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Abstract
Aims  Negative pressure wound therapy (NPWT) has been successfully used as a treatment for diabetic foot ulceration (DFU). 
Its mechanism of action on the molecular level, however, is not fully understood. We assessed the effect of NPWT on gene 
expression in patients with type 2 diabetes (T2DM) and DFU.
Methods  We included two cohorts of patients—individuals treated with either NPWT or standard therapy. The assignment 
to NWPT was non-randomized and based on wound characteristics. Differential gene expression profiling was performed 
using Illumina gene expression arrays and R Bioconductor pipelines based on the ‘limma’ package.
Results  The final cohort encompassed 21 patients treated with NPWT and 8 with standard therapy. The groups were similar 
in terms of age (69.0 versus 67.5 years) and duration of T2DM (14.5 versus 14.4 years). We identified four genes differen-
tially expressed between the two study arms post-treatment, but not pre-treatment: GFRA2 (GDNF family receptor alpha-
2), C1QBP (complement C1q binding protein), RAB35 (member of RAS oncogene family) and SYNJ1 (synaptic inositol 
1,4,5-trisphosphate 5-phosphatase 1). Interestingly, all four genes seemed to be functionally involved in wound healing by 
influencing re-epithelialization and angiogenesis. Subsequently, we utilized co-expression analysis in publicly available 
RNA-seq data to reveal the molecular functions of GFRA2 and C1QBP, which appeared to be through direct protein–protein 
interactions.
Conclusions  We found initial evidence that the NPWT effect on DFUs may be mediated through differential gene expres-
sion. A discovery of the specific molecular mechanisms of NPWT is potentially valuable for its clinical application and 
development of new therapies.
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Abbreviations
CAD-11	� Cadherin-11
C1QBP	� Complement component 1, q subcomponent-

binding protein
DFS	� Diabetic foot syndrome
DFU	� Diabetic foot ulceration

GDNF	� Glial cell line-derived neurotrophic factor
GFRA1	� GDNF family receptor alpha 1
GFRA2	� GDNF family receptor alpha 2
IWGDF	� The International Working Group on the Dia-

betic Foot
NPWT	� Negative pressure wound therapy
PIP2	� Phosphatidylinositol bisphosphate
PIP3	� Phosphatidylinositol trisphosphate
RAB35	� Ras-related protein 35
SCID	� Severe combined immunodeficiency

Introduction

Diabetic foot syndrome (DFS) exhibits a complex underlying 
pathophysiology. It is characterized as an infection, ulcera-
tion or destruction of deep tissues of the foot associated with 

Managed by Massimo Porta.

 *	 Maciej T. Malecki 
	 malecki_malecki@yahoo.com; maciej.malecki@uj.edu.pl

1	 Department of Metabolic Diseases, Jagiellonian University 
Medical College, 15 Kopernika Street, 31‑501 Kraków, 
Poland

2	 University Hospital, Kraków, Poland
3	 Center for Medical Genomics OMICRON, Jagiellonian 

University Medical College, Kraków, Poland

http://crossmark.crossref.org/dialog/?doi=10.1007/s00592-018-1223-y&domain=pdf


116	 Acta Diabetologica (2019) 56:115–120

1 3

neuropathy and/or peripheral arterial disease [1]. DFS, com-
monly occurring with ulcerations, is associated with a high 
rate of relapse, amputation and mortality [2–4]. Despite new 
therapeutic advances, many patients still develop various 
forms of DFS at different stages.

Standard therapy of diabetic foot ulceration (DFU) 
includes glycemic control, offloading, revascularization, sys-
temic antibiotics, surgical debridement, and different topical 
applications [5]. Negative pressure wound therapy (NPWT) 
has attracted attention as an approach in the treatment for 
DFU. NPWT utilizes a vacuum dressing to accelerate wound 
healing, a process consisting of classical stages—hemosta-
sis, inflammation, proliferation, and maturation. Improve-
ment of blood flow, induction of wound contraction, pro-
motion of granulation and angiogenesis, increased wound 
fluid removal with a decrease in local edema, and bacterial 
colonization reduction have all been postulated as benefits of 
NPWT [6]. The specific molecular mechanisms of NPWT, 
potentially valuable for the application and development of 
new therapies, remain poorly understood. One hypothesis 
has proposed that NPWT acts through alteration in the gene 
expression profile. This has been supported in animal mod-
els and preliminarily in humans [7–13], however, has never 
been systematically examined.

In this study, we assessed the effect of NPWT on the gene 
expression profile in the wound bed of patients with type 2 
diabetes presenting with DFU.

