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Abstract
The aim of the present article is to introduce a concept which allows to generalise
the notion of Poissonian pair correlation, a second-order equidistribution property, to
higher dimensions. Roughly speaking, in the one-dimensional setting, the pair corre-
lation statistics measures the distribution of spacings between sequence elements in
the unit interval at distances of order of the mean spacing 1/N . In the d-dimensional

case, of course, the order of the mean spacing is 1/N
1
d , and—in our concept—the

distance of sequence elements will be measured by the supremum-norm. Addition-
ally, we show that, in some sense, almost all sequences satisfy this new concept and
we examine the link to uniform distribution. The metrical pair correlation theory is
investigated and it is proven that a class of typical low-discrepancy sequences in the
high-dimensional unit cube do not have Poissonian pair correlations, which fits the
existing results in the one-dimensional case.
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1 Introduction and statement of results

The concept of Poissonian pair correlations has its origin in quantummechanics, where
the spacings of energy levels of integrable systems were studied. See for example [1]
and the references cited therein for detailed information on that topic. Rudnick and
Sarnak first studied this concept from a purely mathematical point of view and over
the years the topic has attracted wide attention, see e.g., [12,17–20].
Let ‖·‖ denote the distance to the nearest integer. A sequence (xn)n∈N of real numbers
in [0, 1) has Poissonian pair correlations if the pair correlation statistics

FN (s) := 1

N
#
{
1 ≤ l �= m ≤ N : ‖xl − xm‖ ≤ s

N

}
(1)

tends to 2s, for every s ≥ 0, as N → ∞.
Let now d ≥ 2 be an integer denoting the dimension of the problem setting. In the

sequel, we indicate by bold symbols that we work with d-dimensional vectors of real
numbers or random variables. We extend the above notion to sequences (xn)n∈N in the
d-dimensional unit cube [0, 1)d . Subsequently, we denote by ‖·‖∞ a supremum-norm
of a d-dimensional vector, i.e., in our case for some x = (x1, . . . , xd) ∈ R

d ,

‖x‖∞ := max(‖x1‖, . . . , ‖xd‖),

where we recall that ‖ · ‖ denotes the distance to the nearest integer.
We say that a sequence (xn)n∈N ∈ [0, 1)d has Poissonian pair correlations if the

multi-dimensional pair correlation statistics

F (d)
N (s) := 1

N
#
{
1 ≤ l �= m ≤ N : ‖xl − xm‖∞ ≤ s

N 1/d

}

tends to (2s)d , for every s ≥ 0, as N → ∞.
In the one-dimensional case, it is well-known that for a sequence of i.i.d. random
variables (Xi )i∈N having uniformdistribution on [0, 1), FN (s) tends to 2s, as N → ∞,
almost surely (see e.g., [2,16]). Clearly, amulti-dimensional analogue of this statement
holds as well.

Proposition 1 Let (X i )i∈N a sequence of i.i.d. random variables having uniform dis-
tribution on [0, 1)d , then for all s > 0, we have F (d)

N (s) → (2s)d , as N → ∞, almost
surely.

The proof is based on the pairwise independence of the random variables X l − Xm ,
l �= m, and the Borel–Cantelli lemma. For completeness, we state the proof in Sect. 2.
Note that, however, this result would be true if the “�∞-ball” in the definition of the
pair correlation is replaced by an arbitrary measurable set of volume (2s)d/N .
The notion of Poissonian pair correlation has attracted renewed interest in the last
few years, due to its connection to several mathematical fields, such as Diophantine
approximation, additive combinatorics and uniformdistribution (see e.g., [1,3,4,12,14,
22]). The link between the concept of uniform distribution modulo 1 and Poissonian
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On a multi-dimensional Poissonian pair correlation concept… 335

pair correlation has been studied in the one-dimensional case. Due to a result by
Grepstad and Larcher [11] (see also [2,21]), we know that a sequence which satisfies
that (1) tends to 2s, for every s > 0, as N → ∞, is also uniformly distributed in
[0, 1), i.e., it satisfies

lim
N→∞

1

N
#{1 ≤ n ≤ N : xn ∈ [a, b)} = b − a

for all 0 ≤ a < b ≤ 1. The above presented multi-dimensional concept of Poissonian
pair correlation also implies uniform distribution of a sequence in [0, 1)d , i.e.,

lim
N→∞

1

N
#{1 ≤ n ≤ N : xn ∈ [a, b)} =

d∏
i=1

(bi − ai ),

for all 0 ≤ a < b ≤ 1, where a < b has to be understood componentwise, i.e., ai < bi
for 1 ≤ i ≤ d.

