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Abstract As many engineering optimization problems are rather complicated, it is
usually necessary to search the optimal solution in a complex and huge search space.
When faced with these large-scale problems, conventional optimization algorithms
need to traverse the entire search space and it is impossible for them to finish the search
within polynomial time.Moreover, it can’t meet requirements in terms of computation
velocity, convergence and sensitivity to initial value. So, it is very difficult to apply
them to engineering optimization problems. Swarm intelligence methods simulate the
collective behaviors of social creatures in the nature and they come from the relation-
ship between the community formed by simple individuals and the environment as
well as the interactions between the individuals. A single individual can only perform
simple tasks, but the population formed by single individuals can fulfill complex tasks.
Such intelligence presented by such population is called swarm intelligence. Due to
the limitations of existing optimization algorithms, it is usually impractical to obtain
excellent computational performance with only one optimization algorithm. In con-
sideration of the jumping property of simulated annealing, it is not easy to get trapped
into local minimum and it has strong local search capability near the optimal value and
fast convergence velocity. This paper combines it with particle swarm optimization,
proposes a cooperative particle swarm optimization with constriction factor based on
simulated annealing (SA-CPSO), offers guidelines on selection of related parameters
and dynamically adjusts the particle velocity according to its movement track. In this
way, it improves the convergence velocity of the algorithm by improving the spatial
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search ability of the particle so as to make the particle accept the solution which makes
the fitness of the objective function “better” as well as the solution that makes the said
fitness “worse” at a certain probability during the flight of the particle. The experiment
shows that the SA-CPSO improves the diversity of the particle and enhances its ability
to get rid of locally optimal solutions. So, SA-CPSO is not easy to be trapped into
local optimum and it has stronger ability of global optimization, a faster convergence
velocity and higher convergence accuracy.

Keywords Particle swarm optimization · Simulated annealing algorithm · Optimum
solution

Mathematics Subject Classification 68W40

1 Introduction

Optimization problem, actually, is to find a group of value to make the problem have
the best solution. Optimization theory and algorithm have developed rapidly and a
new subject is formed accordingly. With mathematics as the basis, it is used to seek
the optimal solutions to various engineering problems and it has been widely applied
in different fields as even scientific theories and engineering traditional optimization
methods have failed to handle the complicated problems faced by people and they also
have different defects. So, highly-efficient optimization algorithms have become one
of the research goals for scientific workers. So far, many branches such as non-linear
programming, integer programming, dynamic programming and stochastic program-
ming have come into being. These optimization techniques have played a more and
more important role in practical applications [1]. Non-linear programming methods
include Newton’s method and gradient method. They have simple principles, but they
require derivation and other operations and much computation and they take much
time. Integer programming can better solve variable discrete problems, but once the
dimensions increase, the computation becomes complicated and it demands more
time. Dynamic programming is not strict in the restrictions of objective function and
constraint conditions, so it is greatly restricted in the applications. PSO is a kind of
heuristic global optimization algorithm of swarm intelligence, it draws inspiration
from foraging behavior of bird flock and simulates the simple social system. For this
algorithm, every individual makes full use of its own and swarm intelligence, adjusts
and learns continuously and finally obtains the satisfactory solution. It is easy to under-
stand with its excellent biological social background, easy to realize with only a few
parameters and strong in global search ability on non-linear and multi-peak problems,
so it has attracted much attention in scientific research and engineering practice [2].
Researchers have found it impossible to predict the behaviors of bird flock in the
flight. They may change their directions suddenly and sometimes they may gather or
scatter, but an individual always keeps the best distance from another. So, the overall
consistency is not affected at all. When the bird flock is in search of certain objec-
tive, an individual bird always adjusts its search direction and scale of the next step
according to the individual in the existing best position and its own best position.
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Based on this, PSO gradually simulates the foraging behavior and decision-making
behaviors and design them into a tool to solve function optimization problems, this
is also the foundation of PSO [3]. Proposed according to the principles of annealing,
simulated annealing (SA) is an effective global optimization algorithm and a stochas-
tic optimization technique used to solve continuous, orderly discrete and multi-modal
optimization problems. Its key is to simulate the annealing process of solid matter in
physics and it uses thermodynamic system to simulate the optimization problems to be
solved, considers the energy of the system as the objective function of the optimization
problem and uses the annealing process in which the system gradually cools down to
reach the state of minimum energy to simulate the optimization process [4]. Starting
from a certain initial solution, it simulates the cooling process of classical particle
system in thermodynamics and finds the extremum of the programming problems. It
randomly produces another solution from the neighborhood and accepts changes of
objective function within the limited scope allowed by the criterion. SA algorithm can
effectively shake off local minimums and obtains the global extremum at any proba-
bility close to 1, meanwhile, it has strong robustness and global search ability and it is
very suitable to search the approximately globally optimal solution to combinatorial
optimization problem. Compared with general optimization search methods, it has its
own features [5]. This paper combines the strengths of PSO and SA andmakes it better
applicable in its application fields.

