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Abstract
The chronic dysfunction of neuronal cells, both central and peripheral, a characteristic of neurological disorders, may be 
caused by irreversible damage and cell death. In 2016, more than 276 million cases of neurological disorders were reported 
worldwide. Moreover, neurological disorders are the second leading cause of death. Generally, the etiology of neurological 
diseases is not fully understood. Recent studies have related the onset of neurological disorders to viral infections, which may 
cause neurological symptoms or lead to immune responses that trigger these pathological signs. Currently, this relationship 
is mostly based on epidemiological data on infections and seroprevalence of patients who present with neurological disor-
ders. The number of studies aiming to elucidate the mechanism of action by which viral infections may directly or indirectly 
contribute to the development of neurological disorders has been increasing over the years but these studies are still scarce. 
Comprehending the pathogenesis of these diseases and exploring novel theories may favor the development of new strate-
gies for diagnosis and therapy in the future. Therefore, the objective of the present study was to review the main pieces of 
evidence for the relationship between viral infection and neurological disorders such as Alzheimer’s disease, Parkinson’s 
disease, Guillain-Barré syndrome, multiple sclerosis, and epilepsy. Viruses belonging to the families Herpesviridae, Ortho-
myxoviridae, Flaviviridae, and Retroviridae have been reported to be involved in one or more of these conditions. Also, 
neurological symptoms and the future impact of infection with SARS-CoV-2, a member of the family Coronaviridae that is 
responsible for the COVID-19 pandemic that started in late 2019, are reported and discussed.

Introduction

Neurological disorders (NDs) are among the most signifi-
cant public health challenges in today’s society, and they 
are mainly associated with the aging of the population [1]. 
NDs are the leading cause of disability-adjusted life years 
(DALYs), with approximately 276 million cases [2]. The 
continuous dysfunction provoked by NDs triggers degen-
eration and consequent cell death in the nervous system [3]. 
Although neurological disorders have a multifactorial etiol-
ogy, most of them have a strong genetic and environmental 
association [4]. Recently, some studies have also associated 

NDs such as multiple sclerosis (MS), amyotrophic lateral 
sclerosis (ALS), Parkinson’s disease (PD), Alzheimer’s dis-
ease (AD), Guillain Barré syndrome (GBS), and epilepsy 
with viral infections [5–9]. Viral diseases are widely distrib-
uted, easily transmitted, and challenging to control. Thus, 
the hypothesis of viral agents as possible triggers of NDs 
makes them more impactful [10].

The viral etiology of some neuroinfections is well 
described in the literature, especially those related to neu-
rotropic viruses such as poliovirus, coxsackievirus, and 
enterovirus 71 (EV71). However, our understanding of the 
relationship between other viral infections and the develop-
ment of neurological diseases is still limited. In addition, 
current ND challenges include the lack of reliable biomark-
ers for early diagnosis and effective preventive strategies 
and treatments [11]. In this context, this work relates NDs, 
such as AD, PD, GBS, MS, and epilepsy, to viral infections. 
Moreover, we discuss the possible neurological impact of 
SARS-CoV-2 infection, which is caused by the new coro-
navirus responsible for the current COVID-19 pandemic.
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The relationship between neurological 
disorders and infectious etiology

The first report of a central nervous system (CNS) infec-
tion with a consequent ND was by Bowery et al. in 1992 
[12]. Subsequently, enterovirus (EV) and human herpesvirus 

Fig. 1  Pathological agents may infect the organism by different path-
ways, such as olfactory and gastric. These pathogens trigger a cascade 
of inflammatory responses (increased levels of cytokines, for exam-
ple) that disrupt the BBB, activate microglia, and lead to a subse-
quent clustering around neuronal cells, resulting in neuronal damage.  
Source: adapted from Limphaibool et al. (2019) [71]

Fig. 2  Mechanisms used by pathological agents to cross the BBB. 
(a) A direct crossing may be possible when cells of monocyte-mac-
rophage/microglia lineage are infected by the pathogens and carry 
them through the BBB, reaching the CNS. This mechanism is also 
called "Trojan horse" because the microorganism eludes the immune 
system defense by using these cells to move from the bloodstream to 
the brain. The transport of pathogens to CNS is favored by inflam-
mation, which is typically observed in neurological disorders. During 
the inflammation process, inflammatory molecules are released, trig-
gering the activation of infected leukocytes. The postcapillary venule 
is attacked by the infected leukocytes, which encircle the endothelial 

and parenchyma basement membranes. Next, these cells enter the 
CNS by crossing the BBB. Another mechanism used by pathologi-
cal agents is to impair the BBB and reach the CNS directly, using 
the porous capillaries of the choroid plexus. In various neurological 
diseases, the BBB is damaged, which favors the entry of pathogens 
into the brain through the bloodstream. (b) Neurotropic viruses may 
enter the CNS through retrograde axonal transport. These pathogens 
infect the peripheral nerve that creates a link from the skin and the 
mucosa to the sensory, motor, and olfactory neurons. In neuronal 
cells, viruses can replicate and infect adjacent cells.  Source: adapted 
from De Chiara et al. (2012) [16]

(HHV) infections were found to be associated with ALS 
[13], Japanese encephalitis (JE) virus and Influenza virus 
with PD [14], herpes simplex virus type 1 (HSV-1) and 
Chlamydia pneumoniae with AD [15], and Epstein-Barr 
virus (EBV), varicella-zoster virus (VZV), cytomegalovirus 
(CMV), HHV-6, and HHV-7 with MS [16]. Although studies 
have shown that MDs begin in the CNS, the brain-periphery 
relationship may influence the development and progression 
of these disorders [17].

