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Abstract
We study the free boundary problem describing themicro phase separation of diblock copoly-
mer melts in the regime that one component has small volume fraction ρ such that the micro
phase separation results in an ensemble of small disks of one component.We consider the two
dimensional case in this paper, whereas the three dimensional case was already considered in
Niethammer and Oshita (Calc Var PDE 39:273–305, 2010). Starting from the free boundary
problem restricted to disks we rigorously derive the heterogeneous mean-field equations on
a time scale of the order of R3 ln(1/ρ), where R is the mean radius of disks. On this time
scale, the evolution is dominated by coarsening and stabilization of the radii of the disks,
whereas migration of disks becomes only relevant on a larger time scale.

Mathematics Subject Classification 35B27 · 35R35 · 82D60

1 Introduction

Diblock copolymer molecules consist of subchains of two different type of monomers, say
A- and B-monomers. The different type of subchains tend to segregate, and hence the phase
separation take place. However since the subchains are chemically bonded, the two subchains
mix on a macroscopic scale, while on a molecular scale, A- and B-subchains still segregate
and the micro-domains are formed. This is called micro phase separation. For more physical
background on this phenomenon we refer to [2,8].

In the strong segregation regime, energetically favorable configurations have been char-
acterized in the Ohta–Kawasaki theory [18] by minimizers of an energy functional, which is
in the two dimensional case of the form
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E(�) = H1(∂�) + σ

2

∫
(0,L)2

∣∣(−�)−1/2(χ − ρ)
∣∣2 dx . (1)

Here (0, L)2 ⊂ R
2 is the domain covered by the copolymers,� ⊂ [0, L)2 denotes the region

covered by, say, A-monomers, ρ = |�|
L2 ∈ (0, 1) the average density, σ ∈ R+ = (0,∞) is a

parameter related to the polymerization index, χ is the characteristic function of �, and H1

denotes one dimensional Hausdorff measure.
The first term in the energy prefers large blocks of monomers, the second favors a very

fine mixture. Competition between these terms leads to minimizers of E which represent
micro phase separation.

Startingwith the pioneeringwork [15],where theOhta–Kawasaki theory is formulated on a
bounded domain as a singularly perturbed problem and the limiting sharp interface problem is
identified, there has been a large bodyof analyticalwork.Minimizers of the energy functionals
have been characterized in [1,3,4,20], the existence/stability of stationary solutions has been
investigated in [16,17,19,21] and a time dependent model has been considered in [7,9]. The
mean field models in the three dimensional case have been derived in [6,10,12].

We consider the gradient flow of the energy, which is a standard way to set up a model for
the evolution of the copolymer configuration that decreases energy and preserves the volume
fraction. Then the evolution equation becomes the following extension of the Mullins–
Sekerka evolution for phase separation in binary alloys [11]. The normal velocity v of the
interface ∂� = ∂�(t) satisfies

v = [∇w · �n] on ∂�, (2)

where [∇w · �n] denotes the jump of the normal component of the gradient of the potential
across the interface. Here �n denotes the outer normal to � and

[ f ] = lim
x /∈�

x→∂�

f (x) − lim
x∈�

x→∂�

f (x).

The potential w is for each time determined via

−�w = 0 in (0, L)2\∂�, (3)

w = κ + σ(−�)−1(χ − ρ) on ∂�, (4)

where κ is the curvature of ∂�. We are interested in the case that the volume of �(t) is
preserved in time and can thus impose Neumann or periodic boundary conditions for w on
∂(0, L)2. In what follows we will consider a periodic setting and hence always require that
the potential w is (0, L)2-periodic. For local well-posedness of this evolution see [5].

The evolution defined by (2)–(4) has a formal interpretation as a gradient flow of the
energy (1) on a Riemannian manifold. Indeed, consider the manifold of subsets of the 2-
dimensional flat torus T of length L with fixed volume, that isM := {� ⊂ T ; |�| = L2ρ},
whose tangent space T�M at an element� ∈ M is described by all kinematically admissible
normal velocities of ∂�, that is,

T�M =
{
v : ∂� → R ;

∫
∂�

v dS = 0

}
.

The Riemannian structure is given by the following metric tensor on the tangent space:

g�(v1, v2) =
∫
T

∇w1 · ∇w2 dx, (5)
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where wα : T → R (α = 1, 2) solves

−�wα = 0[∇wα · �n] = vα

in T \∂�,

on ∂�
(6)

for vα ∈ T�M (α = 1, 2). The gradient flow of the energy (1) is now the dynamical system
where at each time the velocity is the element of the tangent space in the direction of steepest
descent of the energy. In other words, v is such that

g�(t)(v, ṽ) = −〈DE(�(t)), ṽ〉 (7)

for all ṽ ∈ T�(t)M. Choosing ṽ = v we immediately obtain the energy estimate associated
with each gradient flow, which is

∫ T

0
g�(t)(v, v) dt + E(�(T )) = E(�(0)) for all T > 0. (8)

In what follows we consider the micro phase separation in the two dimensional case in
the regime where the fraction of A-monomers is much smaller than the one of B-monomers.
In this case A-phase consists of an ensemble of many small approximately circular particles.
We reduce the evolution to the gradient flow on circular particles.

For that purpose we define the submanifold N ⊂ M of all sets � which are the
union of disjoint balls � = ⋃

i BRi (Xi ), where the centers {Xi }i and the radii {Ri }i
are variables. Hence N can be identified with an open subspace of the hypersurface
{Y = {Ri , Xi }i ; (Ri , Xi ) ∈ R+ × T, π

∑
i R

2
i = L2ρ} in R

3N , where N is the num-
ber and i = 1, . . . , N an enumeration of the particles with centers in the torus T. Since the
normal velocity v satisfies v = dRi

dt + dXi
dt · �n on ∂BRi (Xi ), the tangent space can be identified

with the hyperplane

TYN =
{
Z =

∑
i

(
Vi

∂

∂Ri
+ ξi · ∂

∂Xi

)
; (Vi , ξi ) ∈ R × R

2,
∑
i

Ri Vi = 0
}

⊂ R
3N ,

such that Vi describes the rate of change of the radius of particle i and ξi the rate of change
of its center. We use the abbreviation Z = {Vi , ξi }i for Z =∑i (Vi

∂
∂Ri

+ ξi · ∂
∂Xi

).
The metric tensor is then given by

gY(Z1,Z2) =
∫
T

∇w1 · ∇w2 dx,

where the function wα : T → R solves

−�wα = 0[∇wα · �n] = V α
i + ξα

i · �n
in T \ ∪i ∂BRi (Xi ),

on ∂BRi (Xi ).
(9)

for Zα = {V α
i , ξα

i }i ∈ TYN , α = 1, 2. For the following it will be convenient to split the
metric tensor into the radial and shift part respectively. For any {Vi , ξi }i , we write

w = u + φ

where u and φ are harmonic in- and outside the particles and where
[∇u · �n] = Vi[∇φ · �n] = ξi · �n

on ∂BRi (Xi ),

on ∂BRi (Xi ).
(10)
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We consider the energy E(Y) = Esurf(Y) + σ Enl(Y), where

Esurf(Y) = 2π
∑
i

Ri and Enl(Y) =
∫
T

|∇μ|2 dx

with μ : T → R solving −�μ = χ∪BRi
− ρ. We obtain the differentials of the energies in

the direction of a tangent vector Z̃ = {Ṽi , ξ̃i }i as
〈DEsurf(Y), Z̃〉 = 2π

∑
i

Ṽi

and

〈DEnl(Y), Z̃〉 = −2
∫
T

∇μ · ∇w̃ dx = 2
∑
i

∫
∂BRi (Xi )

μ
(
Ṽi + ξ̃i · �n) dS.

Here w̃ : T → R is a function wα satisfying (9) for Zα = Z̃. The integration by parts yields

gY(Z, Z̃) = −
∑
i

∫
∂BRi (Xi )

w(Ṽi + ξ̃i · �n) dS.

From now on we consider an arrangement of particles as described above which evolves
according to the gradient flow equation. This means that for any t ≥ 0, it holds for Z(t) =
d
dtY(t) that

gY(Z, Z̃) = −〈DE(Y), Z̃〉,
that is,
∑
i

∫
∂BRi (Xi )

w(Ṽi + ξ̃i · �n) dS = 2π
∑
i

Ṽi + 2σ
∑
i

∫
∂BRi (Xi )

μ
(
Ṽi + ξ̃i · �n) dS (11)

for all Z̃ ∈ TYN . Since Z̃ is an arbitrary element of the tangent space we conclude from (11)
that w satisfies

1

2πRi

∫
∂BRi (Xi )

(
w − 1

Ri
− 2σμ

)
dS = λ(t) (12)

and ∫
∂BRi (Xi )

(
w − 2σμ

)�n dS = 0 (13)

for all i such that Ri > 0, with a Lagrange parameter λ(t) that ensures volume conservation.
Equations (12) and (13) are the analogue of (4) in the restricted setting.

Our aim is to identify the evolution in the limit of vanishing volume fraction of particles.
More precisely, we consider a sequence of systems characterized by the parameter

ε :=
(
ln

(
d

R

))−1/2

(14)

in the limit ε → 0. Here d is defined by

d2
∑
i

1 = L2 (15)

and R by
R2
∑
i

1 =
∑
i

Ri (0)
2. (16)
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Then 1
d2

denotes the number density of particles, and π R2 the average volume of particles.
Here and throughout this paper we use the abbreviation

∑
i =∑i :Ri>0.