PSO is simple and easy to implement and it also has profound intelligence back-
ground. These two important strengths have decided its theoretical value in scientific
research and practical significance in engineering applications. PSOwas first proposed
by Kennedy and Eberhart in 1995 inspired by the study on the foraging behaviors of
birds [6]. When the bird flocks, the most simple and effective strategy is to search the
surrounding areas of the bird closest to food. PSO is enlightened by such behavioral
characteristics of biological population and it is used to solve optimization prob-
lems. Every particle represents a potential solution to the problem and every particle
corresponds to a fitness value decided by a fitness function. The velocity of the par-
ticle determines its movement direction and distance and its velocity is dynamically
adjusted based on the movement experience of that particle and other particles to
achieve the optimization of individuals in the feasible solution space. Scholars have
conducted extensive and in-depth research on PSO ever since its emergence. It has
developed rapidly and made excellent achievements within just a few years, actually,
it has become a research focus [7]. Conventional PSO is usually easy to get trapped
into local extremums in its practical applications and it is slow in convergence and
bad in accuracy in the late evolution. In order to improve its overall performance,
research can be conducted on the basic PSO from the setting of its parameters, its
diversity, its convergence and its combination with other algorithms so as to come
up with various improved algorithms. SA algorithm is the extension of local search
algorithm andMetropolis was the first to bring forward its idea based on the similarity
between the annealing process of solid matters in physics and the common combi-
natorial optimization problems. In 1983, under the inspiration of the research on the
solid annealing process conducted by Patrick and others and based on the similarity
between the solid annealing process and combinatorial optimization problems, SA
algorithm was proposed to seek the globally optimal solution to combinatorial opti-
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mization problem by introducing Metropolis criterion into the optimization process
and it has beenwidely applied in practical engineering by now [8]. SA algorithmworks
like this: when the temperature of the isolated particle system drops at a sufficiently
slow velocity, the system is approximately in the equilibrium state of thermodynamics
and finally it reaches its ownminimum energy state, i.e. the ground state. This amounts
to the global minimum point of energy function, theoretically, SA is a globally optimal
algorithm [9]. Themotivation of this paper is to improve the structure and performance
of PSO, including convergence analysis, parameter selection and optimization, and
combined with other algorithms.

This paper first analyzes the principles of PSO and SA, elaborates the backgrounds
of these two algorithms and their study and application status at home and abroad and
makes necessary analysis on their structures and computation processes. Based on the
above research, it introduces the simulated annealing mechanism into PSO to improve
its computational performance and proposes a SA-CPSO algorithm with constriction
factor. This algorithm adopts Metropolis criterion and controls the temperature reduc-
tion properly, in the original PSO, we introduce the Metropolis criterion of simulated
annealing algorithm. The algorithm can have a certain probability to accept the dif-
ference solution when the particle is updated its best position, the best position of
the group and the current position of its own, so that the particle can avoid the local
optimal position. It is highly competitive in solving optimization problems. Under
the instructions of this mixed algorithm, it further adjusts the optimization popula-
tion and obtains better optimization performance accordingly. The algorithm of this
paper provides an effective approach and a general framework for complex function
optimization problems which are difficult to handle with traditional methods and it
can be used to solve different non-linear problems and it can obtain globally optimal
solution to non-differentiable and even discontinuous function optimization with a
higher probability. Besides, this algorithm also has strong robustness, global conver-
gence, implicit parallelism and extensive adaptability and it can copewith optimization
design variables of different types (discrete, continuous and mixed). It doesn’t need
any auxiliary information. Nor does it have any requirements on the objective function
and constraint function.

