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Abstract
Providing connectivity to high-density traffic demand is one of the key promises of future wireless networks. The open

radio access network (O-RAN) is one of the critical drivers ensuring such connectivity in heterogeneous networks. Despite

intense interest from researchers in this domain, key challenges remain to ensure efficient network resource allocation and

utilization. This paper proposes a dynamic traffic forecasting scheme to predict future traffic demand in federated O-RAN.

Utilizing information on user demand and network capacity, we propose a fully reconfigurable admission control

framework via fuzzy-logic optimization. We also perform detailed analysis on several parameters (user satisfaction level,

utilization gain, and fairness) over benchmarks from various papers. The results show that the proposed forecasting and

fuzzy-logic-based admission control framework significantly enhances fairness and provides guaranteed quality of expe-

rience without sacrificing resource utilization. Moreover, we have proven that the proposed framework can accommodate a

large number of devices connected simultaneously in the federated O-RAN.

Keywords Open radio access network (O-RAN) � Traffic forecasting � Fuzzy-logic � Admission control � Resource
allocation � Quality of experience (QoE)

1 Introduction

The adaptive nature of fifth-generation (5G) wireless net-

work architecture offers a significant opportunity to

enhance system capacity and provide more efficient radio

resource utilization. Adaptivity is achieved partly by recent

advances in network function virtualization, network slic-

ing, and the coexistence of multiple radio access tech-

nologies (RAT) [1]. One of the principal incentives behind

redesigning cellular networks is to serve a plethora of

devices with different requirements. There are numerous

techniques for enhancing system capacity (e.g., the use of

ultra-dense small cell distribution, millimeter waves

(mmWave), new radio (NR), and intelligent cognitive

radio) [2–7]. However, there is little emphasis in the lit-

erature on the interpolation of current standards with

existing ones to guarantee a seamless multi-operator

orchestration. Such a seamless ecosystem is required to

provide enhanced quality of experience (QoE) and efficient

radio resource utilization [8, 9].

The coexistence of various heterogeneous wireless net-

works provides better performance by accumulating system

capacity, supporting higher data rates, and reducing latency

and packet loss. From the implementation perspective,

operators often use existing network infrastructure to serve

traditional voice and Web browsing applications as they

offer satisfactory service performance. Also, network

operators expect that whenever users are outside 5G cov-

erage, available legacy RATs are needed to provide a

seamless service to end users [10, 11]. Such coexistence is

becoming the dominant feature of the current and next
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generation of cellular networking. In this regard, the novel

concept of the open radio access network (O-RAN) could

be considered a complementary option to the new 5G

RATs [12, 13].

Network selection using the tenant-based approach is a

common technique to provide heterogeneous RAT services

[1, 14–17]. Selecting the best RAT from an available set

adds latency, leading to network congestion, particularly

when the number of devices requesting access to the net-

work is extensive. Furthermore, inefficient admission

control saturates the network, impractical for providing

real-time services with stringent QoE demand [6, 18].

Furthermore, lack of optimal network resource utilization

and fairness impact the network’s QoS. In such scenarios,

the choice of technique for selecting the best access net-

work from multiple heterogeneous RATs by the user

remains an open problem. We propose a forecasting and

admission control (FAC) framework to support the pre-

sented federated O-RAN. This framework builds on

dynamic traffic demand and augmented by particle filter-

ing, followed by a network selection method using NSGA-

II fuzzy-logic optimization to address the challenges

mentioned above.

This work focuses on an efficient tenant-aware network

configuration in the federated O-RAN, an extended version

of the well-known O-RAN architecture, to achieve this

autonomously. A federation controller is added to the

O-RAN architecture and acts as a switch to select the

optimal network based on various networks and user

statistics, including network bandwidth, required data rate,

latency sensitivity of the requested service, packet loss,

priority, and signal strength. The contributions in this paper

are (1) a novel federation framework for tenant-aware

network configuration which features a dynamic demand-

estimation scheme embedded with fuzzy-logic-based opti-

mization for the optimal network selection, and (2) two

algorithms in which we establish a multivariate service

allocation priority factor and admission queue and build a

service profile used for service monitoring. (3) We ana-

lytically compare to several state-of-the-art methods for

admission control and resource allocation schemes and

show how FAC is more efficient and provides higher QoE.