Our main result informally says that when L ∼ Lsc, with

L2
sc := d2 ln(d/R) ∼ d2 ln(1/ρ), (17)

on the time scale of order R3 ln(1/ρ), the number density of particles with radius r and
center x , denoted by ν = ν(t, r , x) (suitably normalized), satisfies

∂tν + ∂r

( 1

r2
{
rψ − 1 − σr3

}
ν
)

= 0 , (18)

where ψ = ψ(t, x) satisfies for each t that

−�ψ + 2πψ

∫ ∞

0
ν dr = 2π

(∫ ∞

0

1

r
ν dr + σ

L2

∫
T

∫ ∞

0
r2 ν dr dy

)
in T (19)

in the limit ε → 0. Here σ is also suitably normalized.
We remark that on the other hand, in the case that L  Lsc, that is, in the very dilute

case, one obtains a homogeneous version where ψ is constant in space, and is replaced by
λ(t). More precisely that the number density of particles with radius r , denoted by ν(t, r)
(suitably normalized), satisfies

∂tν + ∂r

( 1

r2
(
λr − 1 − σr3

)
ν
)

= 0 (20)

with

λ(t) =
∫∞
0

1
r ν dr + σ

∫∞
0 r2 ν dr∫∞

0 ν dr
. (21)

2 The result

In this section, we will introduce suitably rescaled variables, state the precise assumption on
our initial particle arrangement, and present the statement of our main result.

We assume from now on that L = Lsc for the ease of presentation, and we will rescale
the spatial variables by Lsc such that

Lsc = L = 1 and hence d = ε, R = ε exp(−1/ε2) =: αε.

Notice that ρ = πα2
ε ε

−2 and ln(1/ρ) ∼ ε−2. We introduce R̂i , t̂ , V̂i , ξ̂ , ŵ, σ̂ and μ̂ via

Ri (t) = αε R̂i (t̂), t = α3
ε ln(1/ρ)t̂, w(t, x) = α−1

ε ŵ(t̂, x),

Vi (t) = 1

α2
ε ln(1/ρ)

V̂i (t̂) ∼ ε2

α2
ε

V̂i (t̂), ξi (t) = ε

α2
ε

ξ̂i (t̂),

σ = 1

α3
ε ln(1/ρ)

σ̂ ∼ ε2

α3
ε

σ̂ , μ(t, x) = α2
ε

ε2
μ̂(t̂, x).

From now on we only deal with the rescaled quantities and drop the hats in the notation.
Wedenote the joint distribution of particle centers and radii at a given time t by νε

t ∈ (C0
p)

∗,
which is given by ∫

ζ dνε
t =

∑
i

ε2ζ (Ri (t), Xi (t)) for ζ ∈ C0
p , (22)
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54 Page 6 of 30 B. Niethammer, Y. Oshita

where C0
p stands for the space of continuous functions on R+ × T with compact support

contained in R+ × T. Here T denotes the unit flat torus, and R+ = (0,∞). Note that since
ζ(r , x) = 0 for r = 0, particles which have vanished do not enter the distribution. The natural
space for νε

t and its limit νt is the space (C0
p)

∗ of Borel measures on R+ × T.
We are now going to make the assumptions on our initial particle arrangement precise.

Notice first, that in view of (15) and (16) we have
∫

dνε
0 =

∑
i

ε2 = 1 and
∫

r2 dνε
0 =

∑
i

ε2R2
i (0) = 1. (23)

It follows immediately, that
∫

r dνε
0 =

∑
i

ε2Ri (0) ≤ 1 , (24)

that is the surface energy of the initial particle arrangement is finite.
Furthermore it is natural to assume that initially the nonlocal energy is uniformly bounded

in ε, that is ∫
T

|∇με(0, x)|2 dx ≤ C , (25)

where C is independent of ε and where με(0, x) satisfies −�με(0, ·) = ε2

α2
ε
χ∪i Bi (0) − π and∫

T
με dx = 0.
We will see later [cf. (84)], that the nonlocal energy controls

∑
i ε

2R 4
i . Hence, finiteness

of the nonlocal energy initially also implies
∑

i ε
2R 4

i (0) ≤ C . For our analysis we need
a little more than this. We need a certain tightness assumption which ensures, that not too
much mass is contained in very large particles as ε → 0. More precisely, we assume that

sup
ε

∑
Ri≥M

ε2R 4
i (0) → 0 as M → ∞. (26)

Finally, we assume that initially particles are well separated in the sense that we assume
that there is γ > 0, such that

{
B2γ ε(Xi (0))

}
i

are disjoint. (27)

In accordance with the notation in (22) we will use in the following the abbreviation∫
ζ dνt := ∫∞

0

∫
T

ζ(r , x) dνt (r , x) for νt ∈ (C0
p)

∗. Otherwise the domain of integration is
specified.

The natural space for potentials of diffusion fields is H1(T). Furthermore we will denote

by
◦
H1(T) the subspace of H1(T) of functions with mean value zero.
We can now state our main result which informally says that νε

t converges as ε → 0 to a
weak solution of (18)–(19).

Theorem 2.1 Let T > 0 be given and assume that the assumptions in Sect. 2 are satisfied.
Then there exists a subsequence, again denoted by ε → 0, and a weakly continuous map
[0, T ] � t �→ νt ∈ (C0

p)
∗ with

∫
ζ dνε

t →
∫

ζ dνt uniformly in t ∈ [0, T ] for all ζ ∈ C0
p,
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∫
r2 dνt = 1 for all t ∈ [0, T ]. Furthermore, there exists a measurable map (0, T ) � t �→

ψ(t) ∈ H1(T) such that (18) and (19) hold in the following weak sense

d

dt

∫
ζ dνt =

∫
∂r ζ

1

r2

(
r ψ(t, x) − 1 − σr3

)
dνt (28)

distributionally on (0, T ) for all ζ ∈ C0
p with ∂r ζ ∈ C0

p. Here∫
T

∇ψ(t, x) · ∇ζ − 2πσζ dx + 2π
∫

ζ

(
ψ(t, x) − 1

r

)
dνt = 0 (29)

for all ζ ∈ H1(T) and almost all t ∈ (0, T ).

The proof of Theorem 2.1 goes similarly to the approach for the three dimensional case
in [12]. However in contrast to the three dimensional case we need to estimate 1/Ri term in
the proof that the tightness property is preserved in time (see Lemmas 3.9 and 3.10) since
the Lagrange multiplier diverges when particles disappear.

3 Proof of Theorem 2.1

WecandeduceTheorem2.1 by the homogenization ofRayleighPrinciple (seeTheorem3.11).
This will be obtained from the homogenization of metric tensor (Lemmas 3.5, 3.6) and the
limit of the differential of the energy (Lemma 3.8). Also we need some a-priori estimates,
which are given by a series of lemmas. The proof of Lemmas in this section will be given in
Sect. 4. For readers convenience we will not abbreviate the arguments.

3.1 Gradient flow structure

In rescaled variables the submanifold N turns into

N ε =
{
Yε = {Ri , Xi }i ;

∑
i

ε2R2
i = 1

}

and the tangent space

TYεN ε =
{
Z̃ε =

∑
i

(
Ṽi

∂

∂Ri
+ εαε ln(1/ρ)ξ̃i · ∂

∂Xi

)
;
∑
i

Ri Ṽi = 0

}
.

We use the abbreviation Z̃ε = {Ṽi , ξ̃i }i for Z̃ε = ∑
i (Ṽi

∂
∂Ri

+ εαε ln(1/ρ)ξ̃i · ∂
∂Xi

), and

regard {Ṽi , ξ̃i }i as the component of a tangent vector Z̃ε with respect to a basis{
∂

∂Ri
, εαε ln(1/ρ)

∂

∂Xi

}
i
.

We will always denote by Zε = {Vi , ξi }i the direction of steepest descent. Recall that
Vi = dRi

dt , but ξi = (εαε ln(1/ρ))−1 dXi
dt . The notation Z̃ε will be used for an arbitrary

element of the tangent space. Furthermore we use the abbreviation Bi := BαεRi (Xi ).
We define the energy in rescaled variables as

Eε(Yε) = Esurf,ε(Yε) + σ Enl,ε(Yε)

Esurf,ε(Yε) = 2π
∑
i

ε2Ri , Enl,ε(Yε) =
∫
T

|∇με|2 dx,
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54 Page 8 of 30 B. Niethammer, Y. Oshita

where με = με(t, x) solves −�με = ε2

α2
ε
χ∪Bi − π and

∫
T

με dx = 0, and the metric tensor

for Z̃ε ∈ TYεN ε is computed via

gYε

(
Z̃ε, Z̃ε

) =
∫
T

|∇w̃ε|2 dx =
∫
T

|∇ũε + ∇φ̃ε|2 dx, (30)

where w̃ε = ũε + φ̃ε,

∫
T

∇ũε · ∇ζ dx +
∑
i

∫
∂Bi

ε2

αε

Ṽi ζ dS = 0 ,

∫
T

∇φ̃ε · ∇ζ dx +
∑
i

∫
∂Bi

ε

αε

ξ̃i · �n ζ dS = 0

(31)

for all ζ ∈ ◦
H1(T). Notice that the potentials are only determined up to additive constants.