Subjects and methods

Study population

Patients were recruited from an outpatient clinic specializing 
in diabetic foot care. We included 36 consecutive patients 
with type 2 diabetes and DFU. They were assigned to either 
the standard therapy alone or combined with NPWT for 
8 ± 1 days. The assignment to NWPT was non-random and 
based on wound characteristics. The inclusion criteria com-
prised of (a) a clinical diagnosis of type 2 diabetes and (b) 
the presence of no more than three neuropathic, clinically 
noninfected foot wounds. Exclusion criteria included (a) 
clinically significant ischemia defined by the lack of pulses 
of both main pedal arteries and/or an ankle–brachial index 
less than 0.9, (b) symptoms of infection, (c) bilateral ulcera-
tions, (d) active osteomyelitis, and (e) active Charcot foot.

We assigned patients with type 2 diabetes, presenting 
with at least one ulceration with a size greater than 1 cm2 to 
NPWT, while those with ulcerations less than 1 cm2, to the 
comparator group. However, in case of technical difficulties 
(presence of very large ulcerations greater than 1 cm2, unfa-
vorable localizations) or lack of consent to NPWT, patients 
were allocated to the comparator group.

During the initial visit, each study participant was 
assigned to one of the arms and an initial (pre-treatment) 
tissue sample from the wound bed; a blood specimen for 
basic biochemical measurements was also collected. Change 
of the NPWT dressing was performed 3–5 days later. Finally, 
at day 8 ± 1, the second (post-treatment) wound tissue sam-
ples were taken. In the control arm, the samples were taken 
on the same days (0 and 8 ± 1). Clinical data were compiled 
from available medical records.

The study protocol was approved by the Jagiellonian Uni-
versity Bioethical Committee and was in accordance with 
the Declaration of Helsinki. Patients’ written informed con-
sent was obtained prior to inclusion.

Patients’ baseline characteristics analysis

Statistical analysis was performed using Statistica Software 
v. 12.0 (StatSoft, Tulsa, OK, USA). A p value of < 0.05 
was considered significant. Parametric t tests, nonparamet-
ric U tests and Chi-square tests were performed to describe 
baseline clinical characteristic of the study groups. Wound 
area was measured using MOWA Mobile Wound Analyzer 
(Healthpath, Italy) application.

Gene expression quantification

After collection, tissue samples were placed in an RNAlater 
solution (Ambion, Foster City, CA, USA). Total RNA was 
extracted using the Maxwell instrument (Promega, Madi-
son, WI, USA). RNA quality was determined with Tape 
Station (Agilent, Santa Clara, CA, USA) and its quantity 
with Quantus (Promega, Madison, WI, USA). Reverse tran-
scription (first- and second-strand synthesis), followed by 
in vitro production of biotin–aRNA was performed using 
Target NanoAmp Labelling Kit (Epicenter, Madison, WI, 
USA). After purification, 750 ng of aRNA was hybridized 
to an Illumina Human HT-12v4 chip (Illumina, San Diego, 
CA, USA) according to the manufacturer’s protocol. Arrays 
were scanned on the HiScan scanner (Illumina, San Diego, 
CA, USA).

Differential expression analysis

For normalization, filtration, as well as testing of differen-
tial expression, we applied the standard approach based on 
‘beadarray’, ‘lumi’ and ‘limma’ packages in R. In short, data 
were uploaded in the .IDAT format, low-quality probes and 
samples were removed, and background correction and log2 
transformation with quantile normalization were applied. We 
analyzed the following linear modes:

1.	 expression ~ 1 + treatment_status + treatment_
status:study_arm;
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2.	 expression ~ 1 + study_arm + study_arm:treatment_sta-
tus.

The first mode was used to estimate the effect of treatment 
(regardless of study arm) and the post-treatment contrast 
between the study arms, whereas the second model was used 
to estimate the arm-specific effect and the contrast between 
pre- and post-treatment expressions in each study arm sepa-
rately. The Benjamini–Hochberg correction was applied. Co-
expression analyses in GTEx data were done using two R 
packages: ‘mglR’ and ‘psych’. We used the Pearson product-
moment correlation coefficient and the Benjamini–Hochberg 
correction.

Results

In the initial cohort, there were 25 patients treated with 
NPWT (for a total 50 samples) and 11 patients were treated 
with conventional therapy (22 samples). Due to a num-
ber of poor-quality samples identified, 14 of them were 
removed—6 control and 8 NPWT (in the paired sample 
design, we removed the post- and pre-treatment samples if 
one of them was of poor quality). The final analysis com-
prised of 21 patients treated with NPWT and 8 individuals 
treated with standard therapy. The groups were not different 
in terms of time between the initial and final visits, as well 
as basic clinical characteristics (Table 1).