2 Implementation of particle swarm optimization

2.1 Basic principles

For a combinatorial optimization problem and in the application of PSO, a bird in
the search space represents a potential solution to the problem, which is called a
“particle”. The fitness of all particles is decided by one function and this function
is the object to be optimized. The flight direction and velocity of every particle are
also determined by parameters. Particles search the solution space by following the
current best particle and the optimal solution is also found through several iterations,
in every iteration, the particle is updated by tracking two extremums. PSO is initialized
into a group of stochastic particles (stochastic solutions) and then it finds the optimal
solution through iterations. In every iteration, the particle updates itself by tracking
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two extremums: one is the best solution it has found, which is called the individual
extremum and the other is the best solution found by the entire swarm, which is the
global extremum. Besides, only a part instead of the entire swarm can be used as
the neighborhood of the particle and the extremums of all neighborhoods are local
extremums. First, initialize a group of particles in the feasible solution space with
every particle representing a potential best solution to extremal optimization problem.
Use three parameters: position, velocity and fitness to represent the features of that
particle. Among them, fitness can be obtained through computation of fitness function
and its value indicates whether the particle is good or not. The particle moves in
the solution space and its individual position is updated by tracking the individual
extremum Pbest and group extremum Gbest. The former Pbest means the position
with the best fitness searched by individual particle while the latter Gbest refers to the
position with the best fitness found by all particles. Every time the particle updates its
position, the fitness is recalculated and the positions of Pbest and Gbest are updated by
comparing the fitness of new particle with that of the individual extremum and group
extremum [10].

Assume that in a D-dimensional objective search space, N particles have formed a
group and the i th particle is a D-dimensional vector.

Xi � (xi1, xi2, . . . , xiD) , i � 1, 2, . . . , N

The flight velocity of the i th particle is also a D-dimensional vector, marked as

Vi � (vi1, vi2, . . . , vi D) , i � 1, 2, . . . , N

The best position searched by the i th particle is called individual extremum and it
is marked as

Pbest � (pi1, pi2, . . . , piD) , i � 1, 2, . . . , N

Thebest position searchedby the entire particle swarmso far is the global extremum,
marked as

gbest � (
pg1, pg2, . . . , pgD

)

After finding these two optimums, the particle updates its velocity and position
according to the following formulas.

vid � w ∗ vid + c1r1 (pid − xid) + c2r2
(
pgd − xid

)
(1)

xid � xid + vid (2)

In these formulas, c1, c2 are learning factors and r1, r2 are uniform random numbers
within the range of [0, 1].

The right part of Formula (1) is comprised of 3 parts, w is the inertia factor and it
represents the trend that the particle has tomaintain its previous velocity. c1r1(pid−xid)
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is the cognition part and it reflects its memory of its previous experience and represents
its trend to approximate to the previously best position. c2r2(pgd − xid) is the social
part and it reflects the previous experience of cooperation and knowledge sharing
between the particles and represents its trend to approximate to the best position of
the population or neighborhoods [11].

2.2 Basic procedures

(1) Initialize the particle swarm, including the population size N , randomly produce
the position xi and velocity vi of every particle and identify its Pt and Gt

(2) For every particle, calculate and compare its fitness with that of the best position
Pt that particle has gone through, if it is better, take it as the current Pt .

(3) For every particle, compare its fitness with that of the best position the entire
swarm has gone through, if it is better, take it as the current Gt .

(4) Update the velocity and position of the particle according to Formulas (1) and
(2).

(5) If the end condition is not met, return to step (2), otherwise, quit the algorithm
and obtain the optimal solution.