In what follows we fix this constant by requiring that
∫
T
ũε dx = ∫

T
φ̃ε dx = 0. For the

steepest descent directions Zε = {Vi , ξi }i , we define the potentials wε, uε, φε analogously.
Equations (12) and (13) for the direction of steepest descent, turn into

1

|∂Bi |
∫

∂Bi
(uε + φε − 2σμε) dS = 1

Ri
+ λε(t) (32)

for some λε(t) ∈ R and ∫
∂Bi

(
uε + φε − 2σμε

)�n dS = 0 (33)

for all i such that Ri > 0. Here and in what follows we abbreviate, with some abuse of
notations, for a disk BR(X) the perimeter by |∂BR | and its area by |BR |. Now the energy
estimate (8) reads

∫ t1

0

∫
T

|∇wε|2 dx dt + 4π
∑
i

ε2
R2
i

2
(t1) + σ

∫
T

|∇με(t1)|2 dx

= 4π
∑
i

ε2
R2
i

2
(0) + σ

∫
T

|∇με(0)|2 dx
(34)

for all t1 > 0. Finally, the Rayleigh principle says that Zε satisfies

∫ T

0
β(t)

(
1
2 gYε(t)(Zε,Zε) + 〈DEε(Yε(t)),Zε〉

)
dt

≤
∫ T

0
β(t)

(
1
2 gYε(t)(Z̃ε, Z̃ε) + 〈DEε(Yε(t)), Z̃ε〉

)
dt (35)

for all Z̃ε ∈ TYN and nonnegative β ∈ C∞([0, T ]).
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3.2 A priori estimates and weak limits

It follows from definitions (15), (16) and the facts that volume of particles is conserved and
the number can only decrease, that

∫
dνε

t ≤ 1 for all t ∈ [0, T ], (36)
∫

r2 dνε
t = 1 for all t ∈ [0, T ]. (37)

On the other hand the uniform bound on the energy in (34) implies the following.

Lemma 3.1 ∫
r4 dνε

t ≤ C for all t ∈ [0, T ]. (38)

Next to νε
t , we introduce signed Borel measures ρε

t ∈ (C0
p)

∗ and ψε
t ∈ ((C0

p)
2)∗ on

R+ × T via
∫

ζ dρε
t = ε2

∑
i

ζ(Ri (t), Xi (t)) Vi (t) for ζ ∈ C0
p,

∫
η · dψε

t = ε2
∑
i

η(Ri (t), Xi (t)) · ξi (t) for η ∈ (C0
p)

2.

The measures satisfies ∂tν
ε + ∂rρ

ε + εαε ln(1/ρ)divψε = 0 in the sense of distributions,
that is
∫ T

0

(
∂tβ(t)

∫
ζ dνε

t + β(t)
{ ∫

∂r ζ dρε
t + εαε ln(1/ρ)

∫
∇xζ · dψε

t

})
dt = 0 (39)

for all ζ ∈ C0
p ∩ C∞ and β ∈ C∞

0 ([0, T ]). As will be shown in Sect. 4, we have

Dε :=
∫ T

0
2π
∑
i

ε2R2
i

(
V 2
i + 1

4 |ξi |2
)
dt ≤ (1 + o(1))

∫ T

0

∫
T

|∇wε|2 dx dt ≤ C, (40)

which yields in particular

D := lim inf
ε→0

Dε ≤ lim sup
ε→0

Dε < ∞. (41)

Bounds (39) and (40) yield a weak Hölder regularity in t of {νε
t }t :∣∣∣∣

∫
ζ dνε

t1 −
∫

ζ dνε
t1

∣∣∣∣ ≤ |t1 − t2|1/2
(Dε

2π
sup
t

∫ (
|∂rζ |2 + 4ε2α2

ε (ln
1
ρ
)2|∇xζ |2

) 1

r2
dνε

t

)1/2

. (42)

UsingArzela–Ascoli’s Theorem, (36) and (42) imply that there exists a weakly continuous
family {νt }t of nonnegative Borel measures on R+ × T such that for a subsequence

∫
ζ dνε

t →
∫

ζ dνt uniformly in t ∈ [0, T ] (43)

123



54 Page 10 of 30 B. Niethammer, Y. Oshita

for ζ in a countable subset of C0
p ∩C∞. Again by (36), we see that we can extend the locally

uniform convergence in (43) to all ζ ∈ C0
p . Obviously, the bound (36) is conserved

∫
dνt ≤ 1 for all t ∈ [0, T ], (44)

and due to (37) and (38) we have
∫

r2 dνt = 1 for all t ∈ [0, T ], (45)
∫

r4 dνt ≤ C for all t ∈ [0, T ]. (46)

The uniform control of the signed Borel measures {r2 dρε
t dt}ε and {r2 dψε

t dt}ε on R+ ×
T×[0, T ] implied by (40) ensures the weak convergence, where the limits can be regarded as
bounded linear functionals on L2(r2 dνt dt) and L2(r2 dνt dt)2 respectively, and hence by
Riesz Representation Theorem, there exist v ∈ L2(r2 dνt dt) and ξ ∈ L2(r2 dνt dt)2 with

∫ T

0

∫ (|v(t)|2 + |ξ(t)|2) r2 dνt dt ≤ D
2π

, (47)

such that for a subsequence

∫ T

0
β(t)

∫
ζ dρε

t dt →
∫ T

0
β(t)

∫
ζ v(t) dνt dt,

∫ T

0
β(t)

∫
η · dψε

t dt →
∫ T

0
β(t)

∫
η · ξ(t) dνt dt,

(48)

for all β ∈ C0([0, T ]), ζ ∈ C0
p and η ∈ (C0

p)
2, and

∫ T

0
β

∫
|ξ(t)|2 r2 dνt dt ≤ lim inf

ε→0

∫ T

0
β
∑
i

ε2R2
i |ξi |2 dt (49)

for all nonnegative β ∈ C0([0, T ]). Thus the limit of (39) is

∫ T

0

(
∂tβ(t)

∫
ζ dνt + β(t)

∫
∂r ζ v(t) dνt

)
dt = 0 (50)

for all ζ ∈ C0
p ∩ C∞ and β ∈ C∞

0 ([0, T ]).

Definition 3.2 For Z̃ε satisfying
∫ T
0 gYε (Z̃ε, Z̃ε) dt ≤ C , we can define ṽ ∈ L2(r3 dνt dt)

and ξ̃ ∈ L2(r3 dνt dt)2 analogously. We say that Z̃ε converges weakly to (ṽ, ξ̃ ).

We are going to show below that for any T > 0, particles do not collide on a time interval
[0, T ] for sufficiently small ε. More precisely

Lemma 3.3 For any T > 0 we can find ε0 > 0 such that

{Bγ ε(Xi (t))}i are disjoint for all t ∈ [0, T ], (51)

for all ε ∈ (0, ε0].
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Thus it follows that the marginal of νt with respect to x has a bounded Lebesgue density.
Hence it follows from (46) that the functional

〈L(t), ζ 〉 :=
∫

ζr2 dνt −
∫
T

ζ dx, ζ ∈ H1(T)

is an element of H−1(T) = (H1(T))∗ for all t ∈ [0, T ]. Hence K (t, ·) ∈ H1(T) is uniquely
determined via (29) up to additive constants.

In order to prove Lemma 3.3 we show the following.

Lemma 3.4 (slow motion of the particle centers) As long as (51) is satisfied, we have

|ξi (t)| ≤ C
αε

ε2

(∫
T

|∇φε|2 + |∇uε|2 + |∇με|2 dx
)1/2

.

3.3 Homogenization of themetric tensor

We identify the �-limit for the metric tensor and provide the necessary results to pass to the
limit in the metric tensor. The following is a lower semicontinuity result.

Lemma 3.5 (lower semicontinuity) For all nonnegative β = β(t) ∈ C∞([0, T ]) we have

lim inf
ε→0

∫ T

0
β gYε

(
Zε,Zε

)
dt = lim inf

ε→0

∫ T

0
β

∫
T

|∇wε|2 dx dt

= lim inf
ε→0

∫ T

0
β

∫
T

|∇uε|2 + 2∇uε · ∇φε + |∇φε|2 dx dt

≥
∫ T

0
β

∫
T

|∇u|2 dx dt + 2π
∫ T

0
β

∫ (|v|2 + 1
4 |ξ |2)r2 dνt dt,

(52)

where for almost all t the function u(t, ·) ∈ ◦
H1(T) is determined via∫

T

∇u(t) · ∇ζ dx + 2π
∫

ζ r v(t) dνt = 0 (53)

for all ζ ∈ ◦
H1(T).

Furthermore we show that for any tangent vector of the limit manifold (ṽ, ξ̃ ), there exists
an approximating sequence along which the metric tensor is continuous.

Lemma 3.6 (construction) For any ṽ ∈ L2(r2 dνt dt) with
∫

ṽ r2 dνt = 0 for almost all t
and any ξ̃ ∈ L2(r2 dνt dt)3 there exists a sequence Z̃ε with Z̃ε ∈ TYεN ε such that Z̃ε weakly
converges to (ṽ, ξ̃ ), and

lim sup
ε→0

∫ T

0
β gYε

(
Z̃ε, Z̃ε

)
dt

≤
∫ T

0
β

∫
T

|∇ũ|2 dx dt + 2π
∫ T

0
β

∫ (|ṽ|2 + 1
4 |ξ̃ |2) r2 dνt dt

(54)

for all nonnegative β = β(t) ∈ C∞([0, T ]) and with ũ(t, ·) ∈ ◦
H1(T) determined via∫

T

∇ũ(t) · ∇ζ dx + 2π
∫

ζ r ṽ(t) dνt = 0 (55)

for all ζ ∈ ◦
H1(T).
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54 Page 12 of 30 B. Niethammer, Y. Oshita

Note that the contribution from the drift term and the radial part do not interact in the limit
ε → 0.

3.4 The limit of the differential of the energy

We identify the limit of the differential of the energy. To that aim we identify the limit of the
potentials με so as to prove the convergence for the nonlocal part of the energy.

Note that

〈DEnl,ε(Yε), Z̃ε〉 = −2
∫
T

∇με · ∇w̃εdx .