These disorders may be caused directly by infection of 
the CNS by specific pathogens or indirectly, through the 
host response to the infection. In case of the direct dam-
age, some pathogens can cross the intact blood-brain barrier 
(BBB), causing severe encephalitis or acute infections that 
can be fatal or progress to chronic diseases [18]. Also, aging 
can make the CNS more vulnerable to infectious agents due 
to changes in the BBB, increased oxidative stress, and less 
energy production [19]. In the indirect-damage mechanism, 
various factors may be involved, such as the accumulation 
of protein aggregates, high levels of oxidative stress, altera-
tions in autophagic mechanisms, synaptopathy, and neuronal 
destruction [16]. Fig. 1 illustrates the cascade of immune 
responses produced by the body against infections of the 
CNS and their deleterious effects.

In addition to the direct infection of CNS via blood and 
the BBB, other possible pathways involve monocyte-mac-
rophage/microglia cells that can cross the BBB or inter- 
and trans-neuronal transfer in peripheral neurons (Fig. 2A). 
Human immunodeficiency virus (HIV), for example, crosses 
the BBB by infecting blood leukocytes and, subsequently, 
microglia [20]. Although HIV is not capable of attacking 
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neurons directly, this infection provokes an increase in 
inflammatory cytokines and viral proteins that indirectly 
harm these cells [16].

The neurotropism of some viruses is established through 
the nerves rooted in mucosa and skin. Infection is depend-
ent on the recognition of receptors in sensory, motor, and 
olfactory neurons and retrograde axonal transport through 
axonal microtubules [21]. Certain viruses reach the brain 
through the olfactory system, which connects peripheral 
areas and with the CNS. Triplets and vagus nerves may also 
be an entry point for some viruses in intranasal infections 
[22]. After entering the CNS, viruses spread from cell to cell 
by being released in the synaptic cleft or by merging with 
neighboring neurons. The reinfection of peripheral tissue is 
possible for some viruses, which travel through anterograde 
transport and are released into the synaptic cleft [23]. The 
spread of neurotropic viruses in the CNS is illustrated in 
Fig. 2B. Several viruses have been associated with NDs, as 
described below. The effects of viral infections on the patho-
physiology of NDs are summarized in Table 1.

Neurological disorders and viral infections

Alzheimer’s disease (AD)

AD, described for the first time in 1906, is the most common 
type of dementia, and in approximately 95% of the cases, 
it occurs after 60 years of age. In young individuals, 13% 
of cases show an autosomal dominant pattern of inherit-
ance. An increased amount of beta-amyloid (Aβ) is found 
in the brains of AD patients. This overproduction may be 
related to the mutation of the genes encoding presenilins I 
and II (PSEN1 and PSNE2) and amyloid precursor protein 
(APP). In addition to these mutations, early-onset AD may 
also be related to mutations in apolipoprotein E (apoE) and 
tau protein genes [24]. The etiology of late-onset AD is often 
associated with a complex synergy of factors, such as the 
susceptibility to multiple genes (the E4 allele of the apoE 
gene, for example) and environmental factors [25]. ApoE is 
essential for repairing damage to neurons by redistributing 
lipids to axons and regenerating Schwann cells, restoring 
synaptic-dendritic connections [26].

One of the main characteristics of AD is the accumulation 
of Aβ peptide in the brain. Multiple forms of this peptide are 
derived from cleavage of the APP, the expression of which 
increases during cell stress [27]. The homeostasis of the 
CNS depend on the levels of Aβ in the brain, which assist 
in vital processes such as synapsis, calcium homeostasis, 
neurogenesis, the antioxidant system, and metal ion capture 
[28]. An altered level of Aβ peptide leads to the formation of 
amyloid fibrils. In a cascade of events, amyloid fibrils trigger 

amyloid plaques and formation of neurofibrillary tangles 
(NFTs), causing a loss of synapses and neuronal death [29].

Another factor associated with AD is the tau protein, 
which contributes to the assembly and stabilization of micro-
tubules [30] and is important in the regulation of plasticity 
and synaptic function [31]. Under physiological conditions, 
phosphorylation of tau proteins for binding to microtu-
bules occurs in a balanced way. However, when they are 
hyperphosphorylated, tau proteins undergo conformational 
changes leading to the formation of NFTs, destabilization 
of associated microtubules, synaptic damage, and neurode-
generation [29]. In addition to amyloid plaques and NFTs, 
the presence of extensive oxidative stress and dysregula-
tion of calcium homeostasis are also characteristic of an 
AD patient’s brain [32]. Aβ can promote cellular calcium 
overload, inducing associated oxidative stress and forma-
tion of pores in the cell membrane [33]. Oxidative stress can 
increase Aβ production and tau hyperphosphorylation, pro-
moting the onset and progression of AD [34]. Other events 
may influence the pathogenesis of AD, such as defective 
autophagy [35], mitochondrial dysfunction [36], synaptic 
dysfunction [37], and neuroinflammation [38]. AD causes 
several types of tissue damage, including brain atrophy, loss 
of neurons, and amyloid angiopathy [39].

Tests for the presence of microorganisms in the nervous 
system of patients with AD manifestations have yielded 
positive results for fungi [40, 41], bacteria [15], and viruses 
such as CMV, HSV-1, HHV-6, and hepatitis C virus (HCV). 
Unlike the brains of young patients, postmortem examina-
tion of the brains of elderly people with AD has shown 
them to be positive for HSV-1 DNA [42]. Seropositivity for 
HSV has already been associated with the development of 
AD in other studies [43–45]. Reactivation of HSV-1 in the 
CNS has been suggested to be the main connection between 
HSV-1 infection and AD development. This reactivation 
triggers an inflammatory process, causing damage to the 
cells, along with formation of amyloid plaques and NFTs 
[7]. The HSV-1 glycoprotein B (gB) is 67% identical to the 
Aβ peptide. In an in vitro study, gB promoted the devel-
opment of Aβ fibrils in primary cortical neurons, causing 
cytotoxicity [46]. Decreased Aβ clearance and the accumu-
lation of amyloid plaques in AD can impair cell autophagy 
[47]. Neuroblastoma cells infected with HSV-1 also produce 
hyperphosphorylated tau protein [48]. ApoE seems to have a 
strong correlation with HSV-1 lip infection in the peripheral 
nervous system, with the E4 allele being present in 60% of 
those infected [42]. In mice infected with HSV-1, viral DNA 
concentrations in the brain were 13.7 times higher in apoE 
+/+ wild-type mice than in apoE -/- knockout mice. Also, 
HSV-1 infection induces the expression of cytokines and 
proinflammatory molecules that can cause oxidative dam-
age [49]. In human neuroblastoma cells infected with HSV-
1, experimentally induced oxidative stress has been shown 
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to significantly increase the accumulation of intracellular 
Aβ, inhibit Aβ secretion, and potentiate the accumulation of 
autophagic compartments within the cell [50].