The remainder of the paper is organized as follows.

Related work in correspondence with the proposed work is

described in detail and also summarized in Table 1 in

Sect. 2. The system model considered in the scope of the

proposed work, its design, and statistics are explained in

detail along with a summary of key symbols used

throughout this paper are listed in Table 2 in Sect. 3.

Section 4 presents the proposed forecasting and admission

control scheme and its respective algorithms. Section 5

introduces the evaluation schemes. We showed our results

with a detailed comparison in Table 3 in Sect. 6. The

conclusion is presented in Sect. 7.

2 Related work

5G promises on-demand service deployment, support of

service heterogeneity, and coordination of multiple access

network technologies. Over the last few years, multiple

research teams initiated work on the transformation of

RANs by integrating various technologies to provide more

agile services to end-users. For example, 3GPP TR 38.804

Release 14 describes dual connectivity between 4G LTE

and 5G NR. Work by 3GPP in TR 37.900 Release 15

explains multi-RAT deployment architecture. It also iden-

tifies relevant scenarios and their radio frequency require-

ments for implementing the Multi-Standard Radio (MSR)

Base Station [9, 15–17, 19]. More recently, open RAN (O-

RAN) (aka V-RAN), a novel architecture with interoper-

ability of various networks at its core principle, has been

proposed. O-RAN is an emerging technology that incor-

porates virtualization and intelligence in networks. One

such example is the OpenRAN project by Telecom Infra, a

software-driven architecture that evolved from the concept

of Cloud RAN (C-RAN). It provides a solution based on

software-defined networks and openness of general-pur-

pose hardware [20]. Another individual effort is the xRAN

forum, an open-source alternative to the traditional RAN

architecture, which provides a solution by separating data

and control planes of network devices and opening inter-

faces with intelligence between various RAN’s building

blocks [21].

In 2018, the C-RAN Alliance and the xRAN forum

merged into an open radio access network (O-RAN) to

support the evolution of 5G networks and beyond. More

than 160 well-known contributors from large and small

companies, vendors, academic institutions, and network

operators are participating in the standardization of this

technology (e.g., Nokia, Hewlett Packard Enterprise, Intel,

Vodafone [12]). This multi-vendor, interoperable technol-

ogy eliminates dependencies and opens the protocols and

interfaces between various components to incorporate

intelligence into RAN to support different deployment

scenarios [13, 22, 23]. This paper continues the trend by

introducing a federation layer within an O-RAN architec-

ture to enable dynamic traffic forecasting, efficient

admission control, and service monitoring.

In addition to the coexistence of various access tech-

nologies, future demand prediction (via efficient forecast-

ing techniques) is among the operators’ main challenges.

Network operators strive to make resource management

and orchestration (MANO) processes highly automated to

cope with the volatile demand. To realize this,
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Sciancalepore et al. proposed a Holt-Winters theory-based

mobile traffic forecasting and slice scheduling approach for

admission control in 5G networks [26]. Two low-com-

plexity algorithms were developed into a geometric knap-

sack problem to ensure optimal slice admission and better

QoE. The authors further proposed enhancements to their

work for traffic and user mobility analysis on guaranteed

and best-effort traffic. The signaling-based network slicing

broker is used for capacity forecasting of the cellular net-

work [27]. Raikwar et al. proposed the concept of using the

Holt-Winters method for predicting vehicular traffic

demand in long- and short-term traffic windows for an

efficient transportation management system [28]. Tseliou

et al. proposed a multi-tenant slicing capacity framework

for on-demand resource allocation in LTE networks. The

authors integrated the capacity broker into the 3GPP

architecture for extracting variations in traffic patterns. The

technique improves traffic forecasting based on the Monte

Carlo method [1]. For short-term forecasting, a few other

network models using the Monte Carlo approach can be

found in [29–31]. Narmanlioglu et al. investigated a

Bayesian technique for predicting active users in the LTE

network to ensure efficient resource allocation [32]. Miao

et al. proposed a multi-spatiotemporal framework for

Table 1 Table on existing research

Subject Authors and publications Description

Support of

heterogeneous

connectivity

3GPP TR 23.234 (R-12), 38.804 (R-14), and 37.900 (R-

15) [9, 17, 19]

