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Abstract Extreme value analyses of a large number of rela-
tively short time series are in increasing demand in environ-
mental sciences and design. Here, we present an automated
procedure for the peaks-over-threshold (POT) approach to
extreme value theory and use it to provide a climatology of
extreme hourly precipitation in Switzerland. The POT ap-
proach fits the generalized Pareto distribution (GPD) to inde-
pendent exceedances above some high threshold. To guaran-
tee independence, the time series is pruned: exceedances
separated by less than a fixed interval called the run parameter
are considered a cluster, and all but the cluster maxima are
discarded. We propose the automation of an existing graphical
method for joint selection of threshold and run parameter.
Hourly precipitation is analyzed at 59 stations of the
MeteoSwiss observational network over the period 1981—
2010. The four seasons are considered separately. When nec-
essary, a simple detrending is applied. Results suggest that
unnecessarily large run parameters have adverse effects on the
estimation of the GPD parameters. The proposed method
yields mean cluster sizes that reflect the seasonal and geo-
graphical variation of lag dependence of hourly precipitation.
The climatology, as represented by the return level maps and
Alpine cross-section, mirror known aspects of the Swiss cli-
mate. Unlike for daily precipitation, summer thunderstorm
tracks are visible in the seasonal frequency of events, rather
than in the amplitude of rare events.
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1 Introduction

Peaks-over-threshold (POT) analysis (Davison and Smith
1990) is an approach to extreme value theory that, as its name
indicates, uses the observations exceeding a high threshold to
elicit information regarding the behavior of extremes. Since it
takes into account more than one value per year, it lends itself
well to the analysis of time series covering only a short period.
Unfortunately, the selection of the threshold requires expert
judgment, and stands in the way of an automatic analysis. In
the present paper, we propose a “blind” selection procedure
that allows the analysis to be performed automatically at a
large number of stations. We apply it to hourly precipitation in
Switzerland.

Due to its potentially dramatic consequences, intense
hourly precipitation is of great importance for engineering
and design. In the Alpine region, it is associated with
flash floods, mudslides and landslides, and debris flow
(Guzzetti et al. 2007; Borga et al. 2010; Toreti et al.
2013). In the form of snow, it can help trigger avalanches.
Engineers have long exploited empirical relationships be-
tween precipitation amplitudes of different duration to
derive the information they need for design (e.g., Geiger
et al. 1991; Koutsoyiannis et al. 1998). Yet systematic
analyses of extreme hourly precipitation have been hin-
dered by the lack of long records of data at high temporal
resolution. Since the 1980s, MeteoSwiss has at its dispos-
al a network of automatic stations that record precipitation
at 10-min intervals, thus providing a collection of rela-
tively long time series of precipitation at sub-daily
resolution.

The idea of using as extremes the values of a distribu-
tion exceeding a high threshold for estimating the ampli-
tude of rare events first saw the light in the context of
hydrology (e.g., Todorovic and Zelenhasic 1970). Later
on, it was integrated into the context of extreme value
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theory (Balkema and de Haan 1974; Pickands 1975),
according to which the distribution of excesses over a
high threshold can be approximated by the generalized
Pareto distribution (GPD), provided the largest observa-
tions over fixed blocks of time converge towards a non-
degenerate distribution. In practice, estimating the GPD
parameters implies choosing a threshold large enough for
this approximation to be justified.

An important assumption for the approximation with a
GPD is the independence of excesses. Environmental obser-
vations are manifestations of physical processes with their
own time scales and cannot, a priori, be assumed to be
independent. As it turns out, threshold exceedances do not
necessarily occur in isolation, but are almost always “clus-
tered” together. Clustering is an indication of dependence in
the time series, although dependence does not necessarily
imply clustering. For dependent series, the distribution of the
tail remains of the same family, but applies to the cluster
maxima rather than individual exceedances (Davison and
Smith 1990).

In practice, the “true” clusters are not known and one
must resort to defining them according to some reasonable
but artificial criteria. The most common method, used in
this paper, is runs declustering, which assumes indepen-
dent exceedances to be separated by a minimum number
of non-exceedances. This minimum “distance” is called
the run parameter (Coles 2001). Should two exceedances
be separated by a number of non-exceedances smaller
than the run parameter, they are considered to form a
cluster. Ultimately, all but the largest exceedance within
a cluster are discarded.

Generally, expert knowledge of the variable under con-
sideration is used to select the run parameter. This sub-
jective choice can be avoided, however, with the proce-
dure proposed by Ferro and Segers (2003): the run
parameter is determined by the mean cluster size, which
is estimated from the data. Fawcett and Walshaw (2007)
advise against declustering altogether, because their sim-
ulations indicate that it leads to biased estimates of pa-
rameters and return levels.

Thus, the peaks-over-threshold method presents a particu-
lar difficulty: an appropriate choice must be made not only for
the run parameter, but also for the threshold. Choosing too
high a threshold results in small samples and high
uncertainties, while with too low a threshold, the variance is
small, but the bias is potentially large. A widely used graphical
selection for the threshold, based on stability properties, was
proposed by Davison and Smith (1990). The method devel-
oped later by Dupuis (1998) to guide threshold selection,
while not purely graphical, cannot be used blindly because it
requires careful judgment by the practitioner.

