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Abstract
We previously developed CCR5-tropic neutralization-resistant simian/human immunodeficiency virus (SHIV) strains and a 
rhesus macaque model of infection with these SHIVs. We induced the production of neutralizing antibodies (nAbs) against 
HIV-1 by infecting rhesus macaques with different neutralization-resistant SHIV strains. First, SHIV-MK1 (MK1) (neutrali-
zation susceptible, tier 1B) with CCR5 tropism was generated from SHIV-KS661 using CXCR4 as the main co-receptor. 
nAbs against parental-lineage and heterologous tier 2 viruses were induced by tier 1B virus (MK1) infection of the rhesus 
macaque MM482. We analyzed viral resistance to neutralization over time in MM482 and observed that the infecting virus 
mutated from tier 1B to tier 2 at 36 weeks postinfection (wpi). In addition, an analysis of mutations showed that N169D, 
K187E, S190N, S239, T459N (T459D at 91 wpi), and V842A mutations were present after 36 wpi. This led to the appearance 
of neutralization-resistant viral clones. In addition, MK1 was passaged in three rhesus macaques to generate neutralization-
resistant SHIV-MK38 (MK38) (tier 2). We evaluated nAb production by rhesus macaques infected with SHIV-MK38 #818 
(#818) (tier 2), a molecular clone of MK38. Neutralization of the parental lineage was induced earlier than in macaques 
infected with tier 1B virus, and neutralization activity against heterologous tier 2 virus was beginning to develop. Therefore, 
CCR5-tropic neutralization-resistant SHIV-infected rhesus macaques may be useful models of anti-HIV-1 nAb production 
and will facilitate the development of a vaccine that elicits nAbs against HIV-1.

Introduction

Antiretroviral agents are used against human immunodefi-
ciency virus type 1 (HIV-1), but eliminating latent HIV-1 
is difficult [1–9]. Therefore, suppression and prevention of 
HIV-1 infection by passive administration of neutralizing 
antibodies (nAbs) and induction of nAbs by vaccination 
would be beneficial [10–17]. Few HIV-1-infected patients 

(10–30%) produce nAbs, and about 1% of infected people 
generate highly potent nAbs with broad neutralization cover-
age of HIV (elite neutralizers) [18, 19]. Due to advances in 
antigen-specific B-cell isolation techniques, broadly neutral-
izing monoclonal antibodies have been isolated from HIV-
1-infected patients [20–23]. Passive administration of these 
nAbs was protective against simian/human immunodefi-
ciency virus (SHIV) in a macaque model [24–30]. However, 
inducing potent and broadly reactive nAbs by vaccination is 
problematic. Although the production of potent nAbs with 
broad cross-reactivity is related to somatic hypermutation 
[31–34], the mechanism of induction is unknown. An animal 
model in which nAbs are produced would facilitate clarifica-
tion of the mechanism of induction of nAbs against HIV-1, 
as well as the development of effective vaccines.

The rhesus macaque model of simian immunodeficiency 
virus (SIV) infection is important as an animal model of 
AIDS for pathogenicity studies and vaccine development. 
However, the envelope protein (Env) of SIV has a low 
level of amino acid sequence similarity to that of HIV-1 
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[35], and nAbs against the two viruses are not cross-reac-
tive [36]. By contrast, SHIV [37], which is SIV contain-
ing the env gene of HIV-1, can be used to evaluate nAbs 
against the Env protein of HIV-1.

Controlling HIV and SIV is difficult, as they use CCR5 
as a co-receptor; however, SHIV-89.6P (CXCR4) is easy 
to control [38]. Seaman et al. [39] reported that clustering 
analysis of the patterns of sensitivity defined four sub-
groups of clinical HIV-1 strains: those having very high 
(tier 1A), above-average (tier 1B), moderate (tier 2), or low 
(tier 3) sensitivity to antibody-mediated neutralization, 
with the majority of viruses belonging to tier 2.　Indeed, 
the production of antibodies in rhesus macaques sup-
pressed replication of SHIV-KS661(KS661) (CXCR4-
tropic, tier 1B) [40]. SHIV-SF162P3 and SHIV-AD8 (tier 
2) are used as challenge viruses in vaccine development 
[33, 41–46]. We generated several different tier 2 chal-
lenge SHIVs to increase the reliability of the research. 
SHIV-89.6 is frequently used in vaccine studies [47–50] 
and thus was selected for this study. First, KS661 (SHIV-
89.6 strain), which mainly uses CXCR4 as a co-receptor, 
was modified to produce SHIV-MK1 (MK1) (tier 1B) and 
inoculated into rhesus macaques. Next, viruses from the 
infected macaques were passaged in two macaques, result-
ing in neutralization-resistant SHIV-MK38 (MK38) (tier 
2) [51]. Ishida et al. [52] produced the MK38 molecular 
clone SHIV-MK38 #818 (#818) (tier 2).