Another HHV related to AD is CMV. Studies have dem-
onstrated that individuals with higher levels of CMV IgG 
have more significant cognitive decline and a higher risk of 
developing AD [51–53]. Also, 93% of brains with vascular 
dementia that were examined postmortem were positive for 
CMV [54]. CMV-specific  CD8+ T cells produce increased 
amounts of proinflammatory IFN-γ and decreased levels of 
the anti-inflammatory cytokines IL-2 and IL-4, with a poten-
tial shift to a proinflammatory cytokine profile in elderly 
people [55]. Serum levels of CMV-specific IgG have been 
shown to be significantly associated with NFTs. An increase 
in IFN-γ was also detected in the cerebrospinal fluid (CSF) 
of more than 80% of subjects who were positive for CMV 
[56].

HHV-6 rarely causes serious CNS complications; how-
ever, its ability to establish latency in the brain with possible 
reactivation under conditions of immunosuppression may 
relate this virus to AD development [57]. HHV-6 has been 
found in the brain [58] and leukocytes of AD patients, being 
significantly associated with the development of the disease 
and the cognitive decline of these individuals [52]. It has 
been suggested that HHV-6 deregulates autophagy and acti-
vates a stress response in the endoplasmic reticulum in vari-
ous types of cells, particularly in astrocytes. The reduction 
of autophagy increases the production of Aβ and activates 
the stress response in the endoplasmic reticulum, promoting 
hyperphosphorylation of the tau protein [59].

Studies have also suggested a relationship between HCV 
and AD. It has been proposed that this occurs thorough 
direct viral infection in the brain or through cerebral or sys-
temic inflammation [60]. In the first hypothesis, HCV can 
infect monocytes/macrophages, cross the BBB, and pro-
voke the secretion of large amounts of cytokines (TNF-α, 
IL-6), causing cytotoxicity in the brain tissue. In the second 
hypothesis, HCV activates the immune system, triggering 
excessive systemic or local inflammation [61].

Parkinson’s disease (PD)

PD is a neurodegenerative motor disease, initially described 
by James Parkinson as “paralysis agitans” [62]. Approxi-
mately 10 million people are living with PD worldwide. 
Four percent of PD patients are under the age of 50, and the 
incidence of this disease increases with age [63]. An epi-
demiological study based on a North American population 
has suggested that, by 2030, over 1.2 million people will be 
living with PD [64]. This disease is characterized by motor 
changes, cognitive impairment, and autonomic dysfunction 
[65]. The damage caused by PD is related to dopaminergic 
neuron degeneration that occurs in the nigrostriatal pathway. 

The reduction of striatal dopamine modulation is also 
responsible for disease signs [66]. These alterations happen 
not only in the substantia nigra (SN) but also in the dorsal 
motor nucleus of the vagus and peripheral neurons [67].

Lewy bodies are formed mainly by α-synuclein, neuro-
filament proteins, and ubiquitin. It is suspected that presyn-
aptic α-synuclein is the main protein involved in the forma-
tion of these bodies. Genetic or epigenetic factors may be 
responsible for their appearance in neurons. The PD devel-
opment is related to the protein aggregates formed inside the 
nerve cells and their location in the brain. That is, if Lewy 
bodies are located in the nigrostriatal pathway, they would 
be related to extrapyramidal manifestations; in autonomic 
ganglia, postural hypotension; in the limbic cortex, psycho-
sis; and, in the neocortex, cognitive decline [68, 69].

A D620N mutation in vacuolar sorting protein 35 
(VPS35) causes subcellular retromer complex dysfunction; 
therefore, it is believed that it may affect the pathogenesis 
of PD. An alteration in retromer cargo molecule trafficking, 
a reduction of cell survival, and alteration of α-synuclein 
processing were observed when the D620N mutation was 
present. The retromer complex is also used by viral and bac-
terial pathogens to aid in their assembly, replication, and 
movement within the cell and as a mechanism to avoid the 
destruction that may be triggered by the cell defense machin-
ery [70].

After the H1N1 pandemic in 1918, the number of cases 
of post-encephalitic parkinsonism and lethargic encephalitis 
increased. Based on this fact, a “dual-hit hypothesis” was 
suggested regarding PD pathogenesis. It was proposed that 
microorganisms may enter the host via the intestinal mucosa 
and attack the nervous system. These neurotropic agents may 
infect the substantia nigra pars compacta (SNpc) and trigger 
neurodegenerative events [71].

Although rare, experimental evidence has shown that 
some influenza A viruses are neurotropic, moving into 
the nervous system following systemic infection [72–74]. 
H5N1 influenza virus was used to infect the CNS of mice. 
A continuing inflammatory response in the animals’ brains 
was demonstrated after the viral infection, which may have 
induced degeneration of dopaminergic neurons [8]. The 
H1N1 influenza virus does not appear to be neurotropic 
in mice, suggesting that the peripheral immune response 
activated after an infection is probably responsible for the 
secondary inflammation observed in the CNS [75].