The 3rd Generation Partnership Project (3GPP) worked

on interworking of cellular network and WLAN, dual

connectivity of cellular user with 4G LTE and 5G NR,

and Multi-RAT deployment architecture that can be

found in releases 12, 14, and 15

Telecom Infra [20], xRAN forum [21], O-RAN Alliance

[12], Open RAN technical report [22, 24, 25]

Gavrilovska et al. [13] and Niknam et al. [23]

The open radio access network is a multi-vendor,

interoperable product. This intelligently opens the

protocols and interfaces between various RAN

components to integrate various operators’ networks

and supports different deployment scenarios with lower

cost and time to market

Demand forecasting Sciancalepore et al. [26, 27], and Raikwar et al. [28] The authors implemented Holt-Winters theory for long-

and short-term traffic forecasting to ensure efficient

admission control and resource management in cellular

networks

Tseliou et al. [1], Dudek et al. [29, 30], and Hippert et al.

[31]

Monte Carlo-based prediction frameworks are proposed

by the authors for on-demand resource allocation in

cellular and neural networks

Narmanlioglu et al. [32], Miao et al. [33], and Zhang

et al. [34]

Bayesian techniques are adopted by the authors to predict

the number of active users and their distribution within

the cellular network for localization and resource

allocation over handover

Fuzzy-logic-based

network selection and

resources allocation

Inaba et al. [35], Bouali et al. [18], Goudarzi et al. [36],

and Kaloxylos et al. [37]

The authors implemented the fuzzy-logic approach in

their proposed hybrid model for an efficient access

network selection among heterogeneous networks

Khan et al. [38], Zeng et al. [39], silva et al. [40], and

Shrimali et al. [41]

The authors adopted fuzzy-logic and multi-criterion

optimization schemes, or algorithms such as a genetic

algorithm, to propose their framework for resource

allocation in 5G cellular and vehicular networks

Table 2 Key symbols and definitions

Symbols & Definitions

U Set of tenants in the network

M Set of MNOs

V Set of MVNOs

S Set of services

S Op List of service operators on S
N Set of resources

s Tenant’s forecasted demand

dðnÞ Aggregate nth resource demand

RðnÞ Aggregate nth resource allocation

R Op Service operator’s available resources

sc; sh Acceptable tenant resource bounds

QðcÞ;QðhÞ Expected tenant QoE bounds

BðcÞ;BðhÞ Service network resource bounds

SQc ;SQh
Network’s guaranteed QoS bounds

Neural Computing and Applications (2023) 35:23841–23859 23843

123



forecasting cellular user traffic [33]. Another forecasting

framework based on the Bayesian model and Markov chain

Monte Carlo (MCMC) techniques is proposed in [34] to

predict the spatiotemporal information of traffic distribu-

tion in a cellular network. Holt-Winters and Bayesian are

basic exponential smoothing techniques. These techniques

are simple, yet work well over short time series in a linear

system using prior assumptions about the user. Monte

Carlo-based forecasting techniques make predictions

according to data from previous instances [42]. However,

these approaches are not suitable for forecasting demand in

dense networks with limited or no prior information about

user demand and network capacity. In this paper, we

implement a hybrid Monte Carlo-based particle filtering

technique to predict traffic demand. The hybrid Monte

Carlo-based particle filtering technology has proved its

superiority over other approaches, due to its non-depen-

dency on previous data samples in nonlinear and non-

Gaussian systems, and its multimodal processing capability

makes it suitable for a wide range of communication

applications.

