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Abstract

Important implications for the interior workings of the Earth can be drawn by studying diamonds and their inclusions. To better
understand the timing and number of diamond forming events beneath the NW margin of the Kaapvaal Craton, a comprehensive
reassessment of Jwaneng’s diamond populations has been undertaken. We report new inclusion abundance data from the visual
examination of ~130,000 diamonds that validate the predominance of an eclogitic diamond suite (up to 88%) with on average 5%
inclusion-bearing diamonds (with inclusions >10 pum in size). From this population, polished plates from 79 diamonds of
eclogitic and peridotitic paragenesis have been studied with cathodoluminescence (CL) imaging and infrared spectroscopy
(FTIR) traverses. The majority (80%) record major changes in N concentration and aggregation states, as well as sharp bound-
aries in the CL images of individual plates that are interpreted to demarcate discrete diamond growth events. In addition, bulk
FTIR data have been acquired for 373 unpolished diamonds. Silicate inclusions sampled from distinct growth zones define
2 compositional groups of omphacites and pyrope-almandines associated with different N contents in their diamond hosts. These
findings reinforce previous observations that at Jwaneng at least seven individual diamond forming events can be identified —
3 peridotitic and 4 eclogitic. The results demonstrate that detailed examination of diamond plates by CL imaging and FTIR
traverses is necessary to unveil the complex history recorded in diamonds.
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Introduction

Diamonds are considered ‘ancient messengers’ from Earth’s
interior. Inclusions trapped during distinct diamond forming
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events provide insight into the temporal tectono-magmatic
evolution of the subcontinental lithospheric mantle (SCLM)
and the deep carbon cycle. However, the absolute number of
diamond-forming events recorded in the mantle beneath an
individual diamond mine and the scale of these events, re-
mains unknown. Hence, it is vital to establish the timing of
diamond forming events: e.g., by analysing individual sul-
phide inclusions for Re-Os isochron ages (Pearson et al.
1998; Wiggers de Vries et al. 2013). Initial attempts have also
been made to date individual silicate diamond inclusions
using the Sm-Nd isochron method e.g., at the Orapa kimber-
lite cluster in Botswana and at Finsch, Kimberley and Venetia
diamond mines, South Africa (Koornneef et al. 2017; Smith
etal. 1991; Timmerman et al. 2017). These data indicate mul-
tiple temporally-distinct diamond forming events at the same
diamond mine. Similar conclusions have been reached in
studies of the 240 Ma Jwaneng kimberlites on the NW rim
of the Archaean Kaapvaal Craton (Kinny et al. 1989). Based
on C and N stable isotope ratios, N concentration and N ag-
gregation state data obtained by Fourier-transform infrared
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(FTIR) spectroscopy and major element compositions of in-
clusions, multiple eclogitic and peridotitic populations have
been inferred: the age of eclogitic diamond formation at
Jwaneng was previously determined using a 2-point Sm-Nd
isochron on composite silicate inclusions and yielded an age
of 1540 +20 Ma with indication of a second population
formed at around 1 Ga (Richardson et al. 1999). Similarly,
sulphide inclusions define 2 generations of eclogitic dia-
monds, one with a Proterozoic (1.5 Ga) age and another suite
of Archean (2.9 Ga) age (Richardson et al. 2004; Thomassot
et al. 2009). There are no isochron ages available for the pe-
ridotitic diamond suite at Jwaneng and only their relative age
is constrained based on inclusion chemistry and C-isotope and
FTIR data from the diamond hosts (Deines et al. 1997; Stachel
et al. 2004). Those FTIR and C-N-isotope data for peridotitic
diamonds were acquired on the same fragments but there are
no references which part of the diamond (i.e., core or rim)
these pieces represent (Cartigny et al. 1998; Deines et al.
1997; Thomassot et al. 2009).

The present study reports a detailed assessment of the dia-
mond populations at Jwaneng to further constrain the number
of diamond-forming events beneath an individual mine. New
inclusion abundance data from the visual examination of
~130,000 diamonds refine proportions of different inclusion
suites. Of these, bulk FTIR data were acquired for 373 whole
diamonds, and polished plates from 79 diamonds of eclogitic
and peridotitic paragenesis were studied through
cathodoluminescence (CL) imaging, with FTIR traverses con-
ducted and major element inclusion data interpreted based on
recognised growth zones.