Theorem 1 Let (xn)n∈N ∈ [0, 1)d be such that for every s ∈ N we have that

lim
N→∞ F (d)

N (s) = (2s)d ,

then (xn)n∈N is uniformly distributed in [0, 1)d
It turns out by the proof of this theorem that it is sufficient to have the Poissonian
property for positive integer-valued s only in order to deduce uniform distribution
for a sequence (xn)n∈N ∈ [0, 1)d (the same holds in the one-dimensional case as
well). It would be very interesting if this result also holds if we define the multi-
dimensional pair correlation concept using other norms, e.g., the L2-norm. However,
it is not straightforward how one could prove such a result. The main difficulty here
is the following: we can pave the unit-cube with a suitable choice of boxes of volume
1/N when we work with the supremum-norm. Such a partitioning is not possible,
when using the L2-norm.

This new concept of course raises several further questions. E.g., in the one-
dimensional case, it is known that for almost all choices of α the sequence
({ f (n)α})n∈N, where f (x) is a polynomial of degree at least 2 with integer coef-
ficients, has Poissonian pair correlations [18]. If a d-dimensional polynomial p(x) =
(p1(x), . . . , pd(x)) (pi (x) are all real polynomials) has the property that for each
lattice point h ∈ Z

d , h �= 0 the polynomial 〈h, p(x)〉 has at least one non-constant
term with irrational coefficient, then

(({p1(n)} , . . . , {pd(n)}))n∈N

is uniformly distributed in [0, 1)d (see e.g., [13]). Therefore, in analogy to the one-
dimensional case, it would be natural to expect that for an integer polynomial f (x)
with degree at least 2, the sequence

(({ f (n)α1}, . . . , { f (n)αd}))n∈N,
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336 G. Larcher et al.

has Poissonian pair correlation for almost all choices of α1, . . . , αd (this claim will be
a consequence of Theorem 2).

To be more general, let (an)n∈N be an increasing sequence of distinct integers and
α = (α1, . . . , αd). Then we consider a sequence of the form

({anα})n∈N := (({anα1} , . . . , {anαd}))n∈N ,

which is uniformly distributed for almost all choices of α1, . . . , αd .
In the one-dimensional case the metrical pair correlation theory of such sequences

is strongly linked to the additive energy of a finite integer set A, denoted by E(A).
The additive energy E(A) is defined as

E(A) :=
∑

a+b=c+d

1,

where the sum is extended over all quadruples (a, b, c, d) ∈ A4. This connection was
discovered by Aistleitner, Larcher and Lewko, who, roughly speaking, proved in [4]
that if the first N elements of an increasing sequence of distinct integers (an)n∈N, have
an arbitrarily small energy saving, then ({anα})n∈N has Poissonian pair correlations
for almost all α. Recently, Bloom and Walker (see [5]) improved over this result by
showing the following theorem.

Theorem A There exists an absolute positive constant C such that the following is
true. Let AN denote the first N elements of (an)n∈N and suppose that

E(AN ) = O
(

N 3

(log N )C

)
,

then for almost all α, ({anα})n∈N has Poissonian pair correlations.

The proof of this result relies on a new bound for GCD sums with exponent 1/2,
which improves over the bound by Bondarenko and Seip (see [6]), if the additive
energy of AN is sufficiently large. Note that the constant C was not specified in the
above mentioned paper, but the authors thereof conjecture that Theorem A holds for
C > 1 already. This result would be best possible. To see this, consider the sequence
(pn)n∈N of all primes. It is known that (pn)Nn=1 has additive energy of exact order
N 3/(log N ), but ({pnα})n∈N is not metric Poissonian, i.e., there exists a set � of full
Lebesgue measure, such that for all α ∈ �, ({pnα})n∈N does not have Poissonian pair
correlations (see [22]).
Naturally, we would also expect that under this condition on the additive energy, the
sequence

({anα})n∈N

has Poissonian pair correlations for almost all instances and, in fact, we have the
following even better result, which is a consequence of better bounds on GCD sums
for larger exponents than 1/2:
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On a multi-dimensional Poissonian pair correlation concept… 337

Theorem 2 Let AN denote the first N elements of (an)n∈N and suppose that

E(AN ) = O
(

N 3

(log N )1+ε

)
, for any ε > 0,

then for almost all choices of α = (α1, . . . , αd) ∈ R
d ,

({anα})n∈N

has Poissonian pair correlations.

However, if the additive energy is of maximal order, i.e., if we have E(AN ) = �(N 3),
then there is no α such that ({anα})n∈N has Poissonian pair correlations, see [14]. The
approach used in [14] can be generalised to arbitrary dimensions.

