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Abstract
Aim  Cardio-metabolic disease and physical activity are closely related but large-scale objective studies which measure 
physical activity are lacking. Using the largest accelerometer cohort to date, we aimed to investigate whether there is an 
association between disease status and accelerometer variables after a 5-year follow-up.
Methods  106,053 UK Biobank participants wore a wrist-worn GENEactiv monitor. Those with acceptable wear time 
(> 3 days) were split into 4 cardio-metabolic disease groups based on self-report disease status which was collected 5 ± 1 years 
prior. Multiple linear regression models were used to investigate associations, controlling for confounders and stratified for 
gender.
Results  Average daily acceleration was lower in men (‘healthy’-42 ± 15 mg v ‘Type 2 diabetes + cardiovascular disease 
(CVD)’-31 ± 12 mg) and women (‘healthy’-44 ± 13 mg v ‘Type 2 diabetes + CVD’-31 ± 11 mg) with cardio-metabolic dis-
ease and this was consistent across both week and weekend days. Men and women with the worst cardio-metabolic disease 
perform around half of moderate to vigorous physical activity on a daily basis compared to healthy individuals, and spend 
almost 7 h per day in 30 min inactivity bouts. Significant associations were seen between cardio-metabolic disease and 
accelerometer variables 5 years on when controlling for confounders.
Conclusion  In the largest accelerometer cohort to date, there are significant associations between cardio-metabolic disease 
and physical activity variables after 5 years of follow-up. Triaxial accelerometers provide enhanced measurement opportuni-
ties for measuring lifestyle behaviours in chronic disease.
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Abbreviations
CVD	� Cardiovascular disease
METs	� Metabolic equivalents
mg	� Milligravity
MVPA	� Moderate to vigorous physical activity

Introduction

Physical activity is closely associated with cardio-metabolic 
health [1], therefore accurate assessment is vital. Objective 
measures of physical activity have become widespread and 
offer numerous advantages over self-report methods. Over 
the past decade, there has been a shift in using hip-worn uni-
axial accelerometers, to wrist-worn triaxial accelerometers 
which continuously sample and store raw acceleration. These 
offer improved precision and enhanced measurement oppor-
tunities, but large cohorts with triaxial accelerometer are 
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lacking. Prior to the UK Biobank, the largest cohort of indi-
viduals with these devices included around 20,000 individu-
als [2]. This highlights the scale of the UK Biobank Study, 
whereby data was collected and analysed in > 100,000 par-
ticipants—making it the world’s largest objective study of its 
kind. We used the UK Biobank, to investigate whether there 
is an association between cardio-metabolic disease status and 
accelerometer variables after a 5-year follow-up.

Materials and methods

UK Biobank baseline assessments occurred between 2007 
and 2010, when the following covariate data was collected; 
age, BMI, Townsend Deprivation Index, ethnicity, smok-
ing and alcohol status, fruit and vegetable consumption, 
self-report weekly moderate to vigorous physical activity 
(MVPA). Self-report disease status was used to define four 
disease groups spanning cardio-metabolic health, which 
included ‘Healthy’ (individuals who reported no disease), 
‘Cardiovascular disease (CVD)’, Type 2 diabetes minus 
CVD, and ‘Type 2 diabetes + CVD’.

Between February 2013 and December 2015, a subset of 
individuals was invited to wear an Axivity AX3 wrist-worn 
triaxial accelerometer for 7 consecutive days. Raw accelerom-
eter data were processed using GGIR V1.5-9 package (R Core 
Team, Vienna, Austria) (https​://cran.rroje​ct.org/web/packa​ges/
GGIR/index​.html) [3]. We defined MVPA using a 100 mil-
ligravity (mg) cut-off, based on laboratory findings [4]. Simi-
larly, 6 metabolic equivalents (METs) is classified as vigorous 
activity and was equivalent to an acceleration around 400 mg 
[4]. ‘Light’ (< 3 METs) was defined as anything between 40 and 
100 mg, and ‘Inactivity’ as anything below 40 mg [2]. Within 
each threshold, total activity time within waking hours was 
calculated (Light time, Moderate time, Vigorous time, Inactiv-
ity time). Additionally, time spent in 1–5 min (MVPA1min) 
and 10 min (MVPA10min) bouts of MVPA and time spent in 
30 min of inactivity (Inactivity30mins) was calculated.