2.3 Selection of inertia weight

The inertia weight w reflects the particle’s ability to inherit the previous velocity. A
bigger inertia weight is good for global search while a smaller one is in favor of local
search. In order to better balance the global search and local search capacities of the
algorithm, linear decreasing inertia weight (LDIW) is introduced.

ω(k) � ωstart (ωstart − ωend) (Tmax − k)
/
Tmax (3)

In this formula, ωstart is the initial inertia weight, ωend is the inertia weight in the
maximum iterations, k is the current number of iterations and Tmax is the maximum
number of iterations. Generally speaking, the algorithm has the best performance
when ωstart � 0.9, ωend � 0.4. In this way, as iteration increases, the inertia weight
decreases from 0.9 to 0.4 linearly. A bigger inertia weight in the early iteration can
help the algorithm maintain stronger global search ability while a smaller one in the
late iteration is good for the algorithm to conduct local search more accurately [12].
The selection of common inertia weight includes the following kinds.

ω(k) � ωstart − (ωstart − ωend)

(
k

Tmax

)2

(4)

ω(k) � ωstart + (ωstart − ωend)

[
2k

Tmax
−

(
k

Tmax

)2
]

(5)

ω(k) � ωend

(
ωstart

ωend

)1/(1+ck/Tmax)

(6)

The dynamic changes of these several w are shown in Fig. 1.
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Fig. 1 Changes of 4 inertia weights

Fig. 2 Convergence curves of mean value of function under 5 inertia weights

The parameters of the algorithm are set as follows: the population size is 20 and
the number of evolutions is 300. In every experiment, operate 100 times and take
the mean value as the final results. Under the above setting of parameters, solve the
function with 5 w methods and analyze their convergence accuracy and velocity. The
evolutionary curves and operation results of every w algorithm are shown in Fig. 2
and Table 1.

In PSO, the inertia weight is used to balance the global and local search capabilities.
The inertia weight has the greatest impact on the performance of the PSO algorithm,
and the larger inertia weight is more inclined to global search, while the smaller inertia
weight is suitable for local search. It can be seen from Fig. 2 and Table 1 that although
PSO with unchanged inertia weight ω has a faster convergence velocity, it is easy to
get trapped in local optimum in the late period and it has a low accuracy. The several
algorithms with dynamically changing ω are slow in the initial convergence, but they
have strong local search ability in the late period, which is good to jump out of local
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Table 1 Comparison of performance of algorithms with 5 inertia weights

ω Optimum
obtained

Mean Times of getting
trapped into
second-best solutions

Times of
near-optimal
solutions

ω1 � ωstart � ωend 1.0054 0.9802 19 81

ω2 � ωstart − (ωstart −ωend)
(

k
Tmax

)
1.0054 0.9799 15 85

ω3 � ωstart−(ωstart−ωend)
(

k
Tmax

)2
1.0052 0.9833 4 96

ω4 � ωstart − (ωstart −
ωend)

[
2k

Tmax
−

(
k

Tmax

)2]
1.0054 0.9838 11 89

ω5 � ωend

(
ωstart
ωend

)1/(1+10k/Tmax)
1.0049 0.9826 10 90

optimum and obtain the optimal solution and it improves the accuracy. As for the
method with dynamical change in ω in Formula (4), ω changes slowly in the early
period and its value is big, so it maintains the global search ability of the algorithm,
in the late period, ω changes rapidly, which greatly enhances its local optimization
ability [13].

3 Basic principles of simulated annealing

SAnot only accepts good solution in the search process, but it also accepts bad solution
at a certain probability. In themeanwhile, such jumping probability is under the control
of temperature. In other words, the probability decreases as the temperature drops
and when the temperature is close to 0, the probability is also close to 0. Therefore,
SA has probability jumping ability in its search process and it can effectively avoid
getting trapped in local minimums. SA is converged to globally optimal solution at the
probability of 1 under certain conditions and its physical annealing process includes
the following three parts [14].

