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Abstract
This comment addresses the incorrect treatment and presentation of data from laser ablation ICP-MS U–Pb age determina-
tions of two samples of the Třebíč Pluton. This results in inaccurate ages and error assessment, invalidating the age inter-
pretations of the authors. To corroborate our arguments, new high-precision chemical abrasion ID-TIMS data are presented 
that unequivocally define the emplacement age of the Třebíč pluton.
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The commented paper by Janoušek et al. (2020) presented an 
excellent and detailed assessment of the petrology, geochem-
istry and the mode of emplacement of the durbachitic Třebíč 
intrusion in the Bohemian Massif. The term “durbachite” 
denotes members of an intrusive series that comprises ultra-
potassic, Mg-rich melagranites and ultrapotassic two-pyrox-
ene melasyenites, which were emplaced into the exhumed 
high-grade core of the orogen during the late-orogenic stages 
(Žák et al. 2014). Among those is the Třebíč pluton in the 
Moldanubian domain of the Bohemian Massif, a tabular 
intrusion that has been emplaced at shallow crustal levels 
(corresponding to 2–4 kbar, Houzar and Novák 2006, Leich-
man et al. 2017), and whose flat-lying fabrics, which are 
transitional between magmatic and solid state, are concord-
ant with the regional foliation in the host rocks (Janoušek 
et al. 2020). Therefore, its solidification dates the subverti-
cal shortening of the Moldanubian domain, which is related 
to the underthrusting of the Brunia microcontinent (Verner 
et al. 2006; Žák et al. 2014). This is the reason why precise 

and accurate dating of the Třebíč pluton emplacement is 
important for the reconstruction of Variscan tectonics.

The dating of durbachite lithologies by zircon U–Pb 
has been described as problematic by many authors (e.g., 
Schaltegger et  al. 1996; Klötzli and Parrish 1996), and 
this is re-stated by Janoušek et al. (2020) for the dating 
of the Třebíč pluton. We, however, feel that the dating of 
this intrusion is not as generally problematic as previously 
mentioned when appropriate techniques for isotope analysis 
and data processing are applied. We argue that: (1) inap-
propriate consideration of decay-damage related Pb-loss in 
non-chemically abraded zircon, coupled with inheritance of 
old Pb leads to the previously observed age variations and 
(2) inaccurate calculation and reporting of laser-ablation, 
inductively coupled plasma mass spectrometry (LA-ICP-
MS) U–Pb ages and uncertainties in the recent paper of 
Janoušek et al. (2020) have contributed to an inaccurate and 
problematic geochronological data set. In this comment, we 
explain our concerns on these published data, re-interpret 
the dates, and present new, high-precision chemical-abra-
sion, isotope-dilution, thermal ionization mass spectrometry 
(CA-ID-TIMS) U–Pb dates that unequivocally constrain the 
age of zircon crystallization in the Třebíč melagranite melt.

Existing geochronology: we briefly discuss recent U–Pb 
geochronology from two papers, i.e., Kotková et al. (2010) 
and Janoušek et al. (2020).

ID-TIMS dates in Kotková et al. (2010): These authors 
presented dates from three multigrain zircon fractions and 
5 single zircon grains from the Třebíč pluton, classified in 
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prismatic and tabular grains, all of which were mechani-
cally abraded prior to dissolution and analysis. The prismatic 
grains were reported to host inherited, xenocrystic cores. 
While the tabular grains do not appear to have cores, they 
show clear signs of a secondary dissolution–reprecipitation 
processes (e.g., Geisler et al. 2007), indicative of potential 
post-crystallization Pb-loss. The presence of inheritance is 
highlighted by one grain with a 207Pb/206Pb date of 2.1 Ga, 
and a multigrain fraction yielding an age of 374 Ma. The 
interpreted zircon date relied on a Pb-loss line through four 
analyses, yielding an upper intercept age at 334.8 ± 3.2 Ma 
and a lower intercept indistinguishable from zero, docu-
menting decay damage related Pb loss. It is a good example 
how problematic legacy data from mechanically abraded 
zircon multigrain fractions are, if both inheritance and Pb-
loss were involved. The age calculation in Kotková et al. 
(2010) excluded an older multigrain fraction of 5 zircon 
crystals, based on the argument of unresolved inheritance 
within this single fraction. This interpretation is contested 
by Janoušek et al. (2020), arguing that the inclusion of the 
older fraction of prismatic grains yields an age interpreta-
tion of 338.5–339.5 Ma, which would coincide with their 
LA-ICP-MS dates at around 338–339 Ma.