Here, as also in the homogenization of the metric tensor, the key idea is that the potentials
can be represented as a sum of monopoles, which represent the self-interaction of particles,
plus a slowly varying field, which represents the interaction between different particles.

We set l = γ ε, where γ > 0 is as in (51). We write με =∑i μ̃i + μ̃ε with

μ̃i (x) =

⎧⎪⎪⎨
⎪⎪⎩

ε2

4α2
ε

(
α2

ε R
2
i − |x − Xi |2

)+ ε2R2
i

2 ln l
αεRi

: x ∈ Bi
ε2R2

i
2 ln l

|x−Xi | : x ∈ Bl(Xi )\Bi
0 : elsewhere

. (56)

Here μ̃i is chosen such that −�μ̃i = ε2

α2
ε
in Bi and �μ̃i = 0 in Bl(Xi )\Bi . Since

∇μ̃i (x) =

⎧⎪⎪⎨
⎪⎪⎩

− ε2(x−Xi )

2α2
ε

: x ∈ Bi

− ε2R2
i (x−Xi )

2|x−Xi |2 : x ∈ Bl(Xi )\Bi
0 : elsewhere,

(57)

it holds that

[∇μ̃i · �n] = 0 on ∂Bi and [∇μ̃i · �n] = ε2R2
i

2l
on ∂Bl(Xi ). (58)

The slowly varying field μ̃ε converges strongly to K and this enables us to pass to the
limit in the differential of the energy.

Lemma 3.7

sup
t∈[0,T ]

‖∇μ̃ε − 1
2∇K‖L2(T) → 0

as ε → 0. Here K (t, ·) ∈ ◦
H1(T) satisfies for each t

∫
T

∇K · ∇ζ dx = 2π

(∫
r2ζ dνt −

∫
T

ζ dx

)
(59)

for all ζ ∈ H1(T).

Lemma 3.8 Assume that Z̃ε satisfies
∫ T

0
gYε (Z̃ε, Z̃ε) dt ≤ C (60)
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and converges weakly to (ṽ, ξ̃ ). Then for all β ∈ C∞([0, T ]),

lim
ε→0

∫ T

0
β〈DEnl,ε(Yε), Z̃ε〉 dt =

∫ T

0
β〈DEnl(νt ), (ṽ, ξ̃ )〉 dt .

where

〈DEnl(νt ), (ṽ, ξ̃ )〉 = 2π
∫

(r3 + r K (t, x))ṽ dνt .

3.4.1 Tightness

In order to prove Lemma 3.8we first need to show that the tightness property (26) is preserved
in time so that no mass is lost at infinity in the limit ε → 0.

Lemma 3.9 (tightness) For any t > 0 we have∑
Ri≥M

ε2R 4
i (t) → 0 as M → ∞ uniformly in ε.

This lemma is crucial to our proof. The proof is much more difficult than three dimensional
case. In fact, themain idea of the proof is to show by asymptotics that, at least in some average
sense, Vi satisfies approximately R2

i Vi ∼ uRi −1−σ R3
i where u is the Lagrange multiplier

that ensures the volume conservation. In contrast to the three dimensional case, the Lagrange
multiplier may diverge. However we can still show the following a-priori estimate, and thus,
at least on average, Vi ≤ 0, if Ri is sufficiently large, and no mass can escape to infinity as
ε → 0, from which one deduces Lemma 3.9.

Lemma 3.10 For any T > 0, there exist constants CT > 0 and ε1 > 0 such that
∫ T

0

(∫
1

1 − ε2 ln r

1

r2
dνε

t

)1/2

dt

≤ C

(∫ T

0

(
1 +

∫
T

|∇(wε − 2σμε)|2 dx
)
dt

)1/2
≤ CT (61)

for all ε ∈ (0, ε1].

3.5 Homogenization of Rayleigh principle

The main task that remains to be done now is to determine the equation for the velocity
function v. It will be characterized as the minimizer in the Rayleigh principle. Thus our task
is to characterize the limits of Zε that satisfy (35).

Notice that we can use Lemma 3.8 with Zε − Z̃ε where Zε is the direction of steepest
descent and Z̃ε is as in Lemma 3.6. The main result from which one deduces Theorem 2.1 is
the following.

Theorem 3.11 For all nonnegative β ∈ C∞([0, T ]) we have
∫ T

0
β
(
1
2

∫
T

|∇u|2 dx + 2π
∫

1
2

(|v|2 + 1
4 |ξ |2) r2 dνt

+ 〈DE(νt ), (v, ξ) − (ṽ, ξ̃ )〉
)
dt

≤
∫ T

0
β
(
1
2

∫
T

|∇ũ|2 dx + 2π
∫

1
2

(|ṽ|2 + 1
4 |ξ̃ |2) r2 dνt

)
dt

(62)
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for all ṽ ∈ L2(r2 dνt dt) and ξ̃ ∈ L2(r2 dνt dt)2 such that
∫
r ṽ dνt = 0 for almost all t and

such that (v − ṽ)(t, x, ·) = 0 in a neighborhood of r = 0. Here

〈DE(νt ), (ṽ, ξ̃ )〉 = 2π
∫ (

1 + σ
(
r3 + r K (t, x)

))
ṽ dνt

for ṽ which vanish in a neighborhood of r = 0, and u(t, ·), ũ(t, ·), K (t, ·) ∈ ◦
H1(T) are

determined for a.a. t via (53), (55), and (59) respectively.

The Euler–Lagrange equation for (62) becomes r2v = r(u − σK − λ) − 1 − σr3 with
λ being a Lagrange multiplier that ensures the constraint

∫
rv dνt = 0. Setting ψ(t, x) ≡

u − σK − λ, we can then derive (28)–(29). The proof is basically straightforward and goes
similarly to the one in Chapter 6 of [13]. We omit the details here.

Notice that in the formulation (62)we need that v−ṽ has compact support in the r -variable.
This is due to the fact that we cannot guarantee that the term

∫
rv dνt which appears in the

differential of the surface energy is well-defined.

4 Proof of Lemmas

Proof of Lemma 3.4 We set l = γ ε, where γ is as in (51). Notice that due to (51) and∑
i ε

2R2
i = 1, the balls {Bl(Xi )}i are disjoint. For given {ξi }i define

φi (x) =

⎧⎪⎪⎨
⎪⎪⎩

− ε
2

( 1
αε

− αεR2
i

l2
)
(x − Xi ) · ξi : x ∈ Bi

− εαεR2
i

2

(
1

|x−Xi |2 − 1
l2

)
(x − Xi ) · ξi : x ∈ Bl(Xi )\Bi

0 : elsewhere.

(63)

For further use we collect some properties of φi . It is easily checked that φi is continuous
in T, harmonic in Bl(Xi )\∂Bi and satisfies

[∇φi · �n] = ε

αε

ξi · �n on ∂Bi ,

[∇φi · �n] = −εαεR2
i

l2
ξi · �n on ∂Bl(Xi ).

(64)

Furthermore, φi = 0 on ∂Bl(Xi ) and

φi = −εRi

2

(
1 + o(1))ξi · �n on ∂Bi . (65)

Then
1
2 |ξi |2 = 1

|∂Bi |
∫

∂Bi
|ξi · �n|2 dS

= 1

|∂Bi |
∫

∂Bi

αε

ε
[∇φε · �n]ξi · �n dS

= − 2αε

ε2Ri |∂Bi |
∫

∂Bi
[∇φε · �n]φi dS

(
1 + o(1)

)
.

(66)
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Integration by parts yields∫
∂Bi

[∇φε · �n]φi dS = −
∫
Bl (Xi )\Bi

∇φε · ∇φi dS

=
∫

∂Bi
[∇φi · �n]φε dS +

∫
∂Bl (Xi )

[∇φi · �n]φε dS

= εξi

αε

·
∫

∂Bi
φε �n dS − εαεR2

i

l2

∫
∂Bl (Xi )

φεξi · �n dS.

(67)

Together with (66), (67) and (33) we find

|ξi |2 ≤ C
( 1

εRi
ξi · 1

|∂Bi |
∫

∂Bi
φε �n dS + αε

εl2

∫
∂Bl (Xi )

φεξi · �n dS
)

≤ C
( 1

εRi |∂Bi |
∣∣ξi ·

∫
∂Bi

με �n dS∣∣+ 1

εRi |∂Bi |
∣∣ξi

·
∫

∂Bi
uε �n dS∣∣+ αε

εl2
∣∣
∫

∂Bl (Xi )

φεξi · �n dS∣∣).
(68)

We estimate the last term on the right hand side of (68) via

αε

εl2
∣∣
∫

∂Bl (Xi )

φεξi · �n dS∣∣ = αε

εl2
∣∣
∫
Bl (Xi )

∇φε · ξi dx
∣∣

≤ |ξi | αε

εl2

∫
Bl (Xi )

|∇φε| dx

≤ C |ξi |αε

εl

( ∫
Bl (Xi )

|∇φε|2 dx
)1/2

.

(69)

We can write με =∑i μi + μ̄ε with

μi (x) =

⎧⎪⎪⎨
⎪⎪⎩

ε2

4α2
ε

(
α2

ε R
2
i −|x − Xi |2

)+ ε2R2
i

2 ln l
αεRi

−π
4 (l2 − |x − Xi |2) : x ∈ Bi

ε2R2
i

2 ln l
|x−Xi | − π

4 (l2 − |x − Xi |2) : x ∈ Bl(Xi )\Bi
0 : elsewhere.