In this study, we evaluated nAb production by rhe-
sus macaques infected with CCR5-tropic tier 1 and tier 2 
SHIV. nAbs against tier 2 virus were induced by tier 1B 
virus infection, and production of nAbs against tier 2 virus 
began earlier in Tier 2 virus infection. Our findings provide 
important insights that might be applicable to HIV-1 vaccine 
development.

Materials and methods

Cell culture

HEK293T (293T) cells were cultured in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Fujifilm Wako Pure Chemi-
cal Corporation, Osaka, Japan) supplemented with 10% (vol/
vol) heat-inactivated fetal bovine serum (FBS; JR Scientific 
Inc., Woodland, CA, USA). TZM-bl cells were cultured in 
DMEM supplemented with 10% (vol/vol) heat-inactivated 
FBS, 2 mM sodium pyruvate (MP Biomedicals Inc., Santa 
Ana, CA, USA) and 4 mM L-glutamine (Fujifilm Wako 
Pure Chemical Corporation). Cells were harvested and pas-
saged using trypsin/ethylenediaminetetraacetic acid solu-
tion (Nacalai Tesque, Kyoto, Japan) and were maintained 
at 37 °C in a humidified atmosphere containing 5%  CO2.

Viruses and animal experiments

SHIV-MK1, SHIV-MK1-first passage, SHIV-MK1-
second passage, and SHIV-MK38 were described previ-
ously [51], as was SHIV-MK38#818 [52]. Based on the 
sequence information about co-receptor tropism of HIV-1 
[53, 54], we designed neutralization-susceptible CCR5-
tropic (tier 1B) MK1 by introducing five amino acid muta-
tions (E305K, R306S, R318T, R319G, and N320D). We 
inoculated MK1 intravenously into two rhesus macaques 
(MM482 and MM483). To allow MK1 to adapt, we con-
ducted in vivo passages from macaque M482 to macaque 
MM498 (SHIV-MK1-first passage), and subsequently 
to macaque MM504 (SHIV-MK1-second passage). This 
enhanced viral replication and the re-isolated virus was 
designated SHIV-MK38 (MK38). Next, we inoculated 
MK38 intravenously into rhesus macaques (MM481, 
MM501, and MM502) [51]. The molecular clone SHIV-
MK38#818 (#818) (tier 2) was produced by Ishida et al. 
[52]. We mimicked the infection route of HIV-1 to humans 
and inoculated #818 into the rectum of rhesus macaques 
(MM 596, MM 597, and MM 599; Table 1) [52]. R5 virus 
infects intestinal memory CD4-positive T cells [55, 56]. 
Indian-origin rhesus macaques were used in accordance 
with the institutional regulations of the Committee for 
Experimental Use of Non-human Primates of the Institute 
for Frontier Life and Medical Sciences, Kyoto University, 
Kyoto, Japan. Macaques were housed in a biosafety level 3 
facility and all procedures were performed in this facility.