(1) Heating process, its purpose is to enhance the thermal movement of the particle
to make it deviate from the equilibrium position. When the temperature is high
enough, the solid is melted into liquid to eliminate the non-uniform stage in the
system.

(2) Isothermal process, for the closed system which exchanges heat with the sur-
rounding environment but its temperature remains the same, the spontaneous
changes in the state of the system proceeds along the direction with reduced free
energy. When the free energy is the minimal, the system reaches the equilibrium
state.

(3) Cooling process, it weakens the thermal movement of the particle, lowers the
energy of the system and obtains the crystallographic structure.

Among them, the heating process corresponds to the preset initial temperature of
the algorithm, the isothermal process to the Metropolis sampling process and the
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cooling process to the decrease of the control parameters. The energy change here is
the objective function and the optimal solution to be obtained is the lowest energy
state. Metropolis criterion is that SA accepts bad solution at a certain probability, in
this way, the algorithm can jump out of local optimum.

Implementation steps of SA are as follows.

(1) Initialize the annealing temperature Tk (make k � 0), randomly produce the
initial solution x0, take an initial temperature T0 big enough and select the initial
solution S1, confirm the number of iterations for every T , i.e. the Metropolis
chain length L .

(2) For the current temperature T and k � 1, 2, . . . , L , repeat the following oper-
ations under the temperature of Tk until it reaches the equilibrium state at
temperature Tk .

➀ Produce new feasible solution x ′ in the neighborhood of solution x .
➁ Calculate the difference � f between the objective function f (x ′) of x ′ and the

objective function f (x) of x .
➂ Receive x ′, at the probability of min{1, exp(−� f/Tk)} > random[0, 1], here,

random[0, 1] is a random number within the scope of [0,1].
(3) Annealing operation, produce a new solution S2 through stochastic disturbance

on the current solution S1, Tk+1 � CTk, k ← k+1, andC ∈ (0, 1). If convergence
criterion is met, the annealing process ends.

(4) Calculate the increment d f � f (S2) − f (S1), of S2, here, f (S1) is the cost
function of S1.
The annealing temperature control the solving process move towards the opti-
mization direction of the optimal value and it accepts bad solution at the
probability of exp(−� f/Tk). Therefore, this algorithm can jump out of local
extremums. As long as the initial temperature is high enough and the anneal-
ing process is slow enough, the algorithm can converge to the globally optimal
solution.

(5) If d f < 0, accept S2 as the new current solution, namely S1 � S2, otherwise,
calculate the acceptance probability exp(−d f/T ), of S2, namely to produce
the random number rand uniformly distributed within the range of (0, 1). If
exp(−d f/T ) > rand, also take S2 as the new current solution, namely S1 � S2,
otherwise, maintain the current solution S1.

(6) If the end condition is met, output the current solution S1 as the optimal solution,
if not met, return to Step (2) after attenuating T according to the attenuation
function.

The above steps are called asMetroplis process, the iteration process of “production
of new solution-judgment-acceptance or abandonment” proceeds until the equilibrium
point under that temperature is reached. Among the globally optimal solutions to the
combinatorial optimization problems obtained by SA, one solution i and its objective
function f (i) correspond to a micro state i and its energy Ei of the solid respec-
tively and the control parameter T which decreases with the algorithm serves as the
temperature of solid annealing process [15, 16].
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4 Particle swarm optimization with constriction factor based on
simulated annealing

The steps of the mixed algorithm of this paper are classified as follows.

1. Randomly initialize the position and velocity of every particle and calculate the
value of the objective function of every particle of the swarm.

2. Evaluate the fitness of every particle and update its Pbest and Gbest, store the
position and fitness of the particle in its individual extremum pbest and the position
and fitness of the individual with the best fitness among all pbest in the global
extremum gbest.