HHV infection is also associated with PD development. 
Elevated serological test values and the presence of serum 
inflammatory cytokines and α-synuclein support this theory. 
Moreover, studies suggest a relationship between viral load 
and the severity of PD symptoms [76]. Scientists have pro-
posed a role of molecular mimicry between HSV-1 (region 
Ul4222-36) and α-synuclein (αsyn100-114). In the mem-
brane of SNpc dopaminergic neurons, this phenomenon may 
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trigger aggregation of α-synuclein and subsequent neuronal 
degeneration. A similar mechanism is observed for EBV, 
with molecular mimicry between a repeat region in latent 
membrane protein 1 (LMP1) encoded by EBV and the C-ter-
minal region of α-synuclein, inducing its oligomerization 
[77]. HSV-1 infection may be associated with secretion of 
TNF-α, which is known to be involved in PD pathogenesis. 
It has been reported that dopaminergic neurons are very sus-
ceptible to TNF-α, which may affect the cells’ plasticity, and 
that neuronal death can occur in response to TNF-α binding 
to its receptors [78].

Parkinsonism symptoms were described in a patient who 
demonstrated HHV-6 infection reactivation after transplan-
tation. Brain injuries may indicate parainfectious cytotoxic 
changes, direct CNS invasion, or immunologically mediated 
mechanisms [79]. Immunological reactivation may also be 
related to the development of PD in CMV infection. Den-
dritic cells, which preferentially secrete proinflammatory 
cytokines, are in higher numbers in patients with CMV and 
PD than in patients with CMV without PD [80]. In addition, 
the possible immunogens presented by these cells may be 
derived from dopaminergic neurons, triggering an autoim-
mune response to neuromelanin [81].

Studies suggest that patients who have previously been 
infected with HCV are more likely to develop PD. HCV 
may replicate in the CNS, triggering a higher prevalence of 
mental illness in chronic HCV patients than in the general 
population [82]. Dopaminergic neurotoxicity after HCV 
infection has been observed in co-cultured neuron-glial 
cells from rats. Also, it has been suggested that HCV infec-
tion induces positive regulation of ICAM-1 (intercellular 
adhesion molecule 1) and RANTES (regulated on activa-
tion, normal T expressed, and secreted) chemokines [83]. 
Tissue inhibitor of metalloproteinases 1 (TIMP-1), which is 
responsible for neuronal survival, is downregulated by HCV 
[71]. The entry and replication of this virus in the CNS may 
be facilitated by the high level of expression of HCV recep-
tors in the brain microvascular endothelium [84]. Despite 
this fact, no correlation was found between HCV infection 
and PD development when more than one million patients 
were studied in the USA [85]. The discrepancy in the results 
was suggested by the substantial difference in the geographic 
areas of the studies, considering the prevalence of the infec-
tion, pathogenic profile of the genotype, variability of extra-
hepatic manifestation, and association with comorbidities.

Patients infected with HIV may develop parkinsonian 
features. This movement disorder may be triggered by a 
cascade of events caused by the infection, such as basal 
ganglia dysfunction, BBB alteration, chronic neuroinflam-
mation, and neurodegeneration [86]. Post-mortem autopsies 
demonstrated signs of HIV in the brain, mostly in inflam-
matory infiltrates and glial cells, and a higher prevalence of 
α-synuclein in SNpc [87]. DJ1 regulates the production of 

reactive oxygen species (ROS) and dopamine transmission 
in neurons, whereas leucine-rich repeat kinase 2 (LRRK2) 
mediates neuroinflammation and neuronal damage. Studies 
suggest that HIV infection may influence DJ1 and LRRK2 
levels [88].

Epilepsy

Epilepsy is an ND characterized by the rapid occurrence 
of epileptic seizures due to abnormal or excessive brain/
neuronal activity [89]. An individual can also be diagnosed 
with epilepsy if he or she experiences an unprovoked or 
reflexive seizure and has at least a 60% chance of devel-
oping another seizure in the next 10 years [90]. Approxi-
mately 20% of all epilepsy cases are caused by acute CNS 
insults, 11% by cerebrovascular accident, 6% by traumatic 
brain injury, and 4% by infections [91]. Changes associated 
with post-traumatic epilepsy (PTE) include hemosiderin 
deposition with an incompletely formed wall of gliosis [92] 
and persistent BBB disruption. A correlation is also found 
between late-poststroke seizures and BBB disruption [93]. 
Post-injury epilepsy develops most commonly in the tempo-
ral and frontal lobes [94]. PTE and some infections cause an 
initial lesion, and if it is outside of the temporal lobes, it may 
result in seizures due to mesial temporal sclerosis (MTS) 
[94, 95]. After an injury, the latency time for the develop-
ment of seizures may vary, suggesting possible variability 
in mechanisms of epileptogenesis [91]. Surgical specimens 
from patients with epilepsy show common pathological fea-
tures that may be relevant to the epileptogenic process, such 
as astrocytes activated at the BBB, inflammatory cellular 
infiltrates, extravasation of blood, severe injury, disruption 
of the BBB with encephalitis, and involvement of frontal or 
temporal lobes. The majority of these features are associated 
with inflammatory responses [91, 94].

Inflammation in the CNS may participate in the progres-
sion of epileptogenesis as well as in the induction of seizures 
[96]. The progression of seizures depends on several fac-
tors. This cascade of events includes exacerbated generation 
of inflammatory factors, such as prostaglandin E2 (PGE2), 
IL-1β, IL-6, and TNF-α, and activation of inflammatory 
mediators, cyclooxygenase (COX)-2, and nuclear factor 
kappa B (NF-κB), for example [97]. Depending on its recep-
tor, TNF-α may act as a pro-convulsant via TNF receptor 
1 (TNFR1) or an anti-convulsant through TNF receptor 2 
(TNFR2) [98]. Similar to other proinflammatory cytokines, 
such as IL-1β and TNF-α, IL-6 signaling may activate 
NF-κB transcriptional signaling and induce the synthesis 
of PGE2 by COX-2. These physiological changes assist in 
regulating immune and inflammatory responses [99]. The 
overexpression of TNF-α or IL-6 in mice leads to chronic 
inflammation in the brain, predisposing to seizures [100].
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A great diversity of viruses has been associated with epi-
lepsy [13, 101, 102]. One hypothesis suggests that common 
childhood viral infections can generate acute and chronic 
inflammatory processes in the CNS, which increases BBB 
permeability and neuronal excitability [103]. Acute seizures 
and epilepsy have been linked to HHV-6 infections, espe-
cially in children [104]. The number of HHV-6 infections 
associated with mesial temporal or temporal lobe epilepsy 
range from 9.1% to 55.6% [5, 105]. However, many HHV-6 
infections are not associated with epilepsy, and the asso-
ciation of this virus with ND is controversial [106–109]. 
HHV-6 has a tropism for glial cells, and as the nasal cavity 
is constituted of oligodendrocyte progenitor cells (OPCs), 
the virus can replicate and cause a significant increase in 
the production of IL-6, chemokine ligand 1 (CCL-1), and 
CCL-5 [110].

