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Abstract
We prove existence of solutions for a class of systems of subelliptic PDEs arising from mean
field game systems with Hörmander diffusion. These results are motivated by the feedback
synthesis mean field game solutions and the nash equilibria of a large class of N -player
differential games.

Mathematics Subject Classification 35R03 · 49L99 · 49J10

1 Introduction

In this paper we consider a class of systems of degenerate elliptic PDEs of Hörmander type
arising from certain ergodic differential games, more specifically, from the mean field game
(MFG) theory of Lasry and Lions [43–45]. These systems have been introduced to model
differential games with a large number of players or agents with dynamics described by
controlled diffusion processes, under simplifying features such as homogeneity of the agents
and a coupling of mean field type. This allows to carry out a kind of limit procedure as the
number of agents tends to infinity which leads to simpler effective models. Lasry and Lions
have shown that for a large class of differential games (either deterministic or stochastic)
the limiting model reduces to a Hamilton–Jacobi–Bellman equation for the optimal value
function of the typical agent coupled with a continuity (or Fokker–Planck) equation for the
density of the typical optimal dynamic, the so-called mean field game equations. Solutions to
these equations can be used to construct approximated Nash equilibria for games with a very
large but still finite number of agents. The rigorous proof of the limit behaviour in this sense
has been established by Lasry and Lions [43,45] for ergodic differential games and extended
by one of the authors to several homogeneous populations of agents [31]. The time-dependent
case with nonlocal coupling has been addressed in a general context by [19]. For a general
overview on mean field games, we refer the reader to the lecture notes of Guéant et al. [37],
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Cardaliaguet [17], the lecture videos of Lions at his webpage at Collège de France, the first
papers of Lasry and Lions [43–45] and of Huang et al. [39,40], the survey paper [36], the book
by Gomes et al. [34] and by Bensoussan et al. [13], the two special issues [8,9] and the recent
paper [19] on themaster equation and its application to the convergence of games with a large
population to a MFG. For applications to economics see e.g. [3,21,34,37,42,46]. From the
mathematical side, there are several important questions related to both the convergence and
then the study of the limit MFG system itself, e.g. long time behaviour [18,20], ergodic MFG
systems [11,23,35], for homogenisation [22]. For further contributions see also [2,4,33]. The
literature on Mean Field Games is very vast so the previous list is only partial and we refer
to the references therein for a more extended bibliography.

The novelty of this paper consists in assuming that the dynamic of the average player is
a diffusion of Hörmander type and hence the differential operators arising in the system are
degenerate: the secondorder operator is not elliptic but only subelliptic.Roughly speaking this
means that the operators are elliptic only along certain directions of derivatives. Nevertheless
the Hörmander condition ensures that the Laplacian induced by these selected derivatives is
hypoelliptic. From the perspective of a single agent this means that the state cannot change
in all directions, but the agent can move only along admissible directions: a subspace of the
tangent space. This subspace depends on the state (position) of the agent. Similarly the growth
conditions on the Hamiltonian are restricted to some selected directions of derivatives. This
extension is not trivial and relies on recent deep achievements in the theory of Hörmander
operators and subellipitc quasilinear equations.When the known regularity results will not be
sufficient to proceed, we will use heat kernel estimates to overcome the problem. Moreover
the techniques used here are different from the standard elliptic case and can also be used in
other contexts to gain a-posteriori regularity.

Hamilton–Jacobi equations in the context of Hörmander regularity have been extensively
studied, see e.g. [6,24,26,28,29], in particular because of the intriguing connection between
the PDE theory and the underlying geometry induced by the admissible directions. This paper
is to our knowledge the first one that connects these two recent and active areas.

We next state our main results:

1. Under suitable assumptions (see Sect. 3) and assuming in particular that the Hamiltonian
grows at most quadratically in the subgradient, we prove that there exists a solution
(u, m) ∈ C2

X (Td) × C(Td) of the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lu + ρu + H(x, DX u) = V [m]
L∗m − divX ∗(mg(x, DX u)) = 0
∫

Td
m dx = 1, m > 0,

where DX u is a subgradient associated to a family of Hörmander vector fields (e.g.
DX u = (ux − y

2 uz, uy + x
2 uz
)T on R

3 in the Heisenberg case) and L is a hypoelliptic
operator,L∗ is the dual operator ofL and divX ∗ is the corresponding divergence operator.
Moreover byC2

X (Td)we indicate the sets of functions whose first and second derivatives
in the selected directions exist and are continuous (see Sect. 2 formore formal definitions).

2. Under suitable assumptions (see Sect. 4) and assuming in particular that the Hamiltonian
grows at most linearly in the subgradient, we prove that there exists a solution (λ, u, m) ∈
R × C2

X (Td) × C(Td) of the system
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lu + λ + H(x, DX u) = V [m]
L∗m − divX ∗

(
mg(x, DX u)

) = 0
∫

Td
u dx = 0,

∫

Td
m dx = 1, m > 0.

We also show uniqueness for both the systems under standardmonotonicity assumptions.
Those results are applied to the feedback synthesis ofMFGsolutions and ofNash equilibria

of a large class of N -player differential games.
The paper is organised as follows: in Sect. 2 we introduce the Hörmander condition and

the corresponding first and second order operators and we state several regularity results and
estimates which will be key in the proofs of our main results. In Sect. 3 we show existence
for a stationary MFG system for at most quadratic Hamiltonians by a fixed-point argument
in the presence of a regularisation. In Sect. 4 we remove this regularisation for Hamiltonians
of at most linear growth and prove our main existence result. In the Appendix we show
the convergence of Nash-equilibria as motivation for the MFG system studied. Since these
results are very well-known in the non degenerate case and they do not lead to any substantial
technical difference in the Hörmander case, we will omit the proofs, only reporting briefly
the results.

2 Preliminaries and notations

Let us consider x ∈ T
d the d-dimensional torus and X = {X1, . . . , Xm} a family of smooth

vector fields defined on Td satisfying the Hörmander condition, i.e.

Span

(

L(X1(x), . . . , Xm(x)
)
)

= TxT
d ≡ R

d , ∀ x ∈ T
d , (2.1)

whereL(X1(x), . . . , Xm(x)
)
denotes theLie algebra inducedby the givenvector fields andby

TxT
d we denote the tangent space at the point x ∈ T

d . For more details on Hörmander vector
fields we refer to [48]. Given a family of vector fields X = {X1, . . . , Xm} and u : Td → R,
we define:

DX u = (X1u, . . . , Xmu)T ∈ R
m, (2.2)

Lu = − 1

2

m∑

j=1

X2
j u ∈ R. (2.3)

For any vector-valued function g : Td → R
m , we will consider the divergence induced by

the vector fields X = {X1, . . . , Xm}, that is
divX g = X1 g1 + · · · + Xm gm, (2.4)

where gi indicates the i-component of g, for i = 1, . . . , m. In particular, later on, we will
consider the divergence divX ∗ g induced by the dual vector fields X∗

i = −Xi − divXi where
divXi indicate the standard (Euclidean) divergence of the vector fields Xi : T

d → R
d ,

for i = 1, . . . , m. Given the family of vector fields X = {X1, . . . , Xm} we recall that any
absolutely continuous curve γ : [0, T ] → T

d is called horizontal (or admissible) if there
exists a measurable function α : [0, T ] → R

m such that

γ̇ (t) =
m∑

i=1

αi (t)Xi (γ (t)), a.e. t ∈ (0, T ), (2.5)
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where αi (t) is the i-component of α(t) for i = 1, . . . , m.
For all horizontal curves it is possible to define the length as:

l(γ ) =
∫ T

0

√
√
√
√

m∑

i=1

α2
i (t) dt .