(70)

Notice that μi is continuous in T, and satisfies −�μi = ε2

α2
ε

− π in Bi , −�μi = −π in

Bl(Xi )\Bi . These imply that μ̄ε , and hence ∇μ̄ε also are harmonic in ∪i Bl(Xi ). Then, due
to the properties of μi and the mean value theorem, we have∫

∂Bi
με �n dS =

∫
Bi

∇με dx =
∫
Bi

∇μi dx +
∫
Bi

∇μ̄ε dx

= ∇μi (Xi )|Bi | +
∫
Bi

∇μ̄ε dx =
∫
Bi

∇μ̄ε dx

= |Bi |
|Bl(Xi )|

∫
Bl (Xi )

∇μ̄ε dx .

(71)

But ∫
Bl (Xi )

∇μ̄ε dx =
∫

∂Bl (Xi )

μ̄ε �n dS =
∫

∂Bl (Xi )

με �n dS =
∫
Bl (Xi )

∇με dx,
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so
∣∣∣∣
∫

∂Bi
με �n dS

∣∣∣∣ ≤ C |Bi |l−1
(∫

Bl (Xi )

|∇με|2 dx
)1/2

.

Next we write uε =∑i ui + ūε where

ui (x) =
⎧⎨
⎩

Ri Viε2 ln
(

αεRi
l

) ∼ −Ri Vi : x ∈ Bi
ε2Ri Vi ln

( |x−Xi |
l

) : x ∈ Bl(Xi )\Bi
0 : elsewhere

. (72)

It is easily checked that ui is continuous in T, harmonic in Bl(Xi )\∂Bi and satisfies

[∇ui · �n] = ε2

αε

Vi on ∂Bi .

Then from a similar argument as above, we see that

∣∣∣∣
∫

∂Bi
uε �n dS

∣∣∣∣ ≤ C |Bi |l−1
(∫

Bl (Xi )

|∇uε|2 dx
)1/2

.

Thus, in summary we find

|ξi | ≤ C
αε

εl

(∫
Bl (Xi )

|∇με|2 + |∇uε|2 + |∇φε|2 dx
)1/2

. (73)

This completes the proof of Lemma. ��

Proof of Lemma 3.3 In Sect. 3.3 we will see that
∫ T
0

∫
T

|∇φε|2 + |∇uε|2 dx dt ≤ C (cf.

(81)). Furthermore, due to (34), we have
∫
T

|∇με|2 dx ≤ C . Then the statement follows
from Lemma 3.4 and

|Xi (t) − X j (t)| = |Xi (0) − X j (0) + αε

ε2

∫ t

0
ξi (s) − ξ j (s) ds|

≥ |Xi (0) − X j (0)| − αε

ε2

∫ t

0
|ξi (s)| + |ξ j (s)| ds.

��

Proof of Lemma 3.5 We can prove

lim inf
ε→0

∫ T

0
β

∫
T

|∇uε|2 dx dt ≥
∫ T

0
β

∫
T

|∇u|2 dx dt + 2π
∫ T

0
β

∫
|v|2 r2 dνt dt

in the same way as in [13] since (51) is satisfied.
Hence, it remains to show that

lim inf
ε→0

∫ T

0
β

∫
T

|∇φε|2 dx dt ≥ 2π
∫

β

∫
1
4 |ξ |2r2 dνt dt (74)

and

lim
ε→0

∫ T

0
β

∫
T

∇uε · ∇φε dx dt = 0. (75)
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Step 1: Monopoles. Our goal is to construct a good approximation of φε which is based on
cutting off the single monopole solutions. To that aim we define φi as in (63) with γ is as in
(51) and thus the balls {Bl(Xi )}i are disjoint. Using (64) and (65), we find∫

Bl (Xi )

|∇φi |2 dx = −
∫

∂Bi
φi

ε

αε

ξi · �n dS

= 1

2

(
1 + o(1)

)ε2Ri

αε

∫
∂Bi

|ξi · �n|2 dS

= 1

2

(
1 + o(1)

)
2πε2R2

i −
∫

∂Bi
|ξi · �n|2 dS

= π

2
ε2R2

i |ξi |2
(
1 + o(1)

)
.

(76)

Step 2: A lower bound.We will show that for any given δ > 0 we have∫
T

|∇φε|2 dx ≥ (1 − δ)
π

2

∑
i

ε2R2
i |ξi |2 (77)

if ε is sufficiently small. Indeed, due to the fact that {Bl(Xi )}i are disjoint we have∫
T

|∇φε|2 dx ≥
∑
i

∫
Bl (Xi )

|∇φε|2 dx .

On the other hand ∫
Bl (Xi )

|∇φε|2 dx ≥ inf
ψ

∫
Bl (Xi )

|ψ |2 dx,

where ∫
Bl (Xi )

ψ · ∇ζ +
∫

∂Bi

ε

αε

ξi · �n ζ dS = 0

for all ζ ∈ C∞
0 (Bl(Xi )). From the corresponding Euler–Lagrange equation we see that the

minimizer ψ̂ is orthogonal to all divergence-free function and hence a gradient. We find that
ψ̂ = ∇φi and thus (77) follows from (76).
Step 3: Approximation of φε. With

φ̂ε(x) :=
∑
i

φi (x) , (78)

we have ∫
T

|∇φε − ∇φ̂ε|2 dx ≤ Cεk
∑
i

ε2R2
i |ξi |2 (79)

for any k > 0. In fact, for φ̄ε := φε − φ̂ε it follows from the definitions and (64) that
∫
T

∇φ̄ε · ∇ζ dx = ±
∑
i

αεR2
i

l2

∫
∂Bl (Xi )

ξi · �n ζ dS (80)

for all ζ ∈ ◦
H1(T). We now define Lε ∈ (H1(T))∗ via

〈Lε, ζ 〉 :=
∑
i

αεR2
i

l2

∫
∂Bl (Xi )

ζ ξi · �n dS.
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We observe that due to −∫
∂Bl (Xi )

ξi · �n dS = 0 we can write

〈Lε, ζ 〉 =
∑
i

αεR2
i

l2

∫
∂Bl (Xi )

(
ζ − −
∫

∂Bl (Xi )

ζ

)
ξi · �ndS.

We can then estimate

∣∣〈Lε, ζ 〉∣∣ ≤ C
∑
i

αεR2
i

l2

(∫
∂Bl (Xi )

|ξi · �n|2 dS
)1/2(∫

∂Bl (Xi )

∣∣ζ − −
∫

∂Bl (Xi )

ζ |2 dS
)1/2

≤ C
∑
i

αεR2
i

l2

(
πl|ξi |2

)1/2(
Cl2

∫
Bl (Xi )

|∇ζ |2 dx
)1/2

,

where the last estimate follows from Trace Theorem and Poincaré’s inequality. This gives

∣∣〈Lε, ζ 〉∣∣ ≤ C
∑
i

αεR2
i

l2
l3/2|ξi |

(∫
Bl (Xi )

|∇ζ |2 dx
)1/2

≤ C

(∑
i

α2
ε R

2
i

ε3
ε2R2

i |ξi |2
)1/2(∑

i

∫
Bl (Xi )

|∇ζ |2 dx
)1/2

.

Due to the simple estimate Ri ≤ Cε−1/2 we find

sup
ζ �=0

∣∣〈Lε, ζ 〉∣∣
‖∇ζ‖L2(T)

≤ Cαεε
−2
(∑

i

ε2R2
i |ξi |2

)1/2

≤ Cεk
(∑

i

ε2R2
i |ξi |2

)1/2

for any k > 0,

which proves (79).
Step 4: Bounds on the individual terms.

∫ T

0

∫
T

|∇uε|2 + |∇φε|2 dx dt ≤ 2
∫ T

0

∫
T

|∇wε|2 dx dt ≤ C . (81)

We write ∫
T

∇uε · ∇φε dx =
∫
T

∇uε · ∇φ̄ε dx +
∫
T

∇uε · ∇φ̂ε dx .

Now ∇uε is orthogonal to ∇φ̂ε since
∫
T

∇uε · ∇φ̂ε dx = −
∑
i

ε3Vi
αε

∫
∂Bi

φi dS,

but
∫
∂Bi

φi dS = 0. Thus
∫
T

∇uε · ∇φε dx =
∫
T

∇uε · ∇φ̄ε dx . (82)

Furthermore, for some small δ > 0, using (77),∫
T

∇uε · ∇φ̄ε dx ≥ −δ‖∇uε‖2L2(T)
− Cδ‖∇φ̄ε‖L2(T)

≥ −δ‖∇uε‖2L2(T)
− Cδε

4
∑
i

ε3R3
i |ξi |2

≥ −δ‖∇uε‖2L2(T)
− Cδε

4‖∇φε‖L2(T).
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We choose δ = 1
4 and then ε so small such that Cδε

4 ≤ 1
4 . Then (81) follows from (34) and

(82).
Step 5: Lower semicontinuity. Since we have now established (81), we obtain the existence
of the weak limit ξ as explained before in Sect. 3.2, and hence the assertion (74) follows
from (49) and (77).
Step 6: The mixed term vanishes in the limit.