Samples and methods

Over a 4-year period (2013 to 2017) run of mine production
was examined from Jwaneng Mine (north, centre and south
pipes) with diamonds ranging in size from 0.1 to 0.8 carat
(Diamond Trading Company (DTC) sieve classes +07, +09,
+11, and 3 grainers) at the Diamond Trading Company in
Gaborone, Botswana (DTCB). In total, over 130,000 dia-
monds were characterised visually for their inclusion content
using a binocular microscope. Inclusions were defined as
recognisable minerals >10 pum in size. The main distinction
criterion is based on differences in colour between, e.g.,
eclogitic pyrope-almandine garnet (orange), omphacitic
clinopyroxene (cpx; pale green) and kyanite (blue) inclusions
and peridotitic pyrope garnet (purple), olivine or
orthopyroxene (yellow to colourless) and chromite (brown
to black) inclusions. Sulphide inclusions were almost ubiqui-
tously associated with a characteristic rosette fracture system
around the inclusion. If not otherwise reported, the examined
diamonds are of gem and near-gem quality.
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Sample selection concentrated on diamonds containing
multiple large (>50 wm) garnet, clinopyroxene and sulphide
inclusions. After morphological characterization, 79 diamond
plates of eclogitic (69) and peridotitic (8) paragenesis, as well
as 2 sulphide-bearing diamonds were laser cut through the
centre of the diamond along the (110) plane to produce plates
0f0.3 to 1.8 mm thickness, followed by surface polishing on a
cast iron scaife plate. The polished plates were photographed
on a Nikon SMZ1500 microscope using its extended depth of
focus (EDF) imaging software. Cathodoluminescence imag-
ing was performed on the uncoated diamond plates on a
Cambridge Image Technology Ltd. cold cathode lumines-
cence 8200 mk3 instrument (attached to an optical micro-
scope) operating with an acceleration voltage of 10 kV, a beam
current of 400 pA and camera exposure times between 1 to
15 s.

Infrared absorbance spectra were collected on a number of
instruments with different experimental settings. Bulk spectra
of 373 randomly sampled diamonds from Jwaneng run-of-
mine production (DTC +09 gem and near-gem) were mea-
sured using Perkin Elmer and Bruker Alpha spectrometers
during the sampling campaigns at DTCB. Spectra comprised
10 scans over the range 4000 to 400 cm ' with a resolution of
8cm '

Based on observations from the CL imaging, FTIR tra-
verses were acquired from representative parts of the central
plates. The majority of the plate analyses were performed
using a FT/IR Jasco-470+ instrument equipped with a Jasco
Irtron IRT-30 infrared microscope over the spectral range
4000 to 650 cm™" with a resolution of 4 cm™'. The remaining
plate analyses were performed using either a Thermo-Nicolet
Nexus spectrometer attached to a continuum infrared micro-
scope (4 cm ! resolution) or a Thermo Nicolet iNIOMX in-
frared microscope (2 cm™ ' resolution). Depending on the
thickness of the plate, the aperture was set between 50 to
100 wm. After background acquisition prior to every sample
measurement, 5 to 20 spots were measured from core to rim
on each plate.

All spectra were processed using the automated version of
DiaMap (Howell et al. 2012a, b) to determine N content and
aggregation state. The data collected using the Thermo
Nicolet iN10MX were also processed using a Python program
(Kohn et al. 2016; Speich et al. 2017). Given that both pro-
grams use a similar approach for N deconvolution (normalisa-
tion, subtraction of a Type Ila diamond spectrum, fitting of N
components while adding a linear correction), they produced
data in good agreement. Spectra with <50 atomic ppm
(at.ppm) N were reprocessed manually using the Excel ver-
sion of DiaMap, to provide greater confidence in reported
values. Nitrogen concentrations were calculated from absorp-
tion coefficients at 1282 cm ': [NA]=16.5 ppm (Boyd et al.
1994) and [NB]=79.4 ppm (Boyd et al. 1995). Errors for N
content and N aggregation (expressed as %B = 100B/[A + B])
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are typically +£10% and £5%, respectively, but uncertainties
increase with plate thickness (see Kohn et al. (2016) for more
details) and the size of the aperture, especially for spectra
recording low N contents (<50 at.ppm). In particular, it should
be noted that if spectra of heterogeneous, zoned diamonds are
collected using whole diamonds or thick plates it is likely that
the analysed volume will contain diamond with variable N
concentrations. If this is the case, the measured N will be the
average within the analysed volume, but the N aggregation
will be heavily weighted towards the high N regions (Kohn
et al. 2016). Furthermore, the ‘points’ measured by FTIR of
diamond plates do not correspond exactly with the zoning
elucidated by CL that shows near-surface features of the plate,
whereas FTIR absorption represents a conical volume through
the sample. This is particularly important if data points from
the transects are close to growth zone boundaries, resulting in
spectra that reflect contributions from more than one growth
zone. Hence, sampling points were positioned to avoid clear
boundaries between growth zones.

Given the low spectral resolution at which some bulk anal-
yses were performed, it is not always possible to accurately
differentiate low N samples from those typically deemed as
‘nitrogen-free’ (Type II). The present study considers all mea-
surements with <20 at.ppm N as ‘nitrogen below detection
limit’. Since the diamonds show no blue colouration and B-
centre related absorption in FTIR spectra these spectra are
classified as “Type IIa’.