The Carnot–Carathéodory distance induced by the familyX = {X1, . . . , Xm} is denoted by
dCC (·, ·), and defined as

dCC (x, y) = inf {l(γ ) | γ satisfying (2.5) with γ (0) = x, γ (T ) = y} .

The Hörmander condition implies that the distance dCC (x, y) is finite and continuous w.r.t.
the original Euclidean topology induced on T

d (see e.g. [48]). It is also known that there
exists C > 0 such that

C−1|x − y| ≤ dCC (x, y) ≤ C |x − y|1/k (2.6)

for all x, y ∈ T
d , where k ∈ N is the step, i.e. the maximum of the degrees of the iterated

brackets occurring in the fulfillment of the Hörmander condition, see [49]. It was proved in
[51, Lemma5] and independently in [49] that there exists some Q > 0, called thehomogenous
dimension, such that, for all δ > 0 sufficiently small and for some C > 0,

C−1δQ ≤ |BdCC (x, δ)| ≤ CδQ,

for all x ∈ T
d , where BdCC (x, δ) is the ball of centre x and radius δ w.r.t. the distance dCC

and, for any B ⊂ T
d , |B| denotes the standard Lebesgue measure of B.

2.1 Hölder spaces and Hölder regularity estimates

Next we recall the definition of Hölder and Sobolev spaces associated to the family of
vector fields X (we refer to [55,56] for more details on these spaces). For every multi-
index J = ( j1, . . . , jm) ∈ Z

m+ let X J = X j1 · · · X jm . The length of a multi-index J is
|J | = j1 + · · · + jm , thus X J is a linear differential operator of order |J |. For r ∈ N and
α ∈ (0, 1) we define the function spaces

C0,α
X (Td) =

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ L∞(Td) : sup
x,y∈Td

x 
=y

|u(x) − u(y)|
dCC (x, y)α

< ∞

⎫
⎪⎪⎬

⎪⎪⎭

,

Cr ,α
X (Td) =

{
u ∈ L∞(Td) : X J u ∈ C0,α

X (Td) ∀|J | ≤ r
}

.

For any function u ∈ C0,α
X (Td) one can define a seminorm as

[u]C0,α
X (Td )

= sup
x,y∈Td

x 
=y

|u(x) − u(y)|
dCC (x, y)α

,

and, for every u ∈ Cr ,α
X (Td), the norm is defined as

‖u‖Cr,α
X (Td ) = ‖u‖L∞(Td ) +

∑

1≤|J |≤r

[X J u]C0,α
X (Td )

.
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Endowed with the above norm, Cr ,α
X (Td) are Banach spaces for any r ∈ N and α ∈ (0, 1).

From estimates (2.6), it follows immediately

C−1 ‖u‖
C0, α

k (Td )

≤ ‖u‖C0,α
X (Td )

≤ C ‖u‖C0,α(Td ) �⇒ C0,α(Td) ⊂ C0,α
X (Td) ⊂ C0, α

k (Td), (2.7)

where ‖u‖C0,α(Td ) is the standard Hölder norm, k is the step in the Hörmander condition and
C > 0 is a global constant depending only on the dimension d and the family of vector fields
X = {X1, . . . , Xm}. More in general, for all r ∈ N, Cr ,α(Td) ⊂ Cr ,α

X (Td).

Let r be a non-negative integer and 1 ≤ p ≤ ∞. We define the space

W r ,p
X (Td) =

{
u ∈ L p(Td) : X J u ∈ L p(Td), ∀J ∈ Z

m+, |J | ≤ r
}

.

Endowed with the norm ‖u‖Wr,p
X (Td ) =

(∑
|J |≤r

∫

Td |X J u|p dx
)1/p

, W r ,p
X (Td) is a Banach

space. For p = 2 we write Hr
X (Td) instead of W r ,p

X (Td) and in this case the space is Hilbert
when endowed with the corresponding inner product. Moreover, for any 1 ≤ p < ∞, the
embeddings

Ckr ,α
X (Td) ↪→ Cr , α

k (Td),

W r ,p
X (Td) ↪→ W r/k,p(Td) ,

hold true. The first is proved in [54] and the second in [53].
In proving one of our main results we will also need the following compact embedding.

Lemma 2.1 W 1,p
X (Td) is compactly embedded into L p(Td).

This follows from the previous embedding and the fact that the fractional Sobolev space
W k/m,p(Td) is compactly embedded into L p(Td) (see e.g. [27]).

Next wewant to recall someHölder regularity results for linear and quasilinear subelleptic
PDEs, key for the later existence results. Hölder and Schauder estimates for subelliptic linear
and quasilinear equations have been proved by Xu [53,55], Xu-Zuily [47,56]; see also the
references therein. In particular wewill consider the results proved in [56], but wewill rewrite
them in a stronger form, by combining them with some L p-estimates proved by Sun-Liu-Li-
Zheng [52]. The results in [56] are proved for subelliptic systems but we will apply them to
the case of a single equation. We first consider linear equations of the form:

divX ∗
(

A(x)DX u
)+ g(x) · DX u + c(x) u = f (x). (2.8)

and assume that
A(x) is a m × m − uniformly elliptic matrix. (2.9)

Note that in the case of the sub-Laplacian the previous assumption is trivially satisfied since
A(x) is equal to the identity m × m-matrix.

Theorem 2.2 (C2,α
X -regularity for linear subelleptic PDEs, [52,56].) Assuming (2.9) and that

all coefficients of A(x), g(x), c(x) and f (x) are Hölder continuous, then any weak solution
u ∈ H1

X (Td) of (2.8) belongs to C2,α
X (Td) for some α ∈ (0, 1).

Moreover there exists a constant C > 0 (depending only on the Hölder norms of the
coefficients of the equation, on d and on the vector fields X ) such that

‖u‖C2,α
X (Td )

≤ C .
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Proof First we recall that, if the coefficients are C0,α then they are also C0,α
X (see (2.7)).

Then Theorems 3.4 and 3.5 in [56] ensure that, given any u weak H1
X - solution, u belongs to

C2,α
X (Td), and the C2,α

X -Hölder norm of u is bounded by a constant depending on the Hölder
norms of the coefficients, on the geometry of the problem (i.e. the step r , the dimension d
and the number of vector fields m), but also on a constant M such that ‖u‖H1

X (Td ) ≤ M .

We can now use the uniform L p estimates proved in Theorem 1.4 in [52] to show that
the constant C is actually independent of M , i.e. independent of the H1

X -norm of u. Note
that Hölder regularity on a compact domain implies all the necessary L p-bounds to apply
the result in [52]. ��

Let us now consider a subelliptic quasilinear equation of the form:

divX ∗
(

A(x)DX u
) = f (x, u, DX u). (2.10)

and assume that f (x, z, q) is a Hölder function with at most quadratic grow, i.e.

| f (x, z, q)| ≤ a|q|2 + b, (2.11)

for some non-negative constants a and b.

Theorem 2.3 (C1,α
X -regularity for quasilinear subelleptic PDEs, [52,56].) Assuming (2.9),

(2.11) and that all the coefficients of the equation are Hölder continuous, then any weak
solution u ∈ H1

X (Td) ∩ C(Td) belongs to C1,α
X (Td) for some α ∈ (0, 1) and there exists a

constant C > 0 (depending only on the Hölder norms of the coefficients of A(x) and of f ,
on a and b in (2.11), on the step r , on d and m) such that

‖u‖C1,α
X (Td )

≤ C .

Proof Combining once again the L p-estimates in [52] with Theorem 4.1 in [56] one can
immediately deduce the result. ��

Theorem 2.4 (C∞-regularity, Theorem 4.2, [56]). Under the assumptions of Theorem 2.3,
if in addition all coefficients in Eq. (2.10) are C∞(Td) then u ∈ C∞(Td).