As an immediate consequence of (77), (79), (81) and (82) we find

∫ T

0
‖∇φ̄ε‖2L2(T)

dt ≤ Cε4

and thus that (75) is valid. ��

Proof of Lemma 3.6 We need only to show that for given ξ̃ as above we can find φ̃ε such that

lim sup
ε→0

∫ T

0
β

∫
T

|∇φ̃ε|2 dx dt ≤ 2π
∫ T

0
β

∫
1
4 |ξ̃ |2 r2 dνt dt

and

lim
ε→0

∫ T

0
β

∫
T

∇ũε · ∇φ̃ε dx dt = 0

since the corresponding result for ũε can be proved in the same way as in [13]. The proof
is in fact quite similar to the proof of Lemma 3.5, since there the minimization property of
{ξi }i is not used in the construction, which is henceforth quite general.
Step 1: Construction for smooth ξ̃ . We first assume that ξ̃ is smooth. Then we define ξ̃i :=
ξ̃ (Xi ) and construct φi as in (63) for ξi = ξ̃i , and a corresponding φ̂ε as in (78). The property
(76) implies

∫
T

|∇φ̂ε|2 dx = π

2

∑
i

ε2|ξ̃i |2R2
i

(
1 + o(1)

)

and hence
∫ T

0
β

∫
T

|∇φ̂ε|2 dx dt = π

∫ T

0
β

∫
1
2 |ξ̃ |2r2 dνε

t dt
(
1 + o(1)

)

→ π

∫ T

0
β

∫
1
2 |ξ̃ |2r2 dνt dt

as ε → 0. Here we used (43) and that ξ̃ has compact support.
Furthermore, we obtain also exactly as in the proof of Lemma 3.5 that φ̄ε := φ̃ε − φ̂ε

converges to zero strongly in L2((0, T ); H1(T)), and as a consequence the mixed term
vanishes in the limit.
Step 2: Construction for general ξ̃ .

In order to finish the proof of the lemma we have to show that we can approximate
ξ̃ ∈ L2(r2 dνt dt)3 by smooth functions ξ̃n with compact support such that

∫ T

0
β

∫
|ξ̃n |2r2 dνt dt →

∫ T

0
β

∫
|ξ̃ |2r2 dνt dt

as n → ∞. But this follows from a density argument. ��
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Proof of Lemma 3.1 We first prove (38). Set l = γ ε, where γ is as in (51). Due to the fact
that {Bl(Xi )}i are disjoint we have∫

T

|∇με|2 dx ≥
∑
i

∫
Bl (Xi )

|∇με|2 dx . (83)

On the other hand, for each i ,∫
Bl (Xi )

|∇με|2 dx ≥ inf
ψ

∫
Bl (Xi )

|ψ |2 dx,

where the infimum is taken over all ψ ∈ (L2(Bl(Xi )))
2 which satisfy∫

Bl (Xi )

ψ · ∇ζ dx =
∫
Bl (Xi )

(
ε2

α2
ε
χBi − π

)
ζ dx

for all ζ ∈ C∞
0 (Bl(Xi )). We see that the minimizer ψ̂ is orthogonal to all divergence-free

vector-valued functions. Hence ψ̂ = ∇φ, φ = const. on ∂Bl(Xi ), where−�φ = ε2

α2
ε
χBi −π .

We find that ψ̂ = ∇μi , where μi is defined as in (70), and we have∫
Bl (Xi )

|ψ̂ |2 dx =
∫
Bl (Xi )

|∇μi |2 dx

≥
∫
Bl (Xi )\Bi

(εRi )
4

4|x − Xi |2 − πε2R2
i

2
dx

= 2π
(εRi )

4

4
ln

l

αεRi
− π2

2
(l2 − (αεRi )

2)(εRi )
2.

Then it follows from (34),
∑

i ε
2R2

i = 1 and (83) that
∑
i

ε2R 4
i (t) ≤ C for all t ∈ [0, T ], (84)

which proves (38). ��
Proof of Lemma 3.10 We can prove this in a similar way as in [14, section 3.4] by making use
of (32) and Lemma A.1 although we are using Neumann boundary condition on ∂Bi instead
of Dirichlet boundary condition.

Note 0 < 1
1−ε2 ln Ri

≤ 1
1+ε2 ln ε

≤ 2e
2e−1 by 0 < Ri ≤ 1/ε and |Bl(Xi )|/|Ai | ≤ 2 for small

ε with l = γ ε and

Ai = {x ∈ T ; αεRi < |x − Ri | < γε}.
Setting vε = uε + φε − 2σμε − λε , we have
∫

1

1 − ε2 ln r

1

r2
dνε

t =
∑
i

ε2

1 − ε2 ln Ri

1

R2
i

≤ C
∑
i

ε2

1 − ε2 ln Ri

∣∣∣∣ 1Ri
− 1

|Ai |
∫
Ai

vε dx

∣∣∣∣
2

+ C
∑
i

ε2

1 − ε2 ln Ri

∣∣∣∣ 1

|Ai |
∫
Ai

vε dx

∣∣∣∣
2

≤ C
∑
i

ε2

1 − ε2 ln Ri

∣∣∣∣ 1Ri
− 1

|Ai |
∫
Ai

vε dx

∣∣∣∣
2

+ C
∑
i

1

|Ai |
∣∣∣∣
∫
Ai

vε dx

∣∣∣∣
2
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since |Bl(Xi )|/|Ai | ≤ 2 for small ε. Using

∣∣∣∣
∫
Ai

vε dx

∣∣∣∣
2

≤ |Ai |
∫
Ai

(vε)2 dx,

we see that

∫
1

1 − ε2 ln r

1

r2
dνε

t ≤ C
∫
T

|vε|2 dx + C
∑
i

ε2

1 − ε2 ln Ri

∣∣∣∣ 1Ri
− 1

|Ai |
∫
Ai

vε dx

∣∣∣∣
2

. (85)

Now we estimate the second term of the right hand side of (85). Note that vε = uε +φε −
2σμε − λε satisfies

∫
∂Bi

vε − 1

Ri
dS = 0

for each i . Using Lemma A.1 for f = vε − 1
Ri
, we have

∣∣∣∣ 1

|Ai |
∫
Ai

(
1

Ri
− vε

)
dx

∣∣∣∣
2

≤ C
|Bl(Xi )|2

|Ai |2 ln

(
γ ε

αεRi

)∫
Ai

|∇vε|2 dx,

and since |Bl(Xi )|/|Ai | ≤ 2 for small ε,

∑
i

ε2

1 − ε2 ln Ri

∣∣∣∣ 1Ri
− 1

|Ai |
∫
Ai

vε dx

∣∣∣∣
2

≤ C
∫
T

|∇vε|2 dx . (86)

It follows from (85) and (86) that

∫
1

1 − ε2 ln r

1

r2
dνε

t ≤ C

(∫
T

|vε|2 dx +
∫
T

|∇vε|2 dx
)

. (87)

We estimate the L2 norm of vε.

∫
T

|vε|2 dx ≤ C
∫
T

|vε −
∫
T

vε|2 dx + C

∣∣∣∣
∫
T

vε dx

∣∣∣∣
2

≤ C
∫
T

|∇vε|2 dx + C

∣∣∣∣
∫
T

vε dx

∣∣∣∣
2

. (88)

Using

∣∣∣∣|Ai |
∫
T

vε dx

∣∣∣∣ ≤
∣∣∣∣
∫
Ai

(∫
T

vε − vε

)∣∣∣∣+
∣∣∣∣
∫
Ai

vε

∣∣∣∣
≤
∫
Ai

∣∣∣∣
∫
T

vε − vε

∣∣∣∣+
∣∣∣∣
∫
Ai

vε

∣∣∣∣
≤ Cε

[ ∫
Ai

∣∣∣∣
∫
T

vε − vε

∣∣∣∣
2]1/2

+
∣∣∣∣
∫
Ai

vε

∣∣∣∣, (89)
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we see that(∫
r

1 − ε2 ln r
dνε

t

)∣∣∣∣
∫
T

vε

∣∣∣∣
≤ C

∑
i

Ri

1 − ε2 ln Ri

∣∣∣∣|Ai |
∫
T

vε dx

∣∣∣∣

≤ C

(∑
i

ε2R2
i

)1/2(∑
i

∫
Ai

∣∣∣∣
∫
T

vε − vε

∣∣∣∣
2)1/2

+ C
∑
i

Ri

1 − ε2 ln Ri

∣∣∣∣
∫
Ai

vε

∣∣∣∣

≤ C

(∫
T

|∇vε|2 dx
)1/2

+ C
∑
i

Ri

1 − ε2 ln Ri

∣∣∣∣
∫
Ai

vε

∣∣∣∣. (90)

We estimate the second term of the right hand side of (90).

∑
i

Ri

1 − ε2 ln Ri

∣∣∣∣
∫
Ai

vε

∣∣∣∣

≤
∑
i

Ri |Ai |
1 − ε2 ln Ri

∣∣∣∣ 1

|Ai |
∫
Ai

vε − 1

Ri

∣∣∣∣+
∑
i

|Ai |
1 − ε2 ln Ri

≤ C

(∑
i

ε2R2
i

)1/2(∑
i

ε2

1 − ε2 ln Ri

∣∣∣∣ 1

|Ai |
∫
Ai

vε − 1

Ri

∣∣∣∣
2)1/2

+ C
∑
i

ε2

≤ C

(
1 +

(∫
T

|∇vε|2 dx
)1/2)

. (91)

Note that due to

1 =
(∑

i

ε2R2
i

)2

≤
(∑

i

ε2R3
i (1 − ε2 ln Ri )

)(∑
i

ε2Ri

1 − ε2 ln Ri

)
, (92)

− ln Ri ≤ 1
eαRα

i
,
∑

i ε
4R2

i ≤ C and
∑

i ε
2R3

i ≤ C , there is some c, independent of ε, such

that

∑
i

ε2Ri

1 − ε2 ln Ri
≥ c > 0.

Then it follows from (90) and (91) that
∣∣∣∣
∫
T

vε

∣∣∣∣ ≤ C

(
1 +

(∫
T

|∇vε|2 dx
)1/2)

. (93)

Then by (88),
∫
T

|vε|2 dx ≤ C

(∫
T

|∇vε|2 dx + 1

)
.

