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Abstract
Attention-deficit hyperactivity disorder (ADHD) has been postulated to associate with dopaminergic dysfunction, including 
the dopamine transporter (DAT1). Several meta-analyses showed small but significant association between the 10-repeat allele 
in the DAT1 gene in 3′-untranslated region variant number tandem repeat polymorphism and child and adolescent ADHD, 
whereas in adult ADHD the 9-repeat allele was suggested to confer as risk allele. Interestingly, recent evidence indicated 
that the long-allele variants (10 repeats and longer) might confer to lower expression of the transporter in comparison to the 
short-allele. Therefore, we assessed here the association in samples consisting of families with child and adolescent ADHD 
as well as a case–control sample, using either the 10- versus 9-repeat or the long- versus short-allele approach. Following, we 
conducted a systematic review and meta-analysis, including family and case–control studies, using the two aforementioned 
approaches as well as stratifying to age and ethnicity. The first approach (10-repeat) resulted in nominal significant associa-
tion in child and adolescent ADHD (OR 1.1050 p = 0.0128), that became significant stratifying to European population (OR 
1.1301 p = 0.0085). The second approach (long-allele) resulted in significant association with the whole ADHD population 
(OR 1.1046 p = 0.0048), followed by significant association for child and adolescent ADHD (OR 1.1602 p = 0.0006) and in 
Caucasian and in European child and adolescent ADHD (OR 1.1310 p = 0.0114; OR 1.1661 p = 0.0061; respectively). We 
were not able to confirm the association reported in adults using both approaches. In conclusion, we found further indication 
for a possible DAT1 gene involvement; however, further studies should be conducted with stringent phenotyping to reduce 
heterogeneity, a limitation observed in most included studies.
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Introduction

Attention-deficit hyperactivity disorder (ADHD), character-
ized by persistent symptoms of inattention, hyperactivity 
and impulsivity, is one of the most common psychiatric and 
behavioural disorders in children and adolescents, with more Electronic supplementary material The online version of this 
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than 5% of the paediatric population affected worldwide, 
and ADHD often persists into adulthood with a prevalence 
of 2.5–4.9% in adults (Thomas et al. 2015; Polanczyk et al. 
2014). ADHD has been shown to have a high genetic com-
ponent with around 80% heritability (Faraone and Larsson 
2018). A recent genome-wide association study of over 
20,000 ADHD patients has identified 12 independent loci 
to be genome-wide significantly associated with ADHD 
(Demontis et al. 2019). Nevertheless, genetic variations 
such as variable number tandem repeats (VNTRs) cannot 
be captured on such arrays, and therefore, conventional gene 
association studies may provide further information. One 
of these VNTRs (rs28363170), located on the dopamine 
transporter gene (SLC6A3 / DAT1) in the 3′ untranslated 
region (UTR), with the 10- and 9-repeat alleles that are 
most common (Doucette-Stamm et al. 1995), were found 
to be associated with ADHD. In particular, the 10-repeat 
allele was described in several meta-analyses to associate 
with child and adolescent ADHD, though with a rather 
low effect size and in most cases with high heterogeneity 
between studies due to clinical phenotyping, age and eth-
nicity (Gizer et al. 2009; Yang et al. 2007). Nevertheless, 
further studies kept looking into the association between 
DAT1 gene and ADHD, also due to significant linkage find-
ings with the chromosomal location 5p13 containing the 
gene and ADHD (Friedel et al. 2007). Since it is known 
that there are further variants (3–13-repeats) on the DAT1 
3′-UTR VNTR, expressing in various ethnicities in different 
frequencies (Mazei-Robinson and Blakely 2006), some stud-
ies looked also into associations with the 9- or the 11-repeat 
alleles. However, no association has been detected in child 
and adolescent ADHD both in European and Asian ethnicity 
(Li et al. 2006), whereas in adult ADHD a trend for associa-
tion was found for 9-repeat allele carriers following a recent 
meta-analysis (Bonvicini et al. 2016).