Statistical analysis

Due to the large sample size, any small difference in accel-
eration mean was significant, therefore these results are 
not reported. Multiple linear regression models were used 
to investigate the association between cardio-metabolic 
disease and objective physical activity, after adjusting for 
baseline covariates. Physical activity variables did not meet 
assumptions of normality, therefore were transformed. All 
analyses were stratified by gender due to significant interac-
tion between gender and outcome variables. To determine 
the robustness of the results, sensitivity analysis was per-
formed with a more stringent cut-point of 120 and 50 mg 
to define MVPA and inactivity, respectively. Analyses were 

performed using SAS OnDemand for Academics (SAS Insti-
tute, Care, North Carolina, USA) software.

Results

103,578 datasets were received, but only 52,556 fit into 
the four disease groups and were analysed. Those excluded 
reported a wide range of other diseases including respira-
tory, gastrointestinal, renal, neurology, musculoskeletal, 
haematology, gynaecology, immunological and infectious. 
Those with cardio-metabolic disease were less active dur-
ing waking hours, demonstrated by a reduction in daytime 
acceleration (mg) in both men and women, which was con-
sistent in both week and weekend days (Table 1). Even in 
the most active 5 h of the day, those with cardio-metabolic 
disease performed a lower intensity of activity compared 
to those with no disease. During waking hours, total time 
spent in each of the activity thresholds (light time, moderate 
time and vigorous time) declined across cardio-metabolic 
disease groups. Both men and women with ‘Type 2 diabe-
tes + CVD’ performed half the level of MVPA when con-
sidered as MVPA1min or MVPA10min bouts. Inactive time 
was higher across all cardio-metabolic groups and a similar 
pattern was observed for Inactivity30min, whereby those 
with ‘Type 2 diabetes + CVD’ spent almost 7 h of the day in 
30 min inactivity bouts (Inactivity30min).

Figure 1 shows the prospective associations of baseline 
disease status with objective physical activity variables after 
5 years of follow-up, when adjusting for confounders such as 
BMI. There were significant inverse associations of disease 
status with average acceleration across week and weekend 
days for both men and women. Similar patterns were seen 
with bouted and unbouted MVPA, whereas disease status 
demonstrated a slightly weaker positive association between 
bouted and unbouted inactivity. Sensitivity analysis demon-
strated similar associations.

Discussion

In the largest objective cohort to date, there is a decrease in 
objectively measured physical activity from healthy to CVD 
to diabetes patients which was consistent whether week or 
weekend acceleration was measured, or bouted or unbouted 
activity was used. These results demonstrate the usefulness 
of accelerometers in exploring the relationship between 
physical activity and chronic disease. The results also pro-
vide a platform for future novel explorations including the 
temporal distribution and patterns of physical activity, sleep 
and sedentary behaviour.

These devices make it possible to measure bouted and 
unbouted activity. We chose to focus on MVPA bouts in 
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regression models, as it has been previously shown that bouts 
of MVPA have stronger associations with metabolic health, 
compared to unbouted activity [5]. Time spent in unbouted 
activity seems higher than what would be expected, with an 
average of around 60 min/day for those with ‘Type 2 diabetes 
and CVD’, but this could capture sporadic arm movements 
which cannot be separated from true physical activity. For 

this reason, identifying associations with > 1 min bouts of 
MVPA is the most informative. Inactivity levels were high 
regardless of disease status, however in this study, associa-
tions between inactivity and cardio-metabolic were not as 
strong as other accelerometer variables. This most likely 
reflects the methodological limitations in defining ‘inactiv-
ity’ using accelerometers. Due to the postural component, 