For a subset of samples encapsulated inclusions were lib-
erated from the plates and off-cuts using a steel crusher. Single
inclusions will be measured for Sm-Nd geochronology in the
future, so inclusions were not polished before analysis to
avoid sample loss. Garnet (gnt) and cpx inclusions were
mounted on carbon tape and a horizontal surface used for
electron microprobe analyses. The EMPA analyses were per-
formed using a JEOL JXA-8350F instrument with an acceler-
ation voltage of 15 kV, a beam current of 25 nA and a beam
size of 1 pm at Utrecht University. The CITZAF correction
method was applied to the raw data. Further analytical details
follow the protocol of Timmerman et al. (2015) that stipulates
normalization of the data to 100% and only includes measure-
ments within 2 standard deviations of the mean. The normal-
isation of the major element data, which is based on average
compositions of individual analyses (n =3 to 22) with totals
from 92 to 100 wt%, allows direct comparison of the inclusion
compositions.

Results
Relative proportions of inclusion suites

On average, 5% of the diamonds at Jwaneng contain inclu-
sions (Table 1). Sulphide inclusions are the most abundant (~

63%, Fig. 1). Diamonds containing multiple sulphides are
more abundant but the sulphides are smaller in size compared
to diamonds containing single sulphide inclusions. A visual
distinction between eclogitic and peridotitic sulphide inclu-
sions was only possible when silicate inclusions were also
present in the diamond, and diamonds with combined
eclogitic silicate and sulphide inclusions account for ~5% of
the inclusion-bearing diamonds. Eclogitic inclusions domi-
nate the silicate population, averaging 69% (Table 1). Six
percent of inclusions were unidentified silicates, 6% contained
P-type silicate inclusions (Fig. 1), <0.1% had combined peri-
dotitic silicate/ sulphide inclusions. A detailed overview of the
15 individual production parcels examined for relative inclu-
sion proportions can be found in the Online Resources (ESM

D).
Diamond morphology

Polished plates were mainly prepared from octahedral to do-
decahedral diamonds, but irregular shapes and macles were
also present. Surface features show resorption, stepped faces
and trigons. The majority of these diamonds were colourless
but some diamonds with different shades of yellow and
brown, 2 green coated (from radiation staining) and one pink
diamond were also present. Further details are presented in the
Online Resources (ESM 2).

CL imaging

Cathodoluminescence imaging of the central plates (Fig. 2)
reveals growth histories of the individual diamonds ranging
from a single well-defined growth zone (Fig. 2b) to samples
having multiple (2 to 4+) growth zones that are recognized by
sharp, successive boundaries (Fig. 2e—i). A growth zone may
be compromised of multiple similar (genetically related)
growth layers. In contrast, resorption horizons show irregular
geometry (Fig. 2d core) and can be difficult to distinguish
from superimposition of different growth directions (Fig. 2f
intermediate zone), especially when successive precipitation
of growth layers was involved in diamond formation (Fig.
21, k). A resorption horizon can also represent a surface for a
new growth zone (Fig. 21 intermediate zone).

FTIR analyses of bulk diamonds

Nitrogen content and aggregation states of bulk (unpolished)
diamonds within each of the 3-studied production parcels
ranges from N below detection limit (<20 at.ppm) to 1466
at.ppm N and 0 to 100 %B, respectively (Fig. 3). Nine dia-
monds are pure Type [aA, 17 are Type 1aB, 4 are Type Ila, the
remaining are all Type [aAB (i.e. 10-90 %B) as listed in the
Online Resources (Table ESM 3).
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Table 1 Relative inclusion proportions in diamonds at Jwaneng

DTC Diamonds Silicates [%] Sulphides [%] Eclogitic silicates Eclogitic Total inclu-
sieve class and sulphides [%] inclusions™ [%] sions** [%]

E P UN Single Multiple

+07 27,500 23.1 6.1 6.9 24.4 29.2 10.4 72.0 4.6

+09 48,800 18.3 5.6 5.3 28.0 39.4 34 66.7 5.2

+11 37,700 21.1 6.5 5.9 23.2 39.6 3.7 66.7 5.1

3Gr 10,300 27.1 7.0 6.7 33.1 42.0 6.4 70.9 43

Total 130,000 20.4 5.7 5.8 259 373 4.8 68.7 5.0

Details on the proportions of individual production lots can be found in the Online Resource (ESM 1)

E, eclogitic inclusions; P, peridotitic inclusions; UN, unidentified silicate

*Percentage of eclogitic inclusions calculated from eclogitic silicates plus combined eclogitic silicates and sulphides over the total number of silicate and

combined eclogitic silicate and sulphide inclusions

**Percentage of total amount of inclusions calculated by total number of inclusions over number of diamonds

FTIR analyses of central plates

The majority of the diamond plates are Type [aAB (51), one
diamond (JW407) is Type laA, 17 have Type Ila growth zones
but also record detectable N (>20 at.ppm) in at least one other
major growth zone (Fig. 2h—j), 12 diamonds are entirely Type
Ila (Fig. 2a). Together with insights from the CL imaging,
each plate was subdivided into distinct growth zones (i.e.,
core, intermediate, rim) where N contents showed a variation
>100 at.ppm between individual FTIR analyses as listed in the
Online resources (Table ESM 4). Further, the plates were clas-
sified into 4 main groups: (A) Tipe Ila (15%; 10 E-, 2 P-types)
as described above; (B) showing homogeneous growth with
fairly constant N content and aggregation (3%; 1 E- & 1 P-
type); (C) systematic changes in N content from core to rim
with (Cl) increasing (25%; 19 E-, 1 S-type), (C2) decreasing
(38%; 25 E-, 4 P-, 1 S-types) and (C3) increasing and
decreasing (16%; 12 E- & 1 P-type) between individual
growth zones; and (D) showing non-systematic variations
(3% 2 E-types) in N content and aggregation state associated
with irregular growth, possibly relating to plates not cut
through the growth centre in some cases.

