signal components.

The presence of two components in transverse magnetization decays can arise 
from the contribution of the spin–spin relaxation of protons with different mobili-
ties. Impurities (10%) present in the oleic acid used may have also been responsible 
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Fig. 2   Online determination of the kinematic viscosity μNMR (a), high heating value δNMR (b), cetane 
number CNNMR (c), and carbon chain length CLNMR (d). The solid lines denote the reference values µmix, 
δmix, CNmix, and CLmix



167

1 3

Molecular Properties of Fatty Acid Mixtures Estimated by Online…

for the faster decaying component. In the previous works [30, 31], the presence of 
two components in the transverse magnetization decays of oleic acid and the methyl 
ester of oleic acid was connected to the different mobilities of protons on the carbon 
chain. However, in our earlier paper [24], magnetization decays measured for mix-
tures of different fatty acids showed only one peak in the Laplace transformation.

The molecular properties μNMR, δNMR, CNNMR, and CLNMR calculated from single 
R2 or T2 values and the reference values µmix, δmix, CNmix, and CLmix for all meas-
ured points are shown in Fig. 2. The average RSEs between the reference and TD-
NMR values did not exceed 2.4%, so the application of this online test to industrial 
quality control is promising. The acquired results are in good agreement with the 
results of the previous investigations [20], where several quality parameters of petro-
leum fractions correlated with R2 or lnT2. These authors also used the major peak of 
the inverse Laplace distribution of the transverse magnetization decays of petroleum 
fractions to correlate the NMR values with quality parameters, while the minor peak 
in the distribution was considered an artefact and neglected. In another paper [14], 
both a univariate approach and multivariate approach (using PLS) gave good cor-
relations of the transverse relaxation parameters with the biodiesel content in bio-
diesel–diesel blends. Although the Laplace distribution of a pure biodiesel sample 
revealed two peaks, only the major peak was associated with the biodiesel content in 
mixtures with diesel.

It has been previously shown [24] that TD-NMR can be used to determine the 
CLs of fatty acid mixtures, which is an important quality parameter of liquid fuels. 
In addition, this relationship was briefly confirmed by NMR relaxation theory. The 
values R2 and T2 from a previous paper [24] were also used in the current paper to 
prove the validity of the presented approach for estimation of μ, δ, and CN. Lin-
ear relationships were obtained between R2 or T2 [24] and the reference values µmix, 
δmix, and CNmix calculated by Eqs.  (4–6) using data from Table 1. The molecular 
properties µmix, δmix, and CNmix as functions of the relaxation rate R2 or time T2 are 
shown in Fig. 3a–c. The good correlations between the spin–spin relaxation times T2 
or rates R2 and these parameters suggest that the TD-NMR method can be used to 
evaluate fuel quality more generally.

Several research groups [17, 32–35] have shown the use of an NMR technique 
in a flow mode. Measurements of flowing samples require pre-magnetization 
of the 1H nucleus in a magnet system for a time of 5T1 [11]. The dimensions 
of the NMR probe and magnet system should be appropriate for providing uni-
form sample excitation and acquisition as well as initial pre-magnetization. On 
the other hand, measurements for non-equilibrium magnetization can be done 
[36], which makes a device simpler. In addition, the flow rate should be constant 
in both cases. For example, the NMR relaxation times of fluids were measured 
under continuous flow with a maximal detectable flow velocity of approximately 
30  mm/s by low-field NMR fluid analysis systems [33–35]. Reactions can also 
be monitored using an NMR spectrometer equipped with a flow cell in a bypass 
with a lower velocity (not exceeding 2 mL/min) than that in the main reactor [11, 
17, 32]. However, the flow velocities in the real industrial processes are typically 
very high (on the order of m/s). In most cases, the process measurements were 
made during stopped flow [18, 35] or in a bypass with a low flow velocity [11, 
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17, 32]. Therefore, methods consisting of sample measurements during stopped 
flow appear to be applicable for real process monitoring, although the sampling 
of stopped flow can be more time-consuming compared to continuous flow.

The reliability of measurements made by TD-NMR systems was checked. The 
difference between the R2 values measured by the conventional NMR relaxometer 
and by the system modified for flowing samples was less than 1.4% for the same 
chemical. To estimate the accuracy of the online TD-NMR test performed, the 
RSEs of the R2 values were calculated for each mixture of three individual sam-
ples. The average RSE calculated for all mixtures was equal to 0.6%, and the cor-
responding value for the same samples measured conventionally in NMR tubes 
was 0.5%. These results confirm that, for homogeneous liquid samples, the TD-
NMR system modified for flowing samples provided the same order of measure-
ment accuracy as the conventional device.

Low-field NMR systems with permanent magnets are increasingly being used 
for quantitative analysis in quality control, as well as for online instruments in 
production environments [11]. The feasibility of using TD-NMR for the online 
analytics of mine water has also been shown [18], and the method was tested in 

Fig. 3   Kinematic viscosity 
µmix plotted as a function of 
the relaxation rate R2 (a). High 
heating value δmix and cetane 
number CNmix plotted as func-
tions of the relaxation time T2 
(b, c). The solid lines are fitted 
by linear models
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a real mine, which is a very challenging environment for these kinds of meas-
urements. The online tests in this paper yielded promising results for developing 
online applications based on TD-NMR. Moreover, a single TD-NMR measure-
ment can provide valuable information on the quality of liquid fuels. This tech-
nique offers robust, rapid, and non-destructive sample analysis, characteristics 
that are very important for industrial process control.

5 � Conclusion

The results presented herein illustrate a general dependence between the molecular 
properties of fatty acid mixtures and NMR parameters, showing that TD-NMR can 
be used for the rapid and simultaneous determination of several quality parameters 
of liquid fuels. These online measurements demonstrate the potential of TD-NMR 
technology for online quality control during the production of liquid fuels.

Open Access  This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, 
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons license, and indicate if changes were made.
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