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Abstract

In this paper we give local curvature estimates for the Laplacian flow on closed G2-structures
under the condition that the Ricci curvature is bounded along the flow. The main ingredi-
ent consists of the idea of Kotschwar et al. (J Funct Anal 271(9):2604-2630, 2016) who
gave local curvature estimates for the Ricci flow on complete manifolds and then provided
a new elementary proof of Sesum’s result (Sesum in Am J Math 127(6):1315-1324, 2005),
and the particular structure of the Laplacian flow on closed G;-structures. As an immedi-
ate consequence, this estimates give a new proof of Lotay and Wei’s (Geom Funct Anal
27(1):165-233, 2017) result which is an analogue of Sesum’s theorem. The second result
is about an interesting evolution equation for the scalar curvature of the Laplacian flow of
closed G;-structures. Roughly speaking, we can prove that the time derivative of the scalar
curvature R, () is equal to the Laplacian of R, (), plus an extra term which can be written as
the difference of two nonnegative quantities.

Mathematics Subject Classification Primary 53C44, 53C10

1 Introduction

Let M be a smooth 7-manifold. The Laplacian flow for closed G;-structures on M introduced
by Bryant [1] is to study the torsion-free G-structures

d(t) = Apiryp(1), ¢(0) =g, (1.1)

where Ayinp(t) = dd(’;(t)q)(z) + d;j(t)d(p(t) is the Hodge Laplacian of g,(;) and ¢ is an
initial closed G2-structure. Since do,¢(t) = 9;dAy@(t) = 0, we see that the flow (1.1)
preserves the closedness of ¢(¢). For more background on G;-structures, see Sect. 2. When
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M is compact, the flow (1.1) can be viewed as the gradient flow for the Hitchin functional
introduced by Hitchin [18]

A [gly — RT, <pr—>1/ gD/\l/f:/ g1 (1.2)
T Jm M

Here ¢ is a closed G;-structure on M and [¢] is the open subset of the cohomology class
[¢] consisting of G»-structures. Any critical point of .7 gives a torsion-free G,-structure.
The study of Laplacian flows on some special 7-manifolds, Laplacian solitons, and other
flows on G;-structures can be found in [13-16,19,24,29,33,34,38,39].
Recently, Donaldson [7-10] studied the co-associative Kovalev-Lefschetz fibrations G-
manifolds and G-manifolds with boundary.

1.1 Notions and conventions

To state the main results, we fix our notions used throughout this paper. Let M be as before
a smooth 7-manifold. The space of smooth functions and the space of smooth vector fields
are denoted respectively by C°° (M) and X(M). The space of k-tenors (i.e., (0, k)-covariant
tensor fields) and k-forms on M are denoted, respectively, by RK(M) = C® (@K (T*M))
and AK(M) = C®(AK(T*M)). For any k-tensor field T € ®F(M), we locally have the
expression T = T;,..;,dx"' @ -+ ® dx'* =: T;,..;,dx"1®®k_ A k-form & on M can be
written in the standard form as « = %ail...ikdx"l Ao Adxih = %a,-l...,-kdx"m“'”k, where
o, ...i, 18 fully skew-symmetric in its indices. Using the standard forms, if we take the interior
product X L« of a k-form « € AR (M) with a vector field X € X(M), we obtain the (k — 1)-
form X Jo = ﬁX’”amil g dx"1Nk=1 which is also in the standard form. In particular,
consider the vector space ®2 (M) of 2-tensors. Forany 2-tensor A = A;;dx'®/, define A® :=
L(Aij + Aj)dx'®l = Agdxl@f and A" := 1(A;; — Aj)dx'®) = A[;dx"®] . Then A® is
an element of ©%(M), the space of symmetric 2-tensors. Since' dx!N = dx®/ — dx/® it
follows that A" = %A[jdx“j. Define a4 := %agdx“j with a{? := A;;j. Then we see that
at = A" € A2 (M) and @ (M) = ©*(M) & A2(M).

A given Riemannian metric g on M determines two isomorphisms between vector
fields and 1-forms: b, : X(M) — A (M) and e : AM) — X(M), where,
for every vector field X = X"% and l-form o = o;dx!, be(X) = Xigijdxf =
dexj and fig() = ozigijé);(ij = Olja%,-- Using these two natural maps, we can fre-
quently raise or lower indices on tensors. The metric g also induces a metric on k-forms
gdx"1N NIk dx ANy = det(g(dxie, dxh)) = 3 o, sgn(0)g e - . glkio® where
&7 is the group of permutations of seven letters and sgn(o) denotes the sign (£1) of an
element o of &7. The inner product (-, -), of two k-forms «, B € AF(M) now is given by
(@ B)g = fitiy-ig B = Gty iy By jp 8191 -+ gk,

Given two 2-tensors A, B € ®”(M), with the forms A = A;;dx'®/ and B = B;;dx'®/.
Define ({A, B))g := A,-jBij. There are two special cases which will be used later:

1 In our convention, for any 2-form o = %ai idxij , we have

9 9y _1 ij _ g\ (0 O \_ 1 (s sisi)_ ] B
“ (87‘ W) =20 (dx —dx ) Ik 9el ) = 2% (‘Sk‘se _5k5z) = 5 (e — ) = e

which justifies the notion oz as a(i)/axk, B/i)xe). In general, for any k-form o = %ail'“ik dx1N Nk we
have o ..;, = «(3/8xL, -+, 8/9x'k), because dx' 1NNk =37 o sgn(o)dx'o ()& Biok)
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1) a= %aijdxmj e A2(M)and B = Bi_/dxi®j € ®%(M). In this case, & can be written
as a2-tensor‘A‘f‘ = Af;-dx@j with Af‘j = a;j. Then ((a, B))g := ((A%, B)); = a;; BY.
2) a= %aijdxm/ and B = %ﬂijdxm/ € AZ(M). In this case, o, B can be both written as
2-tensors A% = Af‘jdx@j and B/'g‘ = Bgdxi@’j with A7, = «jj and Bf;- = Bij- Then
(. B))g == (A%, BF)), = a;; B = 2(a, B,
The norm of A € ®2(M) is defined by ||A||2 ({A, A))g = A;; A", while the norm of
a € A(M) s [f2 = (o, @)y = e, In particular, ||X[|2 = X; X" = |bg(X)[2
and ||a|| = 2|a|g, for any vector field X € X(M) and 2-form «.
The Lev1—C1v1ta connection associated to a given Riemannian metric gis denoted by V or
simply V. Our convention on Riemann curvature tensor is R} Tk axm := Rm(52 P dx S 0y 0 T =

(ViVj — V.,V,-)W and R;jxe = R'"kgmg The Ricci curvature of g is given by Rj; :=

Rijke gt . Weused V, and *, to denote the volume form and Hodge star operator, respectively,
on M associated to a metric g and an orientation.

We use the standard notion A * B to denote some linear combination of contractions of
the tensor product A ® B relative to the metric g(¢) associated the ¢(¢). In Theorem 1.4 and
its proof, all universal constants ¢, C below depend only on the given real number p.

1.2 Main results

Applying De Turck’s trick and Hamilton’s Nash-Moser inverse function theorem, Bryant and
Xu [2] proved the following local time existence for (1.1).

Theorem 1.1 (Bryant-Xu [2]) For a compact T-manifold M, the initial value problem (1.1)
has a unique solution for a short time interval [0, Tpyax) with the maximal time Tpax € (0, 0]
depending on ¢.

As in the Ricci flow, we can prove following results on the long time existence for the
Laplacian flow (1.1).

Theorem 1.2 (Lotay-Wei [32]) Let M be a compact T-manifold and ¢(t), t € [0, T), where
T < oo, be a solution to the flow (1.1) for closed G,-structures with associated metric
g(t) = gy foreacht.

(a) Ifthe velocity of the flow satisfies

sup  |[AgnyeDllgr) < 00,
Mx[0,T)

then the solution ¢; can be extended past time T.

() If T = Tmax, then

tim sup max ([IRm(o |3, + Vet 70113 ) = oc.

t—> Tiax

Here T (1) is the torsion of ¢(t) [see (2.14)].

In this paper, we give a new elementary proof of Theorem 1.2, based on the idea of [25]
and the structure of the Eq. (1.1).

@ Springer



28 Page4of37 Y.Li

Theorem 1.3 Let M be a compact T-manifold and ¢(t), t € [0, T), where T < 00, be a
solution to the flow (1.1) for closed G-structures with associated metric g(t) = gy for
each t. Suppose that

K := sup ||Ricg(t)||g(l) < 00, A :=max ||ng(0)||g(0)~
Mx[0,T) M
Then
sup  [|IRmg(llgr) < o0,
Mx[0,T)

where the bound depends only onn, K, T and A.

When M is compact, the theorem immediately implies the part (a) in Theorem 1.2. Indeed,
we shall show that [see (3.10) and (3.29)]

sup  |[AgnyeDllgr) <00 = sup ||Ricg)llgr) < o0.
Mx[0,T) Mx[0,T)

In the compact case, Theorem 1.3 shows that, if the conclusion in part (a) does not hold, then
T = Tmax and SUp ny[0.7,,,.) [IRMg) |1y < 00 which implies the quantity sup vy [0, 7;,,.)
(IIRmg )| |§(x) + ||V,(1)T(t)||§(t)) is finite, since the norm ||Vg(,)T(t)||§(t) can be controlled
by |[|[Rmg )| |§(I) [see (3.58)]. However, by part (b) in Theorem 1.2, itis impossible. Therefore,
the conclusion in part (a) is true.

As remarked in [25], to prove Theorem 1.3, it suffices to establish the following integral
estimate.

Theorem 1.4 Let M be a smooth T-manifold and ¢(t), t € [0, T), where T < 00, be a
solution to the flow (1.1) for closed G-structures with associated metric g(t) = gy for
each t. Assume that there exist constants A, K > 0 and a point xo € M such that the
geodesic ball By o) (xo, A/NK) is compactly contained in M and that

0,T].
JE)X[ ]

IRicgn)lgry = K on Bgo) (xg,
Then, for any p > 5, there exists ¢ = c¢(p) > 0 so that

| |ng(l‘) | |§([)th

./Bg(o) (x0,A/2VK)

< (1 + K)e KT /

[IRmg)1170,4 Ve
Bq(0) (x0,A/7/E) O

_ A
+cK? (1 + A 2p) ECKTVOIS(,) (Bg(()) <x0, ﬁ)) (1.3)

forallt € [0, T].