Theorem 3 If E(AN ) = �(N 3), then for any choice of α = (α1, . . . , αd) ∈ R
d the

sequence

({anα})n∈N,

does not have Poissonian pair correlations.

Classical low-discrepancy sequences in [0, 1), e.g., the van der Corput sequence, the
Kronecker sequence ({nα})n∈N and digital (t, 1)-sequences in base b ≥ 2, do not have
Poissonian pair correlations (see e.g., [15]). We will derive an analogous result for the
multi-dimensional version of the Kronecker sequence.

Corollary 1 For any choice of α = (α1, . . . , αd) ∈ R
d the d-dimensional Kronecker

sequence

(xn)n∈N := ({nα})n∈N,

where {·} denotes the fractional part of a real number, does not have Poissonian pair
correlations.

Of course, Corollary 1 is an immediate consequence of Theorem 3. However, we also
include an explicit proof of Corollary 1 as an “Appendix”, since it gives an intuitive
feeling for the multi-dimensional Poissonian pair correlation concept.

We also strongly believe that other multi-dimensional low-discrepancy sequences
such as (t, s)-sequences and the Halton sequence do not have Poissonian pair corre-
lations.

Remark 1 Although the metrical theory of sequences of the form ({anα})n∈N seems
to be well-established, we do not know any explicit construction of α (not even in
the one-dimensional case) such that ({anα})n∈N has Poissonian pair correlations. It is
in general very hard to construct sequences having Poissonian pair correlations. The
only known explicit examples—to the best of our knowledge—of sequences with this
property are {√n}n∈N (see [8]) and certain directions of vectors in an affine Euclidean
lattice (see [9]).
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2 Proof of Proposition 1

As (X i )i∈N is a sequence of i.i.d. random variables having uniform distribution on
[0, 1)d , we have

E

(
F (d)
N (s)

)
= E

(
1

N
#
{
1 ≤ k �= l ≤ N : ‖Xk − X l‖∞ ≤ s

N 1/d

})

= 1

N
N (N − 1)

∫

[0,1)d

∫ x1+s/N1/d

x1−s/N1/d
. . .

∫ xd+s/N1/d

xd−s/N1/d
1 d y dxd . . . dx1

= N − 1

N
(2s)d .

Due to the fact that the random variables Xk − X l , k �= l, (note that the difference is
consideredmodulo 1) are pairwise independent, we obtain that the variance of F (d)

N (s),

denoted by σ 2
(
F (d)
N (s)

)
, satisfies, whenever N ≥ (2s)d ,

σ 2
(
F (d)
N (s)

)
= 1

N 2

∑
1≤k �=l≤N

σ 2
(
1
(
‖Xk − X l‖∞ ≤ s

N 1/d

))

=N (N − 1)

N 2

(2s)d

N

(
1 − (2s)d

N

)

≤ (2s)d

N
,

where 1(·) denotes the indicator function. Using Chebyshev’s inequality, we obtain
that for all ε, s > 0,

P

(∣∣∣F (d)
N (s) − E

(
F (d)
N (s)

)∣∣∣ ≥ ε
)

≤ (2s)d

ε2N
,

if N is large enough. To prove now almost sure convergence, one can apply the
arguments used in [4,20]. We fix a γ > 0 and define a subsequence NM along the
integers, for M ≥ 1, as

NM := M1+γ .

The variance estimate from above combined with Chebyshev’s inequality and the first
Borel–Cantelli lemma allow to deduce that, for all s > 0,

lim
M→∞ F (d)

NM
(s) = (2s)d , almost surely,

i.e., we have now almost sure convergence along a subsequence of the integers. For
N , with NM ≤ N ≤ NM+1, we use the trivial bounds
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On a multi-dimensional Poissonian pair correlation concept… 339

NMF (d)
NM

(
NM

NM+1
s

)
≤ NF (d)

N (s)

≤ NM+1F
(d)
NM+1

(
NM+1

NM
s

)
.

Since NM+1/NM → 1, as M → ∞, we also get

lim
N→∞ F (d)

N (s) = (2s)d , almost surely.