Clearly, the value selected for the threshold can be
expected to modify the dependence structure of the
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resulting time series, and thereby affect the minimum dis-
tance necessary to separate dependent exceedances. Thus,
as Walshaw (1994) points out, the threshold and run pa-
rameter should be chosen in combination. A high threshold
allows for a smaller run parameter and vice versa (Palutikof
et al. 1999). This issue is addressed by Siiveges and
Davison (2010), who devise a test that ultimately allows
joint graphical selection of threshold and run parameter. In
the context of climate research, however, it is not uncom-
mon to be confronted with a huge number of time series.
Thus, graphical selection is not practicable and there is a
need for automatic selection. For heavy-tailed distributions,
Frigessi et al. (2002) devise a method that can be fully
automated. A further approach that can be automated was
proposed by Wadsworth and Tawn (2012), but implies
choosing the run parameter separately.

In this paper, we propose a simple automation of the
method developed by Siiveges and Davison (2010), which
tests all pairs of thresholds and run parameters for
misspecification of the model for inter-exceedance times.
As will be explained below, the automatic selection sim-
ply consists in choosing the pair yielding the largest
number of observations within a subset with particularly
low misspecification. This procedure allows us both to
automate our analysis, and to jointly select threshold and
run parameter.

We apply this method to time series of hourly precipitation
extending from 1981 to 2010 at 59 stations in Switzerland,
and present a climatology of extreme hourly precipitation.
Dependence at extreme levels is examined independently with
the help of dependence measures derived from extreme value
theory (Coles et al. 1999), in order to shed light on its seasonal
and regional characteristics.

Our paper is organized as follows: The statistical methods
applied in this study and the data used for the analysis are
presented in Section 2. The results in terms of method and
climatic characteristics of hourly extreme precipitation are
given in Section 3, and discussed in Section 4.

2 Methods and data

Extreme value statistics offers three approaches to the
analysis of rare events. The first, Block Maxima, approx-
imates the parent distribution’s tail with a distribution for
the maxima over time blocks of equal size (Fisher and
Tippett 1928; Gnedenko 1943). The second, peaks-over-
threshold (POT), approximates the behavior of extremes
with a distribution for the values over a high threshold.
The point process model unifies the first two approaches.
It describes occurrences in time or space, and can be used
to model threshold excesses as occurrences in time with a
given amplitude. In the present paper, we use the POT
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approach. The use of POT requires the selection of a
threshold to satisfy the asymptotic conditions. In addition,
in the approach used here, a minimum separation interval
between exceedances, called the run parameter, is selected
to guarantee independence. In a cluster consisting of
exceedances separated by less than the run parameter,
only the maximum exceedance is retained. Thus, each
combination of values for the threshold and run parameter
leads to a distinct series of observations and intervals. The
time intervals between consecutive exceedances are called
inter-exceedance times; those that separate clusters of
exceedances are named inter-cluster times; finally, the
intervals between exceedances within a cluster will be
referred to as intra-cluster times.

The automatic joint selection of threshold and run param-
eter proposed in this paper hinges on the time intervals be-
tween exceedances. In theory, inter-cluster times must follow
an exponential distribution, while intra-cluster times tend to
zero. This assumption is verified separately for a set of pairs of
threshold and run parameter, among which one pair is
selected.

2.1 Theory

The peaks-over-threshold approach to extreme value theory
formulates a limiting distribution for the excesses over a high
threshold. Let Xj,...,X,, be a strictly stationary sequence with
marginal distribution F, such that the dependence at extreme
levels decays asymptotically. The excesses Y=X—u over a
threshold u, conditional on X>u, converge towards a limiting
distribution H called the generalized Pareto distribution
(GPD):

1—(1 + 5y)z,@éo,

a

)=
" lfexp(*g),fz 0,

where y>0, and H is defined on 1+&/c>0 (Coles 2001;
Beirlant et al. 2004).

The parameters of the GPD are the scale o, which is a
measure for the spread of the distribution, and the shape
parameter £ describing the behavior in the tail. If £=0 (£>0),
the distribution is called light-tailed (heavy-tailed). If £<0, the
distribution is bounded, i.e., the excesses have an upper
bound.

One important application of extreme value statistics is to
estimate the amplitude of rare events expected to be exceeded
on average once every T years. These amplitudes are referred
to as return levels for the return period 7. For a declustered
sequence, the quantity of interest is the rate at which clusters
occur (Coles 2001). In this study, we use the formulation by

Palutikof et al. (1999), in which the number of exceedances
per year is modeled with a Poisson distribution with expected
value . Let 1/0 denote the mean cluster size. Then, the 7T'year
return level is given by

r=utl (TX@)?—l

§

For stationary sequences and in the limit of large »n, Hsing
(1987) shows that the extremal process can be interpreted as a
2-dimensional process with dimensions time and threshold
excess. The time intervals are normalized by the number of
observations, so that the entire process takes place between 0
and 1. As n becomes large, intra-cluster times collapse to zero,
and the clusters, rather than the individual exceedances, are
independent. Projected on the time axis, the cluster occurrence
follows a Poisson process, while in the other dimension, the
largest excess in each cluster, follows a GPD (Davison and
Smith 1990). This approach can be exploited to derive the
asymptotic distribution of inter-exceedance times, which is at
the heart of the automatic selection of threshold and run
parameter presented in this paper.

2.2 Modeling of inter-exceedance times and misspecification
test

Ferro and Segers (2003) show that for very high thresholds
and in the limit of large , the inter-exceedance times converge
to a mixture distribution with parameter 6, named the extremal
index: intra-cluster times tend to zero and occur with a prob-
ability (1—6), while inter-cluster times converge to an expo-
nential distribution and occur with probability 6. The mean of
the exponential distribution is 1/6, which turns out to be the
mean cluster size mentioned above. Thus, 6 plays a double
role: it is both the proportion of inter-cluster times, and the
reciprocal of the mean inter-cluster time. Siiveges and
Davison (2010) apply the information matrix test (IMT) de-
veloped by White (1982) to the likelihood of the limit law of
the inter-exceedance times (details of the likelihood function
can be found in the Appendix).