Now by the standard De Giorgi-Nash—Moser iteration (our manifold is compact and the
Ricci curvature is uniformly bounded), under the condition in Theorem 1.4, we can prove

[IRmg(7)lg(r) (X0) < d1(d2 + Ap), (1.4)
where d, d are constants depending on K, T', A, and

Ao = sup [IRmg0)llg(0)-
By 0y (x0,A/VK)
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Actually, this follows from the same argument in [25] by noting that

(Agy — NRmg( [g1) = —clRmgen I3 - (1.5)
To verify (1.5), we use (2.26), (3.56) and (3.60) to deduce that

IVeirr T (Dllgry < clRmgy |l
and
19500 T Ollgy = ¢l VewRmgn|lg) + el Rmggo 13-
Then, by (3.23) and the Cauchy inequality

1
1V RMg0) gy < =5 @ = gl IRMgn g + cllRMgo) g

3/2
+ el lRmo [y | Ve Rmgan llgo

1
< =50 = Ag) IRyl
+ clIRmg( 3 + Voo Rmgan|5r)

which implies (1.5). Now the estimate (1.4) yields Theorem 1.3.

The analogue of Theorem 1.2 in the Ricci flow was proved by Hamilton [17] (for part (b))
and Sesum [37] (for part (a)). It is an open question (due to Hamilton, see [3]) that the Ricci
flow will exist as long as the scalar curvature remains bounded. For the Kihler—Ricci flow
[40] or type-I Ricci flow [11], this question was settled. For the general case, some partial
result on Hamilton’s conjecture was carried out in [3].

For the Ricci-harmonic flow introduce by List [30,31] (see also, [35,36]), the analogue of
Theorem 1.2 was proved in [30,31] (see also, [35,36]) and [4] (see [28] for another proof). The
author [26,27] extended Cao’s result [3] to the Ricci-harmonic flow. The same Hamilton’s
conjecture was asked by the author in [26,27].

We can ask the same question for the Laplacian flow on closed G»-structures. In [32]
(see p. 171, line -6 to -3, or Open Problem (3) in p. 230), Lotay and Wei asked that whether
the Laplacian flow on closed G»-structures will exist as long as the torsion tensor or scalar
curvature remains bounded. Let g(¢) be the associated metric of ¢(¢). Then the evolution
equation for g, is given by

4
0i8ij = =2Rij = ST (g8 — 4T ;. (1.6)

For the Laplacian flow on closed G;-structures, the torsion 7'(¢) is actually a 2-form for each
t, hence we use the norm | - |¢(;) in (1.6). The standard formula for the scalar curvature Ry ()
gives [see (3.15)]

) 2 _ o
O Ry = Ag(,)Rg(,)—i—ZIIRlcg(,)lIz(t)—5R2(1)+4R,~jkgT’kTﬂ+4(V/ TV T jr). (1.7)

Now the above mentioned open problem states that

Is it ture that lim sup Rg(;) = —00?
t— Tmax
The “minus infinity” comes from the fact that along the Laplacian flow on closed G»-
structures the scalar curvature is always nonpositive [see (2.26)]. The following Proposition
1.5 is motivate to solve this problem, and starts from the basic evolution Eq. (1.7) where
the last two terms on the right-hand side do not have good signature. However, using the
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closedness of ¢(¢) [in particular, the identity (3.15)], we can prove the following interesting
evolution equation for Rg ;).

Proposition 1.5 Let M be a smooth 7-manifold and ¢(t), t € [0, T), where T € (0, 0o], be
a solution to the flow (1.1) for closed G,-structures with associated metric g(t) = gy (1) for
each t. Then the scalar curvature Rg () satisfies

2 2 1 N 2
0 Rey = Dy Rew + 12| Ry + SITOR g5+ |[Rian R = Waomn
3 s 2 s
+1“2T~T-Ri/ v ?
) ial jb mn abmn 20
2T T 2 LT
“FEH am bn_lZfabman(t)‘i‘ Il (Z)”g(;)
2 2 26 » 1 i |
+ 41V TOI | = {IRm) |2y + 5 R + 5 || Rijas R -
.. 2 —~
n 2HT,-aTj,,Rumn ot 2Tyl + 210}. (1.8)

Here /fij = T,‘kaj.
The evolution Eq. (1.8) can be written simply as
I Rg(ty = Agny Rery + A1) — B(1) (1.9)

for some suitable time-dependent nonnegative functions A(¢) and B(¢). By the maximum
principle we obtain

t t
Rmax (0) +/ max[A(t) — B(1)]dt = Rg(r) = Rmin(0) +/ min[A(7) — B(7)ldt.
0o M 0 M

Here Rpax(0) := max g Rg(0) and Rpin(0) := min g Rg(0). Observe that the above well-
arranged evolution equation can give us a weakly lower bound for Rg(;), which can not prove
or disprove the conjecture of Lotay and Wei.

We give an outline of the current paper. We review the basic theory in Sect. 2 about G-
structures, G,-decompositions of 2-forms and 3-forms, and general flows on G;-structures.
In Sect. 3, we rewrite results in Sect. 2 for closed G»-structures, and the local curvature
estimates will be given in the last subsection.

2 Basic theory of G,-structures

In this section, we view some basic theory of Gj-structures, following [1,20-23,32]. Let
{e1, ..., e7} denote the standard basis of R7 and let {el, R e7} be its dual basis. Define the
3-form

¢ = elAZ/\S +elA4A5 + el/\6/\7 +62A4/\6 _ 62A5A7 _ 63/\4A7 _ 63A5A6,

where ¢/N/K i= ¢l A e/ A eF. The subgroup G,, which fixes ¢, of GL(7, R) is the 14-
dimensional Lie subgroup of SO(7), acts irreducibly on R’, and preserves the metric and
orientation for which {ey, - - - , e7} is an oriented orthonormal basis. Note that G, also pre-
serves the 4-form

*pp = eNINONT + 2N3NONT + 2NINANS + pININSAT _ GIASAANG _ JINZASAG _ IN2AANT
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where the Hodge star operator * is determined by the metric and orientation.
For a smooth 7-manifold M and a point x € M, define as in [32]

o = @y f invertibl
N (TFM) = {@x e A(TFM) u*¢ = g, for some inverti e}

map u € Hompg (T, M, R7)

and the bundle
ATM) = || Adaim.
xeM

We call a section ¢ of /\i(T*M) a positive 3-form on M or a Gy-structure on M, and
denote the space of positive 3-forms by /\i (M). The existence of G-structures is equivalent
to the property that M is oriented and spin, which is equivalent to the vanishing of the first
and second Stiefel-Whitney classes. From the definition of G,-structures, we see that any
(NS /\i (M) uniquely determines a Riemannian metric g, and an orientation d V,,, hence the
Hodge star operator *, and the associated 4-form

Y= *pQ. 2.1
We also have the isomorphisms b, := b, and i, := f,, . For a given G-structure ¢ €
A3 (M), we denote by (-, )¢, (. ). | - lg» || - [l the corresponding inner products (-, ), .

((-+))g, and norms | - |g . |[ - [Ig, -

Given a Ga-structure ¢ € /\i(M). We say that ¢ is torsion-free if ¢ is parallel with
respect to the metric g,. Equivalently, ¢ is torsion-free if and only if ¥V¢ = 0, where ¢V is
the Levi-Civita connection of g,.

Theorem 2.1 (Fernandez-Gray [12]) The G»-structure ¢ is torsion-free if and only if ¢ is
both closed (i.e., dp = 0) and co-closed (i.e., d ¥, ¢ = dy =0).

When M is compact, the above theorem says that a G»-structure ¢ is torsion-free if and
only if ¢ is harmonic with respect to the induces metric g,.

We say that a G,-structure ¢ is closed (resp., co-closed) if dp = 0 (resp., dyy = 0).
Theorem 2.1 can be restated as that a Gy-structure is torsion-free if and only if it is both
closed and co-closed.

2.1 Gy-decompositions of A%2(M) and A3 (M)

A Gj-structure ¢ induces splittings of the bundles /\k(T*./\/l), 2 < k < 5, into direct
summands, which we denote by /\IZ (T*M, @) with £ being the rank of the bundle. We let the
space of sections of /\’lf (T*M, ¢) by /\’g (M, ¢). Define the natural projections

7t AR M) — ASML 9), o — 7 (@), 2.2)
We mainly focus on the Gy—decompositions of AZ(M) and A3(M). Recall that

A2 (M) = A3(M, @) @ AT, (M, @), (2.3)
AM) = AZM, 9) & A(M, @) ® A3 (M, @). (2.4)

Here each component is determined by

ANM,p) =(Xop: X e XM)} = {Be A (M) :x,(p AB) =28},
AM, @) = {BeRRM) Y AB=0} = {Ber’(M):x,(pAB)=—B),
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ANM, @) ={fo: [ eC®M)},
MM, ) = [x,p Aa) i e AL M)} = {Xop: X € XM},
A M, @) = e PM)inAp=nAY =0}

For any 2-form 8 = %ﬁijdx“j € A2(M), its two components 7172(,6) and 71124(/3) are
determined by

B+ #,(p A B) 1/1 L om
3 (B) = wf‘”ﬂ = 5 (gﬁab + B wmab) dx, 2.5)
28 — *y(@ A B) 1/2 1
Tiy(B) = w = 3 <§ﬁab - gﬂ@’"wmab) dx“. (2.6)
To decompose 3-forms, recall two maps introduce by Bryant [1]
iy : O (M) —> AP(M), i, 1 AP (M) — OF(M), 2.7
where
: Jtg. i 9 1 ¢ ijk
ip(h) :=h;;jg’"dx" A ij = Eh,-ggo jkdx
1 . .
=3 (hieﬁﬁzjk +hjepi's + hsz‘j[> dx* h = hjjdxV € @*(M), (2.8)
and