Individual eclogitic diamonds of group C (>80% of all
studied diamond plates) record 2 (e.g., JIW047, JW111; Fig.
2h, e), 3 (e.g., JW024, JW060; Fig. 2g, k) or 4 (e.g., JW033,
JW194; Fig. 2d, 1) distinct growth zones. Group C peridotitic
diamonds have 2 (JW243; Fig. 2j) or 3 (JW083, JW089,
JW102; Fig. 2i) distinct growth zones. Further transects of N
content and aggregation state of the remaining 79 diamond
plates are provided in the Online Resources (ESM 5).

Nitrogen content and aggregation state recorded in tra-
verses range from N below detection limit to 1368 at.ppm N
and 0 to 100 %B. These data cover most of the range of
previously reported N contents (up to 1990 at.ppm N) and
aggregation data for Jwaneng (Deines et al. 1997,
Thomassot et al. 2009). The range of N contents and
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aggregation states within individual diamonds is, however,
larger in the present dataset. In sample JW141, the N content
varies from 1070 at.ppm in the core to 90 at.ppm in the inter-
mediate zone and 400 at.ppm in the rim, while in JW351, the
aggregation varies from 97 %B in the core to 2 %B in the rim.
This compares with previous data that reported maximum
differences of 216 at.ppm (Cartigny et al. 1998) and 402
at.ppm and 28% in JW0020 (Thomassot et al. 2009).

Deines et al. (1997) proposed that the N aggregation char-
acteristics in their sample population (cleaved diamond chips,
n = 68) formed 2 groups (010 %B; 50-70 %B). These groups
are not observed in either the bulk or plate data presented here.
Only a single peakt at ~ 95%B for the plate data is observed
(see Online Resources ESM 6).

Modelled mantle residence temperatures

The N aggregation state of a diamond in the mantle varies
strongly with residence temperature (and to a lesser extent
with time) and therefore can be used to obtain insight into a
diamond’s thermal history. If the approximate formation time
of a diamond (or a distinct growth layer) is known, a time
averaged residence temperature can be calculated (Leahy
and Taylor 1997).

Temperatures modelled for the FTIR data of plates and
bulk diamonds in Fig. 3 were calculated for diamond genesis
at 1, 1.5 and 2.9 Ga and kimberlite eruption at 240 Ma, based
on ages reported in the literature (Richardson et al. 1999,
2004). Assuming diamond formation at 1540 Ma, mantle res-
idence temperatures of bulk diamonds and the plates vary
from ~1010 to >1250 °C. Some plates (Fig. 3) have a relative-
ly homogeneous temperature record (JW020, JW083,
JW407), while others seem to reflect a gradual shift (e.g.,
JW024, JW044, JW102) that in some cases might not be be-
yond the uncertainty in the data (e.g. JW044). In contrast,
other examples imply distinct changes of up to several tens
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Fig. 1 Average relative proportions of inclusions in the run of mine
production of the Jwaneng mine, Botswana. The inclusions are
subdivided into eclogitic (E), peridotitic (P) and unidentified silicates;
single and multiple sulphides; and eclogitic sulphides and silicates.
Inclusions were defined as recognisable minerals (>10 pum) for
counting purposes; in total ~130,000 diamonds were examined. The

of degrees between individual growth zones that cut across
isotherms (e.g., JW033, JW060, JW114, JW147, JW175,
JW194). Overall, the FTIR data of the plates (Fig. 3) show a
clustering of diamond cores at higher N aggregation (70 to 90
9%B; ~1200 to 1250 °C for all 3 calculated ages) and to a lesser
extent of lower aggregation states (10 to 30 %B; ~1050 to
1150 °C), where also the majority of rims is located. Data from
intermediate growth zones span the whole range. It should be
noted that if the analysed volume is not homogeneous in N
concentration (which is certain to be the case for most bulk
diamonds and some points from traverses on plates), there will
be a systematic and predictable overestimate of the mantle
residence temperatures (Kohn et al. 2016) that may have some
effect on the distribution of the FTIR data in Fig. 3.