In order to use the likelihood function for the distribution of
inter-exceedance times in practical applications, Stiveges and
Davison (2010) truncate intervals that exceed the run parame-
ter in length. The resulting limit law for inter-exceedance times
takes the same form as in Ferro and Segers (2003), but the
intra-cluster inter-exceedance times, which have length 0, can
be accounted for in the likelihood function, allowing for an
estimation of the mean cluster size that is not biased towards 1.

For a formal treatment of the IMT in this particular context,
the reader is referred to Siiveges and Davison (2010). Essen-
tially, the IMT rests on the fact that for a well-specified model,
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&/
o0
of the score vector J = Var{%} , where /denotes the log-
likelihood and E the expected value (see also Davison 2008,
chapter 4). The null hypothesis H, is that the model is well
specified, in which case the difference D=/—J should vanish.
The IMT statistic can then be constructed as D divided by its
asymptotic variance, and is x{ — distributed for large samples.
Thus, H, can be rejected at the 5 % level for IMT>3.84. The
formula for the IMT can be found in the Appendix.

Fisher’s information matrix / = E { } equals the variance

2.3 Automatic selection of threshold and run parameter

The IMT provides a quantitative assessment of the compati-
bility of the threshold—run parameter pair with the two-
dimensional extremal process. It is used to try, one by one,
all combinations of the two parameters in a plausible range,
and results in a list of pairs that are not rejected at the 5 %
confidence level, i.e., with IM7<3.84. The automated proce-
dure proposed here is pragmatic: it takes a subset thereof for
which the IMT is close to zero—and hence, misspecification
is liable to be small-—and selects the pair leading to the largest
number of observations after declustering. Here, we take IMT
<0.05 (corresponding to a p value of 0.82) as a convenient
upper limit for this subset of “non-rejected” IMT values.
When the threshold—run parameter pairs lead to a number of
exceedances smaller than 80, they are discarded because
simulations revealed that there is not enough data to determine
whether the pair should be rejected (Siiveges and Davison
2010).

Suppose N observations from the stationary sequence X,
...,X,, exceed the threshold u. The probability of exceedance
of the threshold is then N/n. Let the indices { Jii X > u}
denote the locations of the exceedances, and 7,=j;,;—j; (i=1,
...,N—1) the inter-exceedance times. Let K denote the run
parameter, and ¢{“X'=(N/n)max {T;—K,0} be the inter-
exceedance times truncated by K and normalized by the
probability of exceedance. In effect, K splits the sequence of
inter-exceedance times 7; into clusters, separated by inter-
cluster intervals. Consecutive exceedances separated by an
interval equal to or shorter than K are within the same cluster,
and ¢“®=0. Between clusters, the intervals are simply short-
ened by K. Let N, denote the number of clusters, and 6 the
extremal index, i.e., the parameter of the asymptotic distribu-
tion for inter-exceedances times.

The automated procedure is done as follows:

1. For each (u,K) pair, compute ¢“X.

2. For each (u,K) pair, determine Nc. Compute the IMT (see
Appendix), and estimate 6, the extremal index.

3. Determine the (u,K) pairs for which /MT<0.05.

4. Select the (u,K) pair for which N is largest.
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The range chosen for u is between the 90th and the 99.5th
percentile of non-zero values. Note, however, that the zero
values were retained in the computation of inter-exceedance
times. The values for K extend from 1 to 120 h. In a previous
analysis, a threshold equal to the 90th percentile of non-zero
values (corresponding to #=0.90) was selected by applying
the graphical approach of Davison and Smith (1990) at a
subset of stations representing different climatic regimes in
Switzerland (Begert 2008). This threshold was combined with
a run parameter of 5 days, thus safely guaranteeing indepen-
dence of the observations. We shall regard this threshold—run
parameter pair (#=0.90,K=120) as a reference with which to
compare our results. For simplicity, we will refer to the auto-
mated procedure as the “IMT selection”, and the selected pair
as the “IMT pair.” The pair (#=0.90,K=120) will be called
“reference pair,” and the use of the reference pair regardless of
the season “reference method” or “reference selection.”

2.4 Inference

In this study, the GPD parameters are estimated by maximum
likelihood, using the log-likelihood in Davison and Smith
(1990) with an added term for the Poisson distribution of the
number of exceedances per year.

As we have seen above, the return level x7 depends not
only on the GPD parameters, but also on the reciprocal mean
cluster size 6. Thus, estimation of its confidence intervals
requires knowledge of the dependence between 6 and the
GPD parameters, which is unknown, since they are estimated
separately. Confidence intervals for the return levels can nev-
ertheless be determined by a bootstrapping procedure inspired
from Ferro and Segers (2003), in which the inter-exceedance
times are first categorized into inter-cluster times (between
clusters) on the one hand, and intra-cluster times (within
clusters) on the other.

The clusters, each consisting of a sequence of exceedances
separated by intra-cluster times, are resampled with replace-
ment a sufficiently large number of times. Separately, the
inter-cluster times are also resampled with replacement. A
new, artificial, time series is then reconstructed by alternating
a cluster with an inter-cluster time. The time series is truncated
when the original number of exceedances is reached. This
procedure preserves the structure of the inter-exceedance
times, including the probability of exceedance and the se-
quence of exceedances within a cluster. The GPD parameters
and return levels are then estimated from the resulting artificial
time series for the threshold and run parameter selected on the
basis of the original time series. The procedure is repeated
5,000 times and the 95 % confidence intervals for the return
levels evaluated.