3. Identify the initial temperature and confirm the fitness of every particle pi in the
current temperature.

TF(pi ) � e−( f (pi )− f (pg))/t

∑N
i�1 e

−( f (pi )− f (pg))/t
(7)

Adopt the Roulette strategy to confirm a certain globally optimal alternative value
p′
g from all pi , which is good to overcome the shortcomings of particle swarm opti-

mization.
(4) Calculate the objective value of the particle and update pbest and gbest. Then,

lower the temperature. The velocity and position update formulas of particle swarm
optimization with constriction factor are shown as follows.

vi, j (k + 1) � χ{vi, j (k) + c1r1[pi, j (k) − xi, j (k)] + c2r2[pg, j (k) − xi, j (k)]} (8)

xi, j (k + 1) � xi, j (k) + vi, j (k + 1), j � 1, . . . , n (9)

Here, constriction factor is χ � 2∣
∣∣2−C−√

C2−4C
∣
∣∣
,C � c1 + c2,C > 4.. As the

velocity update formula (8) uses the best position of the swarm, all particles will
fly towards this best position. If the best position is located in the local minimum, all
particleswillmove toward the locallyminimumsolution, resulting in bad dispersibility
of search andweak global search ability. Therefore, in order to enhance the algorithm’s
ability to avoid getting trapped in local minimum solution, select a position from the
many pi , marked as ṗg,, to replace the pi . in the update formula. Then, Formula (8)
has become the following.

vi, j (k + 1) � χ{vi, j (k) + c1r1[pi, j (k) − xi, j (k)] + c2r2[p
′
i, j (k) − xi, j (k)]} (10)

The pi with excellent performance shall be given a higher probability to be selected,
pi is a special solution worse than pg so that the jumping probability from pi to pg
at the temperature t can be calculated, namely e−( f pi− f pg)/t . Here, f represents the
value of the objective function. If the second jumping probability is seen as the fitted
value of pi , replace the probability of pg with pi .
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(5) The initial temperature and the temperature-lowingmethods have certain impact
on the algorithm. The following temperature-lowering method is adopted.

tk+1 � λtk, t0 � f (pg)/ ln 5 (11)

The jumping probability, namely e−( f pi− f pg)/t , can be calculated according to For-
mula (11).

e−( f pi− f pg)/t

/
N∑

j�1

e−( f pi− f pg)/t (12)

In this formula, N is the population size.
(6) When the algorithm has met the end conditions, stop the search and output the

result, otherwise, return to Step (4) and continue.
The algorithm of this paper doesn’t need to adjust too many parameters and the

setting of these parameters depends on experience to a large extent. Combining the
results obtained from different iteration steps and different sizes of particle swarm, for
the algorithm of this paper, in order to obtain solution of high accuracy, the key is the
property matching between parameters.

5 Experimental test

In our experiment, 12 test functions have been used, hoping to compare the optimiza-
tion performance of SA-CPSOandLDIW-PSO thoroughly. The specific forms of these
12 test functions are listed in Table 2, among them, f1 − f5 are uni-modal problems,
f6 is a discontinuous staircase function with only one minimum, f7 is a fourth-order
noise function and f8 − f12 are multi-modal functions, the local optimums of which
increase with the increase of dimensions exponentially. These are the most difficult
problems for many optimization algorithms. We have adopted SA-CPSO and LDIW-
PSO to complete the evaluation of these 12 test function at the same computation
N�20 (Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14).

1. Uni-modal function
In functions f1 − f5, there only contains one optimal solution in the fitness
landscape. The purpose to use uni-modal functions f1 − f5 is to compare the
convergence velocity of SA-CPSO and LDIW-PSO and the accuracy of the solu-
tions obtained. The statistical results of 20 operations are summarized in Table 3.
It can be seen fromTable 3 that SA-CPSO is better than LDIW-PSO in terms of the
performance in uni-modal functions and its convergence velocity and optimization
result is far better than those of LDIW-PSO. It is especially true in function f4
which is proved a big challenge to PSO. SA-CPSO can search a more accurate
solution, it has proven that SA-CPSO has strong capabilities to solve complex
uni-modal problems.
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Table 2 Twelve test functions