The dopamine transporter is a key player in the dopamin-
ergic system, regulating the synaptic dopamine homeostasis 
and its signalling. Since psychostimulants, such as ampheta-
mine and methylphenidate, provide an effective treatment 
for ADHD (e.g., Faraone and Buitelaar 2010), are known to 
have high affinity to the transporter and inhibiting the trans-
porter (Markowitz and Patrick 2008; Han and Gu 2006), 
the dopamine transporter has become one of the risk can-
didates for ADHD research. Dopamine controls numerous 
functions including attention, mood, cognition, reward and 
movement (Iversen and Iversen 2007). And altered dopa-
mine homeostasis and particularly dopamine transporter is 
not exclusive for ADHD, but has been implicated in several 
disorders, including paediatric Bipolar Disorder (rs40184) 
(Mick et al. 2008), Major Depressive Disorder (9-repeat) 
(Lopez-Leon et al. 2008), Posttraumatic Stress Disorder 
(9-repeat) (Li et al. 2016), Tourette Syndrome (9-repeat 
associated with increased tics) (Tarnok et  al. 2007), 

Obsessive–Compulsive Disorder (9-repeat) (Taylor 2013), 
Alzheimer’s disease (9-repeat) (Feher et al. 2014) and Alco-
holism (9-repeat associated with alcohol withdrawal seizure 
and delirium tremens) (Du et al. 2011), while no association 
was found in Schizophrenia (Gamma et al. 2005)(see also 
meta-analysis in http://www.szgen e.org) and Parkinson’s 
disease (Geissler et al. 2017) [for detailed review on dopa-
mine transporter and various CNS disorders see (McHugh 
and Buckley 2015)]. However most studies demonstrated 
either conflicting findings or having only a single finding 
lacking replications or having no significant findings. In a 
meta-analysis of a collection of naturalistic studies ADHD 
children without 10/10-repeat genotypes responded better 
to methylphenidate; however, this effect was not found in 
clinically monitored studies (Soleimani et al. 2018). On the 
other hand, Parkinson’s disease carriers of the 9-repeat allele 
required lower levopoda doses, as well as were at risk of hal-
lucination/psychosis following treatment (Politi et al. 2018). 
Similarly, in methamphetamine substance use, 9-repeat was 
shown to be a strong risk factor for a worse prognosis of 
methamphetamine psychosis (Ujike et al. 2003).

Investigation regarding the functional consequence of 
the aforementioned variants has shown some mixed results. 
In vitro, using various cell culture models and reporter gene 
designs, showed either the 9- or the 10-repeat to increase 
DAT1 gene expression (Fuke et al. 2001; VanNess et al. 
2005; Mill et al. 2005; Greenwood and Kelsoe 2003; Inoue-
Murayama et al. 2002; Hill et al. 2010; Miller and Madras 
2002). Ex vivo, gene expression in post-mortem brain as 
well as in periphery also showed some inconsistent results 
[3 monkey substantia nigra (SN) (Miller and Madras 2002], 
20 post-mortem cerebellum and temporal lobe and 18 vol-
unteers lymphocytes (Mill et al. 2002), 7 post-mortem mid-
brain (Brookes et al. 2007), post-mortem of 30 Alzheimer’s 
disease SN and polar region of the frontal lobe (Pinsonneault 
et al. 2011), post-mortem of the ventral midbrain from 18 
controls and 18 cocaine users (Zhou et al. 2014). To our 
knowledge, no data are available linking between central 
nervous system and blood DAT1 expression and DAT1 geno-
types. However, Wiers et al. (2018) reported correlations 
in a small post-mortem study investigating DAT1 mRNA 
expression in SN of 3 adult ADHD and 13 controls and 
DAT protein expression in the Caudate. Indeed, they found 
a significant positive correlation between mRNA and pro-
tein expression in the two brain regions (Wiers et al. 2018). 
Furthermore, DNA methylation of the DAT1 cluster A in 
blood was significantly correlated with the DNA methyla-
tion of the DAT1 cluster A in SN (Wiers et al. 2018). In 
a recent meta-analysis of a collection of positron emission 
tomography (PET) a highly significant evidence for the 
9-repeat allele was shown to be associated with increased 
dopamine-transporter activity in human adults, that was 
significant in healthy adults and only marginally significant 