LA-ICP-MS dates in Janoušek et al. (2020): The authors 
have presented LA-ICP-MS dated of two samples of the 
main Třebíč intrusion, labelled 1322 and H003, with ages of 
338.4 ± 2.8 and 335.0 ± 2.6 Ma, respectively. Unfortunately, 
the presentation of these data has a number of problems:

• The weighted mean ages of both samples are not concord-
ant, and the calculated MSWD values of concordance are 
23 and 11 for samples 1322 and H0003, respectively, 

using IsoplotR (Vermeesch 2018). Therefore, calculating 
a concordia age from these data is not appropriate. The 
reported MSWD values are, therefore, those of equiva-
lence, rather than concordance. This elevated degree of 
sub-concordance may point to either (1) an analytical 
problem or (2) to unresolved common Pb contribution. 
The analytical procedures were previously described in 
Hanžl et al. (2019), mentioning “high Hg contamination 
of the commercially available He carrier gas” that made 
common Pb correction impossible. Therefore, we assume 
that the sub-concordance is an effect of ubiquitous, but 
unresolved, common Pb.

• Despite this, the authors report a “concordant age”, 
which is biased towards an artificially old 207Pb/235U 
age, due to the incorporation of common Pb. For such 
a case, reporting of the mean weighted 206Pb/238U age 
is more appropriate, combined with an MSWD value of 
equivalency. Computing weighted mean 206Pb/238U ages 
from the data set in Janoušek et al. (2020) yields values 
of 335.6 ± 2.5 Ma (MSWD = 1.52) for sample 1322, and 
of 334.2 ± 1.1 Ma (MSWD = 0.87) for sample H0003 
(errors include overdispersion, but no constant external 
error from standard zircon measurement; Fig. 1a, b).

• In addition, it is evident that systematic external uncer-
tainty, from the measurement of secondary standards, has 
not been propagated into the weighted mean ages. This is 
in disregard of the recommendations of Horstwood et al. 
(2016), a community manuscript published to maintain 
guidelines for the LA-ICP-MS analyses, such that all 
published data are accurate, comparable and valid. Hanžl 
et al. (2019) report an age deviation of their measured 
reference zircon materials Plešovice, GJ-1 and 91,500 of 

Fig. 1  Ranked 206Pb/238U age plots for a sample 1322 and b sample H0003 from Janoušek et al. (2020)
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“less than 1.5%”; however, this deviation is not included 
in any error propagation. Adding to this argument, we 
introduce an additional estimated uncertainty of 2% for 
the above calculated mean 206Pb/238U dates, stemming 
from the age variation of the external reference mate-
rial used to calibrate the U/Pb concentration ratio. A 2σ 
additional external uncertainty of 2% is in fact required 
to reach an MSWD of 1 in the case of sample 1322, while 
for sample H0003 an additional uncertainty of 1.3% is 
sufficient. Therefore, given these more reassuring sta-
tistics and unless proven otherwise, we base our further 
discussion on an uncertainty of approximately ± 6.7 Ma 
for each weighted mean age.

Based on these new calculations, the two LA-ICP-MS 
dates from Janoušek et al. (2020) are at 335.6 ± 6.7 Ma and 
334.2 ± 6.7 Ma, respectively, and are clearly indistinguish-
able from each other, as well as from the proposed upper 
intercept age of 334.8 ± 3.2 Ma in Kotková et al. (2010).

The temporal dispersion observed in all of the published 
zircon geochronology data sets from ultrapotassic rocks in 
the Moldanubian domain indicates that zircon grains are suf-
fering from the following two effects:

(1) The radioactive decay damage-related loss of radio-
genic Pb, due to elevated U concentrations (maximum 
2050 ppm in Kotková et al. 2010; up to 3000 ppm from 
LA-ICP-MS analyses in Janoušek et al. 2020), leading to 
normal discordance and lowered 206Pb/238U dates. A high 
degree of lattice disturbance in decay-damaged zircon is 
visible through ubiquitous phenomena of dissolution–repre-
cipitation processes, leading to non-planar textures visible 
in CL (see Fig. 4i in Kotková et al. 2010, and our Fig. 2a) 
and radial cracks due to the volume increase during lattice 
disorder (Fig. 2b).

(2) The presence of inherited components as a conse-
quence of crustal contamination, which has been previ-
ously identified by whole-rock trace elements and Sr, Nd, 

Pb isotopes in numerous Variscan durbachitic rocks (e.g., 
Tabaud et al. 2015) and by negative εHf values of − 4.3 
to −  7.5 from zircon of the Třebíč intrusion (Kotková 
et al. 2010), leading to normal discordance and elevated 
206Pb/238U and 207Pb/235U dates. The inheritance can be 
easily spotted by the presence of cores in the Třebíč sample 
SU-05-2 (see Fig. 4f in Kotková et al. 2010, and Fig. 2c).