HVS-1 is the leading agent of viral encephalitis, with 
an incidence of 2 or 3 cases per million people, per year 
[111]. Studies suggest that encephalitis caused by HSV-1 
replication increases the likelihood of spontaneous seizures 
and epilepsy by approximately 20%. This fact is due to the 
involvement of the frontotemporal cortex, including the 
hippocampus, elevated CSF opening pressure, and signs of 
cerebral hernia [112, 113]. When viral replication is acti-
vated during latency, HSV-1 can ascend through the trigemi-
nal and olfactory nerves to the frontal and temporal lobes, 
spreading to other regions of the brain [114]. HSV-1 infec-
tions trigger an inflammatory response, recruiting activated 
leukocytes, which, when repeated continuously, may cause 
brain tissue damage and neurological sequelae [111].

Less commonly, CMV and EBV may also cause nonpara-
neoplastic autoimmune encephalitis, which has been related 
to late-onset epilepsy. Antineuronal autoantibodies were 
detected in 48 of 113 patients with epilepsy and suspected 
autoimmune encephalitis [115]. The relationship between 
epilepsy and congenital CMV infection indicates that the 
37% of the patients developed epilepsy at approximately 20 
months of age [116]. CMV infection may affect the fetus 
directly via virally encoded gene products that may impair 
vital cellular processes, such as the cell cycle, cellular pro-
liferation, and apoptosis, or induce inflammatory responses, 
trigger vascular injury, and promote evasion of host immune 
responses [117]. Increased expression of late CMV genes 
has been reported in individuals with intractable epilepsy, in 
addition to higher levels of CMV-IgG and CMV-IgM, highly 
sensitive C-reactive protein (Hs-CRP) and IL-6, suggesting 
increased viral replication and inflammatory responses in 
these patients [118].

It is known that several arboviruses can cause menin-
gitis, encephalitis, and encephalomyelitis [119]. Verma 
and Varathanaj [120] reported a case of epilepsia partialis 
continua associated with dengue virus (DENV) encepha-
litis. Although seizures occur in approximately 47% of 

encephalitis cases caused by DENV, it is not possible to 
establish a causal relationship between encephalitis and the 
epileptic condition. According to Guabiraba et al. [121], 
there is currently no specific in vivo model that can dem-
onstrate the relationship of epileptic manifestations and the 
pathogenesis of DENV infection. Trials were conducted in 
AG129 mice, which are deficient in interferon (IFN) types I 
and II and are highly susceptible to DENV infection [122]. 
When these animals were infected intraperitoneally with a 
neurotropic strain of DENV-2, 100% paralysis and lethality 
was demonstrated [123].

The prevalence and incidence of epilepsy and seizures 
among HIV patients are higher than in the general popu-
lation. About 5 to 10% of HIV-positive patients in devel-
oped countries present with seizures or epilepsy [124]. It 
is known that HIV can invade neural tissue; however, there 
is still no proof of the relationship between the damage 
caused by the virus and seizures. Factors that may be asso-
ciated with seizures and epilepsy in HIV-positive patients 
include the course of the disease and the establishment of 
acquired immunodeficiency syndrome (AIDS), opportun-
istic infections, and metabolic disorders [125]. Also, HIV 
infection can induce the formation of autoantibodies, caus-
ing neuronal death, with increased glutamate exocytosis and 
decreased recapture. Glutamate depletion is associated with 
the activation of calcium channels stimulated by phospho-
rylation of N-methyl-D-aspartate receptors by kinases aris-
ing from the activation of IL-1 receptors, causing neuronal 
hyperexcitability, with a consequent decrease in the seizure 
threshold [126–128].

Multiple sclerosis (MS)

MS is an immune-mediated disease in which  the mye-
lin sheath of CNS neurons is injured and the communica-
tion between the muscles and the brain is progressively 
interrupted [129]. The International Advisory Committee 
on Clinical Trials of MS classifies four basic courses for this 
disease: clinically isolated syndrome, relapsing-remitting, 
secondary progressive, and primary progressive. The most 
frequent kind of MS is relapsing-remitting MS (RRMS) 
[130]. Patients may exhibit cognitive deficits, such as dif-
ficulties in processing information and impairment of work-
ing memory and attention, as well as balance, locomotion, 
and fine motor control [131, 132]. Spasticity is a common 
symptom in MS patients. This condition is characterized by 
hyperreflexia, spasms, poor muscle tone, and pain, causing 
severe functional disability, which compromise the quality 
of life of these patients [133]. The prevalence of MS varies 
worldwide, reaching 12.8 out of every 100,000 inhabitants 
in Asia [134], 290 in Canada, 203 in the United Kingdom, 
189 in Sweden, and 3.2 in Ecuador [135].
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Although the etiology of MS is still uncertain, immuno-
logical, genetic, and environmental risk factors have been 
proposed. Immunological factors that trigger MS are related 
to T cells and antibodies, which are autoreactive in these 
patients. Inhibitory molecules, which generally regulate 
adaptive system activation, are impaired and are not able 
to suppress uncontrolled immune responses in MS patients. 
As a consequence, the chronic inflammation process leads to 
further damage [136]. Family clustering and specific genetic 
characteristics are being examined as risk factors for MS. 
While the general population shows a 0.1% risk of recur-
rence, first-degree relatives of MS index cases have up to 
a 50-fold greater risk of developing the disease. Moreover, 
smoking, body mass index, and vitamin D are among the 
environmental factors that may influence the onset of this 
disease [137, 138]. Although the etiology of MS is multifac-
torial, viral infections are mentioned as one of the disease’s 
environmental risk factors.