(i, (M) (X, Y) := %y (X29) A (Y 29) A1) 2.9)

Then i, is injective and is isomorphic onto /\% (M, ) /\%7 (M, @), andj(p is an isomorphism

between /\?(M, ®) ® /\%7 (M, ¢) and ©*(M). Moreover, for any 3-form n € AI(M), we
have
n=iy(h) + X (2.10)

for some symmetric 2-tensor 4 € ©*(M) and vector field X € ¥(M). Then

n= hildxl A <WJ¢> + xt (WJw> = Ehig(pgjkdx”k + gxzw,jkdx”k

1
6

Write h as h;j = I;ij + %tr(p (h) gy, where he @(Z)(M) is the trace-free part of &, one has

y 1 .
<3hi2(ﬂ£jk+X£1//Zijk)dxl]k = gﬂijkdxljk-

3 1. ., 1 .
n=z (trg () @ + Qh/w edxk 4 gxfwijkdx”" : (2.11)

7 () 735 () 73 ()

2.2 The torsion tensors of a Gy-structure

By Hodge duality we obtain the G>-decompositions of 4-forms A*(M) = /\‘1t M, ) ®
/\‘7‘(./\/1, ) B /\‘2‘7(/\/1, @) and 5-forms A°(M) = /\2(/\/1, ) B /\?4(/\/1, @), respectively.
By definition, we can find forms 79 € C®(M), 71,71 € Al(M), 1o € A (M, ¢), and
3 € /\%7 (M, ) such that

do =1Y +3T1 A@ + %73, dY =4T] A Y — x,T2. (2.12)
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Since 7, € /\%4(/\/1, @), it follows that 7o A ¢ = — *, 72. Then (2.12) can be written as in
the sense of Bryant [1]

dp=1Y +311 Ap +%,13, dY =4TI AY + 12 Ag. (2.13)

It can be proved that 7; = T} (see [23]). We call 1 the scalar torsion, t| the vector torsion,
7, the Lie algebra torsion, and t3 the symmetric traceless torsion. We also call 7, :=
{70, 71, T2, T3} the intrinsic torsion forms of the G,-structure .

Recall that a G,-structure ¢ is torsion-free if and only if dp = dy = 0 by Theorem 2.1.
From (2.12) we see that ¢ is torsion-free if and only if the intrinsic torsion forms 7, == 0;
thatis, to =11 = o = 13 = 0.

Lemma 2.2 (Ferndndez-Gray, [12]) For any X € X(M), the 3-form Vx¢ lines in the space
/\% (M, @). Therefore the covariant derivative Vo € A'(M) ® /\%(/\/l).

Consequently, there exists a 2-tensor T = T;;dx'®/, called the full torsion tensor, such
that

Vi(p = TZHWnabo (214)
Equivalently,
T = —(V abe 2.15
tm = 24( Pabe)¥m ™ (2.15)
Write
71 = (11)idx" € A'(M), (2.16)
1 ab 2
T = i(rz)abdx € AT4(M), 2.17)
7 = L (ra)ioudxiit € A3 2.18
3= 2(T3)l Peijax € /\27(M7 ﬁa) (2.18)

The associated 2-tensor 73 := (r3),~jdxi®j of 3 lies in the space O% (M). With this conve-
nience, the full torsion tensor 7'y, is determined by

70 1
Ty = Zgﬁm —(T3)em — (ﬁ(p(fl)Jw)gm - E(TZ)Zm (2.19)
or as 2-tensors,
70 1
T= 28 T T3 o (T1) o0 — 3% (2.20)

Here the 2-form f,(71) 2@ is defined by

1 1
201130 = 5 (3(r)a0) dx? = = ((@udhap ) dx.

As an application, this gives another proof of Theorem 2.1.
For fixed indices i and j, set

Rijlke := Rijke is skew-symmetric in k and £, (2.21)

where 1 1
Rijlee = ERi“kgdxkz = ERijkgdxkl S /\2(/\/1). (2.22)

Then, according to (2.5) and (2.6)

Rijke = Rijjke = (7T72(Rij\..))k[ + (7T124(Rij\n))k€ ,
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where
2 1 1 ab 1 1 ab
(707 (Ri_/|..))u = gRij\kl + gRijlahl/f ke = gRijk/Z + gRi_/am/f kes
2 1 1 1
(71124(Rij|..))k,3 = gRijlké - gRij\ablﬁ“bu = gRiij - gRijaM/f“bke-

Karigiannis [23] (see also the equivalent formula obtained by Bryant in [1]) proved that the
Ricci curvature is given by

. ) 3 '
Rje = Rijueg"" = 3 (77 (Rijjen)) 8 = ) (4 (Rijies)) 8
= — (Viij - V./'Tim) Qﬂmki _ T./'iTik + (tr(pT) Tjk + ijmeiabk’
—Vi (Tjnwnki) + Vj (Tin(/’nki) - TjiT,'k + (tr(pT) Tjk _ ijTiawiabk.
(2.23)

Cleyton and Ivanov [6] also derived a formula for the Ricci tensor for closed G;-structures
in terms of d;(p. Taking the trace of (2.23), we obtain Btyant’s formula [1] for the scalar
curvature
_ ¢ E 2 2 2 l 2
R = 12V (@) + 210 = Ilwally + St (el = 1l
21 1
= —12V' (e + 275 — liwslly +30Im g — 1ol (2.24)
For a closed G;-structure, we have tp = 71 = 73 = 0 and then R = —%||1.’2||‘20 < 0.0n

the other hand, we have (12);; = —2T;; by (2.20). Thus the full torsion tensor T is actually
a 2-form

1 ..
T =_Tidx" A2 (M) (2.25)
and the scalar curvature can be written in terms of 7'
R=—[|T||; = -2IT|;, <0. (2.26)

Hence, for closed G,-structures, scalar curvatures are always non-positive.
Finally, we mention a Bianchi type identity

1 1
ViTjo — VT = _ERijab(PabZ —TiaT jpp®y = — <§Rijab + Tiaij> 9. (2.27)
The proof can be found in [23].

2.3 Basic theory of closed G;-structures

Let /\1,.(/\/1) C /\1(/\/[, ¢) be the set of all closed G,-structures on M. If ¢ € /\1,.(/\/1) is
closed, i.e., dp = 0, then 19, 71, 73 are all zero, so the only nonzero torsion form is

1 o1 .
T=17T) = E(Tz)ijdxu = E‘[ijdxu. (2.28)
According to (2.20) and (2.25), we have T';; = —%‘[ij so that

1 p 1
= ETl-jdx” or equivalently T = —ET, (2.29)
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is a 2-form. Since dyy = T A ¢ = — %, T, we get d;jr =kpd ¥, T = — %y d*y = 0 which
is given in local coordinates by ‘
Vit;j=0 (2.30)

For a closed G2-structure ¢, according to (2.23), the Ricci curvature is given by (in this
case T;; is a 2-form)

Rik = (ViTim —ViTjm) @™k — T Tix + T jpTia¥'y.
Since T € /\%4(./\/1, p)and T;; = —%rij, it follows from [32] (see pp. 179-180) that
(ViTim)g™' =2T ;' Tyy. (2.31)
and therefore, for a closed G;-structure ¢, the Ricci curvature is given by
Rjk = —(ViTjm)ge'™ — T Tig. (2.32)

Taking the trace of (2.32) yields (2.26). Moreover, the factor V; T j,, in (3.6) can be expressed
as (see Proposition 2.4 in [32])

1 1 1
Vil jk = =< Rijmn@k™" — - Rijmn®™" + - Rikmn ;™"

4 4 4
1 1 1
- ETimTjnq)kmn - ETkajngoimn + ETimTan/'mn~ (2.33)

If ¢ is a closed G;-structure, Section 2.2 in [32] shows that n73(A¢g0) = 0 and hence,
according to (2.10),
Apg = ip(h) € AT(M, @) B A3 (M, ), (2.34)

where
.._lv 4.Wl_l 2.._145 .__.._%TZH_ZT./CT‘ 2
hlj =3 mTni@j 6|T|¢;gu 471 T¢j = —Rij 3| |¢g1/ i Lkj- (2.35)

Here |T|2 = 3 Tw T = 3||T12.

2.4 General flows on G,-structures

For any family ¢(#) of G»-structures, according to the decomposition (2.10), we can consider
the general flow

0rp(t) = g (h (1)) + X (1) 1 (1) (2.36)
where (1) € ©*(M) and X (f) € ¥(M). The general flow (2.36) locally can be written as
dpijk = hi*oeik + i ook + il oije + X Wik (2.37)

We write for g(¢) and d V() the metric and volume form associated to ¢(¢), respectively.

Theorem 2.3 Under the general flow (2.36), we have

dgij = 2hij, (2.38)
98" = —2h' (2.39)
¥dVewy = (trginh()) d Vg, (2.40)
WT pg =T p"hmg — T " X Okmg — (Vichip)g" y + YV, X, (2.41)

These evolution equations can be found in [23].
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3 Laplacian flows on closed G,-structures

We now consider the Laplacian flow for closed G»-structures

0rp(t) = Dpyp(1) = Aginp(t), ¢(0) = g, (3.1

where Ay)o(t) = dd;(t)w(t) +d;(t)d<p (¢) is the Hodge Laplacian of g,(;) and ¢ is an initial
closed G»-structure. The short time existence for (3.1) on compact manifolds was proved by
Bryant and Xu [2], see also Theorem 1.1.

A criterion for the long time existence for the Lapalcian flow on compact manifolds was
given in Theorem 1.2. In this section, we give a new elementary proof of Lotay-Wei’s result
in compact case.