Test function D S fmin

f1 (x) � ∑ n
i�1x

2
i 30 [−100, 100]n 0

f2 (x) � ∑ n
i�1 |xi | +

∏ n
i�1 |xi | 30 [−10, 10]n 0

f3 (x) � ∑ n
i�1

(∑ i
j�1x j

)2
30 [−100, 100]n 0

f4 (x) � maxi
{∣∣xi

∣
∣ , 1 ≤ i ≤ n

}
30 [−100, 100]n 0

f5 (x) � ∑ n−1
i�1

[
100

(
xi+1 − x2i

)
+ (xi − 1)2

]
30 [−30, 30]n 0

f6 (x) � ∑ n
i�1 (	xi + 0.5
)2 30 [−100, 100]n 0

f7 (x) � ∑ n
i�1i x

4
i + random [0, 1) 30 [−1.28, 1.28]n 0

f8 (x) � ∑ n
i�1 − xi sin

(√|xi |
)

30 [−500, 500]n −12,569.5

f9 (x) � ∑ n
i�1

[
x2i − 10 cos (2πxi ) + 10

]
30 [−5.12, 5.12]n 0

f10 (x) � −20 exp

(
−0.2

√
1
n

∑ n
i�1x

2
i

)
−

exp
(
1
n

∑ n
i�1 cos 2πxi

)
+ 20 + e

30 [−32, 32]n 0

f11 (x) � 1
4000

∑ n
i�1x

2
i − ∏ n

i�1 cos
(

xi√
i

)
+ 1 30 [−600, 600]n 0

f12(x) � π
n {10 sin2 (πyi ) +

∑n−1
i�1 (yi − 1)2

[
1 +

sin2 (πyi+1)
]
+ (yn − 1)2} +∑n

i�1 u(xi , 10, 100, 4),

yi � 1 + 1
4 (xi + 1)

u (xi , a, k,m) �
⎧
⎨

⎩

k (xi − a)m , xi > a,

0, −a ≤ x ≤i a,

k (−xi − a)m , xi < −a.

30 [−50, 50]n 0

Fig. 3 f1 function

2. Special function

It can be concluded from Table 4 that function f6 is a classical staircase problem,
which has many discontinuous breakpoints. For f6, it is inevitable for the classi-
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Fig. 4 f2 function

Fig. 5 f3 function

cal mathematical approximation algorithm to be ineffective. Both SA-CPSO and
LDIW-PSO have demonstrated excellent convergence results in f6, a discontin-
uous staircase function. For the fourth-order noise function f7, SA-CPSO has a
better accuracy than LDIW-PSO, but its standard deviation is not as good as that
of LDIW-PSO. Therefore, for the problems which are difficult to be solved by
classical mathematical approximation algorithm, both SA-CPSO and LDIW-PSO
can lead to excellent optimization results.

3. Multi-modal function

It can be seen from Table 5 that the functions with numerous locally optimal
solutions are universally acknowledged optimization problemswith difficulty. f8−
f12 are these functions, their locally optimal solutions increase rapidly with the
increase of dimensions. Table 5 has recorded the statistic optimization results
of 20 computations. Overall, SA-CPSO has better optimization on all 5 multi-
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Fig. 6 f4 function

Fig. 7 f5 function

modal problems than LDIW-PSO, as evidenced by the comparison indexes. For
the test problem f12, the mean value and standard deviation of SA-CPSO are
bigger. But as a whole, SA-CPSO has a better performance and it has found the
optimal solutions to most problems, which has shown that SA-CPSO is effective
in multi-modal problems.

The above test results have demonstrated that the algorithm of this paper has a
better performance compared with other similar algorithms. Because the simulated
annealing algorithm is hopping, it is not easy to fall into the local minima, and has the
advantages of strong local search ability and fast convergence speed near the optimal
value. Therefore, the simulated annealing algorithm integrates it into thePSOstructure,
improves the convergence speed of the algorithm by improving the space exploration
ability of the particle, and improves the ability of PSO to get out of the local extreme
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Fig. 8 f6 function