http://www.szgene.org
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in adult ADHD patients (Faraone et al. 2014). In the single-
photon emission computed tomography (SPECT) analy-
sis, although containing small sample size, similar results 
were obtained for healthy adults, while for affected adults 
(ADHD, Parkinson’s disease, Schizophrenia, and alcohol-
ism) the opposite  results were observed (Faraone et  al. 
2014). Interestingly, in adult age span (20–75 years of age) 
10-repeat homozygotes showed reduced striatal activity dur-
ing working memory task that reduced with age, that led to 
the hypothesis of earlier manifestation of cognitive impair-
ment in 10-repeat homozygotes (Sambataro et al. 2015). Yet, 
most studies focused on the functional effects of the most 
frequent repeats, the 9- and 10-repeats, while few studies 
looked whether the other variants have any functional effect. 
In a recent study, the binding of HESR1 and two transcrip-
tion factors, known to bind at the VNTR-site of the DAT1 
gene, was found to be inhibited depending on the length of 
the VNTR variant, with 11-repeats having low DAT1 expres-
sion compared to the short variants up to 6-repeats (Kanno 
and Ishiura 2011). Moreover, the non-coding RNA, miR-491 
was found to inhibit DAT1 expression in a dose-dependent 
manner, in which higher repeat number (11-repeats) inhib-
ited the expression compared to low number of repeats (up 
to 1-repeat) (Jia et al. 2016).

Therefore, in the current case–control and family study, 
we assessed whether the association between DAT 3′-UTR 
VNTR 10-repeat carriers or long-allele (10-repeats and 
higher) carriers conveys a risk for ADHD. In addition, we 
conducted a systematic review of the literature followed by 
an updated meta-analysis, including all current available 
associations with DAT1 3′-UTR VNTR for case–control 
and family studies in child and adolescent as well as adult 
ADHD in various ethnicities. To address the possible con-
founding effects by age of patients, and their ethnicity, a 
stratified meta-analysis for each variable was conducted.

Materials and methods

Study samples

Two hundred and two Caucasian nuclear families (146 fami-
lies with both parents and 56 families with 1 parent) were 
recruited and the index patients were investigated in the in- 
and outpatient units and the day clinics of the Department of 
Child and Adolescent Psychiatry and Psychotherapy, Univer-
sity Hospital of Psychiatry Zurich. Families were included 
if at least the index patient fulfilled the diagnostic criteria 
for ADHD (F90.0 or F90.1) according to ICD-10 (World 
Health Organization 2016; Dilling et al. 1996). Accord-
ingly, this resulted in total 738 individuals [202 index with 
ADHD (males = 153, females = 49); aged 12.62 ± 3.05; IQ 
102.7 ± 13.2; 119 parents and sibs with ADHD (males = 41, 

females = 78) and 417 control parents and sibs (males = 194, 
females = 223)]. The ADHD diagnoses of the parents and 
siblings were reported by the parents. The clinical diag-
nostic assessment of the index patient was done by a child 
and adolescent psychiatrist or psychologist under supervi-
sion of a senior psychiatrist in the clinic. The index patient 
was required to be ≥ 6 years old and to have an IQ over 75 
as assessed with either the Wechsler Intelligence Scale for 
Children (WISC) (Wechsler 1991; Tewes et al. 1999), the 
Kaufman Assessment Battery for Children (K-ABC) (Kauf-
man and Kaufman 1983; Melchers and Preuss 1994), the 
Culture Fair Test (CFT-20-R) (Weiss 2006), Snijders-Oomen 
Nonverbal Intelligence Test (SON-R) (Tellegen et al. 2003) 
or Intelligence and Development Scales (IDS) (Grob et al. 
2009). Exclusion criteria were (a) no Caucasian origin, (b) 
potentially confounding and severe psychiatric diagnoses 
such as psychosis, any pervasive developmental disorder, 
primary mood or anxiety disorder and Tourette’s syndrome, 
(c) neurological disorders such as epilepsy, (d) a history of 
any acquired brain damage or evidence of the fetal alcohol 
syndrome, (e) premature deliveries (delivery before 37th 
gestational week) and/or (f) maternal reports of severe pre-
natal, perinatal or postnatal complications.