Thus we obtain from (87),
∫

1

1 − ε2 ln r

1

r2
dνε

t ≤ C

(∫
T

|∇vε|2 dx + 1

)
.

��
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Proof of Lemma 3.9 Step 1: An expression for Vi . Similarly to φi in the proof of Lemma 3.4
we introduce a suitable test function vi . Here it is the capacity potential of Bi with respect to
Bl(Xi ), with l = γ ε. This gives that

vi (x) =

⎧⎪⎨
⎪⎩
aε ln l

αεRi
: x ∈ Bi

aε ln l
|x−Xi | : x ∈ Bl(Xi )\Bi

0 : elsewhere

with aε = (ln l
αεRi

)−1. With this definition we also have

[∇vi · �n] = − aε

αεRi
on ∂Bi and [∇vi · �n] = aε

l
on ∂Bl(Xi ).

Then
2πRi Vi = 2πRi

αε

ε2
[∇uε · �n]

= 1

ε2

∫
∂Bi

[∇uε · �n] dS

= 1

ε2

∫
∂Bi

[∇uε · �n]vi dS

= 1

ε2

∫
∂Bi

[∇vi · �n]uε dS + 1

ε2

∫
∂Bl (Xi )

[∇vi · �n]uε dS

= − aε

ε2αεRi

∫
∂Bi

uε dS + aε

ε2l

∫
∂Bl (Xi )

uε dS.

(94)

Due to (32) it follows that

Ri Vi = −aε

ε2

( 1

Ri
+ 1

|∂Bi |
∫

∂Bi
(2σμε − φε) dx + λε(t)

)
+ aε

2πε2l

∫
∂Bl (Xi )

uε dS. (95)

Using that με =∑i μi + μ̄ε with μi as in (70) we obtain

1

|∂Bi |
∫

∂Bi
με dx = 1

|∂Bi |
∫

∂Bi
μi dx + 1

|∂Bi |
∫

∂Bi
μ̄ε dx

= ε2R2
i

2
ln

l

αεRi
+ O(ε2) + 1

|∂Bl(Xi )|
∫

∂Bl (Xi )

μ̄ε dx

= ε2R2
i

2
ln

l

αεRi
+ O(ε2) + 1

|∂Bl(Xi )|
∫

∂Bl (Xi )

με dx .

Similarly using that φε =∑i φi + φ̄ε with φi as in (63) we obtain

1

|∂Bi |
∫

∂Bi
φε dx = 1

|∂Bi |
∫

∂Bi
φi dx + 1

|∂Bi |
∫

∂Bi
φ̄ε dx

= 1

|∂Bl(Xi )|
∫

∂Bl (Xi )

φ̄ε dx = 1

|∂Bl(Xi )|
∫

∂Bl (Xi )

φε dx .

It follows that

Ri Vi = −aε

ε2

( 1

Ri
+ O(ε2) + λε(t)

)
− σ R2

i + aε

2πε2l

∫
∂Bl (Xi )

uε + φε − 2σμε dS. (96)

Step 2: A bound on
∫
∂Bl (Xi )

uε + φε − 2σμε dS.

123



54 Page 24 of 30 B. Niethammer, Y. Oshita

We define ψ(x) = 1
2 (l

2 − |x − Xi |2) in Bl(Xi ) such that

−�ψ = 2 in Bl(Xi ) , −∇ψ = x − Xi in Bl(Xi ) and ∇ψ · �n = −l on ∂Bl(Xi ).

Thus, abbreviating vε = uε + φε − 2σμε , we have

1

l

∫
∂Bl (Xi )

vε dS = − 1

l2

∫
∂Bl (Xi )

vε∇ψ · �n dS

= − 1

l2

∫
Bl (Xi )

�ψvε + ∇ψ · ∇vε dx

= 3

l2

∫
Bl (Xi )

vε − 1

l2

∫
Bl (Xi )

∇ψ · ∇vε dx .

(97)

We multiply (97) by Rm
i a

ε withm ≥ 0, and sum over i ∈ I for some I ⊂ {i : Ri > 0}. Then
due to aε ≤ 2ε2, we find, using l = γ ε and Hölder’s inequality, that

∣∣∣∑
i∈I

Rm
i
aε

l

∫
∂Bl (Xi )

vε dS
∣∣∣

≤ C

(∑
i∈I

Rm
i

∫
Bl (Xi )

|vε| +
∑
i∈I

Rm
i

∫
Bl (Xi )

|∇ψ · ∇vε| dx
)

≤ C

(∑
i∈I

Rm
i l

5/3
(∫

Bl (Xi )

|vε|6
)1/6

+
∑
i∈I

Rm
i l

2
(∫

Bl (Xi )

|∇vε|2
)1/2)

≤ C

(∑
i∈I

ε2R6m/5
i

)5/6(∫
T

|vε|6
)1/6

+ C

(∑
i∈I

ε4R2m
i

)1/2 (∫
T

|∇vε|2
)1/2

.

Due to Sobolev embedding and Poincare’s inequality (recall that vε has mean value zero) we
finally find∣∣∣∣
∑
i∈I

Rm
i
aε

l

∫
∂Bl (Xi )

uε + φε − 2σμε dS

∣∣∣∣

≤ C

(∫
T

|∇με|2 + |∇φε|2 + |∇uε|2
)1/2{(∑

i∈I
ε2R6m/5

i

)5/6

+
(∑

i∈I
ε4R2m

i

)1/2}
.

(98)
Step 3: A bound for λε(t). We go back to (96) to estimate λε(t). For that purpose we multiply
(96) by ε2 and sum over i . We find

0 = −
∑
i

aε

(
1

Ri
+ O(ε2)

)
− σ

∑
i

ε2R2
i

− λε(t)
∑
i

aε +
∑
i

aε

2πl

∫
∂Bl (Xi )

uε + φε − 2σμε dS.

(99)

First notice that due to

1 =
(∑

i

ε2R2
i (t)

)5

≤
(∑

i

ε2
)(∑

i

ε4R4
i ln

l

αεRi

)2(∑
i

Ri

ln l
αεRi

)2

1 =
(∑

i

ε2R2
i (t)

)2

≤
(∑

i

ε4R4
i ln

l

αεRi

)(∑
i

1

ln l
αεRi

)
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we have

(∑
i

1
ln l

αε Ri

)−1

≤ ∑
i ε

4R4
i ln

l
αεRi

≤ C due to (84). As a consequence, we also

have 1∑
i a

ε ≤ C .
Taking m = 0 in (98), we find

|λε(t)| ≤ C

(∑
i

aε

Ri
+
∑
i

ε2(ε2 + R2
i ) +

(∫
T

|∇uε|2 + |∇με|2 + |∇φε|2
)1/2)

≤ C

(
1 +

∑
i

aε

Ri
+ (
∫
T

|∇uε|2 + |∇με|2 + |∇φε|2)1/2
)

.

(100)

Using

∑
i

aε

Ri
≤
∑
i

ε2

1 − ε2 ln Ri
γ

1

Ri
≤
(∑

i

ε2
)1/2(∑

i

ε2

1 − ε2 ln Ri
γ

1

R2
i

)1/2

≤ C

(∫
1

1 − ε2 ln r

1

r2
dνε

t

)1/2

,

and Lemma 3.10, it follows [cf. (81) in Sect. 3.3] that
∫ T

0
|λε(t)| dt ≤ CT . (101)

Step 4: Completion of Proof. Now we go back to (96), multiply with ε2R2
i and sum, but

only over i such that Ri ≥ M . We find

∑
Ri≥M

ε2R3
i Vi =

(
−
∑
Ri≥M

ε2Ri − λε(t)
∑
Ri≥M

ε2R2
i

+
∑
Ri≥M

ε2R2
i

2πl

∫
∂Bl (Xi )

uε + φε − 2σμε dS

)
(1 + O(ε)) − σ

∑
Ri≥M

ε2R4
i .

(102)
Here we used aε

ε2
= 1

1+ε2 ln γ
Ri

= 1 + O(ε) as ε → 0 for i such that Ri ≥ M , εRi ≤ 1 and

M > γ .
The key feature of (102) is that we have a term of the form −∑Ri≥M ε2R4

i on the right
hand side and otherwise terms which converge to zero as M → ∞ uniformly in ε. Now
define

y(t) := 1

4

∑
Ri≥M

ε2R4
i (t)

such that it follows from (102) together with (98) with m = 2 that

y′(t) + 4σ y(t) ≤ C

{
(|λε(t)| + 1)

∑
Ri≥M

ε2R2
i

+ (
∫
T

|∇uε|2 + |∇με|2 + |∇φε|2)1/2
(( ∑

Ri≥M

ε2R12/5
i

)5/6

+ ε
( ∑
Ri≥M

ε2R4
i

)1/2)}
.