3 Discounted systems with at most quadratic Hamiltonians

In this section we consider a subelliptic MFG system with a first order nonlinear term that
grows at most quadratic w.r.t. the horizontal gradient. We assume:

(II-Q) For q = σ(x)p ∈ R
m there exists a constant C ≥ 0 such that

|H(x, q)| ≤ C(|q|2 + 1) ∀x ∈ T
d , q ∈ R

m . (3.1)

(III) The vector-valued function g : Td × R
m → R

m is Hölder-continuous.
(Note that since Td is compact and we will later prove global bounds for DX u, the
continuity of g implies also that g is globally bounded).

(IV) Set A := {m ∈ C(Td) : m > 0 ,
∫

Td m(x) dx = 1
}
, then the map V : A →

L∞(Td) is assumed continuous and bounded. Moreover, we assume that V is regu-
larising, that is, V [m] ∈ Cα

X (Td) for all m ∈ A, and supm∈A ‖V [m]‖Cα
X (Td ) < ∞.
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Theorem 3.1 Assume (2.1), (II-Q), (III), (IV) and that H(x, q) is locally Hölder, then given
L defined in (2.3) with dual operator L∗ and divX ∗ defined as in (2.4) w.r.t. the dual vector
fields X∗

i = −Xi − divXi , for every ρ > 0 the system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lu + ρu + H(x, DX u) = V [m]
L∗m − divX ∗(mg(x, DX u)) = 0
∫

Td
m dx = 1, m > 0

(3.2)

has a solution (u, m) ∈ C2
X (Td) × C(Td). (Note that u solves the system in the classical

sense while m is a weak solution in the distributional sense.)

To prove the existence for the system (3.2) we need to look at both the equations involved,
starting first from the associated linear PDE for u.

Lemma 3.2 Assume (2.1) and that L is the corresponding sub-Laplacian defined in (2.3),
then for every ρ > 0 and f ∈ C0,α(Td)

Lu + ρu = f in T
d (3.3)

has a unique solution u ∈ C2,α
X (Td). Moreover ∃ C ≥ 0 (independent of u and f ) such that

‖u‖C2,α
X (Td )

≤ C ‖ f ‖C0,α
X (Td )

. (3.4)

Proof The solution is unique by the strong maximum principle of Bony [15] (see also Bardi
and Da Lio [10]). We show the existence by vanishing viscosity methods, i.e. for all ε > 0
we consider the operator Lε = − ε
 + L, with ε > 0 and the corresponding problem (3.3),
replacing L by Lε . Note that Lεu + ρu = f is a linear uniformly elliptic equation. It is
well-known that such a problem has a unique classical solution uε, which is of class C2,α

since f ∈ C0,α (see e.g. [11, Lemma 2.7] and [32]). Moreover ‖uε‖∞ ≤ 1
ρ
‖ f ‖∞ . This

implies that (up to a subsequence) uε → u in the weak∗-topology of L∞(Td). Therefore u is
a distributional solution of Lu + ρu = f . Furthermore, if f is smooth then, by Hörmader’s
hypoellipticityTheorem [38],u is smooth. So let us assume for themoment that f ∈ C∞(Td);
then u is in particular a classical solution satisfying the assumption of Zuily and Xu [56],
thus Theorem 2.2 gives directly estimate (3.4).

If f ∈ C0,α
X (Td), one can bypass this obstacle by mollifications and noticing that esti-

mate (3.4) is stable w.r.t. the mollification parameter. More precisely, when f is not smooth
but only Hölder, we introduce fζ := f ∗ ϕζ , where ϕζ (x) := ζ−dϕ(x/ζ ) for ζ > 0 and
x ∈ R

d , and ϕ is a mollification kernel, that is, a nonnegative function of class C∞, with
support in the unit ball of Rd and

∫

Rd ϕ(x) dx = 1. One can easily check that fζ → f as

ζ → 0 in C0,α
X (Td). Let {ζn}n∈N be a sequence of positive numbers converging to zero. For

every n ∈ N there exists a unique solution un ∈ C2,α(Td) to (3.3) for f = fn := fζn , and by
estimate (3.4), we have ‖un − um‖C2,α

X (Td )
≤ C ‖ fn − fm‖C0,α

X (Td )
for some constant C > 0

that does not depend on n, m ∈ N. Thus {un}n∈N is Cauchy in C2,α
X (Td) (using fn → f in

Cα
X (Td)), hence it converges to some u in C2,α

X (Td). Passing to the limit as n → ∞ in the
equation Lun + ρun = fn and in the estimates ‖un‖C2,α

X (Td )
≤ C‖ fn‖Cα

X (Td ) we find that u

is a solution to (3.3) and that estimate (3.4) is satisfied. ��
The existence and uniqueness for the subelliptic linear equation for m is more technical. We
first recall some heat kernel estimates and an ergodic result which will be key for the later
results. Consider the Cauchy problem
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⎧
⎨

⎩

∂z

∂t
− Lz − g · DX z = 0

z(0, x) = φ(x)

(3.5)

where φ is Borel and bounded and g is Hölder-continuous. Then we have the following
representation for the unique solution of (3.5):

z(t, x) =
∫

Td
K (t, x, y)φ(y) dy ,

where the function (t, x, y) �→ K (t, x, y), defined for t > 0, x, y ∈ T
d , x 
= y, is the heat

kernel associated to the ultraparabolic operator ∂t −L− g · DX . We next recall some known
Gaussian estimates satisfiedby the heat kernel K (t, x, y): there exist constantsC = C(T )> 0
and M > 0 (depending only on the Hölder norm of g) such that

C−1

|BdCC (x, t1/2)|e−M dCC (x,y)2/t ≤ K (t, x, y) ≤ C

|BdCC (x, t1/2)|e−M dCC (x,y)2/t , (3.6)

for all T > t > 0 and x ∈ T
d , where by |BdCC (x, t1/2)| we indicate the Lebesgue measure

of the Carnot-Carathéodory ball centred at x and of radius R = t1/2. This estimate has been
firstly proved in the subelliptic case by [41] for “sums of squares” operators on compact
manifolds and later generalised by many authors: in particular we refer to [16].

We now need to recall the following ergodic result.

Theorem 3.3 ([12], Theorem II.4.1). Let (S, �) be a compact metric space equipped with
its Borel σ -algebra �. Let P be a linear operator defined on the Banach algebra of Borel
bounded functions on S. We assume that ‖P‖ ≤ 1 and P(1) = 1, and there exists δ > 0
such that

P1E (x) − P1E (y) ≤ 1 − δ, ∀x, y ∈ S, E ∈ � , (3.7)

where by 1E (·) we indicate the characteristic function of the Borel set E.
Under these assumptions there exists a unique probability measure π on S such that

∣
∣
∣
∣P

nφ(x) −
∫

S
φ dπ

∣
∣
∣
∣ ≤ Ce−kn‖φ‖∞ ∀x ∈ S , (3.8)

where C = 2/(1− δ), k = − ln (1 − δ). Then the measure π is the unique invariant measure
of the operator P, that is the unique probability measure satisfying

∫

S
Pφ dπ =

∫

S
φ dπ,

for every bounded Borel function φ on S.