As each (u,K) pair selection leads to a different time series,
neither common criteria for model selection, nor goodness-of-
fit tests are appropriate for a quantitative comparison of the
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quality of the fits based on declustered series resulting from
IMT or reference selection. Here, we opt for a quantitative
summary of the QQ plot, which can be seen as a visual guide
to goodness of fit. Let N.. denote the number of clusters, and
z()< Sz <...Zz(y,) the ordered cluster maxima. We use
the quantile normalized root mean square error

qnrmse =

Lﬁf(qt(pk)—qe(pk))a

NC k=1 qt(pk)

where p;=(k—1/2)/N,, q, s the quantile of the estimated GPD,
and ¢, is the empirical quantile. The computation of the
empirical quantile is distribution free. It is based on the modal
position (see definition 7 of Hyndman and Fan (1996)).

2.5 Extremal dependence measure

Hourly precipitation can be expected to exhibit dependence,
even between its less frequently occurring extreme values.
Independent information on the duration of this dependence
at a particular location can be elicited by means of a pair of
dependence measures denoted by (x,X) , provided by bivar-
iate extreme value theory. The pair is designed specifically to
express dependence at extreme levels (Coles et al. 1999; Coles
2001). Let (X,Y) be a two-dimensional random vector, such
that the marginal distributions of X and Y are identical. The
dependence measure y provides information on asymptotic
dependence, and it is defined as the limit, as the threshold u
rises, of the probability that Yalso exceeds u if X exceeds u. It
can take values between 0 and 1, and vanishes if X and Y are
asymptotically independent.

The second dependence measure ' describes the depen-
dence between asymptotically independent random variables.

2000

1000

Fig. 1 Location of the stations considered in the present study (black
dots; red triangle: station Altdorf) on a map of Switzerland (a) and in a
vertical cross-section across the Alpine ridge (b). The latter is defined as
the distance to the inner-Alpine valleys (thick red line in a). The profile of
the Alps is computed with the USGS-GTOPO30 (http:/eros.usgs.gov)

(b)

altitude [m]

It takes values between —1 and 1. For asymptotically depen-
dent variables, Y= 1 , and for independent variables, }= 0 ;
the sign of ¥ is positive (negative) when an increase
(decrease) in X tends to correspond to an increase in Y. For
asymptotically independent variables, ' increases with the
strength of dependence at moderately extreme levels. These
dependence measures must be used in combination. If =0, X
and Y are asymptotically independent, and  must be used to
evaluate dependence at moderately extreme levels.

In order to evaluate the dependence between extreme oc-
currences of hourly precipitation, x and Y are estimated
empirically—the data is transformed to the uniform distribu-
tion with the empirical distribution function—for lagged
exceedances over a range of thresholds. We estimate y at
different lags of hourly precipitation for the 99th percentile
of the full data set. This corresponds to quantiles of non-zero
values between 92 and 93 %, depending on the season, and
offers an indication of extremal dependence at the thresholds
used for the IMT statistic. As a crude estimate of the lag at
which dependence between exceedances can be expected to
die out, we will use the first lag at which the lower confidence
bound of  intersects the Y= 0 line, which we will call the
maximum dependent lag. The confidence intervals are esti-
mated with the delta method, and rely on assumptions such as
the independence of the observations. They are therefore
likely to be much too narrow, and the results should be
interpreted with caution.

2.6 Data

The data used in the present study consist of hourly precipi-
tation observations at 59 stations of the meteorological net-
work of the Swiss Federal Office of Meteorology and Clima-
tology (MeteoSwiss). Their geographical and cross-Alpine
altitudinal distributions are shown in Fig. 1.
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3000

2500

i . .
S5
o & >
S ) 2.
N B L d
QS . 2

M IR AR
< ) . 2 \e

< 8 o ©
S 0°- ) ? °
8 5 . . -

$ 3 g %
LI Swiss Plateau

5?0

T T T T T
-50000 0 50000 100000 150000 200000

distance to inner-alpine valleys [m]

T
-100000

digital elevation model, and is the minimum air-line distance of each
grid-point center to the inner-Alpine valleys. The thick (thin) gray line(s)
represent(s) the smoothed median (10 and 90 % quantiles) of the
distances in 100-m bins
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Stationarity of the parent time series is an essential prereq-
uisite for valid application of the GPD. Thus, only stations that
suffered neither a change in instrument type nor a displace-
ment in the period of interest were considered. Note that the
data underwent a standard quality check, but were not homog-
enized. At a small number of stations, trends in the 90 %
quantile of non-zero values were detected with a seasonally
applied Mann-Kendall test (Mann 1945; Kendall 1948). In
such cases, the linear trend was estimated with the Theil-Sen
estimator, and subsequently eliminated (Theil 1950; Sen
1968).

The length of the data sets is variable, between 20 and 30
consecutive years, over the period 1981 and 2010. The anal-
ysis presented here concentrates on subsets of the original data
corresponding to the four seasons. Winter is defined as De-
cember—January—February (DJF), spring as March—April—-
May (MAM), summer as June—July—August (JJA), and au-
tumn as September—October—November (SON).

3 Results
3.1 IMT selection and extremal dependence

IMT selection is applied to hourly precipitation at the 59
selected stations, but is first presented here at one station in
detail. The plausibility of the selection in terms of mean
cluster size—which can be seen as a summary quantity for
threshold and run parameter—is then examined at all stations.
As it represents the average length of events, we compare it to
the maximum dependent lag (see Section 2.5). Finally, the
ensuing GPD estimates are compared with those obtained
with the reference method (see Section 2.3).