Pseudotype viruses

Pseudotype viruses harboring the env gene of MK1, 
#818, murine leukemia virus (MLV), or clade B panel 
viruses (NIH AIDS reagent program) were prepared by 
co-transfecting 293T cells with pSGΔenv and pcDNA3.1 
vectors expressing the respective env genes. We obtained 
pSGΔenv, pcDNA3.1 vectors expressing clade B env, and 
vectors expressing MLV env from the NIH AIDS reagent 
program. To construct the pcDNA3.1 vector expressing 
the rev and env genes of MK1 and #818, approximately 3.0 
kb of the region including the rev and env genes of pMK1 
[51] and pMK38#818 [52] were amplified by PCR using 
the primers IFrevF (GCC TTA GGC ATC TCC TAT ) and 
SHenv7R (GGA GTA TTC ATA TAC TGT CCC). PCR was 
performed as follows: one cycle of denaturation (94 °C for 
2 min), 30 cycles of amplification (98 °C for 10 s, 52 °C 
for 30 s, and 68 °C for 90 s) and a final extension (68 °C 
for 10 min) using KOD Plus Neo buffer, 0.2 mM dNTPs, 
15 µM primers, 0.02 U of KOD Plus NEO (Toyobo Co., 
Ltd, Osaka, Japan), and a template. Approximately 5.5 kb 
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of the env-deleted region from pcDNA3.1-SHIVMNA [57] 
(pcDNA3.1-SHIV-MNA env was generated by InFusion 
cloning using the pcDNA3.1 vector and SHIV-MNA env 
PCR product) was amplified by PCR using the primers 
SHenv7F (GGG ACA GTA TAT GAA TAC TCC) and IFrevR 
(ATA GGA GAT GCC TAA GGC ). PCR was performed as 
follows: 1 cycle of denaturation (94 °C, 2 min), 30 cycles 
of amplification (98 °C for 10 s, 52 °C for 30 s, and 68 °C 
for 3 min), and a final extension (68 °C, 10 min). The 
buffer and polymerase were as above. The PCR products 
were purified using a NucleoSpin Gel and PCR Clean-
up Kit (TaKaRa Bio Inc., Shiga, Japan), and env-depleted 
pcDNA3.1 was reacted with the inserted env DNA. Clon-
ing was conducted using an In-Fusion HD Cloning Kit 
(TaKaRa), and the resulting plasmid DNA was introduced 
into Stbl3 cells by electroporation.

Pseudotype viruses harboring the env gene obtained from 
the plasma of MM482 at weekly intervals after infection 
were prepared by co-transfecting 293T cells with pSGΔenv 
and pcDNA3.1 vectors expressing the respective env genes. 
We produced pSGΔenv in the same manner as above. Viral 
RNA was extracted from plasma using a QIAamp Viral RNA 
Mini Kit (QIAGEN, Hilden, Germany) according to the 
manufacturer’s protocol. cDNA, including the env gene, was 
synthesized from the extracted RNA by reverse transcription 
using random hexamers (Invitrogen, Waltham, MA, USA) 
and SuperScript IV Reverse Transcriptase (Invitrogen). To 
construct the pcDNA3.1 vector expressing the rev and env 
genes of viruses obtained from MM482, at weekly intervals 
after infection, approximately 3.3 kb of the region including 
the rev and env genes in the cDNA template was amplified by 
PCR using the primers SHenv0F (AGA GCA AGA AAT GGA 
GCC AG) and SHenv8.5R (CCA TAG CCA GCC AAA TGT 

CT). PCR was performed as follows: 35 cycles of amplifica-
tion (98 °C for 10 s, 53 °C for 5 s, and 68 °C for 15 s) using 
KOD One PCR Master Mix (Toyobo), 15 µM primers, and 
template. Next, approximately 2.9 kb of the region includ-
ing the rev and env genes in the PCR product was amplified 
by nested PCR using the primers InsertF3 (TTC ACC GGC 
TTA GGC ATC TCC TAT GGC AGG AAG AAG CGG AGA ) 
and InsertR3 (TTG ACC ACT TGC CCC CCA TTT GTC CCT 
CAC AAG AGA GTG AGC T). PCR was performed as above. 
The PCR products were purified using a NucleoSpin Gel and 
PCR Clean-up Kit (TaKaRa) and sequenced directly (Mac-
rogen Japan Corp., Tokyo, Japan). Approximately 5.5 kb of 
the env-deleted region from pcDNA3.1-SC422661 (obtained 
from the National Institutes of Health [NIH, Bethesda, MD, 
USA] AIDS reagent program) were amplified by PCR using 
the primers VectorF3 (AAT GGG GGG CAA GTG GTC AA) 
and VectorR3 (AGG AGA TGC CTA AGC CGG TGAA). PCR 
was performed as follows: 35 cycles of amplification; 98 °C 
for 10 s, 58 °C for 5 s, and 68 °C for 27 s. The buffer and 
polymerase were as above. The PCR products were purified, 
and env-depleted pcDNA3.1 was reacted with the inserted 
env DNA. Cloning was conducted using an NEBuilder HiFi 
DNA Assembly Master Mix (NEB Inc., Beverly, MA, USA), 
and the resulting plasmid DNA was introduced into Stbl3 
cells by electroporation.