3.1 Evolution equations along the Laplacian flow

Since the Laplacian flow (3.1) preserves the closedness of ¢(¢), it follows from (3.10) that
we have

Apiyp(t) =iy (1)) € AJ(M, 9(1) B N33 (M, 9(1)), (3.2)

where 5
hij = —R;j — §|T(t)|§(t)gij - 2Tikaj- (3.3)

From Theorem 2.3, we see that the associated metric tensor g(t) evolves by
9,91 = 2hi; = —2Rij — ST R g1 — AT Ty, 3.4
18ij = ij = ij 3| (t)|g([)glj i kj- ( . )

and the volume form d 'V, ;) evolves by
14 2 2
0:dVyy = (rginh(t)dVery = | —Rgr) — ?IT(t)Ig([) +HT Ol ) dVew

14 4
= (2 -3+ 4) T3y dVewy = §|T(t)|§(t)dVg(,). (3.5)

Hence, along the flow (3.1), the volume of g(7) is nondecreasing.
Introduce the following notions

W) =0 — Agrys |- ley =1+ lpwys  De) = Do) (3.6)

where Ag() 1= FUAVAY ; s the usual Laplacian of g(¢) and A, is the Hodge Laplacian of
g(t), and also the 2-tenor Sic,(;) with components

2
Sij = Rij + §|T(t)|§(,)gij + 275 Ty = —hyj. (3.7)
Then the evolution Eq. (3.4) can be written as
B,g,-j = —25,"/'. (3.8)

The trace of Sicg() is exactly the scalar curvature, up to a multiplying constant,

. 14 2 2 4 2 2
Se(r) 1= trg()Sicg(r) = Rg(z)-i-?lT(Z)lg(,)—4|T(f)|g(,) = —ng(I)lg(,) = gRg(t)- (3.9
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It was proved in [32] that

16 .
|Agw#Olg = (trgh()? + 2005 = 51T Olgq +21ISicg g (3:10)

This identity together with (2.26) shows that the boundedness of A, )@(t) is equivalent to
the boundedness of Ricg ).

The evolution Eq. (2.41) implies that for the Laplacian flow on closed G»-structures, the
torsion 7;; evolves by evolves

OTi; = Ti*nj — (Vhni) ™. (3.11)
Furthermore, we can prove
Proposition 3.1 Under the flow (3.1), we have
W, Tij =3R;*Twi — R* Ty — %Rz’jka"’k - %Rmpiquijpqm - %'T(f)@mTij
+V, Ty (Tf’kq)kﬂ - 2T‘f"<pk,-f’) — %gaj,-'"vmwang(,) — AT T T 5.
(3.12)
Proof See [32].

For a geometric flow d;g;; = n;;, where n;; is a family of symmetric 2-tensors, we have
(e.g. see formula (2.66), (2.29), and (2.30) in [5])

1
31Rfjk = 5g‘l’ (V,-ankp + ViVinjp = ViVpnjk
= V;iVinp — VVinip + Vjvpnik>»
1
ORji = 58" (Vo Vinkp + VqVinjp = Vg Vpnjk = V;Vingp)

i Re(ry = —Ag(ntrgyn(t) + dive( (diveyn(1) — Rijh",

where (divgn(t)); = Vinij. Applying those evolution equations to 7;; = —2R;; —
HT (02, 8ij — 4Ti* Ty = —28;; we have

28 2 2 8 2
tre () = —2Rg) = ST O +8IT O, = 5ITO ).

(divgyn (1)),

VIR, — AV TR, — 4V Ty,
i3V 2(0) ij

= —V;Rg() — gvjmr)@m —4ViTy;,
divg(r) (diveryn (1)) = V/ (divgnyn(1));
= —AgnyRer) — glgm T, —4V/V'Ty;,
where the symmetric 2-tensor T(t) is given by
Tij = TuT";. (3.13)
Plugging those identities into the above evolution equation for Ry (), we get

0 Re(ry = —4hgn) [T (013) — Agty Reiry —4V/V'Ty;
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— RY —2R~-—iT 2 gij —AT;;
ij | (t)|g(t)gz] ij
= Ay Rotry = 4V/ V' Tij + 2|[Ricen 3 + 5 |T(f)|gm o) +4RVT;

which implies

. 2
.g(t)Rg(t) = 2||R10g(z)||§.(,) 3 g(z) 4V V T,J + 4<(Rlcg(,), T(l‘)))g(,) (3.14)

Observe that the last two terms on the right-hand side of (3.22) are not determined of their
signs. In the following, we shall use the identity

ViT;j=0 (3.15)

follows from from (2.29) and (2.30), to simplify those two terms. Using the identity (3.15),
the term V/ VI T, ij can be simplified as follows.

VIViT;; = ViV (T,-kaj> = v/ [(viT,-k)Tk, + T,-k(v"Tkj)]
= TV ViTi)) = (VT T jp).
On the other hand, from the Ricci identity
ViViT! = ViV;Ti/) = RjireTY — Rji?*Tre = Rijie T + Rie T1",
we see that the evolution Eq. (3.14) is equivalent to

) 2 Lo o
W, () Ry(r) = 2|[Ricgq |l — §R§(,) +4R;jre T*TIC 4+ 4V TNV T ). (3.16)

From (3.7) and (3.13) we can rewrite the term ||Rlcg(t)||
according to the following relation:

2@ty N (3.16) in terms of Sicg ()

. 2 ~ .. 2 .. ~ii
IISice(ll5¢) = (Rl-j + IOl 85 + 2T,-,~) (R,, +3ITO0e" + 2T’/>

. 4 . PN
||Rlcg(t)||§(t) + §|T(t)|§(t)Rg(t) + 4<<Rlcg(z)a T(t)»g(t)

28 4 8 2 > AT (O
+ 5 IT Ol + 3T Ot 7O + AT O,

, 2,

= IIRicgllg) = 3Rz +4((Ricga, T (1)) )

Ter 4
Tk — 3 R +4IT O g(0)
11

= IIRicgllg) + 4T Ol +4HRicgo), TONg) — 5 Ry
where we used the identities trg( 7 (1) = g/ Ty TX j = Ty T = =2|T ()2, and Ry() =
—2|T(t)|g(t) Replacing Rg(;) by Sg(;) according to the identity (3.9), we can rewrite (3.16)

as
4 . 16 ~ 16 32
W) Ser = 311SiCen Iz = S 1IT Ol = 5 (Ricga, T(0)))ga) + = Reo

8 o 8 . .
+ gR,-,-uTtkTﬂ +3 (v TV T j).
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Similarly, replacing ({Ricg (), T(t)))g(,) by ((Sicg (), T(t)))g(,) with respect to the identity
. PN 2 2 =\ aij
((Sicg(ry, T())) gy = | Rij + §|T(t)|g(t)gij +27;; | T

A i -
= (Ricgi. TN — 5 Ri + 2T DI,

we obtain the following evolution equation for S, (),

. 8 o o
[[ISicgy =205 = S2y ] + 5 [Rue P17/ + (VITH) W10 (B17)

Wl &

W, 1)Ser) =

Next, we try to deal with the last bracket in (3.17), which contains two terms R;jxe TikTit
and (V/T™)(V; T ji). Using (2.27) and (2.33), the term (V/ T*)(V; T j) is equal to

. oL 1 .. L
(VIT*YVT ) = | VIT* 4 <5R”ab + mm) wk“”] ViT jk

= ||Vg(f)T(t)||§(t)+§ <§Rl]ab+TlaT]b>

1
- ERijmn(Pmnk(p
+1R .mn kab_T' T . oM

) ikmn®@j ¢ imd jn®@ " k@

—Tim Tjn(ﬂimnfpkab +Tim Tkn(pjmn(pkabi| )

1
kab ERkjanDimn@kab

kab

By symmetry the term

1 .. S 1 1
<§R”ab + TlaT]b> <_§Rkjmn¢imn¢kab + ERikmn(ijn‘pkab>

is equal to, interchanging i <> j and a <> b in the second term,
1 ij i J 1 mn , kab 1 Ji Jjooi 1 mn  kba
ER ab +T' T/ _ERkjmn(Pi @ + ER ba +T7pT", ERjkmn(/’i %

which is zero. Similarly, we have, by interchanging m <> n and then i <> j, a <> b in the
first term,

(%Rijah + Tiaij> (—Tkajn(Pimn(Pkab + TimTkn¢jmn¢kab>
_ (%Rijab + Tiaij) (—Tkn T jmpi"" ¢ + T Tknﬁﬂ./'"%k“b)
_ <%Ri-/ab + T"anb) (“TanTin, ™6 + TinTing™"6*") = 0.
Therefore, using the identity (ﬂijk(pkab = 8iagjb — &ib&ja T Vijab (see [23]), we arrive at

VTV ji) = IVey TO15
1/1

. o 1
-5 (ER”“” + TlaTJb> <§Rij’”” + T,~’”Tj") Pk @™
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1 1 .. . .
= IIngT(t)IIf,(,) -3 <5R”ab + TlaTJb)
1
. <§R,»j'”" + T,-’"T.,-”) (5000 = 6035 + v
2 1 ijab iapjb
= Ve TOI ) = 5 (Rijas +2T5aT ) | (RI 4277077
. (Rijba +2Tiija) + (Rijmn +2TimTjn) wmnab].
Since, by our convention,
(Rijab +2TiaT jb) (Rif“b + 2Tf“Tib) = [Rm( 5 + 4Rijap T T + 41T 0)]5,
and

(Rijab + 2T :aT j) (R"f'b“ + 2T“’Tf“) —IIRmg |12y — 4Rijap T + 4T (1)]1% ).

it follows that
.y 1 .
(VITHVT ) = IV T 0I5, + g[— 2|[Rmy |7 — 8Rijap TT 7" — 4T (1)][3,)
+AIT 120 — (Rijab +2TiaT ) <Rijm'1 +orim Tjn) wmnab:|

and (3.17) can be written as

4 ~ 2 8 A s
W) Se) = 3 ||slcg<t> = 2T + 31Vs0 T Ol + ST Ol

13
IIngmllg(,) 3Sg(r>
1 y o
= 3 (Rijap +2TiaT o) (7™ 4 277" ) . (3.18)

Finally,_ we deal with the last term J on the right-hand side of (3.18). From the identity
Vijkey' 7k = 168, we find that

Rijap + 2T 7T js) (RI™ 4+ 207" 7" )

= ( R; jabRijmnwmnab - 4TiaijRijmn 1pmnab - 4TaiTim TbjTjanmnab)

168

W] = W] =

2
|: HRijabRijmn _ lwabmn

‘ ‘ ab pijmn
— Rij R
g(0)

g() 4

amq bpijmn _ , abmn 2 _
+ ||27:9T "R v 168

_4 HTaT 'bRijmn 2
l
8 !

g

+ HzTam b” _ 1’//mnab

‘g( — AT Ol - 168].
Plugging the expression for J into (3.18), we obtain

Proposition 3.2 The scalar curvature Ry () or Sg(,) evolves by

13
2
||Vg(,)T(z)||g(t) 3 Sg(,) 126

4 ..
W) Se) = 3 |[Sicgq) —
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1 .
+ g HRijale’,mn - wabmn

L NToR, - T
o) 3 g 3 g()

1 ..
+ g HzTiaijRUmn - 1//abmn

2 1.~ =
2(0) + g H2TamThn - I/IahmnHz,(t)

.. 2

‘Tiaijlemn .
g

3.19)

2 IRmgo )~ % |[Rijar R 2]
— Z|IRm I .. _
3 O 3 ijab mn 2(0) 3

Since Sg(1) = %R ¢(1)» it follows from the above theorem that (1.8) holds true.