�

3 Proof of Theorem 1

We carry out the proof for d = 2, for an arbitrary d the arguments run quite analo-
gously. To prove the theorem, we assume in the contrary that (xn)n∈N is not uniformly
distributed and will derive a contradiction. Due to this assumption, there exists an
ε > 0 and α, β with 0 < α, β < 1 such that

∣∣∣∣
1

N
#{1 ≤ n ≤ N : xn ∈ [0, α) × [0, β)} − αβ

∣∣∣∣ > ε,

for infinitely many N . Note that for simplicity, we work here with boxes anchored at
the origin. One can readily adopt the following steps to arbitrary axis-parallel boxes.
Hence, we can assume that for an increasing sequence of integers (Ni )i∈N we have

1

Ni
#{1 ≤ n ≤ Ni : xn ∈ [0, α) × [0, β)} ≤ αβ − ε

(The case that we have “≥ αβ+ε” in the above expression can be treated analogously.)
Let N := Ni for some i ≥ 1 and assume for simplicity that

√
N is an integer. For

0 ≤ i, j <
√
N let

Ai, j := #

{
1 ≤ n ≤ N : xn ∈

[
i√
N

,
i + 1√

N

)
×
[

j√
N

,
j + 1√

N

)}
.

If i and/or j ≥ √
N , we set

Ai, j := Ai mod
√
N , j mod

√
N .
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340 G. Larcher et al.

Then for all integers s and N large enough, we have

NF (d)
N (s) ≥

√
N−1∑

i, j=0

Ai, j
(
Ai, j − 1

)+ 2Ai, j Bi, j , where

Bi, j :=
s−1∑
u=1

s−1∑
v=−(s−1)

Ai+u, j+v +
s−1∑
v=1

Ai, j+v.

Hence,

NF (d)
N (s) ≥

√
N−1∑

i, j=0

((
Ai, j + Bi, j

)2 − B2
i, j

)
− N ,

as we have
√
N−1∑

i, j=0

Ai, j = N . (2)

If α = a√
N

and β = b√
N

(assume for simplicity that a and b are positive integers),
then we have

a−1∑
i=0

b−1∑
j=0

Ai, j ≤ N (αβ − ε) (3)

and
∑
i, j

i≥a or j≥b

Ai, j ≥ N (1 − αβ + ε) (4)

Now, considering a standard constrained optimization problem, we get in a first step
that the quadratic form

√
N−1∑

i, j=0

((
Ai, j + Bi, j

)2 − B2
i, j

)
(5)

attains its minimum under conditions (2), (3) and (4) if in (3) and (4) we have equality.
In a second step, it can be shown that (5) attains its minimum under conditions (2),
(3) and (4) (with equality sign) if all Ai, j occurring in the sum of (3) and (4) have the
same value. This means the minimum is attained if

Ai, j =
{N (αβ−ε)

ab = 1 − ε
αβ

, if 0 ≤ i < a and 0 ≤ j < b,
N (1−αβ+ε)

N−ab = 1 + ε
1−αβ

, otherwise.
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Note that each Bi, j consists of
(2s−1)2−1

2 = 2s(s − 1) summands Ax,y and therefore,

NF (d)
N (s) ≥

a−1∑
i=0

b−1∑
j=0

((
Ai, j + Bi, j

)2 − B2
i, j

)

+
∑
i, j

i≥a or j≥b

((
Ai, j + Bi, j

)2 − B2
i, j

)
− N

≥ ab

((
(2s(s − 1) + 1)

(
1 − ε

αβ

))2
−
(

(2s(s − 1))

(
1 − ε

αβ

))2)

+ (N − ab)

((
(2s(s − 1) + 1)

(
1 + ε

1 − αβ

))2

−
(

(2s(s − 1))

(
1 + ε

1 − αβ

))2)
− N

= (4s(s − 1) + 1)

[
ab

(
1 − ε

αβ

)2
+ (N − ab)

(
1 + ε

1 − αβ

)2]
− N

= N

[
(4s(s − 1) + 1)

(
λ
(
1 − ε

λ

)2 + (1 − λ)

(
1 + ε

1 − λ

)2)
− 1

]

=: N Rε,λ(s),

where λ := αβ. By assumption, we have limN→∞ F (d)
N (s) = (2s)2 for all positive

integers s. Therefore, in order to derive a contradiction, it suffices to show that there
exists an integer s such that

Rε,λ(s) > (2s)2. (6)

The expression Rε,λ(s) − (2s)2 can be viewed as a quadratic polynomial in s with
leading coefficient

4λ
(
1 − ε

λ

)2 + 4(1 − λ)

(
1 + ε

1 − λ

)2
− 4 = 4

ε2

λ(1 − λ)
> 0.

Hence (6) holds for all s large enough in dependence on ε and λ. �

4 Proof of Theorem 2

We adapt the steps of Lemma 3 of [4], which we will shortly repeat here.
In the sequel let d ≥ 2 and 1, α1, . . . , αd be linearly independent over the rationals.

Forα = (α1, . . . , αd), we denote by IN ,s(α), for a fixed s � 1 and N , with (2s)d ≤ N ,
the indicator function of the interval
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[
−s/N 1/d , s/N 1/d

)d

extended with period 1. Therefore, we can write the pair correlation function F (d)
N (s)

(subsequently interpreted as a function of α) for the sequence ({anα})n∈N as

F (d)
N ,s(α) := 1

N

∑
1≤k,l≤N

k �=l

IN ,s(α(ak − al)).