Neutralization assays

Neutralization assays were performed using various 
pseudoviruses with pooled plasma from HIV-1-infected 
patients (ZeptoMetrix, Buffalo, NY, USA) as a positive 
control. Luciferase activity was measured in TZM-bl cells 
[58]. Plasma was collected from the infected macaques 

Table 1  Plasma analyzed for neutralization activity (Matsuda et al., 2010, Virology. Ishida et al., 2015, JGV)

* : Persistently infected macaque

Macaque ID Virus Infected pathology Reference

Strain Tier Methods Peak of Plasma 
Viral Load (cop-
ies/mL)

Set point of 
Plasma Viral Load 
(copies/mL)

CD4 count in 
Peripheral Blood

*MM482 MK1 (molecular 
clone)

1B 20000TCID50/
Intra Venous

107-108 103-104 transiently 
decreased and 
recovered

Matsuda et al., 
2010, Virology.

MM483 106 undetectable Not Available
*MM498 MK1-1stPassage 1B-2 Intra Venous 107-108 104 Not Available
*MM504 MK1-2ndPassage 1B-2 Intra Venous 105-106 continuous reduc-

tion without 
signs of recovery

*MM481 MK38 2 20000TCID50/
Intra Venous

106-107

*MM501 104

*MM502 105

MM596 #818 (molecular 
clone)

10000TCID50/
Intra Rectal

undetectable reduction Ishida et al., 2015, 
JGV.*MM597 105-106

MM599 undetectable
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[51, 52] and serially diluted, and the 50% inhibitory dilu-
tion of the plasma  (ID50) was determined with the infec-
tivity of wells lacking plasma defined as 100%. A high 
 ID50 value thus indicates potent inhibition. Plasma from 
infected macaques was inactivated at 56 °C for 60 min and 
centrifuged at 11,000 rpm for 10 min. The pooled plasma 
of HIV-1-infected individuals and infected macaques 
was diluted in fourfold steps from 1:50 to 1:204,800 
and pre-incubated with virus (100  TCID50) at 37 °C for 
60 min. Next, 5,000 TZM-bl cells were cultured with the 
pre-incubated mixture in the presence of 5 mg of DEAE 
dextran/mL at 37 °C for 48 h. To measure luciferase activ-
ity, 50 of µL cell lysate solution (Toyo B-Net, Tokyo, Japan) 
was added to each well and the plate was agitated for 15 min. 
An aliquot of 30 µL of lysate was transferred to a Nunc F96 
MicroWell white plate (Thermo Fisher Scientific, Waltham, 
MA, USA), and the luminescent substrate (50 µL) was added 
to each well. Luciferase activity was calculated with Mik-
rowin and a TriStar LB 941 reader (Berthold Technologies, 
Bad Wildbad, Germany).  ID50 values were calculated as 
described previously [39].

As an anti-HIV-1-neutralizing monoclonal antibody, 
we used KD-247 (which recognizes the epitope GPGR in 
the V3 region of gp120 and was kindly provided by the 
Chemo-Sero-Therapeutic Research Institute, Japan). KD-247 
was diluted fourfold from 20 to 0.005 µg/mL, and  IC50 val-
ues were calculated as previously described [39].

Results

Infection of macaques and antibody production

In MM482 and MM483, the plasma viral RNA level peaked 
at  106–108 copies/mL and was maintained at  103–104 cop-
ies/mL in MM482. In MM498, MM504, MM481, MM501, 
and MM502, the plasma viral RNA level peaked at  107–108 
copies/mL and was maintained at  104–107 copies/mL in 
all of these macaques. In MM596, MM597, and MM599, 
the plasma viral RNA level peaked at  107–108 copies/mL 
and was maintained at  105–106 copies/mL only in MM597. 
Seven of the ten rhesus macaques developed persistent infec-
tions. Many HIV-1-infected patients have a persistent infec-
tion with neutralization-resistant virus [39]. To develop a 
rhesus macaque model of anti-HIV-1 nAb production, we 
evaluated the neutralization activity and plasma of seven 
persistently SHIV-infected rhesus macaques (Table 1).