Before giving local curvature estimates for Laplacian flow in the next subsection, we derive
evolution equations for Ricg(;), Rmg(;), and T'(¢) in different forms. Using the Lichnerowicz
Laplacian

AL gonjk = Agwjk — RiPnpk = Rk njp + 2R pjgh?”,
we see that the evolution equation for R;; can be written as

1
O Rjk = ) [AL,g(z)njk + Vi Vitrgyn(t) + Vj(dgynok + vk(d;(,)ﬂr)j] ,

where (¥, 1))k = —Vinj. For n;j = —2R;; — %||T(t)||§(t)gij — AT *T}; we have
proved tro( (1) = §||T(z)||§(,) and (d¥,,1(1); = VjReu) + §Vj||T(t)||§m +4ViT;;
with T;; = T;¥T;. Then

2 PN 1 4
O Rjk = AL g (Rjk + gIIT(t)IIf,(,)g,,-k + 2Tjk> -5V (kag(t) + gvk||T(f)||§(z)
i 4 2 1 4 2 i
+4V'Ti | — ngVkHT(Z)Hg(Z) — EVk ViR: + gijT(t)”g(t) + 4V T,'j
2 ~ .
= ALgo <Rjk + §I|T(t)||§(,)g;k + 2Tjk> —2V;V'Ty

2
VVIT - gvijIITgo)”g(t)'

But the first term is equal to
2 ~
AL g <Rjk + §||T(t)||§(t)gjk + 2Tjk> = AgoyRjk —2R;"Rpi + 2Rpjkg R™?
2 ~ ~ -~ ~
+ [5 (el TOIZ) gix + 24T ji = 2R," Ty = 2T 7RV + 4Rp,-qu"q],
we have
p Pq 2 2 T
W) Rij = —2Ri"Rpj +2Rpijg R™ + | < (AnglT(f)llgm) 8ij + 24g0Tij
— ZR,‘pipj — 2TipRpj +4Rpijquq — ZV,‘V‘DTW‘
~ 2
— 2V, VT, — gViVj||T(t)||§(t)j|. (3.20)

Consequently, the norm of Ricg () satisfies

. . 4
W) Ricgn g = =211 VaRicgo lgo) + [gRg(t>Ag(t)||T(f)||§(t)
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.8 .
+ 8RN TheRY + S [Ricg o[ 1T (0[5 ) + 4Ruije RE RV
4 l
+4RY A Ti; — SRV, V¥ Ty — 3R IVVIITOI2, |-
(3.21)
The general formula (e.g. formula (2.66) in [5]) for Rl i, gives
U Ry = —ViViR;" = V;V'Rix + ViV Rji + V; ViR + Rijt Ry" + Rij* Ry,
2 _
+ 2R Ty + 2R Ty = 5 (VivliT Il (,)) — 2V, Tt
2
— 2V VT 4 2ViVIT i + 2V, V, T — s (v VT ()2 (t)) gik

2 14 2 R4
+5 (VVAT O 8+ 5 (VIVAITOIE ) & (3.22)

Hence, the evolution equation for |[Rmg ) 12, is given by

g(n)

3;||ng(,)|| y = Vg(;)Rng(l) * ng(t) + Ricg(,) * ng(,) * ng(t)

g

+Rmy() * Rmg( # T (t) +Ricg() * Vo IT D15

+ Rmy ) * Vg(t)T(t) + = |T(t)|g(t)||ng([)||g(l) (3.23)
Moreover, it was proved in [32] that

1

Ve Rmg(n |3 < —E'gmllng(t)IIg(t) + CilIRmg() |13 + C1||ng(l)||g(t)
AIV2 0 TOllgy + CLlRmg g Ve TOIR g, (3.24)
where C| is some universal constant, and
W, T(t) = Rmyq) *x T(t) + Rmgy = T(t) * ¥ (1)
+ Ve T(@) x T () *@(t) + T @) xT(t)  T(¢). (3.25)

Squaring (3.25) gives

1
Ve T O3y < =5 BelIT O3 + Cal Rmgeo e I T 13

+ Ve TOle ITO12 ) + CIT O, (3.26)

for another universal constant C, which may differs from C;. The Cauchy-Schwartz inequal-

ity shows 2C3[| Vo) TOlle[IT DI, < Ve T, + CRITOI[). so that the
evolution inequality (3.26) becomes
Ve T3, < —Be IT (0112,
+ C3lRmg( [ ITOI ) + CGITOI . (3:27)

Here C3 is a universal constant.
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3.2 Main idea of proving Theorem 1.4
In this section, we consider the Laplacian flow (3.1) on M x [0, T], where T € (0, Tax)-
From now on we always omit the time subscripts from all considered quantities. From (3.7),
(3.21), (3.23), (3.24), and (3.27) we have
. 1 L2 b . 1 200
||IVRic||” = —§l||Rlc|| + Ric * Ric * Rm — 3 (AR)R — §||R1c|| R

~ 1 —~ ~
+ 2((Ric, AT)) + g(<Ric, V2R)) 4 Ric % T * Rm + Ric * V°T,

IA

1
IVRm|[* < —@Rm||” + C|[[Rm||” + C[[Rm|[*%||V2T|| + C|[Rm|[|VT|I?,

3/IRm|)* = V?Ric * Rm 4 Ric * Rm * Rm + Rm *Rm % T
~ 4
+Ric*V2||T||2+Rm*V2T+§||T||2||Rm||2,
IIVT||> < —W||T|]> + C|IRm||||T|* + C||T|*,
0;dV

2
ZIT|dv, R = —|IT|.
3

Choose an open domain 2 of M and assume that
|[Ric|| < K (3.28)

on  x [0, T, Then the torsion T satisfies® ||T|| <K 172 and metrics g(¢) are all equivalent
to g(0). We also observe from (2.25) and (3.11) that

[IRic|| £ 1 < |Ap| <1 (3.29)
and the following simple fact
P _
Al = Shany 29,1 A2 (3.30)

for any tensor A.
Choose a Lipschitz function n with support in €2 (and independent of time ) and consider

the quantity
d
—f||Rm||Pn2Pdv, f:=/ ,
dt M

where p > 5. As in [28], we introduce the following “good” quantities

A ::/||Rm||1’7721’dV, Ay = /IIlel”’ln”’dW

As :=/IIRmII”’IIIanlznz”’ldV, Ay = fIIRmIIP’IIIanlznz”’de
and also “bad” quantities

By = %/||VRic||2||Rm||"*‘n2"dv, By :=/||VRm||2||Rm||”*3n2"dv.

We split the proof of Theorem 1.4 into four steps.

2 Here A < B means that A < C B for some positive constant C independent of 7.
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(a) In the first step, we can show that, see Lemma 3.3,
d
ZALS B+ cKBy+ cKAs+ KA+ cK?As
+ c/ (—m[|T %) |[Rm||”~ ' p*PdV.
(b) In the second step, we can prove that the term
c [ (-miTiR) R tprav
is bounded from above by [see (3.42)]
2 d -1.2
B1 +cKBy+cK A2+CKA]_E c(—R)||IRm||P~ ' n7PdV |.
Observe that the above integral is nonnegative, since the scalar curvature R is nonpositive
along the Laplacian flow on closed G;-structures. Hence we obtain from the first step
that, see Lemma 3.4,
d
AU S 2B+ KBy +cKAs+ KA+ cK?A,
= 2| [ e mirmi-tizray
dt ’
(c) In the next two steps, we estimate the bad terms B; and B;. In the third step, B is
estimated by [see (3.52)]
B) < cKBy+ cKAy+ cKAj 4 cK?A,
d[1
-—|= / [IRm| [P~ |[Ric|*n*PdV + c/(—R)HRmn”*lnzf’dV :
dt | K
Then the second step can be simplified as, see Lemma 3.5,
d
S AL S KB+ cK Ay + cKAL + cK?Ay
d[1
- [ IRmir Ry e [ CRyRmIPtPray ).
dt | K
(d) Finally, we estimate the term B,. In this step we shall use the assumption that p > 5 (a

technical assumption). Using the inequality ||VT|| < |[|[Rm|| and ||[V2T|| < ||VRm|| +
|Rm[[||T]| + |IVT|||T|| + ||T||*, we can prove [see (3.62)]

df 1
By < cAs+cAl — — 7/||Rm||p_1n2pdv .
dt | p—1

Plugging it into the third step, we arrive at, see Lemma 3.6,

d
E(Al +cKAy) <cK(A1+cKAy) +cKAy

d| c

- E[?/||Rm||1’*1||Ric||2n2Pdv

+ C/(—R)IIRmII’anPdV}
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The proof of Theorem 1.4 As in [25,28], we choose a geodesic ball Q := By (g (xo, ,o/\/f)

and a cut-off function
n = p/VK — dg)(x0, )
p/NK N

Then, forall ¢t € [0, T],

B \/fecKT
e~ Kig(0) < gt) < eX'g(0), [IVerdller) < X 1IVe0)0llg0) <

Define
U ::/||Rm||1’n21'dv+cK/||Rm||1’*1n2PdV
+ %/||Rm||”_1||Ric||2n2pdV+c/(—R)||Rm||”_1n2”dV. (3.31)

Then (3.64) (see below) yields
U' < cKU + cK Ay. (3.32)

For A4, using the Young inequality, we have

Ay

/ |[Rm||”~|Vy|[*n*P~2dV < / |Rm||”~'9?P—2K p~2eKTav
Bg(O)(XOvp/\/f)

Rml|?~1p2P—2yp/(p—1) Ko 2ecKTyp
/ (I|IRml]| np ) +( p et av
Bg(0)(x0,0/vK) =1 p

IA

IA

- 0
A+ KPp72P pecKTvol (B 0 (xo, —))
p g(t) g(0) «/f

U+ CerL'KTpfszOIg(,) <Bg(0) <x0, L)) .