The IMT selection is illustrated in Fig. 2 for winter and
summer hourly precipitation at the station Altdorf, located in
Central Switzerland in a valley of the northern Alpine rim.
The IMT results for all pairs are represented as a two-
dimensional surface for DJF and JJA in Fig. 2a, b. The red
dots are the (u,K) pairs selected by the algorithm. The “top
left” corner of the surface corresponds to the reference pair.

In winter, pairs with low # and low K lead to rejection at the
5 % confidence level. The IMT appears to favor either low u
and high K, or high u and low K (Fig. 2a). This particularity is
typical for the winter season (not shown). In summer, a pair
with a low value for K is selected, while the combination of
low u and high K yield inter-cluster times incompatible with
the assumptions of a point process (Fig. 2b). All stations but a
few have a similar IMT surface in summer (not shown).

Figure 2c, d show the 50-year return levels computed for all
(u,K) pairs at station Altdorf in winter and summer. Clearly,
the return levels of all pairs are within a narrow range, espe-
cially in winter. In the subset of pairs with /M7<0.05 with a
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final number of clusters greater than 80 (red segments in
Fig. 2¢c, d; black dots in Fig. 2a, b), all return levels are within
the interval between the highest lower confidence bound and
the lowest upper confidence bound (blue triangles). In fact,
there are only a few pairs, and only in winter, for which the
return levels are outside of this interval, and therefore differ
significantly from those in the subset. Thus, the estimates are
stable, and the selection has little influence on the return
levels. In both seasons, the reference pair (#=0.90,K=120)
yields return levels that are among the lowest of all pairs, but
still within the confidence bounds.

The return level plots for the selected (u,K) pair are
displayed in Fig. 2e, f. The estimated distribution is bounded
in winter and heavy-tailed in summer. This illustrates the
difference between winter and summer at stations in the
northern Alps, where all stations but one (75 % of stations)
have a significantly negative (positive) shape parameter in
winter (summer) (not shown).

For all stations, the mean cluster size is represented for the
four seasons in Fig. 3a. It is smallest in summer and largest in
winter, and consistently larger to the south than to the north of
the inner-Alpine valleys. Likewise, the station to station var-
iability increases from summer to winter with intermediate
values in spring and autumn; it is also generally greater in the
southern Alps. Both the seasonal variation, and the north—
south differences are mirrored in the maximum dependent
lag—a measure for the longest lag at which dependence might
still be expected—derived from the extremal dependence
measure (Fig. 3b).

At ecach station, the IMT selection yields a different
threshold—run parameter pair (1,K). These vary from sea-
son to season, and differ between northern and southern
Alps. In winter, thresholds vary between 2—4 mm, with
nearly all southern stations below 2 mm, while in summer
values go from over 2 to nearly 10 mm/h (not shown).
Run parameters are approximately 60—80 (20—40)h in the
northern (southern) Alps in winter, and about 10-15
(10-20)h in the northern (southern) Alps in summer
(not shown).

The performance in terms of gnrmse of the IMT selec-
tion vs. the reference selection is shown in Fig. 4a. In all
seasons, the IMT pair generally leads to a better fit of the
GPD estimates than the reference pair. Since the IMT
selection allows for lower run parameters than the refer-
ence selection, this suggests that unnecessarily large run
parameters may be harmful for the subsequent estimation
of the GPD parameters. Even in winter, when the differ-
ence seems moderate, the gnrmse is smaller for the IMT
pair than for the reference pair at 70 % of the stations. As
can be seen in Fig. 4b, the reference method leads to
IMT values that would strongly suggest rejection at the
5 % level at a majority of stations in all seasons except
in winter. In other words, the reference method
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Fig. 2 Analysis of hourly
precipitation at station Altdorf
(altitude 438 m; distance from
inner-Alpine valleys=26 km) for
winter (left) and summer (right).
Top IMT statistic. x-axis threshold
u as the proportion of non-zero
values that are below it. y-axis run
parameter K in hours. Blue line

5 % critical value x3(0.95)=3.84.
Black dots (u,K) pairs for which
IMT<0.05 (p value=0.82). Red
dots IMT pair, i.e., (u,K) pair with
the largest number of clusters.
Middle 50-year return levels in
millimeter per hour vs. u for all
(u,K) pairs yielding more than 80

clusters (gray segments). The

darker shades indicate higher

K. Red segments pairs for which .3

the IMT value is below 0.05. Red — ‘ o N AAAA“Afiﬁ‘ "

star selected (u,K) pair. Black 3 ' l 4 3 190t n % it H i '

cross reference (u,K) pair. Blue < 3 £ 91 i

point up (down) triangles upper E " o % — =
(lower) confidence bounds of 4 oy P —
pairs with IMT<0.05. Bottom . o m

Return level in millimeter/hour ML T v
vs. return period. Blue best ©, i i i . 8.?”'7"'?"‘?'",
estimate. Green 95 % confidence 090 092 094 09 0.98 090 092 094 09 098
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leads to a series of exceedances with a configuration of
clusters and inter-cluster times that can only poorly be
represented by the distribution required by the two-
dimensional process limit to the extremal process.