Inclusion compositions
General remarks

Inclusion compositional data are summarized in Table 2 for 30
omphacite and 15 pyrope-almandine inclusions liberated from
16 diamonds. All omphacite inclusions (Fig. 4a) are
characterised by moderate molar Mg# (71 to 87) and low
molar Cr# (<5). Pyrope-almandine inclusions (Fig. 4b) have
low Cr,O5 (0.5 wt%) with CaO between 4 and 14 wt%. These
compositions fall in the eclogite (G4 and G5) garnet fields as
defined by Griitter et al. (2004) and are comparable with pre-
vious studies of Jwaneng inclusions (Richardson et al. 1999;
Richardson et al. 2004; Stachel et al. 2004). The composition-
al variation between inclusions, liberated from the same

O E-type silicates

m P-type silcates

O Unidentified
silicates

= Single sulphides

m Multiple sulphides

@ E-type silicates &
sulphides

inclusion abundance varies between diamond size fractions that ranged
from 0.1 to 0.8 carat (sieve class +7 to 3 grainers) and averaged 5% at
Jwaneng. Note that ~99% of diamonds containing both silicate and
sulphide inclusions are of eclogitic paragenesis. Hence, up to 88% of all
inclusion-bearing diamonds at Jwaneng are inferred to be eclogitic

diamond, is between zero to 2.3 wt% in CaO and < 0.3 wt%
in Cr,O; for garnet and between 0.3 to 5.6 in Mg# and < 0.7 in
Crit for cpx.

Coupled diamond-inclusion relationships

The omphacite inclusions define 2 subgroups with (1) low-
Mg# (71 to 83) and low-Cr# from 0.2 to 1.4 (JW030, JW101,
JWI111, JW137, JW138, JW147, JW194) from diamond
growth zones with >50 to 700 at.ppm N, and (2) omphacite
inclusions with high-Mg# (79 to 87) and high-Cr# from 2.8 to
4.7 from diamond growth zones having <50 at.ppm (JW048,
JWO05s8, JW070, JIW080, JW112, JW116, JIW124). The major-
ity of low-Ca (3.8 to 6.1 wt% CaO) pyrope-almandine inclu-
sions (JWO058, JW137, JW147 core) are from growth zones
characterized by <50 at.ppm N (Fig. 4b), only JW175 shows
high N contents (~1000 at.ppm). The pyrope-almandine in-
clusions (JW068, JW147 intermediate, JW194) from diamond
growth zones with N contents from 50 to 300 at.ppm are all
characterised by high CaO contents (7.9 to 13.5 wt%).

Discussion

Inclusion abundance

The average proportion of inclusion-bearing diamonds for
130,000 Jwaneng diamonds, comprising DTC sieve sizes

+7, +9, +11, and 3 grainers (equivalent to a combined range
from 0.1 to 0.8 carats), is 5%. Previous studies of inclusion-
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Fig. 2 Cathodoluminescence images and N traverses of representative
polished plates. The diamonds illustrate common growth features (in
groups A to D defined in the text) with samples a) JW116 (A), b)
JW044 (B), ¢) JIW062 (D), d) JW033 (CI), e) IW111 (CI), f) IW114
(C1), g) IW024 (C2), h) JW047 (C2), i) IW102 (C2), j) TW243 (C2), k)
JWO060 (C3) and 1) JW194 (C3). White symbols correspond to the
location where FTIR spectra were acquired and are subdivided into
major growth zones: core (filled circles), intermediate (diamonds) and
rim (squares). Type Ila spectra (<20 at.ppm N) are marked as below
detection limit (b.d.l.)

bearing diamonds at Jwaneng report 0.7% from 127,000 dia-
monds of DTC sieve size +05 (Stachel and Harris 2008). A
possible explanation for the different abundance data can be
differences in sampling criteria (e.g., different inclusion size
cut off) and the overall time of the campaign (sampling of
different kimberlite facies and varying input of the 3 pipes).
Based on the observation of associated silicate and oxide in-
clusions, over 99% of sulphide inclusions are thought to be of
eclogitic paragenesis and hence, at least 88% of all inclusion-
bearing diamonds at Jwaneng are eclogitic. Only 6% of inclu-
sions are unambiguously assigned to a peridotitic assemblage
while the paragenesis of the remaining 6% of inclusions could
not be identified (Fig. 1).

A general predominance of the eclogitic inclusion suite for
Jwaneng (Table 1) was also noted in previous studies (Gurney
et al. 1995). Stachel et al. (2004) and references therein) link
the eclogitic predominance to Proterozoic magmatic and tec-
tonic events that triggered eclogitic diamond formation, po-
tentially resorbing parts of any pre-existing peridotitic dia-
mond suite.

Growth characteristics
General remarks

Studies of diamond populations worldwide almost always re-
veal variations in colour and morphology (Gurney et al.
2004). Deines et al. (1997) suggested a rough classification
of Jwaneng diamonds based upon their colour, morphology
and paragenesis. They concluded E-type diamonds were more
often colourless, partially resorbed and of irregular shape,
compared to the P-type diamonds that were more commonly
octahedral and green coated or brown and deformed. No co-
herent relationships were reported between N characteristics
and diamond paragenesis. The same lack of relationship is
observed in the present dataset. While bulk FTIR analyses in
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Fig.3 Nitrogen content plotted against N aggregation for diamond plates,
bulk diamonds and literature data from Jwaneng. Nitrogen content
(at.ppm) in log scale; N aggregation is expressed as the relative
proportion of N in fully aggregated B centres (%B) for the studied
diamond plates, 373 analyses of bulk diamonds, and literature data (for
cleaved chips or fragments) from Deines et al. (1997), Cartigny et al.
(1998) and Thomassot et al. (2009). Note: only data with >20 at.ppm N