Table 1   Physical activity acceleration values from Axivity in all participants (n = 52,424) according to disease status and stratified for gender

Male (n = 24,880) Female (n = 27,544)

Healthy 
(n = 11,232)

CVD 
(n = 11,996)

Type 2 
diabetes 
minus CVD 
(n = 434)

Type 2 dia-
betes + CVD 
(n = 1218)

Healthy 
(n = 14,960)

CVD 
(n = 11,746)

Type 2 
diabetes 
minus CVD 
(n = 277)

Type 2 dia-
betes + CVD 
(n = 561)

Age, years (SD) 54.3 (8.0) 59.6 (6.8) 59.1 (6.9) 61.0 (5.9) 53.6 (7.6) 58.5 (7.0) 58.6 (6.2) 59.9 (6.5)
BMI, kg/m2 (SD) 26.3 (3.5) 28.4 (4.2) 29.5 (4.4) 31.4 (5.3) 25.2 (4.1) 28.0 (5.4) 31.4 (6.5) 33.2 (6.4)
Physical activity
 Average accel-

eration values, 
mg (SD)

  Daytime 
acceleration

42 (15) 36 (12) 34 (11) 31 (12) 44 (13) 38 (12) 35 (12) 31 (11)

  Acceleration 
for least 
active 5 h

0.63 (1.04) 0.69 (1.10) 0.69 (0.74) 0.79 (0.93) 0.54 (0.94) 0.57 (0.73) 0.70 (1.36) 0.72 (0.82)

  Acceleration 
for most 
active 5 h

67 (28) 56 (22) 52 (18) 47 (25) 66 (23) 57 (18) 51 (18) 46 (17)

  Weekday 
acceleration 
across night 
and day

30 (6) 26 (8) 24 (7) 22 (11) 30 (8) 27 (8) 24 (7) 22 (7)

  Weekend 
acceleration 
across night 
and day

30 (12) 25 (10) 23 (8) 21 (7) 30 (10) 26 (8) 23 (8) 21 (7)

 Total time spent 
across differ-
ent thresholds 
during waking 
time (min/
day)

  Inactivity 
time

588 (75) 604 (3) 615 (78) 624 (74) 568 (77) 583 (75) 599 (73) 617 (80)

  Light time 162 (47) 156 (47) 153 (50) 146 (48) 182 (46) 178 (48) 167 (55) 156 (53)
  Moderate 

time
96 (45) 79 (40) 72 (39) 61 (38) 104 (44) 87 (43) 75 (43) 62 (40)

  Vigorous time 6.12 (7.6) 3.58 (5.04) 2.64 (3.01) 1.87 (2.50) 4.8 (6.3) 2.8 (3.8) 2.1 (3.3) 1.5 (2.5)
 Bouts of activ-

ity during 
waking time 
(min/day)

  MVPA10min 22 (28) 14 (20) 13 (19) 8 (19) 20 (25) 12 (19) 9 (17) 5 (12)
  MVPA1min 23 (14) 18 (12) 16 (12) 13 (11) 25 (14) 20 (13) 16 (13) 13 (12)
  Inactivity-

30min
357 (124) 394 (128) 412 (134) 432 (133) 318 (115) 353 (122) 380 (139) 419 (141)
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it is currently difficult to distinguish between light physical 
activity, e.g., standing, and sedentary behaviour (i.e., reclin-
ing/sitting), but efforts are underway to validate and define 
this behaviour using accelerometers, as well as sleep. An 
important limitation with this study is that the direction of 
causality cannot be distinguished.

Overall, strong and consistent relationships between 
cardio-metabolic disease and triaxial accelerometry, dem-
onstrate enhanced measurement opportunities and greater 
insights going forward.
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