Fuzzy-logic optimization proved to be among the most

effective approaches in coping with the lack of information

and associated uncertainties surrounding users. A signifi-

cant amount of research is available on fuzzy-logic opti-

mization. Bouali et al. proposed a novel, context-aware,

user-driven framework for network selection. The authors

implemented fuzzy multiple-attribute decision-making

(MADM) approach to select the best RAT of the network’s

defined policies [18]. Goudarzi et al. proposed a hybrid

model that uses a multi-point algorithm in heterogeneous

networks for the most suitable RAT selection. This

scheme implements biogeography-based optimization

(BBO) on RAT selection probabilities obtained from a

Markov decision process (MDP) [36]. Kaloxylos et al.

applied a fuzzy-logic approach for efficient RAT selection

mechanism between (H)eNBs and Wi-Fi APs, addressing

static and low-mobility users [37]. The authors of [35]

proposed a fuzzy call admission control scheme for wire-

less multimedia networks. Khan et al. [38] proposed a

hybrid fuzzy-logic-based genetic algorithm (H-FLGA) for

resource allocation in 5G-driven VANETs. Zeng et al. [39]

proposed a fuzzy-logic-based multi-criterion scheme to

investigate a coordinated NOMA system for resource

allocation in 5G. Their proposed resource allocation algo-

rithms serve channel-gain-based subchannel allocation

(SCG-SA), low-complexity, fuzzy-logic user-ranking-

order-based joint resource allocation (FLURO-JRA). In

[40], Silva et al. proposed a self-tuning approach based on

fuzzy-logic for resource allocation during handover in

small, dense cells. This approach compared the received

signal level with a proposed fuzzy-logic-based threshold

derived from the user’s velocity, signal power, and channel

quality. This way, the number of handovers was reduced,

and a lower failed handover ratio was achieved. Shrimali

et al. [41] proposed a weighted-sum-based, multi-objective

optimization framework for resource allocation in cloud

infrastructure. This framework applied the fuzzy-logic

approach to generate coefficients of the defined objectives.

These coefficients used by the genetic algorithm to gen-

erate Pareto optimal solutions. The existing research is

considering few application requirements or network

statistics for best network selection among two heteroge-

neous RATs and resource allocation. However, today’s

network is more complex and dynamic due to multiple and

heterogeneous application requirements and network

statistics, and especially in the case of the coexistence of

various heterogeneous RATs such as in O-RAN. In such

scenarios, Information about uncertainty on application

requirements is essential for fuzzy-logic operations. This is

Table 3 Summary of comparisons of average efficiency between the proposed work and existing methods

Evaluation
Parameters

Approaches Efficiency

User satisfaction

level

Forecasting model and availability of multiple heterogeneous networks (O-

RAN) ensure optimal resource allocation to the tenants in the proposed work

Average efficiency 93% from U ¼ 50 to

U ¼ 300

Online auction on available resources and greedy approaches are applied for

resource allocation in [48]

Average efficiency approximately 73%,

and 43% from U ¼ 50 to U ¼ 300

Network

resources

utilization

In the proposed work, forecasting modifier (P�) and multi-variate priority factor

(u) ensures optimum admission control

Approximately 90% average efficiency

from U ¼ 5 to U ¼ 20

Mobile traffic forecasting [26] and reinforcement learning [27] approaches for

tenants admission control are applied

Average efficiency approximately 27%,

and 59% from U ¼ 5 to U ¼ 20

Resources

allocation

fairness

In the proposed work, fuzzy-logic-based network selection, QoE-based

admission control and resource allocation approaches are applied

Average efficiency approximately 99.5%

from U ¼ 315 and U ¼ 330

Bankruptcy game approach is applied for admission control and resource

allocation in [49]

Average efficiency approximately 99%

from U ¼ 315 and U ¼ 330
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because higher uncertainty leads to inefficient network

selection, overload, and agreed QoE degradation [43]. The

proposed framework applies the Non-Dominated Sorting

Genetic Algorithm II, coupled with the fuzzy-logic

approach to provide an optimal network selection based on

user forecasted demand, network capacity and fitness

policies of the fuzzy-logic model to reduce the effects of

uncertainty (see Fig. 3).