The 100-year return levels are generally higher for the IMT
pair than for the reference pair, especially in summer (Fig. 4c).
The negligible differences in winter can be attributed to the
fact that the selected run parameters are rather large, and thus
close to the reference run parameter. On average, however, the
difference is rather small, although it may be substantial at
individual stations. Particularly in July, it can reach 10 to 30 %
at half of the stations, but the differences rarely exceed the
range of the confidence intervals (not shown). Note that—as a
quantitative summary of the QQ plot—the gnrmse is a
goodness-of-fit measure that is entirely unrelated to the IMT

T
1

T T T T T T T T T T
01 02 05 1 2 5 10 20 50 100

return period [years]

T T
2 5

T T I
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selection of threshold and run parameter, and therefore con-
stitutes an independent assessment of the automation method
proposed.

3.2 Climatology of extreme hourly precipitation

In this section, we consider the results from a climatological
point of view, and examine the seasonal cycle and geograph-
ical patterns of extreme hourly precipitation in terms of its
severity, seasonal frequency, and duration. The severity is best
described by the return levels for a given return period, while
the frequency can be gleaned from the mean number of
clusters per season. For information on event duration, we
turn to the dependence measure.
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Fig. 3 Boxplots of the mean
cluster size (leff) and maximum
dependent lag (right), both in

(a) mean cluster size
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The 50-year return levels represented for the four seasons
in Fig. 5 show that intense hourly precipitation in Switzerland
experiences its minimum in winter (a) and its maximum in
summer (c). Winter is characterized by a rather narrow range
of low return levels without distinctive spatial pattern. The
inner-Alpine valleys, including the Inn valley, remain at low
levels all year round. In the northern Alps, the Plateau wit-
nesses an increase in the number of stations with higher return
levels in spring (b). In summer, high return levels cover the
entire Plateau, as well as the northern Alpine rim with slightly
weaker values. Thus, there is a slight increase in the return
values towards the Plateau with the distance to the Alpine
ridge. In autumn (d), the severity of events wanes to a level
hardly higher than in winter. In the southern Alps, the Ticino
stands out with comparatively high return levels from March
to November, especially in autumn, when the contrast with the
north is most pronounced.

The vertical cross-section of the 50-year return levels
across the Alpine ridge is shown in Fig. 6 for winter and
summer. In the northern Alps, return levels increase with

(a) gnrmse: IMT - REF

(b) IMT value for REF

height in winter. In summer, they increase with the distance
to the inner-Alpine valleys. No altitudinal effect can be de-
tected in the southern Alps in winter. In summer, although the
return levels at the five stations in the southern part of the
Ticino are nearly twice the return levels at the other southern
stations, there are not enough stations to draw any conclusions
about the altitudinal effect.

The seasonal frequency of events (see Fig. 7), i.e., the
number of clusters per season, is low from September to
May, generally not exceeding eight events in the season. In
summer, it increases all over Switzerland, and the highest
frequencies (exceeding 14 events per season) are found along
the northern Alpine rim. It is noteworthy that the southern
Alps, but especially the Ticino, displays lower frequencies
than in the north in all seasons.

The average duration of individual events and the long-
term dependence of intense or heavy hourly precipitation are
shown in Fig. 3a, b. Extreme hourly precipitation turns out to
be asymptotically independent, even at lags of 1 h,i.e., Y =0
(not shown). Thus, the quantity displayed here (b) is derived

(c) 100-y return levels: IMT and REF

o -1 ° o
I o _| ° o o
| o n -1 -
B ) ° - | = s
R : | [ | !
o
: ) 8 1 < T 1 8 [ ! ° o 8
O——————I———-r———'—— | [ ! ~
. o | ! 3o | o
8|_ : ® | c° 2 R 8 g
1 ° e T e o
[=) [ T 8_ -1 Eg— ! L o
ﬁf— | | o | o
! ; | ' - g o b !
1 0 l
R Y == INEEERET ¢ P
o | ! e e —— e
? S —1 o - — T o 4
| | | | | | | | T T I I
DJF MAM JUA SON DJF MAM JUA SON DJF MAM JJA SON

Fig. 4 Boxplots in winter, spring, summer, and autumn for all stations of
a: the difference in quantile normalized root mean square error (gnrmse)
between IMT and reference method (negative values indicate better
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performance for the IMT method); b: the IMT values for the reference
pair; ¢: the 100-year return levels of the IMT (blue) and reference (brown)
methods
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fromAX, the dependence at subasymptotic levels. Events last
approximately 4 h in winter and less than 2 h in summer, and
about 2-3 h in spring and autumn (a). Dependence between
exceedances at different lags subsists for more than 40 h in
winter, less than 30 h in spring and autumn, and only about
15 h in summer (b). To the south of the inner-Alpine valleys,
the dependence lasts consistently longer than in the northern
Alps, a fact reflected in the mean cluster size (a). Particularly
in summer and autumn, the difference is considerable, with
dependence lasting 10—15 h (20 to 30 h) in the north (south),
and about 25 h (50 h) in the north (south), respectively.

4 Discussion
4.1 IMT selection and GPD estimates

The comparison of the IMT selection with the reference
selection (Fig. 4) highlights the fact that it may be
harmful to select an unnecessarily large run parameter,
as shown by Fawcett and Walshaw (2007). Hourly
precipitation would be most strongly affected in winter,
when pairs with low run parameters tend to be rejected.
The IMT selection yields better GPD estimates than the
reference method because it looks for pairs leading to
the largest possible number of clusters. As this number

Fig.5 Fifty-year return levels for
winter (a), spring (b), summer (c¢),
and autumn (d). The color scale
codes the return levels in
millimeter/hour, and is the same
for all seasons. The /argest
(smallest) dots correspond to the
largest (smallest) return levels in
the respective season

increases roughly from the “upper right” corner (u=
0.995,K=120) to the “lower left” corner (#=0.90,K=
1), the IMT selection will automatically select a pair
with a smaller run parameter than the reference pair.
The disadvantage of this method is the tendency to
choose rather low thresholds, thus introducing the pos-
sibility of a bias in the estimates. This might not be of
great consequence in winter, when the physical process-
es involved are probably the same, regardless of the
amplitude of the excesses. In the other seasons, on the
contrary, the most extreme events and the moderate
ones are likely to originate from different processes.