In the case–control setting, the 220 index patients 
(males = 164, females = 56; aged 12.7 ± 2.98; IQ 
103.2 ± 13.6) were compared to genetically independent 
158 Caucasian healthy controls (males = 89, females = 69, 
aged 11.52 ± 3.091; IQ 111.5 ± 13.3) who were recruited 
at the Departments of Child and Adolescent Psychiatry of 
the Universities of Wuerzburg and Zurich. The cases in the 
case–control study consist of some index from the family 
study with additional new cases without family members 
recruited. Informed written consent was obtained in all 
cases from the participants and their parents. The study was 
approved by the ethical commissions of both of the involved 
universities in accordance with the latest version of the Dec-
laration of Helsinki, including an ethical permission granted 
by the Ethic Committees from Wuerzburg, and the Cantonal 
Ethic Committee of Zurich (Ref. Nr. KFO 140/03 and KEK-
ZH-Nr. 2016-00101).

Genotyping

DNA was isolated either from whole blood collected in eth-
ylenediaminetetraacetic acid (EDTA) tubes using QIAamp 
DNA Blood Maxi Kit (Qiagen), or from saliva collected in 
the Oragene DNA collection kit (DNA Genotek, Canada) 
and isolated as per manufacturer’s protocol. DNA concen-
trations, A260/A280, and A260/A230 ratios were measured 
using a spectrophotometer (NanoVue Plus, GE). The study 
population was genotyped for the DAT1 3′-UTR VNTR 
polymorphism, using the primers F: 5′-TGT GGT GTA GGG 
AAC GGC CTGAG-3′ and R: 5′-CTT CCT GGA GGT CAC 
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GGC TCA AGG -3′. A total volume of 25 µl containing 1 µl 
DNA sample (50 ng/µl) were mixed with 12.5 µl Promega 
 GoTaq® Green Master Mix (Promega), 9.5 µl water and 1 µl 
of both primers (forward and reverse 10 µM). The reaction 
was performed in 0.2 ml PCR 8-tube strips, sealed with indi-
vidually attached caps (Bio-Rad) in a C1000™ CFX96™ 
Thermal cycler (Bio-Rad). DNA amplification was achieved 
under the following conditions: 2 min at 95 °C followed 
by 30 cycles at 95 °C for 45 s, 67.5 °C for 45 s, 72 °C for 
1 min, and a final extension of 5 min at 72 °C. 15 µl of 
PCR product was loaded into a 3% agarose gel  (SeaKem® 
LE Agarose mixed with 1x TAE buffer) stained with 5 µl 
HDGreen™ Plus DNA Stain (Intas) per 100 g agarose and 
run for 90 min at 120 V. A 100 bp BenchTop DNA ladder 
(Promega) was used to assess the size of the PCR product 
and set the genotypes according to the expected bands of 
316 bp for 6-repeat allele, 396 bp for 8-repeat allele, 436 bp 
for 9-repeat allele, 476 bp for 10-repeat allele and 516 bp for 
11-repeat allele. PCR were run for sample DNA samples in 
duplicates to ensure reproducibility. In case of ambiguity in 
the duplicates, genotyping was repeated in a separate run to 
resolve the discrepancy. No-template controls (NTC) were 
included in every run to exclude impurities.

Statistical analysis

All association studies were run on the PLINK v1.7 [URL: 
http://pngu.mgh.harva rd.edu/purce ll/plink / (Purcell et al. 
2007)]. Each study group (case–control study) was tested 
for Hardy–Weinberg equilibrium (HWE) that confirmed no 
deviations from HWE for all samples. For the case–control 
association study Fisher’s Exact Test was conducted and sig-
nificance was set at p < 0.025 as Bonferroni correction was 
conducted (analysis of the DAT1 in two forms: long-allele 
vs. short-allele and 10-repeat vs. 9-repeat). For the family 
association study, Mendel errors test (none were found) fol-
lowed by the transmission disequilibrium test (TDT) was 
conducted as well as a parent-of-origin analysis.