were plotted. Isotherms for assumed mantle residence times (calculated
after Leahy and Taylor (1997)) of 2.66, 1.26 and 0.76 billion years are
based on diamond formation at 2.9, 1.5 and 1 Ga and kimberlite eruption
at 240 Ma. Both datasets (plates and bulk diamond analyses) reported
here cover most of the range of N content and the entire range of N
aggregation previously documented
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Table2  Averaged major element composition (EPMA results quoted in wt%) for inclusions in diamonds from Jwaneng

Sample Zone* n** SiO, TiO, AL O3 Cr,03 FeO MnO MgO CaO  NiO Na,O K,0 Total
JW030 cpx A core 15 51.4 0.27 54 0.05 4.7 0.06 12.6 18.0 007 29 0.28 95.8
JW048 cpx A rim 12 50.8 0.16 4.6 0.20 6.4 0.10 15.1 16.3 006 22 0.41 96.3
JWO058 cpx A core 10 522 0.12 5.1 0.24 59 0.12 16.8 13.8 008 26 0.16 97.1
JW058 cpx B core 15 53.4 0.13 5.0 0.22 5.8 0.11 15.1 14.2 008 3.0 0.16 97.2
JWO058 cpx C core 9 50.2 0.13 52 0.25 59 0.11 17.3 13.9 008 23 0.16 95.5
JWO070 cpx B core 11 51.9 0.15 4.1 0.27 6.4 0.10 14.8 15.8 007 22 0.39 96.1
JWO070 cpx C core 7 54.5 0.15 3.9 0.27 6.3 0.10 14.4 16.0 007 23 0.44 98.5
JWO070 cpx D core 9 51.0 0.14 4.0 0.26 6.4 0.10 154 16.1 008 2.1 0.38 95.9
JWO070 cpx G core 10 48.5 0.15 4.0 0.26 6.3 0.10 154 15.8 007 22 0.42 933
JWO070 cpxH  core 7 53.7 0.14 43 0.26 6.3 0.09 15.6 16.3 006 24 0.39 99.5
JWO080 cpx A core 14 54.3 0.12 3.6 0.26 54 0.11 153 16.2 008 24 0.29 98.0
JW101 cpx A int 11 539 0.27 4.8 0.07 7.0 0.11 13.8 15.3 006 23 0.43 98.1
JWI111 cpx A core 12 51.5 041 11.9 0.04 4.5 0.04 8.4 12.3 002 64 0.09 95.7
JW111 cpx B core 9 53.2 045 9.1 0.05 44 0.04 6.0 11.9 0.01 8.2 0.09 93.5
JWI111 cpx C core 13 52.1 0.44 12.3 0.05 4.6 0.05 8.2 12.2 002 59 0.09 95.9
JW112 cpx A core 15 54.4 0.07 3.6 0.19 4.6 0.09 16.6 17.5 0.08 1.9 0.24 99.3
JW112 ¢px B core 12 50.1 0.07 3.6 0.19 4.6 0.08 17.0 17.2 0.08 1.9 0.25 95.0
JWI1l6 cpx A core 5 50.0 0.16 4.1 0.23 6.2 0.10 14.9 16.0 006 23 0.41 94.5
JW116 cpx C core 6 50.3 0.15 4.0 0.20 6.2 0.09 13.9 15.7 006 25 0.38 93.5
JW116 cpx D core 5 48.8 0.16 44 0.20 6.3 0.10 154 16.0 006 23 0.39 94.1
JW124 cpx A rim 3 50.1 0.20 3.8 0.25 6.4 0.11 13.0 15.2 006 22 0.51 91.8
JW124 cpx B rim 5 49.5 0.15 42 0.27 6.5 0.11 13.7 15.6 005 23 0.48 92.9
JW124 cpx C rim 11 54.4 0.21 45 0.24 6.0 0.09 15.6 16.6 008 2.1 0.53 100.4
JW137 cpx A rim 9 46.4 0.26 5.0 0.08 7.0 0.12 15.7 15.4 005 22 0.46 92.5
JW137 cpx C rim 12 54.7 0.27 4.8 0.10 7.1 0.12 13.6 15.4 007 23 0.44 99.0
JW137 cpxD  rim 7 50.3 0.00 49 - 6.9 0.11 14.8 15.4 007 24 0.46 95.4
JW138 cpx A core 7 51.1 0.45 10.3 0.08 52 0.07 9.5 13.2 0.01 52 0.11 95.3
JW147 cpx B core 15 53.7 0.62 9.6 0.05 6.1 0.08 8.8 12.6 0.03 5.8 0.12 97.6
JW147 cpx C core 11 52.6 0.59 9.6 0.06 6.2 0.07 9.1 12.8 0.05 5.6 0.13 96.8
JW194 cpx A core 19 534 0.64 73 0.11 6.9 0.09 11.2 13.4 0.03 46 0.15 97.9
JWO058 gnt A core 15 35.8 023 23.5 0.37 122 026 19.9 4.1 0.01 0.07 0.00 96.4
JWO058 gnt B core 3 38.4 0.27 21.5 0.49 144 030 16.2 52 0.03 0.07 0.00 96.7
JW058 gnt C core 14 33.7 0.70 23.3 0.15 179 033 14.3 5.9 0.00 0.16 0.00 96.5
JW068 gnt A core 9 37.0 0.07 22.7 0.04 8.2 0.13 13.5 13.5 0.03 0.08 0.00 95.4
JW137 gnt A rim 6 37.7 0.43 22.7 0.15 147 031 16.5 5.5 0.00  0.09 0.00 98.1
JW137 gnt B rim 10 39.9 0.00 21.2 - 154 033 15.5 5.0 0.02 0.10 0.00 97.5
JW137 gnt C rim? 7 40.5 0.09 20.5 0.05 16.8 0.38 15.7 3.7 0.03 0.11 0.00 97.8
JW147 gnt A int? 14 34.1 0.71 23.2 0.05 18.8 0.33 11.0 7.9 0.01 0.19 0.00 96.4
JW147 gnt D int? 10 36.9 0.69 21.8 0.12 19.0  0.36 10.2 7.9 0.05 0.19 0.00 97.1
JW147 gnt E core 22 40.3 0.17 22.6 0.28 104 021 17.2 5.9 0.02  0.08 0.00 97.0
JW147 gnt G int? 9 39.8 0.73 17.1 0.05 19.2 0.32 7.8 8.2 002 027 0.00 934
JW175 gnt A core 8 30.5 0.66 229 0.10 207  0.38 132 49 0.02  0.00 0.18 93.5
JW175 gnt B core 5 319 0.66 22.6 0.09 206 037 13.1 49 002 0.18 0.00 94.5
JW175 gnt C core 5 40.8 0.73 16.4 0.12 20.5 0.37 8.1 4.8 004 0.25 0.00 922
JW194 gnt A int 13 38.5 0.44 22.0 0.14 13.8 0.30 13.3 9.2 0.02 0.11 0.00 97.7
JW194 gnt B int 13 424 043 19.8 0.12 13.6  0.30 11.6 9.1 0.02 0.12 0.00 974