The presence of these problems in durbachite zircon indi-
cates that any technique that does not mitigate radioactive-
decay damage related Pb-loss will be inaccurate, and may 
possibly mix both Pb-loss and inheritance into the same 
analysis. This is the case for any mechanically abraded ID-
TIMS (as in Kotková et al. 2010), as well as for LA-ICP-MS 
and SIMS dates on untreated zircon.

Therefore, we carried out a series of new high-precision, 
CA-ID-TIMS analyses on sample SU-02-5 of the Třebíč 
intrusion, previously analyzed in Kotková et al. (2010), fol-
lowing the state-of-the-art U–Pb procedures described in 
detail in Widmann et al. (2019). Specifically, we utilized an 
optimized temperature of 210 °C for the partial dissolution 
step of the chemical abrasion procedure. While mitigation 
of Pb-loss has been demonstrated to peak with a 12-h pre-
treatment, the highly metamict nature of these grains causes 
them to undergo complete dissolution after 12 h, yielding 
no remaining zircon residue for chemistry and analysis. 
Therefore, we were forced to use a less robust 6-h partial 
dissolution, which allowed us to mitigate Pb-loss while still 
having remaining zircon material to date. The use of the 
202Pb–205Pb–233U–235U Earthtime tracer solution helps to 
optimize both precision and accuracy for these analyses 
(Condon et al. 2015; McLean et al. 2015). The analyses were 
carried out on a Phoenix TIMS (IsotopX Ltd.) at University 
of Geneva, using Daly ion counting for dynamic measure-
ment of Pb isotopes, and static measurement of  UO2 on 
Faraday cups equipped by  1012 Ω resistance amplifiers.

Of the 14 zircons we dated by CA-ID-TIMS, 11 of the 
analyses are concordant and have Th-corrected 206Pb/238U 

Fig. 2  Representative cathodoluminescence images of zircon crys-
tals from sample SU-05-2: a tabular crystal with non-planar zones 
pointing to secondary dissolution–reprecipitation processes; b tabular 

crystal with radial cracks; c prismatic zircon with low-luminescent, 
possibly older core. White length bars 50 µm
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ages ranging from approximately 335.8–338.0 Ma. Three 
analyses yielded normally discordant values at significantly 
older ages, with 207Pb/206Pb ages ranging up to 506 Ma. We 
interpret the presence of these older dates as indicative of 
xenocrystic components present within these zircons from 
the Třebíč pluton, and subtle incorporation of these domains 
artificially drives zircon ages to values older than the crys-
tallization of the pluton. Based upon this, we interpret that 
the older cluster of overlapping ages (Z12, Z11, Z6) to also 
incorporate inheritance, albeit to a lesser degree. One sin-
gle analysis is younger than the rest, which we interpret to 
reflect incomplete mitigation of Pb-loss due to the shortened 
abrasion.

Therefore, we interpret that the six overlapping analyses 
at approximately 335 Ma reflect the crystallization of the 
Třebíč Pluton, with the other analyzed crystals reflecting the 
aforementioned problems. From those 6 grains, we obtained 

a weighted mean 206Pb/238U age of 335.127 ± 0.061 Ma 
(± 0.11 Ma, including propagated systematic uncertainties; 
MSWD = 1.7, Table 1, Fig. 3). 

From the above arguments, we conclude the following:
(1) All 206Pb/238U dates from mechanical-abrasion ID-

TIMS and LA-ICP-MS geochronology perfectly overlap 
at around 335 Ma when uncertainties are correctly con-
sidered. This age is duplicated by a new CA-ID-TIMS at 
335.127 ± 0.061/0.11 Ma (internal/external uncertainty).

(2) The zircon crystals contain components of radiation 
damage-related Pb-loss, which can be mitigated by thorough 
chemical abrasion; however, the reported LA-ICP-MS dates 
were measured on untreated samples. The LA-ICP-MS com-
munity should eventually proceed to analysis of chemically 
abraded sample and standard material, given the increased 
accuracy provided by the technique (e.g., Crowley et al. 
2014; von Quadt et al. 2014; Watts et al. 2016).

(3) The intrusion of the Třebíč Pluton is confirmed to 
have taken place at 335.1 Ma, which at the same time con-
strains the formation age of the flat-lying fabrics. We cannot 
exclude the possibility that the satellite Drahonín intrusion 
is older than the main intrusive volume, as it is reported in 
Janoušek et al. (2020); however, this will require additional 
geochronology.
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