Search strategy and study selection

A systematic literature search was conducted to include stud-
ies that examined associations of DAT1 3′-UTR VNTR poly-
morphisms with ADHD. We searched PubMed and Web of 
Science databases for articles published until December 31, 
2018. Literature was searched using the keywords: (DAT* 
OR SLC6A3 OR “dopamine transporter”) AND (polymor-
phism* OR VNTR OR “tandem repeat” OR “untranslated 
region”) AND (ADHD OR “attention hyperactivity”). As 
a further search manner, we searched the reference sec-
tions of the most recently published studies identified in 
literature search described above, as well as any recently 
published systematic review articles and meta-analysis, 

to identify studies that might have been missed. The Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) flow diagram (Liberati et al. 2009) 
was used to report the search flow for this meta-analysis. 
Studies included in our meta-analysis had to fulfil the fol-
lowing criteria: (1) detailed description of the sample size, 
ancestry of participants, and diagnostic criteria for ADHD, 
(2) case–control or family studies examining the association 
between DAT1 3′-UTR VNTR polymorphism and ADHD, 
and (3) containing data on allele/genotype frequencies in 
case and control groups and/or odds ratio (OR) and 95% 
confidence interval (CI) for the OR, (4) samples not duplica-
tive of other studies. In addition to performing a meta-anal-
ysis of all studies pooled together, we conducted a subgroup 
analysis by dividing the studies into those including patients 
with Caucasian or Asian ancestry to examine the effects of 
ethnic heterogeneity as well as for adult versus child and 
adolescent ADHD. If articles only reported allele/genotype 
frequencies, OR and 95% CI was calculated from allele fre-
quencies using an online OR calculator (https ://www.genec 
alcul ators .net/assoc iator rr-cc.html). Corresponding authors 
and co-authors were contacted in case of missing data in the 
selected publications, and were asked to provide the missing 
information. In case of no respond, articles were excluded 
(n = 4).

Data synthesis and statistical analysis

The quality of all included studies was assessed based on 
traditional epidemiological considerations for genetic stud-
ies as previously described in Liu et al. (2015; Supplemen-
tary Table S1). The meta-analysis was conducted using the 
MIX 2.0-Professional software for meta-analysis in Excel, 
version 2.0.1.6 (http://www.meta-analy sis-made-easy.com/) 
(Bax et al. 2006). The OR of each study was converted to the 
natural logarithm of OR [Ln (OR)], and 95% CI to stand-
ard error (SE) using MIX 2.0 software. The Ln (OR), SE, 
and sample size (N) were used in the software to perform 
heterogeneity statistics, heterogeneity funnel plots, and syn-
thesis forest plots using inverse variance weighting. The het-
erogeneity between studies was assessed by Cochran’s Chi 
square-based Q statistic and the inconsistency index (I2), 
with p < 0.05 being considered statistically significant. If 
there was significant (p < 0.05) heterogeneity between stud-
ies, we used the random-effects model, otherwise we used 
the fixed-effects model. The random-effects model consid-
ers both between-study and within-study variation, whereas 
the fixed-effects model considers only within-study variation 
(Borenstein et al. 2010). The heterogeneity I2 are presented 
in Supplementary Tables S2 and S3. Potential publication 
bias was assessed using Begg’s test (Begg and Mazumdar 
1994) and Egger’s regression test (Egger et al. 1997), with 
p < 0.05 considered statistically significant (Supplementary 

http://pngu.mgh.harvard.edu/purcell/plink/
https://www.genecalculators.net/associatorrr-cc.html
https://www.genecalculators.net/associatorrr-cc.html
http://www.meta-analysis-made-easy.com/
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Tables S2 and S3). In case of p < 0.05 for publication bias, 
the trim and fill correction was conducted to explore the cor-
rected OR and 95% CI (Duval and Tweedie 2000).

Results

DAT1 3′‑UTR VNTR association with child 
and adolescent ADHD in the Zurich samples

In the case–control study a nominal significant association 
between DAT1 3′-UTR VNTR long-allele and ADHD was 
observed (OR 0.697, 95% CI 0.501–0.972, p = 0.03). Fur-
thermore, a significant association was found when assessing 
according to 10-repeat allele versus 9-repeat allele carriers 
(OR 0.676, 95% CI 0.484–0.945, p = 0.024). Test statistic 
was based on 211 cases and 155 controls, and genotypes are 
presented in Table 1a.