VK

IA

Thus
KT — o
U' < cKU + cKPH1eKT p=2Pypo) (B 0 <xo, —))
g(t) £(0) ﬁK

As in the proof of [25], one can easily deduce from above that

||ng(t)||1,7([)dvg(z) < c(1+ K)eCKT ||ng(0)||1,)(o)dvg(0)
Be(o) (x0, ~2=) 8 By o) (x0, =) 8
2(0) X0, 5" 722 8(0) (X0, 7
—2p\ e o
+cK? (14 p=2P) K Tvol (B 0 <xo, —)) (3.33)
( ) g g(0) K

Indeed, writing A := ¢K and B := cK?T1e KT p=2P we get

0
U’ < AU + BVol (B 0 <x0,—>>
8(1) 8(0) \/f

and then

t
— At —At p
e MU@) <U() —|—/ Be™"*Vol, (B, <xo, —)) dr.
0 g() 8(0) K
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On the other hand, the estimate e =X/ g(0) < g(r) < e“X?g(0) yields

p p
Volgr) (Bg(m <x0» ﬁ)) < KT Voly() <Bg<0> (xo, ﬁ)) -

Consequently,

B,
U(r) < e [U(O) + Xe‘KTVOIg(,) (Bg«)) (xo, %))] , tel0,T]

At last, we estimate from (3.28) and Young’s inequality
U(0) = R P o0y, K[| IR PnPPdy,
©O) = [ [IRmg)llo0)n""dVg0) + ¢ [IRmg ) [[g0) 1" d Vg (0)
M M
¢ =1 p; 2 2
tx /M IIRmg )1l 0y [IRicg(0) g0y 1" d V()
—1
+e /M(—Rgm))Hng(mHg(m n*PdVy()

—1
< /M IRmgo) 117 0, n*"d V(o) + cK /M IIRmg(o)117 0y n*7 d V(o)
P
e

—1 _
< / IR0y 17 gy 727 d Vo) + C / [(||ng<o>||§(0)n2“’ D) avyo
M M
+ / (an)f’dvg@)]
M

0
<(1+K) /M ||ng(0)||§(0)772pdvg(0) + CKPVolg (g (Bg(O) (xo, ?»

0
<C(+ K)/ [IRmg0) |17 0127 d Vo) + CKPe KT Vol gy (B ©) <x0, —))
M 8 2(0) 8 8 8 \ﬁK

which implies (3.33).
As an immediate consequence of the inequality (3.33) we give another proof of the part
(a) in Theorem 1.2.

3.3 Proving four steps (a) — (d)

We are going to carry out the above mentioned four steps. From (3.23) and the above evolution
equations, we have

d
i Rml||?n2PdV
dt/” m||“n

/(atllRmII”) nz"dV+/||Rm||"n2"atdv

2
/§||Rm||f’*2 (91/Rm]|?) ndeV+/IIlel"n2p (—gR)dV

V2Ric * Rm + Ric % Rm % Rm
f%annp—z 4+ Rm #Rm # T + Ric * V2[|T|] | ?PdV
+Rm * V2T + 3||T|*|Rm]||?

2
- §/R||Rm||”nzpdv
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< c/||Rm||P—2[v2Ric*Rm+K||Rm||2+K||Rm||2+v2||T||2*Ric
+VZT*Rm]nzﬂdv+c1{/||Rm||Pn2PdV
< c/||Rm||p_2 [VZRic * Rm + V?||T||* % Ric + V2T % Rm] n*’dV
+cK/||Rm||”n2”dV. (3.34)
It was proved in [25] that the first integral in (3.34) is bounded by
c/||Rm||f’*2 (V2Ric * Rm) n*PdV < %/||VRic||2||Rm||P*1n21’dV
+c1</||VRm||2||Rm||"—3n2Pdv+cK/||Rm||P—‘||vn||2n2P—2dv. (3.35)
Since ||T||? = —R, the same inequality holds for the integral
c/||Rm||P—2 (V2IIT|* % Ric) n*PaVv.

To deal with the last term in the bracket of (3.34), we use the same argument of [25] to
conclude

c/||Rm||p_2 (V2T *Rm) n*PdV = c[(V||Rm||P—2*vT*Rm) n?Pdv
+c/(||Rm||P*2*VT*VRm) n?Pdv
+c/(||Rm||P*2*v?*Rm*vn) n?Plav
< c/||Rm||P—2||VRm||||vT||n2Pdv
+cf IRm||P=2||VT |[||[VRm||y*’ dV
+c/||Rm||’"1||vT||||Vn||n2P‘1dV
< c/||Rm||”*2||VRm||||vT||n2Pdv
+cf |IRm|[?= 1| VT|||[Vnlln*P~d V.
According to the Cauchy-Schwartz inequality, the first and second integrals are bounded by
/||Rm||P—2||VRm||||vT||n2Pdv

1 ~
< cK/IIVlelzlllelp_SnzpdVJrE/IIVTIIZIIRmII”_lnzpdV
and

/||Rm||"—1||vT||||Vn||n2P—‘dv
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1 ~ _ _ _
- E/IIVTIIZIIRmIIP ‘nzf’dV+cK/||Rm||" Vgl 2av.
Hence we obtain
—~ 1 ~
c/||Rm||"*2 (V2T *Rm) n*PdV < ?/||VT||2||Rm||1’*1n2Pdv
+ cK/||VRm||2||Rm||P—3n2Pdv
—I—CK/||Rm||p_1||Vr]||2n2p—2dV. (3.36)
Usingf =TxTandR = —||T|? yields

1 ~
% J IV TIPIRm P ay

IA

%/IIVTIIZI|T||2I|Rm||”_1772”dV < c/||VT||2||Rm||p—1n2Pdv

IA

1 -
c/(—Zl||T||2+c||Rm||||T||2+c||T||4) [IRm||”~"*av

c/ (—W||T|?) ||Rm||?~'n*PdV

+c1</||Rm||f’n21’dv+cK2/||Rm||P*‘n2Pdv. (3.37)
Hence, using (3.35), (3.36), and (3.37), we arrive at
Lemma 3.3 One has

d
Al = A1 < B+ KBy +cKAs+cKA +cK?A,

+c/ (—m||T|1?) |[Rm||”~ ' p?*PdV. (3.38)
In the following computations, we are mainly going to estimate or simplify the bad terms
B1, B>, and also the term involving —M||T||?. Integration by parts on the last integral in

(3.38) and using R = —|IT||3, we obtain

cf (—W|T|*) ||Rm||?~'p*PdV = c/((a, — A)R) [IRm||P~1y?Pav

c/(atR) R |7~ 2 dv
+c/<VR,v(||Rm||P—‘n2P))dv
d —1.2
= — (¢ | RIRm||”~'9*PaV
dt
—c/R(a,||Rm||P*1)n2Pdv
—c/R||Rm||f’*1n2Pa,dv

+C/(VR, ||Rm||P_3Rm*VRm>n2pdV
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+ ¢ [ (VR Rall? 210 av
< c/||Rm||”_2(VR,VRm)n2pdV
+cf [IRm|[7~ |V RI[[|Vnlln*?~'dV
+c/R2||Rm||P*1n2PdV
—C/R(a,||Rm||P*1)n2Pdv
d -1 2
+ — (¢ [ RIRm||P19?PdV ).
dt
The first two integrals can be simplified by using the Cauchy—Schwarz inequality as follows:
c/ [|IRm||”~2(VR, VRm)n*’dV

sc/||VRic||||VRm||||Rm||P—2n2Pdv

-3 p—1
< c/ (IIVRm[[lIRm1*Z" 97 (1IVRiel [[IRm[| T 1" ) aV
< 1B +cK B
—_— Cc
=30 1 2
and
c/||Rm||f’*1||VR||||Vn||n2"*1dv
< c/||Rm||”—1||VRic||||Vn||n2"—‘dv
p=1 _ p=1 .
< c/(ann T 1Valin”") (IIRm|| "> [ VRiclln”) dV
< 1B +cKA
—_— C .
=30 1 4
Therefore

2
c/ (~ITI) [IRm[|P~ 0P dV < o Bi+ K By + cK Ag + cK? A,
d 1,2
+ — (¢ | RIRm||P~'p?PdV
dt
—ch(arannP—l)nQPdv. (3.39)
Now, the second integral in (3.39) is equal to
—C/R(a,||Rm||P*1)n2"dv = c/(—R)lIlel”’3 (3|IRm|*) n*’dV

= c/(—R)||Rm||p73|:V2Ric*Rm—i—Ric*Rm*Rm—i—Rm*Rm*’T\
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~ 4
+ Ric % V?||T||> + Rm = V°T + g||T||2||Rm||2];72Pdv
< ¢ /(—R)l IRm||”~3 [V?Ric * Rm — Ric * V2R + V2T % Rm| n*’dV + cK*As.
Using the identity, where p > 5,
p—3

3 »n -1 2 5
VI[Rm||”™ = == (|Rm||") * " V||[Rm]||* = |[Rm||”Rm % VRm
2

we obtain
c /(—R)||Rm||”’3n21’(V2Ric * Rm)dV

= c/(—R)||Rm||P*3n2P(VRic * VRm)dV
—l—c/ {V [(=B)|IRm||”3$*] % VRic * Rm} dV
=c /(—R)||Rm||p_3n2p(VRic * VRm)d V
—l—c/ [IRm||”~3n*P (VR % VRic * Rm)d V
+ c/(—R)nZP (V|IRm||?~3 % VRic * Rm) dV
+ c/(—R)||Rm||P—3n2P—‘ (V¢ * VRic x Rm)dV

< c/||Rm||P—2n2P||VRic||||VRm||dv
+c/||VRic||||VR||||Rm||P‘2n2PdV
+ c/ |[Rm||”~2|| VRic|[|| VRm||n*’d V
+C/IIRmIIP’lnz”’lIIWIIIIVRiCIIdV

< ¢ [ (IvRicliRm "= 7) (11VRmlRm) = y7) dv
+ ¢ [ (vRictiirmi = o) (11v611RmI T 97 ) av
< i31 +cKBy+cKAy.