Neutralization against env of parental‑lineage virus

Neutralization of parental-lineage virus was evaluated by 
luciferase assay using human pooled plasma (HPP) from 
HIV-1-infected patients as the positive control and a pseu-
dovirus containing mouse leukemia virus (MLV) env as 
the negative control. Potent neutralization of MK1, equal 
to or higher than that of HPP  (ID50, 831), was detected in 
MM482, MM504, MM501, MM502, and MM597  (ID50, 
10,200, 1,337, 2,679, 831, and 4,587, respectively). Addi-
tionally, neutralization activity against #818 higher than 
that of HPP  (ID50, 287) was detected in MM504, MM501 
and MM597  (ID50, 1,357, 907 and 474) (Table 2). These 

Table 2  Neutralization activity 
against parental-lineage virus
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results imply that nAbs against tier 2 virus are induced in 
macaques infected with tier 1B virus. Antibodies against 
MK1 were induced at 6 wpi in MM482 and at 12 wpi in 
MM501, MM504, and MM597 (Table 3). In contrast, anti-
bodies against #818 were induced at 64 wpi in MM482, 
30 wpi in MM504, and at 12 wpi in MM501 and MM597 
(Table 3). These results suggest that nAbs against tier 2 virus 
are induced earlier in macaques infected with tier 2 virus 
than in those infected with tier 1B virus. Furthermore, the 
neutralization activity increased over time.

Neutralization against the ENV protein 
of heterologous viruses

To investigate the ability of the plasma of infected macaques 
to neutralize a broad spectrum of viruses, we evaluated 

neutralization activity against heterologous viruses. Potent 
neutralization of SF162, similar to that of HPP, was detected 
in all macaques (Table 4). In MM482 and MM597, the 
neutralization activity of 6535 was similar to that of HPP 
 (ID50, 345 and 192, respectively) (Table 4). In MM482 and 
MM597, the  ID50 value against REJO4541 was 104 and 103, 
respectively (Table 4). These results suggest that MM482 
and MM597 have broader neutralization activity than the 
other five macaques, although the neutralization activity of 
plasma from MM482 and MM597 against tier1B and tier2 
viruses was less than that of HPP in all cases (Table 4). In 
MM482, antibodies against infectious strains and SF162 
were induced at 6 wpi  (ID50, 755) (Table 5A). In MM597, 
antibodies against infectious strains were induced at 12 wpi 
 (ID50, 255), and antibodies were induced against SF162 at 
6 wpi  (ID50, 300) (Table 5B). In MM482, the  ID50 value 

Table 3  Neutralization activity and breadth against parental-lineage virus over time
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against 6535 was 145 at 64 wpi, that against SC422661 was 
111 at 81 wpi and 126 at 101 wpi, that against RHPA4259 
was 596 at 101 wpi, that against QH0692 was 107 at 101 wpi 

and 123 at 135 wpi, and that against REJO4541 was 109 at 
101 wpi and 104 at 135 wpi. At 101 and 135 wpi, two of the 
tier 2 panel viruses were neutralized (Table 5A and Fig. 1). 

Table 4  Neutralization activity 
against heterologous viruses

Table 5  Neutralization activity and breadth against heterologous viruses over time
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In MM597, the  ID50 value against SC422661 was 112 at 28 
wpi and 105 at 60 wpi. In MM597, the  ID50 values against 
6535, REJO4541, and RHPA4259 at 60 wpi were 192, 103, 
and 113, respectively (Table 5B and Fig. 1). The neutraliza-
tion activity of plasma from MM597 against tier 2 viruses 
at 60 wpi was less than that of plasma from MM482 after 
101wpi. Therefore, nAbs against heterologous tier 2 virus 
are induced by infection with tier 1B virus after 101 wpi. It 
is also possible that nAbs against heterologous tier 2 viruses 
begin to be induced after infection with tier 2 virus. These 
findings suggest that antibody maturation broadens the neu-
tralizing activity over time.