The measure π is called the ergodic measure of the operator P (for more details on ergodic
measure see e.g. [25]). Property (3.8) is a “strong” ergodic property: it implies the conver-
gence

lim
n→∞ Pnφ =

∫

S
φ dπ uniformly

but also provides an exponential decay estimate on the convergence rate.
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Remark 3.4 As noted also in [12], when applying the ergodic theorem above usually one
checks if the so-called Doeblin condition is satisfied. More precisely, we assume that (S, �)

is equipped with a probability measure μ and that P has the form

Pφ(x) =
∫

S
k(x, y)φ(y) dμ(y),

for someBorel and bounded kernel k : S×S → R, and that there exist a setU withμ(U ) > 0
and δ0 > 0 such that (Doeblin condition)

k(x, y) ≥ δ0 > 0 ∀x ∈ S, y ∈ U . (3.9)

It is easy to check that (3.9) implies (3.7) with δ = μ(U )δ0. In fact, using S = (S ∩ E
) ∪(

S ∩ Ec
)
:

P1E (x) − P1E (y) = 1 −
∫

S
k(y, z)1E (z) dz −

∫

S
k(x, z)1Ec (z) dz ≤ 1

− δ0

[
∣
∣Ec ∩ U

∣
∣+ ∣∣E ∩ U

∣
∣

]

= 1− δ0|U |.

Next we show existence and uniqueness for the weak solution of the subelliptic linear
equation associated to m.

Lemma 3.5 Assume (2.1) and that g : Td → R
m is Hölder continuous. Then the problem

⎧
⎨

⎩

L∗m − divX ∗(mg) = 0 in T
d ,

∫

Td
m dx = 1 ,

(3.10)

has a unique weak solution m in H1
X (Td). Moreover 0 < δ0 ≤ m ≤ δ1, for some δ1, δ0

depending only on the Hölder norm of g and the coefficients of L (i.e. the coefficient of the
vector fields X1, . . . , Xm).

A solution m of the PDE in (3.10) is to be understood in the weak (or H1
X ) sense, i.e. we

define the bilinear form

〈u, v〉 :=
∫

Td

(

−1

2

m∑

i=1

Xi u X∗
i v − (g · DX u) v

)

dx (3.11)

and its dual 〈u, v〉∗ := 〈v, u〉 for all u, v ∈ H1
X (Td). Then m is a solution of the PDE in

(3.10) if 〈m, v〉∗ = 0 for all v ∈ H1
X (Td).

Proof The proof follows the approach introduced in [14, Theorem 3.4] for uniformly elliptic
operators and in [12, Theorem II.4.2 ]. We want first to show that, for η > 0 large enough
and for every ϕ ∈ L2(Td), the problem

Lu − g · DX u + η u = ϕ (3.12)

is well-posed in H1
X (Td) in the standard weak sense, that is

∫

Td

(

− 1

2

m∑

i=1

Xi u X∗
i v − (g · DX u) v + η u v

)

dx =
∫

Td
ϕ v dx, ∀ v ∈ C∞

0

(
T

d).
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The previous well-posedness is proved by standard Hilbert space arguments. In fact, on
the space H1

X (Td), we consider the bilinear form

〈·, ·〉η : H1
X (Td) × H1

X (Td) → R

(u, v) �→ 〈u, v〉η := 〈u, v〉 +
∫

Td
η u v dx

for all u, v ∈ H1
X (Td), where 〈u, v〉 is defined in (3.11). For η > 0 large enough and for

some c1 > 0, c2 ≥ 0 we claim that for all u, v ∈ H1
X (Td)

〈u, u〉η ≥ c1‖u‖2
H1
X (Td )

, (3.13)

|〈u, v〉η| ≤ c2‖u‖H1
X (Td )‖v‖H1

X (Td ). (3.14)

We first check estimate (3.13). Since g and divXi are by assumption continuous, hence
bounded on Td , there exists M ≥ 0 such that ‖g‖∞ ≤ M and ‖divXi‖∞ ≤ M . Moreover

〈u, u〉η =
∫

Td

(
1

2

m∑

i=1

|Xi u|2 + 1

2

m∑

i=1

Xi u (divXi )u − (g · DX u
)
u + η u2

)

dx

≥
∫

Td

(
1

2

m∑

i=1

|Xi u|2 − 1

2

m∑

i=1

|Xi u||divXi ||u| − |g||DX u||u| + η u2
)

dx .

Using the inequality ab ≤ (1/4)a2 + b2 and recalling |DX u|2 =∑m
i=1 |Xi u|2, we find

〈u, u〉η ≥
∫

Td

(
1

2
|DX u|2 − 1

8
|DX u|2 − |divXi |2|u|2 − 1

4
|DX u|2 − |g|2|u|2 + η u2

)

dx

≥ 1

8

∫

Td
|DX u|2 dx + (η − 2M2)

∫

Td
u2 dx ,

from which, taking η > 2M2, we obtain the first estimate (3.13) for a suitable c1 > 0 (in
particular c1 = min

{
1/8, η − 2M2

}
> 0). For estimate (3.14) similarly

|〈u, v〉η| ≤ 1

2

∫

Td
|DX u||DX v| dx + M

∫

Td
|DX u||v| dx + η

∫

Td
|u| |v| dx,

and by the Cauchy–Schwarz inequality for integrals

|〈u, v〉η| ≤ 1

2
‖DX u‖L2(Td )‖DX v‖L2(Td ) + (M + η)‖u‖L2(Td )‖v‖L2(Td )

≤
(

M + η + 1

2

)

‖u‖H1
X (Td ) ‖v‖H1

X (Td ) ,

where we have used simply a b + c d ≤ (a + c) (b +d) for every non-negative scalars a, b, c
and d . This gives (3.14) with c2 = (M + η + 1

2

)
> 0. Then the claim is proved.

Thus the bilinear form 〈·, ·〉η is coercive and continuous. Clearly,

H1
X (Td) � u �→

∫

Td
uϕ dx ∈ R

is a continuous linear functional on H1
X (Td). Therefore by the Lax-Milgram Theorem there

exists a unique u ∈ H1
X (Td) such that, for all v ∈ H1

X (Td),

〈u, v〉η =
∫

Td
ϕv dx .
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For every η > 0 large enough (i.e. η > 2M2), we define the following linear operator
Tη : L2(Td) → L2(Td) by Tηϕ := u, where u is the unique solution to (3.12).

Note that Tηϕ = u ∈ H1
X (Td) ⊂ L2(Td). Since the embedding of H1

X (Td) into L2(Td)

is compact (see Lemma 2.1), Tη is a linear compact operator. Thus the equation

L∗m − divX ∗(mg) = 0 in T
d

is equivalent to
(I − ηTη)

∗m = 0 , (3.15)

where I is the identity operator of L2(Td).
Since Tη is compact, the Fredholm alternative applies. Indeed I −ηTη is a Fredholm operator
of index zero (see e.g. [1, Lemma 4.45]). Thismeans that the kernels of I −ηTη and (I −ηTη)

∗
have the same dimension, in other words, the number of linearly independent solutions of
the equation (I − ηTη)

∗ = 0 is equal to the number of linearly independent solutions of the
equation I − ηTη = 0. Then we must find the number of linearly independent solutions of
(I − ηTη)u = 0 , that is

Lu + g(x) · DX u = 0 .

By [56, Theorem 3.3] the solution u belongs to C2,α
X (Td) for some α ∈ (0, 1). Moreover

the operator L + g · DX satisfies the strong maximum principle, see [10,15]. Thus by the
considerations above (Fredholm alternative) the Eq. (3.15), and hence (3.12), admits a unique
solution m ∈ H1

X (Td) up to a multiplicative constant.
The upper and lower bounds for m (that imply in particular the positivity of m) are shown

by its interpretation as the ergodic measure of the diffusion having generator L + g · DX .
They rely on an ergodic theorem and on the Gaussian estimates (3.6). In fact, using that
dCC (x, y) is continuous on Td (compact), we can easily see from (3.6) (by simply taking the
maximum and the minimum of d2

CC (x, y) on Td ) that there exits δ0, δ1 > 0 such that

δ0 ≤ K (1, x, y) ≤ δ1 ∀x, y ∈ T
d . (3.16)

Therefore we can apply Theorem 3.3 and Remark 3.4 with S = T
d , � the Borel σ -algebra

on T
d , μ the Lebesgue measure on T

d and operator P defined by

Pφ(x) = z(1, x) =
∫

Td
K (1, x, y)φ(y) dy .