*Zone = approximate location of inclusion in core, intermediate (int) and rim zones based on visual observation only

*#n = number of individual analyses per grain
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this study and the literature provide broad insights into the N
characteristics of the prevalent diamond populations (Online
Resources ESM 6), this approach averages the significant N
concentration variation found in diamonds that record multi-
ple growth events and systematically overestimates the N
aggregation.

Further information on growth relationships between
Jwaneng diamonds and their eclogitic inclusions can be found
in a complementary study of Davies et al. (2018). The dia-
monds of that study were also sampled during the campaign at
DTC.

Peridotitic diamonds
Deines et al. (1997) state that peridotitic diamonds (n =20)

tend to have lower N contents compared to the eclogitic suite
but are similar in N aggregation state and postulate 3 different

o G3
.-.G‘l. ‘Lb Loxx@a @ Oxy a0,
4 6

8 10 12 14 16
CaO [wt%]

growth environments for olivine-bearing diamonds based on
N-content, C-isotopes and mineral composition. We make
similar observations based on the FTIR data from the eight
studied peridotitic plates with 2 that are pure Type Ila, 4 that
include Type Ila growth zones and 2 with 330 to 760 at.ppm N
and highly variable aggregation; 0—88 %B. The combined CL
and FTIR characteristics of the individual peridotitic dia-
monds establish that they were formed in a single growth
event (e.g., JW020, Fig. 3) or contain 2 (e.g., JW243, Fig. 2j
& Fig. 3) to 3 (e.g., IW102, Fig. 2i & Fig. 3) distinct growth
zones that record changes in modelled residence temperatures
of several tens of degrees from core to rim. Clearly, an ex-
panded sample set and detailed chronology of these growth
zones is required to establish the intervals between individual
growth zones and whether the timescale of P-type diamond
growth is comparable to that of the more common E-type
diamonds or distinct as suggested by Stachel et al. (2004).
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Eclogitic diamonds