We consider the Fourier series expansion of IN ,s(α), i.e.,

IN ,s(α) ∼
∑

r∈Zd

cre(〈r,α〉),

with

cr =
∫ s/N1/d

−s/N1/d
. . .

∫ s/N1/d

−s/N1/d
e−2π i

∑d
i=1 riαi dα1 . . . dαd ,

where r = (r1, . . . , rd). Hence, we can write cr = cr1 . . . crd , where cr j =∫ s/N1/d

−s/N1/d e
−2π ir jα j dα j , for j = 1, . . . , d . Note that we have

|cr j | ≤ min

(
2s

N 1/d ,
1

|r j |
)

. (7)

This gives the following expression for the variance of F (d)
N ,s(α). Note, due to the

assumption on s, the constants implied by “�” are independent of s (and of course
independent of N ).

∫

[0,1)d

(
F (d)
N ,s(α) − (2s)d(N − 1)

N

)2
dα

= 1

N 2

∫

[0,1)d

⎛
⎜⎜⎝
∑

1≤k,l≤N
k �=l

∑

r∈Zd\{0}
cre(〈r,α(ak − al)〉)

⎞
⎟⎟⎠

2

dα

= 1

N 2

∑
1≤k,l,m,n≤N
k �=l,m �=n

∑

r1,r2∈Zd\{0}
|cr1cr2 |×

×
∫

[0,1)d
e(〈r1,α(ak − al)〉 − 〈r2,α(am − an)〉) dα

= 1

N 2

∑
1≤k,l,m,n≤N
k �=l,m �=n

∑

r1,r2∈Zd\{0}
|cr1cr2 |

∫

[0,1)
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e
(
α1

(
r (1)
1 (ak − al) − r (1)

2 (am − an)
))

dα1 . . .

×
∫

[0,1)
e
(
αd

(
r (d)
1 (ak − al) − r (d)

2 (am − an)
))

dαd ,

with r i = (r (1)
i , . . . , r (d)

i ) for i = 1, 2.
Recalling that the representation function rN (v) of an integer v is defined as

rN (v) := #{1 ≤ k �= l ≤ N : ak − al = v},

we can write the previous expression as

1

N 2

∑
v,w∈Z\{0}

rN (v)rN (w)

′∑

r1,r2∈Zd\{0}
r (i)
1 v=r (i)

2 w

|cr1cr2 |, (8)

where in the sum
∑ ′ the equality r (i)

1 v = r (i)
2 w only needs to hold for these indices

i for which r (i)
1 , r (i)

2 �= 0. To further estimate the expression (8), we first derive the
estimate

∑

r1,r2∈Zd\{0}
r (i)
1 v=r (i)

2 w

|cr1cr2 | � sd log N

N

gcd(v,w)d√|vw|d , v, w �= 0, (9)

where the implied constant depends on d and all entries of r1 and r2 are assumed to be
non-zero. Note that compared to the one-dimensional case the exponent appearing in
the GCD expression is now ≥ 2, which allows sharper estimates of the corresponding
GCD sum. To see that (9) is true, we recall that r (i)

1 v = r (i)
2 w for i = 1, . . . , d if and

only if

r (i)
1 = hiw

gcd(v,w)
, and r (i)

2 = hiv

gcd(v,w)
for i = 1, . . . , d,

where the hi ’s are some integers. Then, case distinctions according to the size of the
hi ’s, i.e.,

|hi | ≤ N 1/d gcd(v,w)

smax(|v|, |w|) =: maxhi ,

N 1/d gcd(v,w)

smax(|v|, |w|) ≤ |hi | ≤ N 1/d gcd(v,w)

smin(|v|, |w|) =: minhi ,

|hi | ≥ N 1/d gcd(v,w)

smin(|v|, |w|)

123



344 G. Larcher et al.

and recalling the bounds on the Fourier coefficients (7) gives the following estimate.
For fixed v, w, and D := {1, . . . , d}, we have

∑

r1,r2∈Zd\{0}
r (i)
1 v=r (i)

2 w

|cr1cr2 | =
∑

r1,r2∈Zd\{0}
r (i)
1 v=r (i)