Note that Pnφ(x) = z(n, x). Then Theorem 3.3 implies the existence of a unique invariant
probability measure π such that

∣
∣
∣
∣z(n, x) −

∫

Td
φ(y) dπ(y)

∣
∣
∣
∣ ≤ Ce−kn‖φ‖ . (3.17)

Using m defined as the unique solution of (3.10) and z(t, x) defined as unique solution of
(3.5), we want to show the following claim:

∫

Td
z(t, x)m(x) dx =

∫

Td
φ(x)m(x) dx, ∀ t ≥ 0. (3.18)

To prove the previous claim, first note that for t = 0 (3.18) is trivially satisfied by the initial
condition. We want to show that the right-hand side in (3.18) is constant in time, so we look
at
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d

dt

∫

Td
z(t, ·)m dx =

∫

Td
∂t zm dx =

∫

Td

(Lz + g · DX z
)

m dx

=
∫

Td

(L∗m − divX ∗(m g)
)
z dx = 0.

Then
∫

Td z(t, x)m(x) dx = ∫
Td z(0, x)m(x) dx , for all t ≥ 0, that proves the claim (3.18).

By using (3.17) and taking t = n in (3.18) and passing to the limit as n → +∞, we can
deduce:

∫

Td
φ(x) m(x) dx =

∫

Td

(∫

Td
φ(x) dπ(x)

)

m(x)dx =
∫

Td
φ(x) dπ(x),

for any Borel bounded function φ on T
d (where we have used

∫

Td m = 1). Thus m is the
density measure of the probability measure π and therefore m ≥ 0 a.e. on Td .

Using (3.16) together with (3.18) for t = 1, it follows that

δ1

∫

Td
φ(y) dy ≥

∫

Td
φ(y)m(y) dy ≥ δ0

∫

Td
φ(y) dy,

for any bounded and Borel function φ ≥ 0 on T
d . Since φ ≥ 0 is arbitrary, one can deduce

δ0 ≤ m ≤ δ1, thus Lemma 3.5 is proved. ��

We can now prove our first existence result for a subelliptic MFG system.

Proof of Theorem 3.1. The proof is based on a corollary of Schauder’s fixed point theorem.
More precisely, we apply [32, Theorem 11.3] which states that, if T : B → B is a continuous
and compact operator in theBanach spaceB such that the set {u ∈ B : sT u = u, 0 ≤ s ≤ 1}
is bounded, then T has a fixed point, that is, there exists u ∈ B such that T u = u. We define
the Banach space B = C1,α

X (Td) , where 0 < α < 1 is to be fixed later, and the operator
T : B → B , according to the scheme v �→ m �→ u . This means that, given v ∈ B, we solve
the second equation together with the corresponding conditions

⎧
⎨

⎩

L∗m − div(mg(x, DX v)) = 0 in T
d ,

∫

Td
m dx = 1 , m > 0 in T

d

and by Lemma 3.5 we find a unique solution m ∈ H1
X (Td) ∩ L∞(Td). Moreover m is

bounded. By assumption (IV), V [·] is regularizing, hence the function f (x) = V [m](x) −
H(x, DX v(x)) belongs to Cα

X (Td). Thus we apply Lemma 3.2 and deduce that

Lu + ρu + H(x, DX v) = V [m] (3.19)

admits a unique solution u ∈ C2
X (Td). Set T v = u, where u is the unique solution of

(3.19), it is easy to check that T is continuous and compact, using that C2
X (Td) is compactly

embedded into C1,α
X (Td) for all α ∈ (0, 1). Therefore, in order to apply [32, Theorem 11.3]

we need to show that

A = {u ∈ B : ∃ 0 ≤ s ≤ 1 such that u = sT u}
is bounded in C1,α

X (Td). So note that: if u is a fixed point of sT (i.e. sT u = u), then it is also
a solution of

Lu + ρu + s H(x, DX u) = sV [m]. (3.20)
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Then looking at the minimum and maximum of u, we find

‖u‖∞,Td ≤ s

ρ
sup

m∈H1
X (Td )

‖V [m] − H(·, 0)‖∞,Td ,

which is finite since V [·] is by assumption bounded.
The key step is now to apply C1,α

X -regularity for semilinear equation (Theorem 2.3) that
gives

‖u‖C1,α
X (Td )

< C (3.21)

for some constant C > 0 and α ∈ (0, 1) independ of u and s ∈ [0, 1].
Note that, in order to apply the given theorem, we should write our equation in divergence

form, which we can easily do by using the relation X∗
i = −Xi − divXi (by adding the

term −∑n
j=1(divX j )X j to the Hamiltonian). Observe that the new Hamiltonian has the

same properties of the original Hamiltonian; in particular, it grows at most quadratically in
DX u (in fact the functions divX j are bounded due to the C∞-regularity of the vector fields
X j ). Using estimate (3.21) we can look at the semilinear PDE (3.20) as a linear PDE with
an Hölder right-hand side f (x) = sV [m] − s H(x, DX u) −∑m

j=1(divX j )X j u; hence we
can apply the Schauder type result for linear equations proved in [56] (see Theorem 2.2),
that implies u ∈ C2,α

X (Td) and ‖u‖C2,α
X (Td )

< C . To conclude we need only to remark that

divX j ∈ C0,α
X (Td) (since the vector fields are smooth on a compact domain) in order to apply

the previous C2,α
X -estimates. ��

4 Ergodic systemwith linear growth

We now want to study the ergodic problem that can be obtained by letting ρ → 0+ in (3.2).
However, to study this, we need a more restrictive assumption on the Hamiltonian, i.e. we
assume that H grows at most linearly in |DX u|. More precisely:

(II-L) H(x, q) = H(x, σ (x)p) grows at most linearly w.r.t. q , i.e. ∃ C ≥ 0 such that

|H(x, q)| ≤ C(|q| + 1) ∀x ∈ T
d , q ∈ R

m . (4.1)

We prove existence of solutions for the system of ergodic PDEs under condition (II-L).

Theorem 4.1 (Existence). Assume (2.1), (II-L), (III), (IV) and that H(x, q) is locally Hölder,
then the system ⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

Lu + λ + H(x, DX u) = V [m]
L∗m − divX ∗

(
mg(x, DX u)

) = 0
∫

Td
u dx = 0,

∫

Td
m dx = 1, m > 0

. (4.2)

has a solution (λ, u, m) ∈ R × C2
X (Td) × C(Td).

Proof For ρ > 0 let (uρ, mρ) ∈ C2
X (Td) × (H1

X (Td) ∩ L∞(Td)
)
be a solution of (3.2) by

the existence result given in Theorem 3.1. Looking at the minima and maxima of uρ , we have

‖ρuρ‖∞ ≤ sup
m∈H1

X (Td )

‖H(·, 0) − V [m]‖∞ . (4.3)
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Let < uρ >:= ∫
Td uρ dx be the average of uρ , the key estimate is given in the following

claim: there exist ρ0 > 0 and C > 0 (independent of ρ) such that

‖uρ− < uρ > ‖∞ ≤ C, ∀ 0 < ρ < ρ0. (4.4)

To prove (4.4) we adapt some ideas from [5]. Assume by contradiction that there is a sequence
ρn → 0 such that ‖uρn − < uρn > ‖∞ → +∞ or equivalently, such that the sequence

εn := ‖uρn − < uρn > ‖−1∞ → 0.