(103)
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Now
∑
Ri≥M

ε2R2
i ≤ 1

M2

∑
Ri≥M

ε2R4
i ≤ C

M2 , (104)

∑
Ri≥M

ε2R12/5
i ≤ 1

M8/5

∑
Ri≥M

ε2R4
i ≤ C

M8/5
. (105)

To estimate the last term on the right-hand side of (103) we recall that we have the simple
estimate Ri ≤ Cε−1/2 such that

ε

( ∑
Ri≥M

ε2R4
i

)1/2

≤ ε1/2
( ∑

Ri≥M

ε2R2
i

)1/2
≤ C

ε1/2

M
, (106)

∑
Ri≥M

ε4R4
i = ε2

∑
Ri≥M

ε2R4
i ≤ C

ε

M2 . (107)

Thus, (103)–(107) imply that we have an estimate of the form

y′(t) + 4σ y(t) ≤ C
f (t)

Mδ
with

∫ T

0
| f (t)| dt ≤ CT and some δ > 0. (108)

A simple comparison argument now implies that indeed y(t) ≤ C
(
y(0) + M−δ

)
and thus

the statement of the lemma follows with (26). ��
Proof of Lemma 3.7 We use an argument similar to Step 2 of the proof of [13, Lemma 5.4],
and give only an outline of the proof. It follows from the definition of K (59) that

∫
T

∇K · ∇ζ dx = 2π

(∫
r2ζ dνt −

∫
T

ζ dx

)
= 2π

∫
r2ζ dνt (109)

for all ζ ∈ ◦
H1(T). Furthermore since �μ̃ε = π in T\ ∪i (∂Bl(Xi ) ∪ ∂Bi ), [∇μ̃ε · �n] = 0

on ∂Bi , and [∇μ̃ε · �n] = − ε2R2
i

2l on ∂Bl(Xi ), we see that μ̃ε solves
∫
T

∇μ̃ε · ∇ζ dx =
∑
i

∫
∂Bl (Xi )

[∇μ̃ε · �n]ζ dS − π

∫
T

ζ dx

=
∑
i

∫
∂Bl (Xi )

l R2
i

2γ 2 ζ dS

for all ζ ∈ ◦
H1(T). We define

〈Lε(t), ζ 〉 :=
∑
i

∫
∂Bl (Xi )

l R2
i

γ 2 ζ dS, 〈L(t), ζ 〉 := 2π
∫

r2ζ dνt

for ζ ∈ ◦
H1(T). Then Lε(t) and L(t) are elements of

◦
H−1(T) = (

◦
H1(T))∗ for all t ∈ [0, T ].

Since 〈Lε(t), ζ 〉 = 2
∫
T

∇μ̃ε ·∇ζ dx and 〈L(t), ζ 〉 = ∫
T

∇K ·∇ζ dx , we only need to prove

that Lε → L strongly in C0([0, T ]; ◦
H−1(T)).

In order to prove this, define

〈L̃ε(t), ζ 〉 :=
∑
i

∫
Bl (Xi )

2R2
i

γ 2 ζ dx .
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Then we see that L̃ε(t) ∈ (L4(T))∗ ∼= L4/3(T) and satisfies ‖L̃ε(t)‖L4/3 ≤ C for all
t ∈ [0, T ] and small ε > 0.Here L2 estimate does notwork. Furthermore for all t1, t2 ∈ [0, T ]
we have

‖L̃ε(t1) − L̃ε(t2)‖L4/3 ≤ C |t1 − t2|1/2
(Dε

)1/2
.

These mean that L̃ε ∈ C0([0, T ]; L4/3(T)) is uniformly bounded and equicontinuous. It

follows from the compact embedding of L4/3(T) into
◦
H−1(T) and the generalized Arzela–

Ascoli Theorem that L̃ε is relatively compact in C0([0, T ]; ◦
H−1(T)).

Since we can deduce that L̃ε(t)⇀L(t) weakly in (C0
p)

∗ for each t ∈ [0, T ], and that

Lε − L̃ε → 0 in C0([0, T ]; ◦
H−1(T)), the proof of Lemma is completed. ��

Proof of Lemma 3.8 The differential of the nonlocal energy is given by

〈DEnl,ε(Yε), Z̃ε〉 = −2
∫
T

∇με · ∇w̃ε dx

= −2
∫
T

∇με · (∇ũε + ∇φ̃ε) dx
(110)

with ũε and φ̃ε determined via (31).
Define ui as in (72), however we take Vi = Ṽi , and set ũε =∑i ui + ūε. Note that

∇ui =
{

ε2Ri Ṽi
x−Xi

|x−Xi |2 : αεRi < |x − Xi | < l

0 : otherwise
. (111)

Also we use the same notations μ̃i , μ̃
ε as in Sect. 3.4.

We write
∫ T

0
β

∫
T

∇ũε · ∇με dx dt

=
∫ T

0
β

∫
T

∇ũε ·
⎛
⎝∇

∑
j

μ̃ j + ∇ K
2

⎞
⎠ dx dt +

∫ T

0
β

∫
T

∇ũε · ∇ (μ̃ε − K
2

)
dx dt

= −
∫ T

0
β
∑
i

∫
∂Bi

ε2Ṽi
αε

∑
j

μ̃ j dS dt −
∫ T

0

β
2

∑
i

∫
Bl (Xi )

∇ui · ∇K dx dt

+
∫ T

0

β
2

∫
T

∇ūε · ∇K dx dt +
∫ T

0
β

∫
T

∇ũε · ∇ (μ̃ε − K
2

)
dx dt . (112)

It follows from the condition (60) that

(1 − o(1))4π
∫ T

0

∑
i

ε2R2
i Ṽ

2
i dt ≤

∫ T

0

∫
T

|∇ũε|2 dx dt ≤ C (113)

and that ūε converges to ũ strongly in L2((0, T ) × T), where ũ is determined via (53). (See
the proof of [13, Lemma 5.4] for details.) Using

∣∣∣∣
∑
Ri≥M

ε2R3
i Ṽi

∣∣∣∣ ≤
⎛
⎝ ∑

Ri≥M

ε2R4
i

⎞
⎠

1/2 (∑
i

ε2R2
i Ṽ

2
i

)1/2

,
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(113), Lemma 3.9, |Ri ln 1/Ri | ≤ C for Ri  1 and εRi ≤ 1, we see that

−
∫ T

0
β
∑
i

∫
∂Bi

ε2Ṽi
αε

∑
j

μ̃ j dS dt = −
∫ T

0
β
∑
i

∫
∂Bi

ε2Ṽi
αε

μ̃i dS dt

= −
∫ T

0
β
∑
i

πε4R3
i Ṽi ln

l

αεRi
dt

→ −π

∫ T

0
β

∫
r3ṽ dνt dt (114)

as ε → 0. In addition, we obtain

lim
ε→0

∫ T

0
β

∫
T

∇ūε · ∇K dx dt =
∫ T

0
β

∫
T

∇ũ · ∇K dx dt

= −2π
∫ T

0
β

∫
r K (t, x)ṽ dνt dt, (115)

and it follows from Lemma 3.7 that

lim
ε→0

∫ T

0
β

∫
T

∇ũε · ∇ (μ̃ε − K
2

)
dx dt = 0. (116)

Finally from
∑

i |Bl(Xi )| ≤ Cγ 2∑
i ε

2 ≤ Cγ 2 and (111),
∣∣∣∣
∑
i

∫
Bl (Xi )

∇ui · ∇K dx

∣∣∣∣ ≤
∑
i

(∫
Bl (Xi )

|∇ui |2 dx
)1/2 (∫

Bl (Xi )

|∇K |2 dx
)1/2

≤
(∑

i

∫
Bl (Xi )

|∇ui |2 dx
)1/2 (∑

i

∫
Bl (Xi )

|∇K |2 dx)1/2

≤ Cω(Cγ 2), (117)

where

ω(z) := sup
|E |≤z

(∫
E

|∇K |2 dx
)1/2

. (118)

Since we can choose γ arbitrarily small, we obtain

lim
ε→0

∫ T

0
β

∫
T

∇ũε · ∇με dx dt = −π

∫ T

0
β

∫
(r3 + r K (x))ṽ dνt dt

from (112), (114), (115), (116) and (117).
Similarly we can prove that

∫ T
0 β

∫
T

∇φ̃ε · ∇με dx dt → 0 as ε → 0. This completes the
proof. ��
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A Appendix

Lemma A.1 A = {x ∈ R
2 ; a < |x | < b}. There holds
∣∣∣∣ 1

πb2

∫
A
f dx

∣∣∣∣
2

≤ 1

2π

(
ln

b

a

)∫
A

|∇ f |2 dx (119)

for all f ∈ H1(A) such that
∫
∂Ba

f dS = 0.

Proof Using the polar coordinate (r , θ), we write f = f (r , θ). Let

g(r) =
∫ 2π

0
f (r , θ) dθ

for r ∈ [a, b]. Then by

g′(s) =
∫ 2π

0
fr (s, θ) dθ,

and

g′(s)2 ≤ 2π
∫ 2π

0
fr (s, θ)2 dθ,

for s ∈ [a, b], we get
∫ b

a
g′(s)2s ds ≤ 2π

∫ b

a
s
∫ 2π

0
fr (s, θ)2 dθ ds ≤ 2π‖∇ f ‖22.

Note that g(r) = ∫ ra g′(s) ds by g(a) = 0. Hence

|g(r)| =
∣∣∣∣
∫ r

a
g′(s) ds

∣∣∣∣ ≤
(∫ b

a
g′(s)2s ds

)1/2 (∫ r

a

1

s
ds

)1/2

≤ √
2π‖∇ f ‖2

(
ln

r

a

)1/2
.

We find ∣∣∣∣
∫
A
f dx

∣∣∣∣ =
∣∣∣∣
∫ b

a
g(r)r dr

∣∣∣∣ ≤
√
2π‖∇ f ‖2

∫ b

a
r
(
ln

r

a

)1/2
dr

≤ √
2π‖∇ f ‖2 b

2

2

(
ln

b

a

)1/2

.

��
Remark: Similarly we can also show that

lim
ε→0

E(Yε) = E(νt ), uniformly in t ∈ [0, T ],
where

E(νt ) = 2π
∫ (

r + σ
r4

4

)
dνt + σ

4

∫
T

|∇K |2 dx .

This statement is of interest in itself, but since we do not need it here we omit the proof for
the sake of brevity.
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