— 50

Similarly, we can prove
1
c/(—R)||Rm||p_3 (—Ric * V2R) n*PdV < g B+ K Bo+ KAy,
Using VT = VT T < ¢||VT||||T|| < cK'/2||VT|| yields

c /(—R)||Rm||p_3n21’ (V2T *Rm)dV
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=c /(—R)llRm||”_3n2”(VT * VRm)dV

+ c/ {[V[(=R)IRm||P~3?P] % VT % Rm}dV
= c/(—R)||Rm||P—3;72P(Vf*VRm)dV

+c/ |IRm||”3n* (VR % VT * Rm)dV

+ c/(—R)nZ” (VIRm|[P~3 % VT * Rm)dV

+ ¢ /(—R)||Rm||p_3n2”_l (Vn * VT % Rm)dV
< ¢ [ (Rmll? 227V Rm|

+[Rm||”~ >~ vall) (K V2V TI) dV

p=3 1/2 Lo,
< o | (1IvRmiRm| T ) (197K 2| Rm]| T 07) av

p—1 p—1
- f(||Vn||||Rm||’TnP—1) (19T 11K 2 iRm0 dv
K K
< o [UVTIPIRmIP Pay + gy + S
€ €

According to (3.39) we get

c/||VT||2||Rm||P—1n2Pdv

IA

c/ (—WIT11?) Rm[|”~'n?PdV + cK Ay + cK? A,

IA

2
%Bl + cKBy+cKAq+cK*Ar + cK Ay

d
+ - (c/RllRmH”’lndeV) —c/R(&,lllelP’l)nzf’dV
2 2
< %Bl +cKBy+cKAs+cK“Ay +cKA;
d
+ - (/ cR||Rm||P—‘n2Pdv> +c/(—R)||Rm||P—3 (8:1Rm||*) n*Pav.
Hence
p-3 2\ . 2p
C/(—R)IIRmII (0 [IRm|[*) n*PdV
2 cK cK
< —Bi+cKBy+cKAs+ —By+ —Ay
50 € €

2
+e [531 +cKBy+ cKAy+ cK?Ay + cK Ay

d
+o (f chllelp’lnzpdV>}
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+ec / (—R)||Rm||”~> (3||Rm||?) n*7aV.
Choosing € = % yields
C _
5/(—R>||Rm||” 3 (8 IRm|[*) n*PdV

i 2 i p—1.2p
< 5Bt KByt KA+ cK Ay + KA+ [ eRIRmlIP PP dy

and

cf||VT||2||Rm||P*‘n2PdV

8 d
< ggBiH KBt KA+ cK?Ay +cK A + - (/ 2cR||Rm||P—1n2Pdv> .

Thus
c/(—R)||Rm||"_3 (3 IRm|]*) n*PdV < 53—031 +cK B>
+cKAs+cK*Ar + cK A, + % (/ cR||Rm||P—1n2Pdv> (3.40)
and
¢ [V TIPIRmIP 2y < ek By
+cKAs+cK?*Ar + cK A, + % (/ cR||Rm||p’ln21’dV> (3.41)
and

_ 5
cf(—l||T||2)||Rm||P WAV < B+ cKB

d
+cK?As +cKA + - (/ cR||Rm||1’_1172pdV> . (3.42)

From (3.38) and (3.42) we arrive at
Lemma 3.4 One has

A} < 2By 4 cKBy 4 cKAs + cK*Ay + cK Ay

d
+ - </ cR||Rm||P*1n2Pdv) . (3.43)

We next estimate By and B;. Actually, we shall see that B can be estimated in terms of
B;. Hence the key step is to estimate B,. For By, using

1 1 2
||[VRic||> = —§I||Ric||2 + Ric +Ric + Rm — = (AR)T — gR||Ric||2
~ 1 ~ ~
+ 2((Ric, AT)) + g((Ric, V2R)) + Ric % T % Rm + Ric * V°T.
we obtain

1
Bl <o f IRm||”~'9*” (& — 3;) [[Ric|PdV + cK A
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1 2 _
+3% /(—R)IIRm||"_1n2”ARdV +< /((Ric, AT))||Rm||P~'n?PaVv

1 1 _
+3% /((Ric, V2R)||Rm||P~'n?PdV + ?/ |IRm||”~! (Ric * V2T) n*?av.
(3.44)

From the estimates V/||Ric||> < ||Ric||||VRic||, V||Rm|[?~! < [|Rm||”~?||VRm]||, and
3| Rm||”~! = 271 |Rm]||”~33,||Rm||?, we have

/ [[Rm|[?~' 72 (& — 3) |[Ric| PdV

= /V||Ric||2*V(||Rm||P*1n2P)dV—/||Rm||P*1n2P (3IIRiclI*)aV

/(V||Ric||2*V||Rm||f’*1)n2Pdv+/(V||Ric||2*vn)||Rm||P*1n2P*‘dv
d . _ .
- [/||Rm||P*1n2P||R1c||2dV]+/(az||Rm||P 1) n*?||Ric||*dV
+ / |[Rm|[?~'n?? | Ric| (@ dV)
< ch||VRic||||VRm||||Rm||1"2n2pdv+cK/||VRic||||Vn||||Rm||P‘1n2P‘1dv
+c/ |IRm|[”~> (2| Rm||*) n*”||Ric| PdV + cK> A,
d —1 s 2.2
— — | [ IIRm||P~!||Ric||*p*PdV
dt
1 1 5
< ¢cK|{—B1+cKBy|+cK|{—B1+cKAs ) +cK"A
50¢ 50¢
d
+c/||Ric||2||Rm||"—3n2" (3|IRm||*) dV — - [/||Rm||"—‘||Ric||2n2pdV}
2 2 2 2
< %KB1+CK By +cK“Ag + cK Ay

d
+c/ [IRic|||Rm|[P~%" (3 ||Rm][*) dV — — [/ ||Rm||f’*‘||Ric||2n2PdV].
Thus

2
/||Rm||p_1n2pI||Ric||2dV < %KBl+cKsz+cK2A4+cK2A1
+c/ |IRic||?|[Rm|[P—3n? (3 ||Rm]||*) dV
d -1 s 12,2
- [|IRm||”~!|[Ric||>n?PdV |. (3.45)

Consider the term

c/||Ric||2||Rm||P*3n2P (3Rm[|*)dV = C/IIRiCIIZIIRmII”’3n2”

[VZRic*Rm+Ric*Rm*Rm+Rm*Rm*?+Ric*v2||T||2+Rm*v2T
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+ §||T||2||Rm||2:|dV < c/ ||Ric||2||Rm||1’_3;72”|:V2Ric*Rm— V2R * Ric
+ VZT*Rm]dV +cK2A2.
The three terms in the bracket can be estimated as follows. Firstly
c/ |IRic||*|Rm||”~?n*” (V?Ric * Rm) dV
= c/||Ric||2||Rm||1’*3n2P (VRic * VRm) dV
+c/ {V [IIRic||?|[Rm||”~3»*"] % VRic * Rm} dV
= c/||Ric||2||Rm||p_3n2p (VRic * VRm) dV
+cf||Rm||p_3n2p (VI[Ric||* * VRic * Rm) dV
+cf||Ric||2n21’ (VIIRm||P~? % VRic * Rm) dV

+ c/ [IRic||?[|Rm]||?~3»*P~ (Vi % VRic * Rm) dV

IA

cK/||Rm||P—2n2P||VRic||||VRm||dv+cK/||Rm||P—‘n2P—‘||VRic||||Vn||dv

IA

K K 1 2 2
cK|eBi+ —By | +cK|eB) + —Ay < %KB1+CK By +cK“Ay4.
€ €
The same estimate holds for

¢ [ IRicIPIRml1?=727 (~V2R + Ric) V.

Finally,
c/||Ric||2||Rm||P—3n2P (V’T *Rm)dV = c/||Ric||2||Rm||p_3n2p
(v?*VRm)dVJrcf{v(||Ric||2||Rm||P*3n2P)*VT*Rm}dV
< c/||Ric||2||Rm||"—3n2p (K'2||VT|[[|VRm][) dV
+cf (VIIRic|[?) [[Rm]||” 1P || VT ||||Rm]||dV
+cf||Rm||2(V||Rm||P‘3) n*?||VT|||[Rm]|dV
+cf||Ric||2||Rm||f’*3n21’*1||Vn||||v?||||Rm||dv
< CK/IIRmII”’znZ” (K'2||VT|[[|VRm][) dV

+c1<f |[Rm||7~ >~ (K| V| IVT]) aV
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IA

K
K |:cKBz + 24, +ecf ||VT||2||Rm||P‘1n2PdV]
€

<
- 50

Therefore

8 d
—KBi +cK*By + cK?Ay + cK3> Ay + cK?A) + b |:cK / R||Rm||P*‘n2Pdv]

10
c/||Ric||2||Rm||P_3n2p (3IIRm[]*)dV < %KBl+cK2Bz+cK2A4+cK3A2

d
+cK?A; +eK [/ R||Rm||”_1n2”dv] (3.46)
and

1d d
T [/ ||Rm||"_1||Ric||2n2PdV] +c— [/ R||Rm||"_1n2pdv]

1 —-1.2 2 6 2
s | IRmIP 0 (8 —8)IRiclPdV < -B1+cK By +cK As+ cK?As + cK Ay

K dt
6
< sgBi KB+ KA+ cK A +cK Ay
d[1
- [;/||Rm||"*1||Ric||2n2"dv +c/(—R)IIRmII”’1n2”dV]. (347)

In the following, we estimate the left four terms in (3.44). We start from terms involving the
scalar curvature.