Family-based association analyses of the DAT1 3′-UTR 
VNTR long-allele as well as the 10-repeat versus 9-repeat 
allele yielded no significant association in the Zurich sam-
ple (OR 1.015, 95% CI 0.726–1.418, p = 0.932; OR 1.048, 
95% CI 0.742–1.480, p = 0.792; respectively). Data from 46 
heterozygous parents were included to assess the TDT, and 
genotypes are presented in Table 1b.

Meta‑analysis for DAT1 3′‑UTR VNTR association 
with child, adolescent, and adult ADHD in different 
ethnical groups

The literature search for studies reporting on the associa-
tion of DAT1 3′-UTR VNTR with ADHD identified 899 
non-duplicated articles (Supplementary Figure S1). Out of 
861 articles, 767 articles were excluded at the title/abstract 
level. Altogether, 100 articles were read fully, and 34 articles 

were excluded because various reasons: e.g., missing data, 
overlapping samples in other publications or not fulfilling 
the inclusion criteria (Supplementary Table S4). Finally, 61 
publications were included in the meta-analysis (Supplemen-
tary Table S5 including studies characteristics, demograph-
ics and quality assessment scores), including the current 
study results (Cook et al. 1995; Waldman et al. 1998; Jiang 
et al. 1999; Lunetta et al. 2000; Swanson et al. 2000; Cur-
ran et al. 2001; Todd et al. 2001; Maher et al. 2002; Smith 
et al. 2003; Carrasco et al. 2004; Kustanovich et al. 2004; 
Galili-Weisstub et al. 2005; Bakker et al. 2005; Bobb et al. 
2005; Feng et al. 2005; Kim et al. 2005, 2006; Langley et al. 
2005; Simsek et al. 2005; Hawi et al. 2005, 2010; Brookes 
et al. 2006; Cheuk et al. 2006; Hebebrand et al. 2006; Lim 
et al. 2006; Asherson et al. 2007; Brüggemann et al. 2007; 
Qian et al. 2007; Genro et al. 2008; Johansson et al. 2008; 
Wang et al. 2008; Banoei et al. 2008; Kopeckova et al. 2008; 
Franke et al. 2008, 2010; Niederhofer et al. 2008; Kereszturi 
et al. 2008; Gizer et al. 2009; Wohl et al. 2008; Martinez-
Levy et al. 2009, 2013; Dresler et al. 2010; Aparecida da 
Silva et al. 2011; Bidwell et al. 2011; Das et al. 2011; El-
Tarras et al. 2012; Hoogman et al. 2013; de Azeredo et al. 
2014; Shang and Gau 2014; Hasler et al. 2015; Sery et al. 
2015; Fonseca et al. 2015; Agudelo et al. 2015; Gomez-
Sanchez et al. 2016; Onnink et al. 2016; Ortega-Rojas et al. 
2017; Stanley et al. 2017; Wiguna et al. 2017; Hong et al. 
2018; Morgan et al. 2018). The summary of OR, SE, type 
of study (e.g., family TDT, case–control CC etc.), number 
of participants, age of cases (child and adolescent or adult 
ADHD), ethnicity/country, and the ID given for all studies 
included are presented in Supplementary Tables S6 and S7 
(10-repeats vs. 9-repeats, and Long-allele vs. Short-allele, 
respectively). The meta-analyses summary of all DAT1 
3′-UTR VNTR analysis variations (long-allele vs. short-
allele; 10-repeat vs. 9-repeat) with the entire publications, 

Table 1  Genotype distribution of the DAT1 3′-UTR VNTR in both Zurich samples

(a) Case–control study sample

DAT1 3′-UTR VNTR genotypes

9/9 10/9 11/9 10/10 10/11 11/11

ADHD 22 88 2 101 6 1
Control 9 54 1 90 2 0

(b) Family study sample

DAT1 3′-UTR VNTR genotypes

9/9 10/9 11/9 10/10 10/11 11/11

ADHD 19 82 1 94 5 1
Mother 28 80 2 84 2 1
Father 8 53 1 87 2 1
Sibs 13 84 0 93 2 0
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Author (year)