Then the renormalised functions ψn := εn(uρn − < uρn >) satisfy

Lψn + εn H

(

x,
DXψn

εn

)

+ ρnψn = εn(V [mρn ] − ρn < uρn >). (4.5)

We now apply [53, Theorem 17] to deduce that the sequence {ψn} is equi-Hölder continuous.
In fact ψn solve quasilinear equations of the same form as in [53] with Ai (x, u, ξ) = ξi and

B(x, u, ξ) = εn H
(

x,
ξ
εn

)
− ρnu − εn

(
V [mρn ]

) − ρn < u >; then it is easy to check that

all conditions on the equation are satisfied just taking g = 0, f = 1 and a � depending only
on the bound for V [·], the constant in (II-L) and the Lebesgue measure of Td . Thus [53,
Theorem 17] tells us that, taking ρn ≤ 1 and εn ≤ 1, the Hölder norms of the solutions ψρn

are equi-bounded independently on n, which implies thatψρn are equi-Hölder. Therefore (up
to a subsequence) we get thatψn converges uniformly to a functionψ . Note that the functions
ψn are all renormalised, then ‖ψ‖∞ = 1. Moreover, since

∫

Td ψn dx = 0 by definition, then
there exists a point xn ∈ T

d such that ψn(xn) = 0. Thus (up to a further subsequence) we
get ψ(x) = 0 for some x ∈ T

d . By using assumption (II-L) into equation (4.5), one finds
out that ψρn are classical (and hence viscosity) subsolutions of

Lψn − C |DXψn | + ρnψn − εn(V [mρn ] − ρn < uρn > +C) = 0. (4.6)

and classical (and hence viscosity) supersolutions of

Lψn + C |DXψn | + ρnψn − εn(V [mρn ] − ρn < uρn > −C) = 0. (4.7)

Finally by taking n → ∞ in (4.6) and (4.7) and by using the stability for viscosity subsolu-
tions and viscosity supersolutions under uniform convergence (see e.g. [7]), ψ is a viscosity
subsolution of Lψ − C |DXψ | = 0 and a viscosity supersolution of Lψ + C |DXψ | = 0.
Since L is the subelliptic Laplacian associated to smooth Hörmander vector fields and ψ

is periodic, we deduce from the strong maximum principle (see [10,15]) that ψ must be a
constant, which contradicts ‖ψ‖∞ = 1 and ψ(x) = 0, proving thus (4.4).

We complete the proof of the theorem by showing that there exists a sequence ρn → 0
such that, for wρ := uρ− < uρ >,

(
ρn < uρn >, wρn , mρn

)→ (λ, u, m) in R × C2
X (Td) × H1

X (Td), (4.8)

where (λ, u, m) is a solution of (4.2); the convergence mρn → m is in the weak topology
of H1

X (Td). Indeed, we note that (wρ, mρ) solves
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lwρ + ρwρ + H(x, DXwρ) = V [mρ] − ρ < uρ > in T
d ,

L∗mρ − divX ∗
(
g(x, DXwρ)mρ

) = 0,
∫

Td
mρ(x)dx = 1, mρ > 0 .

(4.9)
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By the a-priori Hölder estimates for quasilinear subelliptic equations recalled in Theorem 2.3
we know that

‖wρ‖C1,α
X (Td )

≤ C,

for some α ∈ (0, 1) and C > 0 depending only on an upper bound of ‖wρ‖∞ and on the
data of the problem, in particular on the supremum norm of V [mρ] − ρ < uρ > , which is
bounded uniformly in ρ by (IV) and (4.3). In other words, α andC can be chosen independent
of ρ. Next by Schauder local estimates for subelliptic linear equations [56, Theorem 3.5], we
have

‖wρ‖C2,α
X (Td )

≤ C, (4.10)

for some C and α independent of ρ. On the other hand, by Lemma 3.5 and assumption (III)

‖mρ‖H1
X (Td ) ≤ C, (4.11)

for C ≥ 0 independent of small enough ρ. Since C2,α
X (Td) is compactly embedded into

C2
X (Td), the previous estimates (4.10), (4.11) and the fact that the set {ρ < uρ > : ρ > 0} is

bounded (inR) by (4.3),we can extract a sequenceρn → 0 such that (4.8) holds. Furthermore,
since g is locally Hölder by assumption (III) and DXwρn → DX u in C1

X (Td), then gn :=
g(·, DXwρn (·)) → g(·, DX u(·)). Let 〈·, ·〉n denote the bilinear form associated with gn in
the same fashion as 〈·, ·〉 denotes the bilinear form associated with g after the statement of
Lemma 3.5. Since mρn is the solution of the second equation in (4.9), 〈mρn , ϕ〉∗n = 0 for all
ϕ ∈ H1

X (Td). From this and the fact that gn → ḡ(·, DX u(·)) in L2(Td), it is fairly easy to
deduce that 〈m, ϕ〉∗ = 0 for all ϕ ∈ H1

X (Td). Thus m is a solution of the second equation
in (4.2). The normalising conditions in the third row of (4.2) are clearly preserved in the
limit. Thus the triplet (λ, u, m) is indeed a solution of (4.2). ��

Exactly as in the elliptic case, both the previousMFG systems have unique solutions under
suitable monotonicity assumptions.

Recall that an operator V , defined on some subset of L2(Td) with values in L2(Td), is
monotone if

∫

Td (V [m1] − V [m2]) (m1 − m2) dx ≥ 0, ∀m1, m2, and it is strictly monotone
if the inequality is strict for all m1 
= m2. Given a function H : Td → R and a vector-valued
map g : Td → R

m , we say that H is g-convex if H(q2) − H(q1) − g(q1) · (q2 − q1) ≤ 0,
for all q1, q2 ∈ T

d . If the inequality is strict for q1 
= q2, H is strictly g-convex.

Theorem 4.2 (Uniqueness) Assume that one of the two following assumptions holds:

(i) V is monotone in L2 and H is strictly (−g)-convex, or
(ii) V is strictly monotone in L2 and H is (−g)-convex.

Then the system (4.2) has a unique weak solution.

The proof is standard so we omit it.

Remark 4.3 1. Hamiltonians H coming from optimal control are “(−g)-convex” and, under
suitable assumptions, strictly (−g)-convex.

2. The strict (−g)-convexity can be relaxed requiring that H(q2) − H(q1) − g(q1) · (q2 −
q1) ≤ 0, implies g(x, q1) = g(x, q2), instead of q1 = q2. In this way one can cover also
the case H(x, q) = |q| and g(x, q) = −q/|q| for q 
= 0, g(x, 0) = 0.

3. Similarly one can state the uniqueness for the “discounted” system (3.2).
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5 Appendix

Here we want to show briefly some applications to stochastic differential games, which
motivate the study of our MFG system. These applications are standard and the Hörman-
der degenerate case is similar to the known uniformly elliptic case. We include them for
completeness but omitting all details and proofs.

5.1 The optimal-control-fixed-point problem of MFG theory

The heuristics of Mean Field Games leads to a mathematical problem that consists of an
optimal control problem followed by a fixed point problem. This heuristics is well explained
in the literature, for example, in [4,17,43,45].Moreover, the relation between N -player games
and mean field games has been considered in the literature since the very beginnings, [39,40,
43–45]; see also [31] where results have been extended to several homogeneous populations
of agents for ergodic problems. Recently the time-dependent case has been addressed by
Cardaliaguet et al. [19]. For the first mathematical problem hinted above, we give a short
self-contained description basedmainly on the notes ofCardaliaguet [17] and some comments
in the introduction of Araposthatis et al. [4].

As in the previous section, we consider a family of m smooth vector fields X =
{X1, . . . , Xm}, m ∈ N, satisfying the Hörmander condition (2.1) on the d-dimensional torus
T

d , and amapV : P(Td) → P(Td) that satisfies condition (IV). LetWt = (W 1
t , . . . , W m

t )be
anRm-valued Brownian motion in a complete filtered probability space

(
�,F, (F)t∈R+ ,P

)
.