1 1
— | (=B)|IRm||”"'n*?ARdV = ——/VR.V —R)|Rm||”~"'n2Plav
= /( )[[Rm][P~" - [(—R)[Rm][P~1 "]

1
= -3¢ | VR [— VRIIRm[|P~1n* + (= R)V||Rm|[P~ 5?7

1o 1 -
+ 2p(—=R)|[Rm||P~ " y?? lvn]dV < §/||VR||2||Rm||P In¥rav
¢ p—2 2p
+ — [ (CRIRm|PZZ[|VR|||IVRm]|* v
¢ p—1. 2p—1
+ o [ CRIRmIP= 2= VR V]V
1 —
= §f||VR||2||Rm||P hPrdv
1 2 —1.2
+3—K [IVR]||”||Rm]||? n PdV 4+ cK B>
1 2 p—1, 2
+ ﬁ [IVR|I7||IRm||P= ' n"PdV + cK Ay

i 2 p—1_2p
< X [IVR||7|IRm||”" " n“PdV + cK By 4+ cK A4. (3.48)
The another term involving the scalar curvature can be estimated by
1 : _ 1 o ~
7% /<<Rlc, VZR)IRm[|P~In*PdV = —— / V/RV' [Rij|[Rm[|?~ "y dV

1 1 _ i -
= “3x VJR[EVJ'R“RIHHP PP+ Ry V' [[Rm| [P~ 1?P
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. 1
+Rij||Rm||p_12Pn2p_lvlﬂ]dV —6—Kf||VR||2||Rm||P‘1n2PdV
C . _
+ E/IIRICIIIIVRIIIIRmII" 2||VRm|[n*PdV
¢ . p—1_2p—1
+ — [ IIVRIlIRicl[[[Rm[|P~'n2P 1|V ylldV

1 1
< —— [ IVR|?||IRm||P~ " n?Pav —/ VR|?Rm||”~'9*’dV + cK B
6Kfll [I7[IRm]["~"n +18K [IVR||7|[Rm[|"~"n +cKB;

1

+ﬁ/||VR||2||Rm||”_1n2”dV+cKA4 < ¢KBy+cKA,. (3.49)

Using (3.41) we obtain

2 - 1 _
Ef((Ric, AT)|Rm||?~'n?PdV = z/(Ric*AT)||Rm||1’—‘n2pdv

! P 1 _
= ?/-(VRic*VT)||Rm||p*1n2PdV+?/Ric*VT*V(||Rm||p71n2p)dv

IA

%/||VRic||||VT||||Rm||P—1n2Pdv+§/||Ric||||V’T‘||||Rm||"—2||VRm||n2"dv
¢ . = p—1_2p—1
+ ¢ [ IIRillIVT[[[Rm]|”= 2P| Vlldy
1
< %Bl +c/||VT||2||Rm||P_1n2pdV+cKBz
+cf||VT||2||Rm||f’*1n2Pdv+cKA4+c/||VT||2||Rm||"*‘n2"dV

i 2 p—1.2p
B+ eKBy+cKAstc [ IIVTIP|RmI” P dv

9 d
= ooBi KB+ KA+ cK?A> + cK A, + o [/ cR||Rm||P*1n2Pd]. (3.50)

Similarly, we can prove
1 ~ 1 -
E/(Ric*VZT)||Rm||"*1n2PdV = E/(VRic*VT)||Rm||P*‘n21’dV
1 ~ 1 ~
+E/Ric*VT*V(||Rm||P’]n2”)dV < E/(VRic*VT)||Rm||1’*1n27'dv
C . - —
+§/||Rw||||VT||||Rm||P *||VRm|[y*?dV
¢ . O p—1_2p—1
+ X [IRic|[[[VT|||IRm[|" " [IVnlldV
c . = p—1_2p ¢ ; T p=2 2p
=% [IVRic||[[VT|[[|[Rm[|["""n dV+} [IRic[||[VT|||[Rm[|"~*|[VRm||n*"dV
c . - p—1_2p—1
+ o [ [IRiCllIVTRm[|P= == ValldV

9 d
= Bt KB+ KA+ cK?Ay 4+ cKA| + o [/ cR||Rm||P*1n2PdV]. (3.51)
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Plugging (3.45) and (3.48)—(3.51) into (3.44), and using (3.41) and ||VR||*> < cK||VT||?,
we obtain

6
B < 5 Bi+cKBy +cKAs+ cK?Ay + cK A

d |1

- [f/ [IRm||”~||Ric||*n*Pd V +c/(—R)||Rm||f’*ln2PdV]

g / IVRIPIRmlP~ 27V + LBy — & C/(—R)IIRmII”’an”dV
K 50 dt

32
< %Bl + cKBy+cKAs+cK*Ay + cK Ay

d[1
- [?f ||Rm||P‘1||Ric||2n2Pdv+c/<—R)||Rm||P‘ln2PdV].

Thus
B < cKBy+cKAy+cK?Ay 4+ cK A
d[1
- [? / |[Rm||”~!|[Ric||*n*PdV + ¢ /(—R)||Rm||1’*ln21’dv] (3.52)
From (3.43) and (3.52), we can conclude that
Lemma 3.5 One has
Al < cKBy+cKAs+cK?Ay+cK Ay
d
- [% / [IRm||”~"[[Ric|[*7*7dV + cf(—R>||Rm||"*ln2PdV} . (353
Observe that two terms in the bracket are both nonnegative, since R = —||T| 12 <o0.
Finally, we estimate the term B;. Using the evolution inequality

1
|IVRm||* < —Elann2 + cl[IRm|]® + ¢||[V2T|[[|Rm|[** + ¢[[Rm|[||VT||?
we obtain

_ 1
B, = f||VRm||2||Rm||P PV < [[— 5l||Rm||2+c||Rm||3

+ ¢|IV2T[|[|Rm]|*/* + c||Rm||||VT||2]||Rm||”*3n2"dv

1
< —Ef(lannz) [Rm|[P 0P dV + cA,

+c/||v2T||||Rm||P*3/2n2"dv+c/||V2T||2||Rm||"*2n2"dv. (3.54)
For the first integral one has

1 _ 1 _
—5/(l||Rm||2)||Rm||P rdv = 5/(A||Rm||2)||Rm||P nPrav
1 _ 1 _
~ 5 [ @iRmP) iRmir=gray = =3 [ (@R ) [R5y

1
-5 / V|IRm||* [(VI[Rm||P~3) »* + |[Rm||?~> (Vn*P) ] dV
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p—3 2 _
= —T/(vannZ) [IRm||”=n*PdV
- - 1 -
+c/||Rm||P 2lIVRm|l[[ V] [n*" ldV—Ef(af||Rm||2)||Rm||P trav

1 1 _
< —By+cAy— 5/(8,||Rm||2)||Rm||f’ n*rav.

- 50
Here we used the assumption that p > 5. On the other hand,
1 _
=3 [ @Rl Ry = —ff[/lllelp ! 2PdV]

1
s / |[Rm|[2 (3] [Rm[[P) n?PaV + E/IIRmII”"nZ” (3,dV)

< %4/|IRmIIP*3 (/IRm[2) 2P dV + A, —,7[/”12 mi|?~"! 2pdv]
so that
_%/(atlllel ) IRm||P~ 30274V < cA, —7f|:/||Rm||p 1 Zpdv:|
Therefore

1 1
—Ef(lannz)annp SPPAV < Byt eAs+ohy

50
- Rm||P~'n?Pav|. 3.55
T [ f [IRml| (3.55)
To estimate the remainder two integrals, we recall from (2.35) that
VT =Rmx*x¢o+T*T x¢ (3.56)
and from (2.14) that
Vo =T x. (3.57)
From (3.56) we get
IIVT|| < c||Rm|| + ¢[|T||* < c|[Rm]|. (3.58)

In particular, the inequality (3.58) yields
f||VT||2||Rm||P—2n2Pdv < c/ |Rm||Pn2PdV < cAy. (3.59)

Taking the derivative of (3.56) and using (3.57) we obtain
VZT:VRm*g0+Rm*T*I//+VT*T*§0+T*T*T*l/f. (3.60)

The particular case [IV2T|| < c||[VRm]|| + c|[Rm||||T|| + c[|IVT||IT]| + ¢||T||? leads to

c/||v2T||||Rm||"—3/2n2"dv < c/[IIVRmII+||RmI|||T||+|IVT||||T||

+||T||3]||Rm||”_3/2n2”dV < c/(||VRm||||Rm||P—3/2nP) (IIRm||P/*n?) dV

1
+c/||Rm||”n2pdV = B tedn (3.61)
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Plugging (3.55), (3.59), and (3.61) into (3.54) we arrive at

dJ 1
By < cAs+cAl — — —f||Rm||P—1n2Pdv . (3.62)
dt | p—1

Together with (3.53) and (3.62) we finally obtain

(A1 +cKAy) < cK(A;+cKAy)) +cKAy

d
- [%/||Rm||”_1||Ric||2n2pdV +cf(—R)||Rm||p_1n2pdV:|. (3.63)

Equivalently,

Lemma 3.6 If||Ric|| < K and p > 5, one has

d
o |:A1 +cKAy + % / [|IRm||”~ Y| |Ric|[>n*PdV + ¢ /(—R)||Rm||1’*ln21’dv]

< cK(A1+cKAy) + cKA4. (3.64)
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