Change from tier 1B to tier 2 virus 
in an MK1‑infected macaque

In the body of HIV-1-infected patients, neutralizing antibod-
ies evolve as the virus mutates [34]. Therefore, neutralizing 
antibodies may be produced as a tier 1B virus changes to a 
tier 2 virus in macaques. To confirm this, we analyzed viral 
resistance to neutralization over time in MM482, which had 
the highest and broadest neutralization activity. Pseudovi-
ruses with the env gene were collected from plasma dur-
ing each week of infection and evaluated for neutralization 
resistance using KD247, #818 (tier 2 virus), and MK 1 (tier 1 
B virus). The GPGR epitope of KD 247 was preserved in all 
viruses from 5 to 115 wpi in the plasma of MM482. Clones 
3, 4, 5, 6, 8, 9, and 10 were prepared from 12 wpi plasma. 
Clones 6 and 10 contained minor amino acid mutations. All 
of the clones showed greater resistance to neutralization than 
the tier 1 B MK 1 virus, but less resistance than that of the 
tier 2 #818 virus. At 12 wpi, all clones (3, 4, 5, 6, 8, 9, and 
10) remained tier 1B (Fig. 2A). Clones 2, 3, 5, 7, and 8 were 
prepared from 36 wpi plasma and contained minor amino 
acid mutations. Because clone 7 was more susceptible to 
neutralization than tier 1B MK 1, it was determined to be a 

tier 1A virus, and because clone 8 was between MK 1 and 
#818, it was determined to be a tier 1B virus. Because clones 
2, 3, and 5 showed neutralization resistance similar to that 
of #818, they were determined to be tier 2 viruses (Fig. 2B). 
Three of five clones were of tier 2 at 36 wpi. Eight, nine and 
ten clones were prepared from plasma obtained at 46, 70 
and 104 wpi, respectively. The neutralization resistance of 
clones with minor mutations, and of those with consensus 
sequences, was next evaluated. At 46, 70, and 104 wpi, all 
clones showed neutralization resistance equivalent to that of 
#818 and were thus determined to be tier 2 viruses (Fig. 2C, 
D, and E). These results suggest that tier 2 virus appeared at 
36 wpi, and further that only tier 2 viruses proliferated after 
46 wpi in MM482, which was infected with tier 1B MK1.

Mutations related to neutralization resistance 
and induction of broadly neutralizing antibodies

To identify mutations related to neutralization resistance 
and induction of broadly neutralizing antibodies, a mutation 
analysis of env was performed. Direct sequencing showed a 
consensus sequence lacking minor mutations (Fig. 3). The 
minor mutations detected in the neutralization-susceptible 
clones 7 and 8 at 36 wpi were not included. First, common 
mutations were found from 36 wpi (when neutralization-
resistant tier 2 virus appeared) to 115 wpi. These comprised 
N169D, K187E, S190N in the V2 region, S239 in the C2 
region, T459N in the V5 region (T459D at 91 wpi), and 
V842A in the cytoplasmic tail (Fig. 3, red font). S190N and 
T459N gained more potential N-linked glycosylation sites 
compared to MK1. Next, common mutations were found 
from 91 to 115 wpi; the former was the timepoint at which 
the maximum neutralizing activity against heterologous 
viruses was detected. We found the mutations S145N and 
G149E in the V1 region, D279N in the C2 region, S311P 
in the V3 region, and I347V and I372V in the C3 region 
(Fig. 3, blue font). S145N and D279N gained potential 
N-linked glycosylation sites compared to MK1. These find-
ings imply that these mutations are related to neutralization 
resistance and induction of broadly neutralizing antibodies.

Discussion

The SHIV strains MK1, MK38, and #818, which were 
derived from SHIV-89.6, are CCR5-tropic and have differ-
ent levels of resistance to neutralization (tier 1B and 2) [51, 
52]. These viruses are genetically similar to SHIV-89.6 P 
[50], which is widely used in vaccine development. In this 
study, we developed a rhesus macaque model of induction 
of anti-HIV-1 nAbs.