The Brownian motion is assumed adapted with respect to the filter (F)t∈R+ and the filter is
required to satisfy the so-called standard assumptions, see e.g. [12,50].

We consider the stochastic differential equation
⎧
⎪⎪⎨

⎪⎪⎩

dξt =
m∑

k=1

bk(ξt , αt )Xk(ξt )dt +
m∑

k=1

Xk(ξt ) ◦ dW k
t ,

ξ0 = x0 ,

(5.1)

where the notation “◦” denotes Stratonovich integration and x0 ∈ T
d is some fixed initial

condition. The controls α = (α1, . . . , αm) : [0,∞) × � → A are measurable (Ft )t≥0-
adapted maps taking values in some metric space A, while A denotes the set of admissible
controls. We assume that the drift b : Td × A → R

m is Lipschitz continuous, locally in a ∈
A, then the cost functional is given by

J (α, m) = lim inf
T →∞

1

T
E

[∫ T

0

(
L(ξt , αt ) + V [m](ξt )

)
dt

]

, (5.2)

for all α ∈ A, where 0 ≤ t �→ x(t) ∈ T
d is the solution to (5.1) corresponding to the

control α. Under our assumptions this solution is uniquely determined by α and the initial
condition x0 ∈ T

d . We will omit to write explicitly the dependence on x0 in the functional
J since the optimal value is indeed independent of x0. We assume that the Lagrangian
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L : Td × R
m → R is measurable and locally bounded and that V : P(Td) → L∞(Td) is

measurable. The standard MFG theory leads to the following mathematical problem:
(P): Find a pair (m, α̂) ∈ P(Td) × A such that

1. α̂ = α̂(m) minimizes J (·, m) among α ∈ A,
2. m is the ergodicmeasure of the optimal dynamic x̂(·) corresponding to the optimal control

α̂, i.e. the solution to (5.1) for α = α̂ with initial state x0.

The Hamiltonian has the standard structure

H(x, q) = sup
a∈A

(− b(x, a) · q − L(x, a)
) ∀x ∈ T

d , q ∈ R
m . (5.3)

and we assume that there exists α : Td × R
m → A Lipschitz continuous, locally in q ∈ R

m

and such that ∀x ∈ T
d , q ∈ R

m the functionA � a �→ −b(x, a) · q − L(x, a) ∈ R

attains a maximum at ᾱ(x, q). Finally the auxiliary map g : Td × R
m → R

m is defined by
g(x, q) = b

(
x, ᾱ(x, q)

)
, for all x ∈ T

d , q ∈ R
m . Note that by the above assumptions g is

Lipschitz, locally in q ∈ R
m .

Lemma 5.1 (Verification theorem). Under all previous assumptions, let (λ, u, m) ∈ R ×
C2
X (Td) × P(Td) be a solution to (4.2) and α̂ be the admissible control corresponding to

the feedback control ᾱ
(
x, DX u(x)

)
, that is α̂t = ᾱ

(
ξ̂ , DX u(ξ̂t )

)
for all t ∈ [0,+∞), where

ξ̂ is the solution to (5.1) for αt = α̂t and for some x0 ∈ T
d , then the pair

(
α̂, m
)

is a solution
to problem (P). Moreover λ = J (α̂, m).

Proof The proof is trivial but we briefly sketch the main steps for sake of completeness. As
consequence of Itô formula and the first equation in (4.2), the first property in problem (P) is
satisfied. Then everyMarkov processwith a compact state space has an invariantmeasure (e.g.
see [30, Theorem 9.3]). In particular, the diffusion ξ̂ has an invariant measure. This invariant
(actually, ergodic)measure is aweak solution of the dual operator of the generator of x �→ ξ̂ x ,
that means of the dual of−L+b

(
x, ᾱ(x, DX u(x))

) · DX = −L−g(x, DX u) · DX . In other
words, this invariant measure is a solution of Eq. (3.10). But by Lemma 3.5 that equation
has a unique solution, so the invariant measure of ξ̂ is precisely m. Then also condition 2 is
satisfied. ��

Combining together Theorem 4.1 and Lemma 5.1 one can derive the following result.

Corollary 5.2 (Existence of solutions to the MFG problem). Under the assumptions of
Lemma 5.1 and assuming in addition that L is locally Hölder continuous, then for every
x0 ∈ T

d there exists a solution (α̂, m) to problem (P).

5.2 Nash equilibria for a class of N-player games

The solvability theory for systems similar to (4.2) can be applied to build Nash equilibria in
feedback form for a class of stochastic differential N -player games. This is a straightforward
adaptation to the case of Hörmander diffusions of the results contained in [11].We include the
main ideas for completeness. Let N ∈ N,W i

t be aR
mi -valuedBrownianmotion, for every i =

1, . . . , N and for some mi ∈ N, adapted to the filtered probability space (�,F, (F)t∈R+ ,P)

and assume that W 1
t , . . . , W N

t are independent, then the dynamic of the game is described
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by the system of SDEs
⎧
⎪⎪⎨

⎪⎪⎩

dξ i
t =

mi∑

k=1

bk
i (ξ

i
t , α

i
t )Xi

k(ξ
i
t )dt +

mi∑

k=1

Xi
k(ξ

i
t ) ◦ dW i

t in T
di

ξ i
0 = xi

0

, i = 1, . . . , N , (5.4)

where ξ i is the state of the i th player, xi
0 are given initial conditions, Ai is a given metric

space and the set of control parameters of player i and each admissible control (namely
also strategy) of player i , αi : : R+ × � → Ai , is a measurable and locally bounded map
adapted to W i

t . Let Ai denotes the set of all admissible controls for player i , assume that
Xi = {Xi

1, . . . , Xi
mi

} is a set of smooth Hörmander vector fields on the flat torus Tdi for
some di ∈ N, and the drift bi : Tdi × Ai → R

mi is a locally Lipschitz map. Under these
assumptions, it is known that for any N -tuple of initial conditions (x10 , . . . , x N

0 ) and for every
N -tuple of admissible controls (α1, . . . , αN ) ∈ A1 ×· · ·×AN there exists a unique solution
ξ = (ξ1, . . . , ξ N ) to (5.4). Actually, the system (5.4) is “decoupled” in the sense that each
SDE for ξ i is solved independently of all the other equations and the stochastic processes
ξ1, . . . , ξ N are independent of each other: each ξ i is adapted to its “own” Brownian motion
W i

t . The cost (or performance criterion) of player i is given by

Ji (α
1, . . . , αN ) = lim

T →∞
1

T
E

[∫ T

0

(
Li

(
ξ i

t , α
i
t

)
+ Fi

(
ξ1t , . . . , ξ N

t

))
dt

]

, (5.5)

where Li : Tdi × Ai → R and Fi : Td1 × · · · × T
dN → R are Hölder continuous. Each

player seeks to optimise its performance criterion (minimising the cost) in presence of all the
competitors. Clearly, the agents have conflicting goals: awin-win set of strategies that satisfies
all players, i.e minimises all their costs simultaneously, in general will not exist. In these types
of problems, a good notion of solution turns out to be the notion of Nash equilibrium: a set
of admissible strategies (α̂1, . . . , α̂N ) ∈ A1 × · · · × AN is called a Nash equilibrium if, for
every i = 1, . . . N , Ji (α̂

1, . . . , α̂N ) ≤ Ji (α̂
1, . . . , α̂i−1, αi , α̂i+1 . . . α̂N ). In other words,

the player i cannot “perform better” by moving away from α̂i if the opponents continue to
stick to (α̂1, . . . , α̂N ). The problem of finding Nash equilibria reduces to finding solutions
to a system of 2N PDEs, made by N equations of HJB type coupled with N equations of
KFP type:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Li ui + λi + Hi (x, DXi ui ) = V i [m1, . . . , m N ] in T
di ,