When analyzing the relationship between HHV-6 and 
EBV infections and MS, higher titers of antibodies against 
these viruses and a higher seroprevalence were found in 
patients with the disease when compared to healthy paired-
control subjects [139]. The first evidence correlating EBV 
infection and MS was the fact that MS patients’ B lympho-
cytes carry and transport EBV antigens [140]. Subsequently, 
other evidence was suggested, such as genetic susceptibility 
and EBV infection, as a higher risk of MS was found in 
individuals with infectious mononucleosis (IM) [141, 142]. 
The indirect effect of EBV on MS onset may be related to the 
activation of silent human endogenous retrovirus W (HERV-
W) [143]. In vitro and in vivo studies demonstrated that the 
envelope protein (Env) of HERV-W may trigger inflam-
matory responses and cause cytotoxicity, as well as cell 
death [144, 145]. Another hypothesis suggested a cascade 
of events evolving EBV, B cells, T cells, and inflammation 
processes. In healthy seropositive individuals, the immune 
system manages to regulate the memory B cells against the 
latent virus, so there are no further complications. How-
ever, in individuals who are genetically predisposed to MS, 
memory B cells can cross the BBB and trigger an inflam-
matory response in the CNS and, consequently, germinal-
center-like structures. T cells may be activated at this point, 
and the infected cells, although latent and with limited viral 
gene expression, may act as antigen-presenting cells. After 
differentiation, some infected memory B cells can trigger 
the EBV replicative cycle and the production of virions. In 
diseases such as MS, microglia and astrocytes are chroni-
cally activated, causing neurotoxicity [146].

Myelin oligodendrocyte glycoprotein (MOG) is an essen-
tial glycoprotein involved in the myelination process in CNS 
nerves. MOG is also responsible for ensuring the structural 
integrity of the myelin sheath [147]. Changes in MOG have 
been experimentally associated with B cells infected with 

EBV, which convert the destructive processing of MOG 
into productive processing. This conversion facilitates the 
cross-presentation of the pathogenic MOG epitope (residues 
40-48) to autoaggressive cytotoxic T cells [148]. Addition-
ally, studies have shown that during primary EBV infec-
tion, this virus may induce an increase in BBB permeability, 
which allows pre-existing polyclonal antibody-producing 
B cells to penetrate the CNS. This event could explain the 
lower levels of EBV-specific IgG antibodies in the CNS 
compared to IgG produced against other viruses [149, 150].

When relating HHV-6A and HHV-6B with MS, HHV-6A 
was more prevalent in serum and urine samples of patients 
with MS than HHV-6B [151, 152]. The first murine model 
of HHV-6-induced brain infection was developed by Rey-
naud et al. [153]. First, these researchers studied different 
transgenic mouse lines and their ability to express the recep-
tor for HHV-6, CD46. Further results showed that HHV-6A, 
but not HHV-6B, triggered the expression of viral transcripts 
in primary brain glial cultures from CD46-expressing mice. 
HHV-6B DNA did not persist in the brain, decreasing rap-
idly after the infection, while HHV-6A DNA levels remained 
high for up to 9 months. Immunohistological analysis 
showed the infiltration of lymphocytes in the periventricular 
region of mice infected with HHV-6A. Moreover, this virus 
triggered production of proinflammatory chemokines such 
as CC-chemokine ligand 2 (CCL2), CC-chemokine ligand 5 
(CCL5), and C-X-C motif chemokine ligand 10 (CXCL10). 
A recent study measured IgG reactivity against HHV-6A 
and HHV-6B immediate-early protein 1 (IE1A and IE1B) 
and showed a positive association between IgG response 
against IE1A and an increased risk of developing MS in the 
future. In contrast, a negative association between the IgG 
response against IE1B and MS was demonstrated. Therefore, 
this study supports the role of HHV-6A in the etiology of 
MS by showing an increase in serological response against 
the immediate-early protein of this virus [154]. Oligoden-
drocytes are myelin-producing cells that are targeted by the 
immune system of patients with MS. The latency established 
by HHV-6A in oligodendrocytes may contribute, or even 
trigger, this unwanted autoimmune reaction, which leads to 
myelin impairment [155]. In patients with MS, in addition 
to the ongoing destruction of myelin, impairment in myelin 
repair by differentiating OPC is observed [156].

Guillain‑Barré syndrome (GBS)

GBS is characterized by a dysfunction in the peripheral 
nerve, which suggests that immune and inflammatory 
mechanisms are involved [157]. Its main clinical manifesta-
tions are the absence of reflexes, paresthesia with sensory 
loss, and motor weakness [158]. Classification of GBS 
into subtypes depends on the underlying pathology, clini-
cal presentation, and neurophysiological features. The most 
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common subtypes include the following: acute inflamma-
tory demyelinating polyradiculoneuropathy (AIDP), acute 
axonal motor neuropathy (AMAN), acute motor-sensory 
axonal polyneuropathy (AMSAN), and Miller-Fisher syn-
drome (MFS) [159].

In GBS, antibodies and inflammatory cells produced in 
response to infections cross-react with epitopes on peripheral 
nerves and roots, leading to demyelination or axonal damage 
[160]. Macrophages initiate damage to the peripheral nerv-
ous system (PNS) by producing and secreting matrix metal-
loproteinases and nitric oxide. As a consequence, activated 
T cells release proinflammatory cytokines such as TNF-α 
[161]. The humoral response is initiated through activation 
of B cells, and antigen-antibody interactions can activate the 
complement system, resulting in membrane attack complex 
(MAC) formation and leading to nerve cell membrane dam-
age and destruction [162]. Multiple antecedents and poten-
tially triggering events have been reported. The association 
with infections has been established for Campylobacter 
jejuni, Mycoplasma pneumoniae, Haemophilus influenzae, 
and the viruses CMV, EBV, influenza A virus, and Zika 
virus [163]. Some genetic and environmental factors that 
affect the susceptibility of individuals to the disease have 
also been described [164].