Extreme value theory assumes that the parent distribu-
tion is stationary. Like most climatic variables, however,
precipitation undergoes an annual cycle. In the present
work, seasonality is taken into account by dividing the
year in 3-month bins, and considering them separately,
rather than modeling it explicitly, as done in several
recent studies (Katz et al. 2002; Maraun et al. 2009;
Rust et al. 2009; Umbricht et al. 2013). No attempt was
made to account for the daily cycle of hourly precipita-
tion. While its amplitude is negligible in winter, the diur-
nal cycle experiences a maximum in the late afternoon,
followed by a gentle decrease over the next 15 h (Wiiest
et al. 2010). Analysis of the empirical quantiles at the
stations used here confirmed this behavior.

20 30 40 50 70
mm/hour
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Fig. 6 Vertical cross-section of
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For precipitation, the form of the tail appears to vary
with duration (Buishand 1991; Pearson and Henderson
1998), geographical location (Revfeim 1982; Buishand
and Demaré 1990; Pearson and Henderson 1998;
Friederichs 2010; Toreti et al. 2010; Maraun et al.
2011), and altitude (Pearson and Henderson 1998,
Cooley et al. 2007; Gardes and Girard 2010). For daily

Fig. 7 Map of the mean number
of clusters per season in winter
(a), spring (b), summer (c), and
autumn (d). The color scale
represents the number of clusters
per season, and is the same for all
seasons. The largest (smallest)
dots correspond to the largest
(smallest) number of clusters in
the respective season

(a) DJF

(c) JJA
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precipitation, the shape parameter appears to be mostly
light or heavy-tailed.

It turns out, however, that the shape parameter of extreme
hourly precipitation is significantly positive (negative) in the
northern Alps in summer (winter) (not shown). A variation of
the shape parameter with altitude could not be detected. In
summer, it increases from the northern Alpine rim towards the

(b) MAM
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Plateau, as do the return levels (not shown). This is consistent
with the higher seasonal frequencies along the northern Alpine
rim than in the plain.

The tendency towards more negative shape parameters in
winter may, to some extent, be explained by the microphysical
processes taking place. Winter precipitation is stratiform, and
the precipitation particles form essentially through vapor de-
position. The upward motion must remain weak to allow the
droplets to fall (Houze 1997). This sets an intrinsic upper limit
to the hourly precipitation rate in winter. As a result, observa-
tions of winter hourly precipitation in Switzerland are con-
fined to a narrow interval, and the highest values rarely stray
far from the body of the distribution.

4.2 Climatology

The signature of the Alps can be seen in the annual mean
precipitation (Frei and Schar 1998; Isotta et al. 2013). A
marked wet anomaly covers the northern Alpine rim, and
most of the southern rim, while the inner-Alpine valleys, in
particular the Rhone valley in the southwest and the Inn Valley
in the Grisons in the southeast of Switzerland, are dry. The
Ticino, on the steep southern rim, is host to the heaviest
precipitation (Frei and Schmidli 2006; Isotta et al. 2013).

Some of these features are reflected in the findings of the
present study. Winter return levels increase somewhat with
height, as might be expected, given the role of orographic
precipitation in the Alpine region. The inner-Alpine valleys
witness few events of intense hourly precipitation, even in
summer. In addition, the return levels there generally remain
very low. The low frequency of summer thunderstorms in
these deep valleys is attributed to inadequate moisture flux
convergence, and lack of a lifting source (van Delden 2001).

The increased number of events in summer along the
northern Alpine rim mirrors the thunderstorm path as repre-
sented by the lightning climatology (MeteoSwiss, personal
communication). It is also reminiscent of the frequency of
observations exceeding 10 mm/h in the analysis of recon-
structed hourly precipitation by Wiiest et al. (2010). Note,
however, that these quantities are not directly comparable,
since a cluster contains several observations, and the thresh-
olds differ from station to station.

Finally, the Ticino displays comparatively high return
levels from March to November, but stands out particu-
larly in autumn with return levels twice to three times as
large as in the rest of Switzerland. This can be attributed
to southerly flow impinging on the Alps as the midlati-
tude cyclones reach further south with the approach of
winter. These can lead to violent precipitation as the warm
humid Mediterranean air is forced upwards over a short
distance, rapidly reaching the level of free convection
(Gheusi and Davies 2004, and references therein).

In contrast to the annual mean, the pattern of return levels
of heavy hourly precipitation in summer does not disclose the
structure of the Alps. In fact, the return levels experience a
slight increase from the northern Alpine rim towards the Swiss
Plateau. This may be explained by the thunderstorm formation
and propagation. Thunderstorms form in squall lines ahead of
cold fronts (Haase-Straub et al. 1994), or in response to
thermally driven topographic flow (Langhans et al. 2013).
Linder et al. (1999) identify the Jura and the northern Alpine
rim as regions of genesis for convective cells. However,
several studies show that these drift towards adjacent flat areas
(Finke and Hauf 1996; Bertram and Mayr 2004), such as, in
this case, the Swiss Plateau.