L∗
i mi + divX ∗

i

(
mi gi
(
xi , DXi ui

)) = 0 in T
di ,

∫

T
di

ui dxi = 0 ,

∫

T
di

mi dxi = 0, mi > 0,

i = 1, . . . , N , (5.6)

where λi ∈ R, Hi (x, q) = supa∈Ai

( − bi (x, a) · q − Li (x, q)
)
, Li = − 1

2

∑mi
k=1(Xi

k)
2

(with dual operator L∗
i ), the auxiliary maps gi : Tdi ×R

mi → R
mi are defined as gi (x, q) =

bi
(
x, ᾱ(x, q)

) ∀x ∈ T
di , q ∈ R

mi and the operators Vi : ∏1≤ j≤N
j 
=i

P(Tdi ) → L∞(Tdi ) are

defined by

Vi [m1, . . . , mi−1, mi+1, . . . , m N ](x) =
∫

∏N
j=1
j 
=i

T
di

F(x1, . . . , xN )
∏

1≤ j≤N
j 
=i

m j (dx j ) . (5.7)
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Theorem 5.3 (PDEs and Nash equilibria). Assume that there exist maps ᾱi : Tdi × R
mi →

Ai , Lipschitz continuous, such that ∀x ∈ T
di , q ∈ R

mi ᾱi (x, q) is a maximum point of
Ai � a �→ −bi (x, a) · q − Li (x, α) ∈ R, and the Hamiltonians Hi grow at most linearly in
the gradient variable, uniformly w.r.t. x, then

(i) There exists a solution λi ∈ R, ui ∈ C2
Xi

(Td), mi ∈ H1
Xi

(Tdi )∩ L∞(Tdi ), i = 1, . . . , N
to system (5.6).

(ii) Every solution of (5.6) determines a Nash equilibrium in feedback form by α̂i (x) =
ᾱi
(
x, DXi ui (x)

)
, for the game described above. Moreover λi = Ji (α̂

1, . . . , ˆαN ) and

mi is the ergodic measure of ξ̂ i , where ξ̂ = (ξ̂1, . . . , ξ N ) is the optimal dynamic (5.1)

corresponding to the optimal control α̂ = (α̂1, . . . , ˆαN ).

Statement (i) is a corollary of Theorem 4.1. Statement (ii) is the analog of a so-called
verification theorem in optimal control and differential games. As hinted in [45] the proof is
standard and relies here also on an ergodic theorem for Hörmander diffusions. See [11] for
more details in the case of uniformly elliptic diffusions.

5.3 Mean field games as limit of N-player games

Considering the same game as in the previous subsection, the goal is to let the number of the
players N → ∞ . In order to be able to pass to the limit as N → ∞ we have to make two
additional assumptions.

1. The players are similar. Mathematically this means that we are assuming that all di , Xi ,
Hi , Li , Fi are the same, that is, independent of i . Being similar, the agents will reason
“similarly”, so we can assume also that ᾱi = ᾱ ∀i = 1, . . . , N . As a consequence all
Hi and all gi will be the same, and we can call them H and g.

2. Since players are “small” and their number is “large”, each player can only have a
“statistical visibility” of the game, each player cannot know all the individual states of
the agents taking part in the game, but he knows, for example, the average or their states
(some “macroeconomic parameter” say, that can somehow be measured or estimated).
Mathematically this can be expressed assuming:

F(x1, . . . , x N ) = W

⎡

⎣
1

N

N∑

j=1

δx j

⎤

⎦ (xi ), ∀(x1, . . . x N ) ∈ (Td)N ,

for some map W : P(Td) → L∞(Td) ,which we assume satisfying condition (IV), (and
δx denotes the usual Dirac delta measure). Thus we are assuming that each agent designs
his cost as a function of the empirical average 1

N

∑N
j=1 δx j of the states of all the agents

and of its own state xi (after all, it is reasonable to expect that each knows at least his
own state xi and treats it separately from the states of the rest of the agents)

Under these assumptions system (5.6) reduces to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lui + λi + H(x, DX ui ) = V [m1, . . . , m N ] in T
d ,

L∗mi − divX ∗
(
mi g
(
xi , DX ui

)) = 0 in T
d i = 1, . . . , N ,

∫

Td
ui dx = 0 ,

∫

Td
mi dx = 0, mi > 0,

(5.8)
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with

V [m1, . . . , m N ](xi ) =
∫

Td(N−1)
W

⎡

⎣
1

N

N∑

j=1

δx j

⎤

⎦ (xi )
∏

1≤ j≤N
j 
=i

m j (dx j ) ∀xi ∈ T
d . (5.9)

Remark 5.4 (Existence of symmetric solutions). Under the above assumptions it is easy to
adapt the proof of Theorem 5.3 (i) or of Theorem 4.1 in order to show that the system of PDEs
(5.8) has a symmetric solution (λ, . . . , λ) ∈ R

N , (u, . . . , u) ∈ C2
X (Td) and (m, . . . , m) ∈

(
H1
X ∩ L∞(Td)

)N .

System (5.8) does not have a unique solution in general. However, all its solu-
tions symmetrise as N → ∞, (as shown in the following theorem). Moreover, the
limit points of these solutions satisfy the system of MFG equation. We recall that
P(Td) ⊂ C(Td)∗ is a compact topological space for the topology of weak ∗-convergence
(Prokhorov’s Theorem). Moreover, this topology is metrizable, for example, by the
Kantorovich-Rubinstein distance d(m1, m2) defined for m1, m2 ∈ P(Td) as d(m1, m2) =
sup
{∫

Td f (x) d(m1 − m2) : f ∈ C0,1, Lip ( f ) ≤ 1
}
.

Theorem 5.5 (Symmetrisation and MFG limit). Let (λN
1 , . . . , λN

N ) ∈ R
N , (uN

1 , . . . , uN
N ) ∈

C2
X (Td), (mN

1 , . . . , m N
N ) ∈ (H1

X (Td) ∩ L∞(Td)
)N

be a solution to (5.6)–(5.9). Then

(i) {(λN
i , uN

i , m N
i )}N≥i is precompact in R × C2

X (Td) × P(Td) for every i ∈ N.

(ii) (symmetrisation:) limN→∞
(
|λN

i − λN
j | + ‖uN

i − uN
j ‖C2

X (Td ) + d(m N
i , m N

j )
)

= 0 .

(iii) Let (λ, u, m) be a limit point of {(λN
i , uN

i , m N
i )}N≥i for some i ∈ N. Then (λ, u, m) is

a solution of the MFG system
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Lu + λ + H(x, DX u) = W [m] in T
d

L∗u − divX ∗
(
mg(x, DX u)α̂)

) = 0 in T
d

∫

Td
u dx = 0,

∫

Td
m dx = 1, m > 0 .

(5.10)

Proof (i) is a consequence of the a priori estimates for solutions of system (5.8), which one
can easily show that under the current assumptions hold true with constants independent of
N . As hinted in [43], the proof of (ii) relies on the uniqueness and continuous dependence of
solutions of HJB and KFP equations on the data, while for the proof of (iii) one needs also a
law or large numbers. For additional details we refer to [31]. ��
Remark 5.6 (i) If the MFG system has a unique solution (λ, u, m) (see Theorem 4.2 for

sufficient conditions), then clearly (λN
i , uN

i , mn
i ) → (λ, u, m), as N → ∞, for every

i ∈ N.
(ii) Solving the system of PDEs (5.10), for every ε > 0, we can build symmetric ε-Nash

equilibria for the N -player game, provided N is sufficiently large.
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