Brüggemann (2007)

Johansson (2008)

Franke (2008)

Gizer (Mick) (2009)

Franke (German) 
(2010)

Franke (Norway) 
(2010)

Franke (Spain) (2010)

Aparacida da Silva 
(2011)

Hoogman (Dutch) 
(2013)

de Azeredo (2014)

Hasler (2015)

Onnink 
(IMpACT+BIG) (2016)

Synthesis low

0.1 1 10OR

Author (year)
Cook (1995)
Waldman (1998)
Jiang (1999)
Lunetta (2000)
Swanson (2000)
Curran (Turkey) (2001)
Todd (2001)
Maher (2002)
Smith (2003)
Carrasco (2004)
Kustanovich (2004)
Galili-Weisstub (2005)
Bakker (2005)
Bobb (2005)
Feng (2005)
Kim (2005)
Langley (2005)
Simsek (2005)
Hawi (2005)
Brookes (Irish) (2006)
Brookes (Taiwan) (2006)
Brookes (UK) (2006)
Cheuk (2006)
Hebebrand (2006)
Kim (2006)
Lim (2006)
Asherson (2007)
Qian Q (2007)
Genro (2007)
Wang (2008)
Banoei (2008)
Kopeckova (2008)
Niederhofer (2008)
Kereszturi (2008)
Wohl M (2008)
Martinez-Levy GA (2009)
Hawi (IMAGE) (2010)
Hawi (UK) (2010)
Hawi (Irish 1) (2010)
Hawi (Irish 2) (2010)
Dresler (2010)
Bidwell (2011)
Das (CC) (2011)
Das (TDT) (2011)
El-Tarras (2012)
Martinez-Levy GA (2013)
Shang CY (2014)
Sery (2015)
Fonseca (2015)
Agudelo (2015)
Gomez-Sanchez (2016)
Onnink (NeuroIMAGE) (2016)
Ortega-Rojas (2017)
Stanley (2017)
Wiguna (2017)
Hong (2018)
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stratified to age of cases (child and adolescent or adult 
ADHD) and ethnical grouping is presented in Supplemen-
tary Tables S2 and S3.

We found no significant association between 10-repeat 
allele carriers and the entire ADHD population, as well as 
after stratifying to adult ADHD (Supplementary Tables 
S2). However, stratification to child and adolescent ADHD 
resulted in a nominal significant association (OR 1.1050 95% 
CI 1.0203–1.1968, p = 0.0128), nevertheless the analysis 
was accompanied with high heterogeneity that was not due 
to publications bias. Following ethnical stratification, chil-
dren and adolescent ADHD originating from Europe dem-
onstrated a significant association with 10-repeat allele as 
risk allele (OR 1.1301 95% CI 1.0316–1.2379, p = 0.0085), 
nevertheless, also here a significant heterogeneity was found. 
For further detailed stratifications results see Supplementary 
Table S2.

DAT1 3′-UTR VNTR long-allele was significantly associ-
ated with ADHD assessed as the whole ADHD population 
(OR 1.1046 95% CI 1.0309–1.1837, p = 0.0048). Similarly 
to the 10-repeat analysis, significant heterogeneity was 
observed with publication bias. Following trim and fill 
correction the association was still significant with Long-
allele as risk allele (OR 1.0614 95% CI 1.0186–1.1060). 
Following stratification with age, only child and adoles-
cent ADHD kept the significant association (OR 1.1602 
95% CI 1.0657–1.2631, p = 0.0006; Trim and Fill OR 
1.1053 95% CI 1.0525–1.1605), however still with high 
heterogeneity. In Caucasian child and adolescent ADHD, 
and in European child and adolescent ADHD, a significant 
association with the Long-allele was found (OR 1.1310 
95% CI 1.0282–1.2441, p = 0.0114; OR 1.1661 95% CI 
1.0448–1.3015, p = 0.0061; respectively). In the whole Asian 
population a nominal significant association was observed, 
however following trim and fill correction significance was 
lost (OR 1.0991 95% CI 0.9240–1.3074). The forest and 
heterogeneity funnel plot for the whole ADHD sample is 
presented in Fig. 1a, b, and the forest plot results following 
stratification to age (child and adolescent-, adult-ADHD) is 
presented in Fig. 1c, d. Summary of the meta-analysis results 

for the ethnicity stratification is demonstrated in the world 
map in Fig. 2.