By combining the N-characteristics obtained from FTIR with
the CL imagery of diamond plates, the Jwaneng diamonds are
seen to represent a highly varied population. Five samples that
exhibit multiple growth zones plot along a single isotherm
(e.g., JW083, JW455, JW94, JW196, JW210 in Fig. 3). As
the different growth zones of individual diamonds exhibit a
near constant thermal history, this suggests that these individ-
ual diamonds were formed by pulses of fluid in a single
diamond-forming event or formed within a short period of
time (100’s Myr, i.e. the effective resolution obtained in Fig.
3). Samples JW044 (Fig. 2b) and JWO058 also potentially
formed in a single event. In contrast, the majority (>90%) of
the eclogitic diamond plates record 2 (e.g., JW111, Fig. 2e¢;
JWO047; Fig. 2h), 3 (e.g., IW024, Fig. 2g; JIW060, Fig. 2k) or
4 (e.g., JW033, Fig. 2d; JW194, Fig. 21) changes in modelled
mantle residence temperatures, ranging from 10s of °C
(JW024) to >100 °C (e.g., JW033, JWI111, JW175, JW194;
Fig. 3), between individual growth zones of single diamonds.
Assuming near-constant temperatures throughout the whole
residence period, the cores of these plates typically show
higher N aggregation compared to the rims, which most prob-
ably implies that there is a significant time gap between
growth of the core and rim. If the core experienced a hotter
period of residence prior to rim formation, this inferred time
gap decreases. In principle, there is an indefinite number of
combinations of time and temperature possible if the corre-
sponding inclusion ages are unknown. Hence, accurate dates
for individual growth zones (i.e. core and rim) are required to
more accurately model their residence temperatures (Kohn
et al. 2016) and to constrain the time gap between individual
growth zones. In a few cases there also appears to be evidence
for higher model temperatures in diamond rims (JW003,
JWO030, JW045). This cannot be correct, as the cores must
be at least as old the rims and any high temperature event
experienced by the rim would also have been experienced
by the core. The most likely explanation to these observations
are modelled temperature anomalies resulting from overlap-
ping zones (Kohn et al. 2016). Other possible explanations
may include a deviation from the expected kinetics of A to
B centre aggregation, perhaps caused by some additional de-
fect incorporation (e.g., see Fisher and Lawson (1998) for the
effect of Ni and Co on N-aggregation in diamond).

The presence of different inclusion populations in dia-
monds of distinct N contents is interpreted to record modifi-
cations in the lithospheric mantle beneath the Kaapvaal Craton
involving different metasomatic fluids. Omphacites with low
Mg# and Cr# and high-Ca pyrope-almandines (Fig. 4) are
included in diamond growth zones with 50 to 700 at.ppm N
whereas omphacites with high Mg# and Cr# and low-Ca py-
rope-almandines come from diamond growth zones with low
N (generally <50 at.ppm). The data from these inclusions
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suggests that either the original mantle protoliths have differ-
ent C-buffering capacities or that fluids of different composi-
tion metasomatized the lithosphere at different depths and,
potentially, times. This may explain why JW175 has high N
contents (1000 at.ppm) although the garnets are low-Ca py-
rope-almandines. The interpretation of multiple diamond
forming events is consistent with observations based on
coexisting garnet and clinopyroxene equilibration
temperatures and FTIR data described in Deines et al.
(1997) as well as the inclusion dating studies of Richardson
et al. (1999, 2004) that argued for diamond formation at 2.9,
1.5 and 1.0 Ga.

We conclude that our FTIR dataset is very useful in reveal-
ing the varied time-temperature characteristics of a diamond
population, but that either temperature or age constraints from
inclusion studies are required for a robust and quantitative
interpretation. The dataset emphasizes the complex growth
histories recorded by the diamond suite. The record of up to
4 distinct growth zones in single silicate inclusion-bearing
diamonds (JWO033, Fig. 2d; JW194, Fig. 21; Fig. 3) requires
further chronology to establish the time intervals between the
genesis of these individual zones. Such data would also allow
for more rigorous interpretation of the FTIR dataset to deter-
mine whether the diamond populations reflect a few large-
scale diamond-forming events (i.e. samples of the same age
with varied thermal histories, indicating diamond growth over
a significant depth profile of the mantle), or alternatively more
frequent diamond formation on a much smaller, local scale as
a result of confined movements of metasomatic fluids.

Conclusion

The data from this study support five main conclusions. (i)
Counting statistics for 130,000 diamonds from Jwaneng em-
phasise the predominance of an overwhelming (>88%)
eclogitic diamond suite with individual production parcels
containing up to 10% inclusion-bearing diamonds (5% on
average). (ii) Over 80% of the eclogitic and peridotitic dia-
mond plates record changing FTIR characteristics with 2, 3 or
4 individual growth zones potentially spanning extended
timescales during the evolution of the Kaapvaal Craton, while
a minority of inclusion-bearing diamonds were likely formed
in a single event. This observation has not been quantified for
inclusion-free diamonds. (iii) FTIR data acquired for bulk
diamonds integrate N defects from multiple growth zones
and consequently do not record the total internal variability,
especially when major changes between individual growth
zones are present. (iv) Two compositional subgroups of
eclogitic garnet and cpx inclusions with different characteris-
tics in N content of their diamond hosts were identified and
imply different diamond forming conditions (i.e. a combina-
tion of different protoliths, formation depth, fluid composition
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and most probably age). (v) Detailed examination of diamond
plates by CL imaging and FTIR identifies at least 7 individual
diamond-forming events recorded in peridotitic (3) and
eclogitic (4) diamonds. The scale and timing between these
individual events is yet to be fully resolved, as is their distri-
bution with depth.
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