Cases of patients with a combination of HSV-1 and GBS 
are suggested by the occurrence of molecular mimicry and 
high serum anti-GQ1b IgG antibody titers, causing inflam-
matory nerve damage [165–167]. Infection with HSV-1 
could cause a change in the ganglioside composition of 
neuronal and glial cell surfaces, followed by the activation 
of autoantibodies in patients with antiganglioside antibodies 
[168]. Molecular mimicry is also proposed between CMV 
and GBS, which is the most frequent infectious etiology of 
GB, described for the first time by Klemola et al. [169]. 
Patients with CMV who develop GBS have high levels of 
anti-GM2 antibodies in their CSF and serum. In these peo-
ple, carbohydrate structures similar to the GM2 ganglioside 
may induce antiganglioside antibodies [170]. Also, autoanti-
bodies against moesin, which is crucial for myelination, have 
been demonstrated in 83% of patients with CMV-GBS. This 
may be due to six consecutive amino acids that are identical 
in moesin and CMV phosphoprotein 85 [171].

Although studies have associated HHV-6 infection with 
GBS development, this theory is generally based on minimal 
observations such as significantly higher antibody titers to 
HHV-6 in GBS patients compared to control groups [172]. 
This persistence of HHV-6 antibodies in the serum can be 
due to a stronger antigen-antibody reaction or to polyclonal 
B cell activation. Reactivation of latent HHV-6 infection has 
also been considered, but the influence of HHV-6 in GBS 
etiology is still inconclusive due to the lack of experimental 
studies [162]. The neurological involvement of EBV is also 
unusual, but it should be treated as a post-infection disease 

due to the abnormal immunological response observed 
[173]. Grose and Feorino [174] described five cases of GBS 
with high levels of antibodies to EBV, even in the absence of 
IM. Multivariate analysis showed that of 154 GBS patients, 
10% had serologic evidence of recent EBV infection [6]. It 
has been suggested that the virus has a predilection for B 
lymphocytes and that it activates polyclonal B cells with 
increased production of immunoglobulins [175]. Other stud-
ies have suggested that EBV may infect endothelial cells 
and trigger vascular damage or cause vessel inflammation 
mediated by the immune complex, which could trigger the 
development of GBS [162].

The envelope of the influenza A virus consists of a lipid 
bilayer containing several glycoproteins, such as neurami-
nidase (NA) and haemagglutinin (HA). Therefore, anti-gly-
colipid antibodies may be produced during influenza virus 
infection because of possible molecular mimicry between 
glycoproteins of influenza viruses and glycolipids localized 
in human peripheral nerves [176].

Infectious hepatitis has been associated with GBS etiol-
ogy. The case of a patient with manifested distal paresis 
of both legs and arms with areflexia and paresthesia was 
studied by De Klippel and collaborators [177]. Scientists 
believe the disease onset occurred during the pre-convales-
cent phase of an acute HCV infection, when the level of 
liver enzymes was consistently and rapidly normalized and 
signs of fibrosis were found in this organ. GBS may also 
occur in patients with chronic HCV infection, albeit rarely 
[178]. The reactivation of the virus or its intense replica-
tion may trigger the development of GBS [179]. A case of 
severe GBS was related to chronic active HCV infection and 
mixed cryoglobulinemia (MC) [180]. Other findings, such as 
immune complex accumulation in the vascular endothelium 
and vasculitis over the nerve, may explain the relationship 
between the infection and GBS onset [162]. A few cases of 
peripheral neuropathy secondary to chronic HCV infection 
have been described. These cases were often associated with 
cryoglobulinemia or with anti-myelin-associated-glycopro-
tein (MAG) antibodies [181].

Scientific studies were performed on the relationship 
between DENV infection and GBS. The infection may 
directly influence the disease or trigger postinfectious auto-
immune responses that might lead to GBS [171]. Several 
studies on DENV infection have demonstrated abnormal 
immune responses, including cytokine and chemokine pro-
duction, complement activation, and immune cell activa-
tion. Shah [182] suggested that proinflammatory cytokines 
that participate in the immune response in dengue fever 
might play a causal role in the etiopathogenesis of GBS. 
This infection may cause the generation of a complex 
immune response, with high levels of TNFα, IL-2, and 
IFNγ, as well as an inversion of the CD4:CD8 ratio [183]. 
Also, autoimmune responses may be involved, mainly in the 
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pathogenesis of the severe phase of dengue. Patients with 
dengue can produce antibodies that cross-react with plate-
lets and endothelial cells. After DENV infection, antibod-
ies against nonstructural protein 1 (anti-NS1) are generated. 
Studies suggest these antibodies may influence the cross-
reactivity of endothelial cells, which play a crucial role in 
the development of neurological disease [184].

One of the proposed mechanisms for GBS in HIV-1-in-
fected patients includes a direct action of an HIV-1 neuro-
tropic strain on the nerves. Another theory is based on an 
autoimmune response, in which abnormal immunoregulation 
is followed by the formation of antibodies against myelin 
[185]. HIV can cause direct and indirect neurotoxic effects 
on the CNS and PNS. The relationship between GBS and 
the stage of HIV infection is also unclear. The authors char-
acterized the GBS as an indication of early HIV infection 
or seroconversion [186]. However, GBS has been reported 
in chronic HIV-1 infection cases or as a complication of 
immune reconstitution inflammatory syndrome in severely 
immunocompromised patients [187]. The HIV-1 infection 
may alter the integrity of the BBB through the action of the 
viral proteins Tat, gp120, and Nef [188]. In a study using a 
murine model, exposure to HIV-1 envelope protein gp120 
caused swelling and increased TNFα levels in the sciatic 
nerve trunk. These findings suggest that HIV infection may 
cause nerve damage [189].