Discussion

The current meta-analysis, could confirm previous findings 
showing weak association between the 10-repeat allele of the 
DAT1 3′-UTR VNTR gene and child and adolescent ADHD, 
that reached significance only in the European population; 
however, this was accompanied by high heterogeneity that 
was in some cases due to literature bias but in other cases 
due to heterogeneity in clinical phenotyping, age or ethnic-
ity (Li et al. 2006; Gizer et al. 2009). On the other hand, we 
were not able to confirm a significant association between 
the 9-repeat allele and adult ADHD as previously reported 
(Bonvicini et al. 2016), and only a nominal significant asso-
ciation was observed for the European adult ADHD with 
9-repeat as risk allele (see Supplementary Table S2).

Interestingly, assessing the functional approach, in which 
the long-allele was suggested to result in decreased dopa-
mine transporter expression (Faraone et al. 2014; Kanno 
and Ishiura 2011; Jia et al. 2016), seem to show significant 
association with ADHD. Indeed, the meta-analysis including 
the overall ADHD studies, as well as the child and adoles-
cent ADHD, the Caucasian child and adolescent ADHD, the 
European child and adolescent ADHD, and nominally the 
Asian child and adolescent ADHD resulted in significant 
association with Long-allele as risk allele. In the other ethni-
cal groups the associations did not reach significance, how-
ever all seem to show some tendency toward the long-allele 
as risk allele, however further studies should be conducted 
to confirm this hypothesis.

The current study included the largest sample size availa-
ble (total n = 40,681 consisting of 14,821 cases) for a power-
ful meta-analysis of the DAT1 3′-UTR VNTR gene variants, 
and used when needed the random-effects model that incor-
porate heterogeneity among trials (Borenstein et al. 2010). 
Indeed, following quality assessment of all included studies 
according to traditional epidemiological considerations (Liu 
et al. 2015) indicated that some studies did not reach high 
quality scores due to sample size, diagnostic criteria, recruit-
ment strategies and quality control of the genetic analysis. 
This was reflected in significant heterogeneity, that in some 
cases, was also confirmed with significant publication bias 
assessed with Begg’s test (Begg and Mazumdar 1994) and 
Egger’s regression test (Egger et al. 1997). In these few cases 
we corrected the results using trim and fill correction (Duval 
and Tweedie 2000), that kept their significance even after 
correction.

To summarize the current study, we could show further 
evidence of the DAT1 3′-UTR VNTR variants to play a 
role in ADHD, in particularly in child and adolescents with 

Fig. 1  Meta-analysis of all cohorts and published association analy-
ses (n = 71) of the DAT1 3′-UTR VNTR Long-allele with attention-
deficit hyperactivity disorder (ADHD) (a). Heterogeneity funnel plot 
assessing any evidence of publication bias for whole ADHD studies 
I2 = 54.167% (95% CI 40.03–64.97%) p = 0 (b). Forest plot in child 
and adolescent ADHD studies (n = 59) (c). Forest plot in adult ADHD 
studies (n = 12) (d). Black whiskers in the forest plot represent 95% 
confidence intervals (CI) for odds ratio; the weight (inverse variance) 
of the study is reflected in symbol (box) size. Sample demographics, 
individual statistics, heterogeneity, literature bias statistics, quality 
assessments and scores, and model used is summarized in Supple-
mentary Tables S3, S5–S6. The order of the samples is as presented 
in the Supplementary Tables and in Supplementary Figures S2–S4, in 
a descending manner
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the Long-allele as risk allele. As previously hypothesized, 
this could indeed be due to the possible functional effect 
of the variants length in controlling the expression of the 
DAT1 gene. However, as still high study heterogeneity was 
observed, with some studies not reaching high quality, fur-
ther analysis is necessary to establish a robust conclusion.
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