2 w

|c
r (1)
1

. . . c
r (d)
1
c
r (1)
2

. . . c
r (d)
2

|

�
∑

ϑ1,ϑ2⊆D
ϑ1∩ϑ2=∅

∑
hi≤maxhi

i∈ϑ1

s2|ϑ1|

N 2|ϑ1|/d
∑

maxhi ≤hi≤minhi
i∈ϑ2

s|ϑ2|

N |ϑ2|/d
gcd(v,w)|ϑ2|

max(|v|, |w|)|ϑ2|∏
i∈ϑ2

hi

×
∑

hi≥minhi
i∈D\(ϑ1∪ϑ2)

gcd(v,w)2(d−|ϑ1∪ϑ2|)

|vw|d−|ϑ1∪ϑ2|∏
i∈D\(ϑ1∪ϑ2)

h2i

�
∑

ϑ1,ϑ2⊆D
ϑ1∩ϑ2=∅

N |ϑ1|/d gcd(v,w)|ϑ1|

s|ϑ1| max(|v|, |w|)|ϑ1|
s2|ϑ |1
N 2|ϑ1|/d ×

× log N
s|ϑ2|

N |ϑ2|/d
gcd(v,w)|ϑ2|

max(|v|, |w|)|ϑ2|
gcd(v,w)2(d−|ϑ1∪ϑ2|)

|vw|d−|ϑ1∪ϑ2|

× s(d−|ϑ1∪ϑ2|)

N (d−|ϑ1∪ϑ2|)/d
min(|v|, |w|)(d−|ϑ1∪ϑ2|)

gcd(v,w)(d−|ϑ1∪ϑ2|)

� sd log N

N

gcd(v,w)d√|vw|d .

Consequently, we have for the variance of F (d)
N ,s(α), using the result on GCD sums by

Gál (see [10]),

∫

[0,1)d

(
F (d)
N ,s(α) − (2s)d(N − 1)

N

)2
dα

= 1

N 2

∑
v,w∈Z\{0}

rN (v)rN (w)

′∑

r1,r2∈Zd\{0}
r (i)
1 v=r (i)

2 w

|cr1cr2 |

� sd log N

N 3

∑
v,w∈Z\{0}

rN (v)rN (w)
gcd(v,w)d√|vw|d

�
{

sd E(AN ) log N
N3 (log log N )2, for d = 2,

sd E(AN ) log N
N3 , for d ≥ 3.

Then, using similar arguments as for example in the proof of Theorem 6 of [5], we
can deduce the claim. �
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5 Proof of Theorem 3

The proof uses exactly the same steps, except some minor technical changes, as the
one in the one-dimensional case, see [14]. Tomake this paper self-contained, we repeat
the most important steps here. We demonstrate the proof for d = 2 only, as for gen-
eral d the arguments are quite analogue. As (an)n∈N has maximal order of additive
energy it is well-known (see [1]) that there exist constants C, K > 0 and a strictly
increasing sequence of positive integers (Ni )i such that for all i ≥ 1 there is a subset
A(i) ⊂ (an)1≤n≤Ni

with
∣∣A(i)

∣∣ ≥ CNi such that A(i) is contained in a q-dimensional
arithmetic progression Pi (for some integer q) of size at most K Ni . We call such an
integer sequence quasi-arithmetic of degree q.

To be more precise, we have the following: For all i ≥ 1 there is a subset
b1 < b2 < · · · < bMi of (an)n=1,...,Ni with Mi ≥ CNi , such that (b j ) j=1,...,Mi

is a subset of

Pi :=
⎧⎨
⎩hi +

q∑
j=1

r j k
(i)
j

∣∣∣∣∣∣
0 ≤ r j < s(i)

j

⎫⎬
⎭

with certain hi , k
(i)
1 , . . . , k(i)

q ∈ Z, s(i)
1 , . . . , s(i)

q ∈ N and s(i)
1 s(i)

2 . . . s(i)
q ≤ K Ni . Fix

now any i , and for simplicity we omit the index i in the above notations, i.e., we put
M := Mi , h := hi and so on. In the sequel, we will put K = 1 and h = 0. The general
case is treated similarly. Further, for k = 1, . . . , M , we set

bk = r (k)
1 k1 + · · · + r (k)

q kq

and we identify bk with the vector

(
r (k)
1 , . . . , r (k)

q

)
=: rk .

Consider now vectors

u :=
⎛
⎜⎝
u1
...

uq

⎞
⎟⎠ ,

with−(s j −1) ≤ u j ≤ (s j −1) for j = 1, . . . , q. Let γ := C2

1+2q , then it can be shown
that there exist at least γ N different vectors u such that there exist at least γ N pairs
rk, rl with rk − rl = u. In the sequel, we will refer to this observation as Property 1.
Take now γ N such q-tuples u having Property 1 and consider the corresponding γ N
values

{(u1k1 + · · · + uqkq)α}, in [0, 1)2. (10)
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Let L := 2
γ
, then there is a β ∈ [0, 1), such that the box

[
β, β +

√
L

γ N

)2
contains at

least L elements of the form (10), say the elements

{(u(x)
1 k1 + · · · + u(x)

q kq)α}, for x = 1, . . . , L.