Fig. 9 f7 function

points. The convergence accuracy of the algorithm is improved. As the evolution
proceeds, the temperature of this algorithm gradually falls and its probability to accept
a bad solution gradually decreases, so its convergence performance is improved. This
algorithm has not only basically maintained the enhanced global optimization ability
of particle swarm optimization, but it has also accelerated its acceleration velocity and
enhanced the convergence accuracy. In engineering applications, about the selection
of algorithm parameters, the method that selects certain kinds of parameters is not
necessary to be better than other parameters. On the contrary, it has to be combined
with practical problems and get familiar with the convergence features of specific
problems in the iteration process. To select the parameters and the changes correctly
can avoid getting trapped in local optimum.
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Fig. 10 f8 function

Fig. 11 f9 function

6 Conclusions

PSO is a kind of simple and effective stochastic global optimization technique, it adopts
the evolutionary advantage produced by the information sharing mechanism between
biological communities to search for the optimal solution through the collaboration
between individuals. This paper has brought the Metropolis criterion of simulated
annealing algorithm into the particle swarm optimization with constriction factor.
First, it analyzes the impact the parameters have on the algorithm performance and
the convergence, efficiency and parameter selection in different forms. On this basis,
it proposes a cooperative particle swarm optimization with constriction factor based
on simulated annealing, stages the principles and steps of the algorithm, conducts
comparative analysis in sensitivity of parameters and performance of algorithm and
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Fig. 12 f10 function

Fig. 13 f11 function

demonstrates the convergence of the algorithm. The algorithm of this paper basically is
simple and easy to implement, just like particle swarm optimization, but it overcomes
the defects that standard particle swarm optimization is low in the follow-up iteration
and easy to get trapped in locally optimal solution and it improves its ability to get rid
of local extremum. With its sudden jumping in the search process, it can effectively
avoid getting trapped into local minimum and it improves the convergence speed and
accuracy. Last but not least, this paper uses test functions to analyze the performance of
the algorithm of this paper and the experiment data has shown that in the optimization
of high-dimensional, multi-modal and complex problems, the algorithm of this paper
has improved the convergence performance and better balanced global convergence
ability and local search capacity. It has not only higher convergence accuracy and faster
convergence velocity, but also better stability. The future research on PSO is mainly
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Fig. 14 f12 function

Table 3 Comparison of mean value and standard deviation of solutions

SA-CPSO LDIW-PSO

Mean Std Mean Std

f1 1.331419646283852e−07 2.735354895191153e−07 2.968129690205849e−06 5.124680268185118e−06

f2 2.796462259355242e−04 6.842231715824982e−04 0.001744429664800 0.001651067718544

f3 6.839891207928742e−08 1.861344913106796e−07 5.947888128276768e−06 6.822706873816079e−06

f4 8.927933168288257e−05 8.653488642305816e−05 0.001903163912840 0.001637994830911

f5 −7.167143018379526e+03 1.113850607852525e+04 −4.619341314337316e+53 1.880914652957547e+54

Table 4 Comparison of mean value and standard deviation of solutions

SA-CPSO LDIW-PSO

Mean Std Mean Std

f6 0.00e+00 0.00e+00 0.00e+00 0.00e+00

f7 0.616765195997272 0.314363649236209 0.633663107035385 0.233592226972967

Table 5 Comparison of mean value and standard deviation of solutions

SA-CPSO LDIW-PSO

Mean Std Mean Std

f8 −71.035042635175884 45.667176751920749 −6.268495561090766e+412.732373867882794e+42
f9 3.062825055835994e−04 9.962245366987534e−04 0.206607598041054 0.395602711076342
f10 4.338243608652093e−04 6.501261753762532e−04 0.004585376204003 0.004219484711247
f11 5.364413215858121e−08 1.668238063765492e−07 2.069288677986059e−064.269180710527052e−06
f12 −15.319646492308172 0.004836597089330 −15.323043896846645 3.451871427990660e−05
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about how to choose the inertia weight factor, which plays a decisive role in the result
of the whole algorithm. Therefore, the choice of inertia weight needs to be studied
emphatically. In addition, how to combine PSO with other optimization algorithms is
very important for PSO to jump out of local extremum and speed up convergence.
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