After removal of all weak signal probes, 34,476 out of 
48,107 probes remained for analysis. We identified four 
probes (ILMN_1656300, ILMN_1668996, ILMN_1812571 
and ILMN_1701991) differentially expressed between the 
study arms (FDR ≤ 0.055) post-treatment, but not pre-
treatment. These probes mapped to four mRNAs: GFRA2 

(GDNF family receptor alpha-2), a member of the glial cell 
line-derived neurotrophic factor receptor family, C1QBP 
(complement component 1, q subcomponent-binding 
protein), RAB35 (member of RAS oncogene family) and 
SYNJ1 (synaptic inositol 1,4,5-trisphosphate 5-phosphatase 
1). When compared to the control arm, expression of C1QBP 
was higher in the NPWT cohort (logFC = 0.62), whereas 
the remaining genes were downregulated (logFC = − 0.38, 
− 0.30 and − 0.50, respectively) (Table 2). Figure 1 shows 
a heatmap depicting 24 markers with the largest differential 
gene expression between the groups.

At the same time, we did not detect differentially 
expressed probes between the study arms pre-treatment, 
nor with treatment status in the entire cohort. Moreover, we 
found no differentially expressed probes in linear model 2.

Since two of the four differentially expressed genes, 
namely C1QBP and GFRA2, function through direct pro-
tein–protein interactions, we further evaluated the molecu-
lar context of differentially expressed genes by performing 
co-expression analysis using gene-level RPKMs (reads per 
kilobase per million mapped reads) from publicly available 
The Genotype Tissue Expression Project data (http://www.
gtexp​ortal​.org).

Table 1   Characteristics of the study groups

n Number of patients
a Data shown as mean ± SD

NPWT Standard therapy p value

n 21 8 NA
Sex, n male/female, male% 17/4, 80.95% 6/2, 75.00% 0.7236
Age at examination, yearsa 69.0 ± 8.3 67.5 ± 4.3 0.6235
Diabetes duration, yearsa 14.5 ± 7.0 14.4 ± 5.7 0.9789
BMI, kg/m2 a 27.7 ± 4.6 31.8 ± 6.1 0.0782
Insulin therapy, n Y/N, Y% 19/2, 90.5% 8/0, 100.0% 0.3657
Total daily insulin dose, units1 45.1 ± 22.8 60.8 ± 17.7 0.1416
Total daily insulin dose, units/kg body weighta 0.52 ± 0.26 0.69 ± 0.22 0.1778
HbA1c, mmol/mol, (%)a 51.8 ± 14.7 (6.89 ± 1.34) 64.5 ± 20.5 (8.05 ± 1.86) 0.0725
eGFR, ml/min/1.73 m2 (CKD EPI)a 75.9 ± 20.0 70.0 ± 18.5 0.4780
Smoking, n (never/former/current) 5/11/2 4/3/1 0.5034
Wound area, cm2 a 18.8 ± 17.3 3.7 ± 6.1 0.0247

Table 2   Probes differentially expressed between study arms post-
treatment

IlluminaID logFC AveExpr. p value FDR Gene name

ILMN_1668996 0.62 7.46 1.48E−06 0.028 C1QBP
ILMN_1656300 − 0.38 6.11 1.63E−06 0.028 GFRA2
ILMN_1812571 − 0.3 6.82 4.15E−06 0.048 RAB35
ILMN_1701991 − 0.5 6.74 6.34E−06 0.055 SYNJ1

http://www.gtexportal.org
http://www.gtexportal.org
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We found that the GDNF mRNA is co-expressed with 
its receptors, albeit with GFRA2 mRNA stronger than with 
GFRA1: in ‘skin—sun exposed (lower leg)’ (ρ = 0.28 and 
0.19; p = 3 × 10−5 and 1 × 10−9) and in ‘nerve tibial’ tissue 
(ρ = 0.77 and 0.49; p < 10−12 in both cases). On the other 
hand, NRTN (neurturin—a ligand for GFRA2) mRNA is 
weakly and negatively co-expressed (in both tissues) with 
GFRA1 and GFRA2 mRNAs.

We also found that C1QBP mRNA is robustly co-
expressed with mRNAs of other components of the com-
plement system (PRKCZ, C1QBP, C1QA, C1QB, C1QC, 
C1R, C1S, C3, C4A, C4B) both in ‘Liver’ (ρ = 0.43, 
0.52, 0.52, 0.54, 0.23, 0.25, 0.38, 0.49 and 0.55; all p 
values < 3 × 10−3) and ‘Whole Blood’ tissue (ρ = 0.11, 
0.32, 0.31, 0.30, 0.23, 0.23, 0.17, 0.28 and 0.26; all p 
values < 3.8 × 10−2).