We call this fact Property 2. Note that for sake of simplicity, we treat γ N and L as
if they were integers. The general case can be handled analogously with some minor
technical changes.
For every choice of x , we consider now γ N pairs of q-tuples, say

r i,x :=
⎛
⎜⎝
r (i,x)
1
...

r (i,x)
q

⎞
⎟⎠ , and r̃ i,x :=

⎛
⎜⎝
r̃ (i,x)
1
...

r̃ (i,x)
q

⎞
⎟⎠ ,

for i = 1, . . . , γ N , such that

r i,x − r̃ i,x =
⎛
⎜⎝
u(x)
1
...

u(x)
q

⎞
⎟⎠ .

We define, for x = 1, . . . , L , the sets

Mx := {r i,x | i = 1, . . . , γ N }.

It can be proven that there exist x, y ∈ {1, . . . , L} with x �= y such that

∣∣Mx ∩ My
∣∣ ≥ N

L2 . (11)

Let now x and y satisfying (11) be given. Let

r i , i = 1, . . . ,
N

L2 ,

r̃ i,x , i = 1, . . . ,
N

L2 ,

r̃ i,y, i = 1, . . . ,
N

L2

be such that

r i − r̃ i,x =
⎛
⎜⎝
u(x)
1
...

u(x)
q

⎞
⎟⎠ , and r i − r̃ i,y =

⎛
⎜⎜⎝
u(y)
1
...

u(y)
q

⎞
⎟⎟⎠ .
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Then,

r̃ i,y − r̃ i,x =

⎛
⎜⎜⎝
u(x)
1 − u(y)

1
...

u(x)
q − u(y)

q

⎞
⎟⎟⎠ =:

⎛
⎜⎝
z1
...

zq

⎞
⎟⎠ ,

for i = 1, . . . , N
L2 . Due to Property 2, we have

√
L

γ N
≥ ‖{(z1k1 + · · · + zqkq)α}‖∞.

To sum up, we have shown that for all Ni there exist at least

Ni

L2 = C4

4(1 + 2q)2
Ni =: τNi ,

pairs (k, l) with 1 ≤ k �= l ≤ Ni , such that all expressions ‖{akα} − {alα}‖∞ have
the same value and satisfy

‖{akα} − {alα}‖∞ ≤
√

L

γ Ni
=
√
2(1 + 2q)2

C4

1

N 1/2
i

=: ψ
1

N 1/2
i

.

Note, that τ < 1 and ψ only depends on d, q and C (and on K if K �= 1). For
every i choose now ψi minimal such that there exist at least τNi pairs (k, l) with
1 ≤ k �= l ≤ Ni , such that

‖{akα} − {alα}‖∞ = ψi
1

N 1/2
i

.

Of course, ψi ≤ ψ for all i . Let now ρ := τ 1/2C2

3(1+2q )
(hence ρ < τ ) and assume that

ψi < ρ for infinitely many i . Therefore, we have for these i

1

Ni
#

{
1 ≤ k �= l ≤ Ni | ‖{akα} − {alα}‖∞ ≤ ρ

1

N 1/2
i

}

≥ τ =
(
3ρ(1 + 2q)

C2

)2
> (2ρ)2,

and consequently the pair correlations of ({anα})n∈N cannot be Poissonian.
Assume now that ψi ≥ ρ for infinitely many i . Consequently, there exist s1, s2 ∈

[ρ,ψ) such that

ψi ∈ (s1, s2]
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for infinitely many i . In the following, we only consider these i and we will set
s1 = ρ + a τC2

32
√
2(1+2q )

and s2 := ρ + (a + 1) τC2

32
√
2(1+2q )

, for some

a ∈
{
0, 1, . . . ,

⌈
(ψ − ρ)

32
√
2(1 + 2q)

τC2

⌉}
.

Then, we have, due to the fact that there are at least τNi pairs with distance equal to
ψi

1
N1/2
i

,

1

Ni
#

{
1 ≤ k �= l ≤ Ni | ‖{akα} − {alα}‖∞ ≤ s2

1

N 1/2
i

}

− 1

Ni
#

{
1 ≤ k �= l ≤ Ni | ‖{akα} − {alα}‖∞ ≤ s1

1

N 1/2
i

}

≥ τ.