Given the fact that hourly precipitation results from pro-
cesses of varying time scales, we can expect the observations
to be dependent over a certain time interval. While synoptic
systems take a few days to sweep over Switzerland, convec-
tive cells have a lifetime extending from 1 h or less for single
cells up to 12 h for supercells (Bertram and Mayr 2004). Of
course, they are generally not stationary, and a single station
may be affected only over a much shorter time. In the present
study, dependence was examined in all seasons north and
south of the inner-Alpine valleys, and these climatic
characteristics were found to be reflected in the seasonal
variation both of the maximum dependent lag and the mean
cluster size. The values for dependence in the northern Alps
are in accordance with the study by Huser and Davison
(2013), who detected dependence of hourly precipitation at
extreme levels of the order of 10—15 h in summer at a selection
of stations in the Jura and the Swiss Plateau. Both dependence
and average duration of events exhibit strong spatial variabil-
ity in winter (see Fig. 3), despite the fact that winter events are
dictated by large-scale midlatitude cyclones. It is noteworthy
that dependence itself is consistently larger in the southern
Alps. The associated variability from station to station is larger
from May to November on the southern side of the Alps,
especially in autumn, pointing perhaps to different dominant
processes at different stations.

5 Summary and conclusions

In the present paper, we propose an automated procedure
for the selection of threshold and run parameter in the
peaks-over-threshold (POT) approach to extreme value
analysis based on the graphical method developed by
Stiveges and Davison (2010). The automated procedure
sets aside a subset of non-rejectable threshold—run param-
eter pairs and, in this subset, selects the pair that generates
the largest number of clusters. We apply it to hourly
precipitation in Switzerland in the period 1981-2010.
The tendency of extreme events to cluster indicates under-
lying dependence in the data. In particular, dependence

@ Springer



414

S. Fukutome et al.

between high exceedances should be reflected in the mean
cluster size. In order to put our findings into context, lag
dependence of hourly precipitation at extreme levels was
computed with the help of the dependence measures by Coles
et al. (1999).

Applied to hourly precipitation in Switzerland, the
misspecification test brings to light typical seasonal structures
in the inter-exceedance times. In winter, combinations of low
thresholds and low run parameters, leading to relatively small
mean cluster sizes, are rejected. In summer, strong
misspecification arises for combinations of low thresholds
and high run parameters, corresponding to the largest mean
cluster sizes. In this context, the automatic selection picks
threshold—run parameter pairs that yield mean cluster sizes
in accordance with the seasonal characteristics of the sepa-
rately estimated dependence at extreme levels.

The GPD estimates based on peaks-over-threshold analysis
of the cluster maxima resulting from the automated selection
highlight many known features regarding precipitation in the
Alpine region. It is noteworthy that in summer, the signal due
to thunderstorm activity is visible in the seasonal frequency of
events, rather than in their severity, as represented by return
levels for high return periods.

The present study exemplifies the argument by Fawcett and
Walshaw (2007) that unnecessarily large run parameters have
adverse consequences on subsequent estimation of the GPD
parameters. Compared to a reference selection with fixed
threshold and run parameter, the IMT selection allows for
lower run parameters. This leads to higher return levels, and
in practice to more stringent design measures, a positive
outcome considering the uncertainty associated with planning
long-term structures based on only 30 years of data. Finally,
the patterns of extreme hourly precipitation suggest that re-
quirements for the observational network may be different for
hourly than for daily precipitation.

Acknowledgments We are indebted to Juliette Blanchet for her help
with the dependence measures and the validation procedure, and to
Anthony Davison for his very helpful advice. We are grateful to Pier
Luigi Vidale for his detailed comments on the manuscript. We thank
Stephan Bader and Thomas Schlegel for sharing their expertise on Alpine
climatology, and Christoph Frei for his helpful discussions and insightful
questions that greatly contributed to improving this paper. Finally, we
thank Anne Schindler for her critical view and invaluable advice, regard-
ing both form and content, which helped shape the paper into its final
form. We also thank Christoph Frei for putting the R-package gevXgpd at
our disposal for estimation of the GPD parameters. The dependence
measures were estimated with chiplot by Jan Heffernan and Alec Ste-
phenson, which is part of the R-package evd.

Appendix

The equations appearing here can be found in the appendix of
Stiveges and Davison (2010). The derivation of the original
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paper has been corrected for errata, and the notations made

conform to those in Section 2.3. We assume a stationary

sequence X1, ...,X, with N observations exceeding the thresh-

old u, and therefore N—1 inter-exceedance times. Let K denote

the run parameter, N, the number of clusters, 6 the extremal

index, and % (i=1,...,N—1) the inter-exceedance times.
Then, the log-likelihood function is given by:

N-1
(k) (0; 05"“) = ((N=1)-Nc)log(1-0) + 2N clogh-0 ¢/~
i=1

Let 4, j;, i;, d;, denote for a single observation i: the log-
likelihood, the score function, the expected information, and
the difference between score function and expected informa-
tion, respectively. Let the derivative with respect to 6 be
denoted by a prime. Let I(4) be the indicator function for
the set 4. Then, for a given (u,K) pair,

/ 1(c =0) 21(** > 0)

AO="Tag T g a4
o e
o H(C((:;; 0) i 2]1(c§“‘;) > 0)7
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Let D(0) = (N-1) " Y di(0) and I(0) = (N-1) " Y ik
k=1 k=1
(0) denote the sample means of d; and i;. The sample variance
of D(0) is:

N-1
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The Information Matrix Test (IMT) Statistic is then:

IMT (@) - nD(@)zV@) 71,

where 0 has been replaced by the estimated value of 0.
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