Fig. 1   This heatmap illustrates 24 probes with the largest post-treat-
ment difference (FDR < 0.1) in gene expression between the groups. 
The markers are ranked according to their statistical significance. 
Columns 1–8 correspond to patients with type 2 diabetes treated with 

standard therapy and the remaining ones to individuals exposed to 
NPWT. The color corresponds to the post- versus pre-treatment dif-
ference in normalized expression values for each patient–probe com-
bination
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Discussion

For the first time, the effect of NPWT on gene expres-
sion profile was assessed in patients with type 2 diabe-
tes with foot ulcerations on the gene expression profile 
using human gene expression arrays. Below we discuss the 
possible involvement of differentially expressed genes in 
re-epithelialization and angiogenesis of the proliferation 
stage of wound healing.

Loosening cell–cell adhesion promotes the migratory 
potential of the cells. This may occur by the removal of 
proteins responsible for maintaining this contact such as 
E-cadherins from the cell surface. RAB35, one of the key 
regulators of intracellular transport, was downregulated 
in our patients with type 2 diabetes after NPWT. Interest-
ingly, lower expression of RAB35 mRNA (e.g. through 
excitation of miR-720) in HeLa cells increases vimentin 
expression, reduces cell–cell adhesion, and promotes cell 
migration [14]. Knockdown of RAB35 in vitro leads to 
epithelial–mesenchymal transition [15].

Our results show a relative downregulation of SYNJ1 in 
type 2 diabetes patients on NPWT. SYNJ1 dephosphoryl-
ates two phosphoinositides (PIP2 and PIP3) which help 
recruit clathrin coats to the plasma membrane [16]. Clath-
rin plays a role in endocytosis of membrane proteins (i.e. 
Cad-11) and thus enables cell migration [17]. Therefore, 
we suppose that downregulation of SYNJ1 might influence 
clathrin coating and cadherin endocytosis.

We also recorded downregulation of GFRA2 in NPWT 
patients. It has been described that the application of 
GDNF cytokine, a ligand for two receptors—GFRA1 and 
GFRA2—to the wound site accelerates its healing (a US 
patent, number WO2014152511 A1, 2014). Wound heal-
ing potential of this particle might be a result of the sta-
bilization of epithelial barrier function and an increase in 
proliferative potential [18]. We hypothesize that the down-
regulation of GFRA2 might result in preferential binding 
of GDNF to GFRA1 (its higher affinity receptor) and pro-
mote cell survival. This is supported by the co-expression 
analysis in GTEx data, showing a consistently higher co-
expression between GDNF and GFRA2 as compared to 
GDNF and GFRA1.

The only upregulated gene in NPWT group was C1QBP. 
High levels of C1QBP are found in highly migratory breast 
cancer cells and its downregulation inhibits wound healing 
and cell migration. In vivo results in SCID mice suggest 
that C1QBP is required for obtaining metastatic potential 
as injection of C1QBP knockdown cells into these animals 
failed to form tumors [19].

There are scarce data on the molecular aspects of 
NPWT. Some earlier papers reported findings from vari-
ous experiments involving specific pathophysiological 

pathways selected based on their putative role in wound 
healing; none of them, however, systematically analyzed 
the effect of NWPT on gene expression. Recently, a small 
randomized trial in humans showed that NPWT increased 
expression of cellular fibronectin and transforming growth 
factor-β1 in DFS wounds [11], both of which, interest-
ingly, influence cell migration and proliferation. Moreover, 
data from an animal model suggested that NPWT could 
influence the expression of genes involved in angiogenesis 
which is also a part of the proliferative stage of wound 
healing [9]. A very recent study, based on granulation tis-
sue biopsies in patients with T2DM, showed that mRNA 
levels of several growth factors, such as VEGF and TGF-
β1, were significantly increased, while the levels of matrix 
metalloproteinases (MMP-1 and MMP-9) and TNFα were 
significantly downregulated after NPWT [20]. This is in 
general line, including our paper, with NPWT acting on 
the molecular level towards more pro-angiogenic and anti-
inflammatory conditions.

This study is limited by its non-random nature. However, 
as we assessed gene expression as an outcome rather than 
clinical end points, such as healing or amputation, the impact 
of wound size on the study results might be non-existing. 
Other shortcomings of this study include its limited number 
of patients, a meaningful proportion of samples that did not 
pass the quality control, and the borderline statistical sig-
nificance of the reported findings. All required corrections 
for multiple comparisons were, however, done while RNAse 
enzyme abundance could have contributed to methodologi-
cal difficulties in specimens from the wound beds. This study 
may be also perhaps criticized for lacking a replication of the 
microarray findings. However, such a validation would have 
required an independent set of biological samples, which 
was beyond the scope of this project.

Conclusions

In summary, we found initial evidence that the effect of 
NPWT in DFS may be mediated through differential gene 
expression of proteins involved in the wound healing pro-
cess. This finding requires further confirmation in subse-
quent studies.
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