If ({anα})n∈N were Poissonian, then the above difference should converge to

4(s22 − s21 ) = 4(s2 + s1)(s2 − s1) < τ

as i → ∞, which is a contradiction to the previous inequality.
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6 Appendix: Proof of Corollary 1

We again prove the result for d = 2 only, as the general case is carried out quite
analogously.

There exists a constant ρ with 0 < ρ < 1 having the following property: For every
pair (α1, α2) there exist infinitely many q ∈ N such that

max({qα1}, {qα2}) <
ρ

q1/2
,

see, e.g., [7]. Consider now such a q and set

θ

q1/2
= max({qα1}, {qα2}),
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where 0 < θ ≤ ρ. Let A = A(q) be the minimal integer such that

((
1

Aθ

)2/3
+ 1

)3
θ2 <

1 + θ2

2

holds, which is possible due to θ ≤ ρ < 1. Note that A is the larger, the larger θ is.
Hence, the values of A are bounded by the value obtained for θ = ρ. This A will be
denoted by Aρ . Further, for the choice of B = B(q) := 2

1+θ2
, we have B ≥ 2

1+ρ2 > 1.

Choose L = L(q) :=
⌈( 1

Aθ

)2/3⌉
and the real ν̃ such that

L
θ

q1/2
= 1

(A2Lq − ν̃)1/2
, (12)

i.e.,

ν̃ = A2Lq − q

L2θ2
.

In the sequel, we will show that

q

L2θ2
≥ BLq, (13)

and consequently,

ν̃ ≤ (A2 − B)Lq. (14)

Clearly, Eq. (13) is equivalent to BL3θ2 ≤ 1. Now

BL3θ2 ≤ B

((
1

Aθ

)2/3
+ 1

)3
θ2

and hence, (13) holds if

((
1

Aθ

)2/3
+ 1

)3
θ2 <

1

B
= 1 + θ2

2
,

which is true due to the definition of A and B, respectively. Let ν := �ν̃� and N :=
A2Lq − ν. Note, that by (14) we have N ≥ BLq and this, by the definition of B and
L tends to infinity for q to infinity.

We consider now the sequence elements x1, . . . , xN=A2Lq−ν , and study the dis-
tances of the pairs

(x1, x1+qL), (x2, x2+qL), . . . , (xN−qL , xN ).
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Using the estimate (14), we derive that there are

N − qL = ((A2 − 1)L)q − ν ≥ (B − 1)Lq

≥
(

2

1 + ρ2 − 1

)
Lq

≥ A2Lq

(
2

1 + ρ2 − 1

)
1

A2
ρ

≥ γ N (15)

such pairs, where γ is a positive fixed constant independent on q.
Now, for each such pair, we get (for k = 1, . . . , N − qL)

‖xk − xk+qL‖∞ = max({Lqα1}, {Lqα2})
= L

θ

q1/2
.

The second equality is true due to the following inequality

1√
N

≤ L
θ

q1/2
≤ 3√

N
,

which we will prove subsequently. First, note that we have

0 <
√
N

(
1

(A2Lq − ν̃)1/2
− 1

(A2Lq − ν)1/2

)

=
(
A2Lq − ν

A2Lq − ν̃

)1/2
− 1 =

(
1 + ν̃ − ν

(A2Lq − ν̃)

)1/2
− 1

<

(
1 + 1

BLq

)1/2
≤
(
1 + 1

q

)1/2
< 2,

where we used the estimate (14) for ν̃. Further, due to above estimate and (12), we
also have

0 <
√
N

(
L

θ

q1/2
− 1√

N

)

= √
N

(
1

(A2Lq − ν̃)1/2
− 1

(A2Lq − ν)1/2

)

< 2,

i.e.,

1√
N

≤ L
θ

q1/2
≤ 3√

N
.
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As the inequality from above is valid for infinitely many q and as a consequence

thereof, there exists an a ∈
{
0, 1, . . . ,

⌈
3100

γ

⌉}
such that

1 + a γ
100√
N

≤ L
θ

q1/2
≤ 1 + (a + 1) γ

100√
N

for infinitely many q.
In the following, we consider a sequence (ql) of such q with corresponding (Nl)

and define

s1 := 1 + a
γ

100

s2 := 1 + (a + 1)
γ

100
.

Assume that (xn)n∈N were Poissonian, then we had

lim
l→∞ �i (l) := lim

l→∞
1

Nl
#
{
1 ≤ l �= m ≤ Ni : ‖xl − xm‖∞ ≤ si

N 1/2

}
= 4s2i ,

for i = 1, 2.
But �2(l) ≥ �1(l) + γ due to (15), which gives a contradiction as we also have

4s22 − 4s21 = 4(s2 + s1)(s2 − s1) ≤ 32
γ

100
.

�
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