SARS‑CoV‑2, the virus responsible 
for COVID‑19 pandemic, and its neurological 
impact

SARS-CoV-2 (severe acute respiratory syndrome corona-
virus 2) is the virus responsible for the disease COVID-19 
[190], a global pandemic that started in late 2019 and in 
a few months has affected 250 countries around the world 
[191]. Coronaviruses (CoVs) typically cause respiratory 
disease in humans; however, some studies suggest an asso-
ciation with neurological symptoms. Two different corona-
viruses that caused epidemic infections in the past, SARS-
CoV, and Middle East respiratory syndrome-associated 
coronavirus (MERS-CoV), have triggered neurological harm 
in isolated cases [192]. Patients infected by these viruses 
have developed neurologic symptoms, such as neuropathy, 
myopathy, Bickerstaff brainstem encephalitis (BBE), and 
GBS, two to three weeks after the appearance of typical 
symptoms [193, 194]. The causality cannot be proven, since 
these findings were reported in isolated cases and with a 
small number of patients. On the other hand, some scien-
tists have suggested that the neurological manifestations 
of MERS might have been neglected and underdiagnosed 
[193].

In Wuhan, China, a study was performed during the 
COVID-19 outbreak with 214 patients. The results showed 
that 36.4% of the patients with severe disease exhibited 
neurologic manifestations, such as acute cerebrovascular 
disease, impairment of consciousness, and skeletal muscle 
symptoms [195]. A study performed in Strasbourg, France, 
demonstrated that 84% of COVID-19 patients in inten-
sive care units (ICU) who had respiratory difficulties also 
showed neurological symptoms such as agitation, confu-
sion, and signs of corticospinal tract dysfunction [196]. It 
has been suggested that these signs of neurological dam-
age might be caused by severe hypoxemia and hypoxia, 
an inflammatory process triggered by SARS-CoV-2 infec-
tion, or by virus infiltration and spread in the brain [197]. 
The SARS-CoV-2 infection begins with the spike protein 
S1 binding to the host receptor ACE2 (angiotensin-con-
verting enzyme 2). The human brain expresses ACE2 at a 
high level, which may allow the virus to invade the CNS 
[198]. Xiang et al. [199] reported the first confirmed case 
of encephalitis caused by SARS-CoV-2. The presence of 
this virus in the CSF of this patient was confirmed by 
genome sequencing. The first case of meningitis associated 
with COVID-19 was reported by Moriguchi et al. [200]. 
Although nasopharyngeal swabs obtained from this patient 
were negative, the infection was confirmed by viral RNA 
detection in the spinal fluid.

COVID-19 triggers increased production of inflamma-
tory cells, and along with them, high levels of inflammatory 
cytokines, which induce immune-mediated processes [201], 
and this is one of the proposed explanations for GBS symp-
toms [202]. Sedaghat and Karimi [203] reported the devel-
opment of GBS in a 65-year-old male COVID-19 patient 
two weeks after developing cough and fever. In another case 
study, the first GBS symptoms overlapped with the period of 
SARS-CoV-2 infection, making investigators unsure about 
the causal connection between the two [204].

A patient with well-controlled post-encephalitic epilepsy 
was infected with SARS-CoV-2 and presented with focal sta-
tus epilepticus in the early stage of the disease. The 78-year-
old patient was seizure-free for more than two years, and 
based on a historical correlation of symptoms, it was sug-
gested that SARS-CoV-2 might have triggered the seizures 
[205]. The relationship between COVID-19 and epilepsy is 
still unknown, and conclusions will depend on new reports 
and updates from clinicians [206].

A study of 90 brain autopsy samples from patients with 
NDs (mostly MS) and healthy controls showed that 48% 
of the samples contained human coronavirus RNA [207]. 
However, further studies should be performed to determine 
if the presence of virus in human brains is opportunistic or 
disease-associated. It has been suggested that SARS-CoV-2 
infection is likely to trigger demyelination similar to MS. 
Based on this fact, periodic neurological assessments, such 
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as auditory brainstem responses and neuroimaging, should 
be carried out on recovered COVID-19 patients to follow up 
any signs of dysfunction [199]. When comparing COVID-19 
with past viral pandemics, a concern about neuropsychiat-
ric sequelae emerges. Previous outbreaks of virus infection 
have triggered long-term neurodegenerative effects such as 
encephalopathy, psychosis, demyelinating processes, and 
neuromuscular dysfunction, weeks, or even months after 
the patient’s recovery [208]. Therefore, Troyer et al. [209] 
have also emphasized the need for long-term monitoring of 
patients who were once infected with SARS-CoV-2. Sev-
eral neurodegenerative diseases, such as AD, PD, and MS, 
are related to high levels of cytokines/chemokines and other 
chronic neuroinflammation effects [210]. In this way, the 
cytokine storm triggered by COVID-19 and BBB disruption 
could affect the CNS and cause the onset of these diseases 
[211, 212]. However, further studies should be conducted 
to investigate the involvement of SARS-CoV-2 infection in 
neurodegenerative diseases [211].

Conclusion

In this review, we have discussed a number of studies that 
relate viral infections to the development of neurological dis-
orders. It is important to consider that viruses are responsi-
ble for various epidemics and even pandemics, and some of 
them can cause irreversible damage to the nervous system. 
This work demonstrates that considerable attention should 
be given to the relationship between viral infections and 
NDs. The inclusion of viruses in the etiology and diagno-
sis of diseases of the nervous system would have a positive 
impact on the management and treatment of disabling and 
potentially lethal complications. New studies that investigate 
the mechanism of action of the viruses in these pathologies 
should be encouraged, aiming mainly at the development of 
novel control and intervention therapies.
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