In MM597, nAbs against parental-lineage tier 2 viruses 
were rapidly induced, and nAbs against heterologous tier 
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2 viruses were beginning to be induced (Tables 3 and 5; 
Fig. 1). In HIV-1-infected patients, self- or type-specific 
Ab responses develop first, followed by Abs with increased 
affinity and neutralization activity against autologous viruses 
[34]. Indeed, neutralization activity against parental-lineage 
virus increased in rhesus macaques infected with CCR5-
tropic SHIV. Moreover, in HIV-1-infected patients with 
nAbs against autologous virus, escape mutants are gener-
ated in the virus, and the env sequence diversity increases. 
Subsequently, the host humoral immune response results in 
production of nAbs with increased affinity. After a number 
of years, some patients produce antibodies that target one or 
more shared epitopes, resulting in cross-reactivity with het-
erologous strains. This leads to induction of broadly neutral-
izing antibodies with activity against diverse tier 2 viruses 
[34]. Therefore, #818-infected rhesus macaques mimic nAb 
induction in HIV-1-infected patients and may be used to 
evaluate the induction of tier 2 nAbs.

KS661 was susceptible to neutralization (tier 1B). 
Induction of Abs in macaques infected with KS661 inhib-
its viral replication; however, MK38 became resistant to 

neutralization (tier 2) [52]. MK38 and #818 established 
persistent infections despite nAb production (Tables 2 and 
4), possibly due to the emergence of neutralization-escape 
mutations or to resistance to nAbs due to the three-dimen-
sional structure of the virus. Indeed, when the co-receptor 
changes from CXCR4 to CCR5, the resulting decrease in 
the net positive charge of V3 reduces its surface exposure, 
resulting in immunological escape from nAbs [52, 59].

In MM482, the N169D, K187E, S190N, S239, T459N 
(T459D at 91 wpi), and V842A mutations were detected at 
36 wpi. Because the tier 2 #818 virus has three mutations in 
the V2 region (N169D, K187E, and S190N) (Supplemental 
Figure), the above-mentioned six mutations likely contribute 
to neutralization resistance.

nAbs against tier 2 parental-lineage and heterologous 
viruses can be induced by infection with tier 1B virus 
(Tables 2, 3, and 5; Fig. 1). In HIV-1-infected patients, 
neutralization results from viral mutations [34]. We 
analyzed viral resistance to neutralization over time in 
MM482. In MM482 infected with tier 1B MK 1 virus, the 
virus mutated from tier 1B to tier 2 at 36 wpi. In MM482, 
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Fig. 2  Analysis of the neutralization resistance of pseudotype viruses 
to HIV-1-neutralizing antibodies (nAbs) against KD247. A, pseudo-
MM482-12wpi envelope. B, pseudo-MM482-36wpi envelope. C, 
pseudo-MM482-46wpi envelope. D, pseudo-MM482-70wpi enve-

lope. E, pseudo-MM482-104wpi envelope. After pre-incubation with 
100  TCID50 of each virus and KD247, TZM-bl cells were cultured for 
48 h, and luciferase activity was measured. KD-247 was diluted four-
fold from 20 to 0.005 µg/mL
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nAbs against the tier 2 #818 virus were detected at 64 
wpi (Table 3A), and against two of the heterologous tier 2 
viruses in the panel after 101 wpi (Table 5A). In MM597 
infected with the tier 2 #818 virus, nAbs against three 
strains of the heterologous tier 2 virus panel were begin-
ning to be detected at 60 wpi, although their  ID50 values 
were low (Table 5). These results imply that induction of 
broadly neutralizing antibodies occurs more than 60 weeks 
after infection with neutralization-resistant virus.

In MM482, the S145N, G149E, D279N, S311P, I347V 
and I372V mutations were detected from 91 wpi to 115 
wpi. Since the maximum neutralizing activity against het-
erologous viruses was detected at this time, six mutations 
may contribute to the induction of broadly neutralizing 
antibodies. Analysis of the epitopes targeted by the nAbs 
induced by MM482 is needed, together with verification 
that the mutations detected after 91 wpi are important for 
induction of broadly neutralizing antibodies. It is possible 
that induction of broadly neutralizing antibodies can be 
accelerated by a viral antigen with mutations related to 
neutralization resistance and induction of broadly neutral-
izing antibodies.

Based on our observations, #818-infected rhesus 
macaques may be useful models for the induction of tier 2 
nAbs. In addition, MK1 (tier 1B)-infected rhesus macaques 
will enable analysis of the neutralization resistance of 
viruses that induce tier 2 nAbs and the antigen needed to 
induce broadly neutralizing antibodies. Finally, these animal 
models will facilitate the development of HIV-1 vaccines.
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