3 System design

The management of resource allocation to support a mas-

sive amount of heterogeneous traffic flow in proportion to

network capacity is still an open issue [44]. In this section,

a system model, known as federated O-RAN (FORAN), is

presented, which is similar to the O-RAN architecture, as

given in [12]. A federation controller is added to the

O-RAN referenced architecture, which acts as a switch to

select the optimal network based on various network and

user demand statistics as discussed in the detail in the

following subsections.

3.1 Federation logical architecture with O-RAN

O-RAN is a unified architecture designed with openness

and intelligence and built by disaggregating three main

components of the traditional RAN: Radio Unit (RU),

Distributed Unit (DU), and Centralized Control Unit (CU),

via intelligently decoupling the virtualized software and

hardware functionalities [24, 25]. Establishing open-stan-

dard protocols and interfaces between hardware and soft-

ware eliminates vendor dependency on conventional

networks. O-RAN facilitates a wide range of services by

transforming existing business models into a new paradigm

or launching new business models with a shorter time to

market and lower cost [12].

O-RAN consists of four functional building blocks: (1)

Orchestration and Automation, (2) RAN Intelligent Con-

troller (RIC) near-real Time, (3) Multi-RAT Control Unit

protocol stack, and (4) Distributed Unit and Remote Radio

Unit (RRU) [24], as shown in Fig. 1. Contrary to the tra-

ditional RAN, the O-RAN non-real-time controller (with

latency[1s) and near-real-time (near-RT) controller (with

latency\1s) are decoupled from each other and placed as

an isolated layer, connected via A1 interface. Orchestration

and automation function is responsible for non-real-time

services, network design, configuration, and policy man-

agement. The function also analyzes the RAN traffic and

models the training data for run-time executions by RIC

near-real-time functionality. It also contains the RAN

database, the trained model, and an intelligent radio

resource management unit, which provides a robust and

reliable execution platform for third-party applications.

The proposed framework’s main purpose is to utilize

network resources more efficiently via optimal network

selection and users’ admission. In this framework, the

federation layer has three major functions managed by the

federation controller: (1) Demand and Capacity Analyzer

(DCA), (2) Network Selection and Configuration Function

(NSCF), and (3) QoS/QoE and Traffic Flow Monitoring

(QTFM). The DCA analyzes incoming traffic demand in

order to generate forecasts. It also analyzes the available

network capacity and resources for network selection and

resource allocation. The DCA contains the mobile virtual

network operator (MVNO) resource inventory: its services,

content, and billing information. Given the network avail-

ability and forecasted demand, the NSCF selects an optimal

network for the user at a particular instance via fuzzy-logic

optimization for configuration and resource allocation.

Network selection is based on the suitability factor, as

defined by the policies on multiple decision objectives, to

ensure the network QoS and user QoE continue to meet the

agreed level. We then send the service requests to the

selected MVNO, choose a gateway, and establish an end-

to-end connection for management and data transmission.

Next, we continuously monitor the admitted traffic to

ensure efficient resource utilization and that the granted

QoE are within guaranteed bounds. If the user’s QoE

degrades and resources are over/underutilized, the analyzer

will be triggered by the QTFM to modify the predictions

after observing the difference between forecasted and

actual demand.

A multi-RAT CU protocol stack is installed on the vir-

tualization platform to process the heterogeneous wireless

generation protocols. DU and RRU functions are respon-

sible for baseband and radio frequency (RF) processing.

These functional units are linked to the O-RAN via the E2

interface [24]. This novel, vendor-neutral architecture has a

huge potential for virtual industries to quickly deploy and

upgrade their network architecture in various deployment

scenarios and geographies.

3.2 E2E customized network configuration
via FORAN

Researchers and industry professionals envisage that the

O-RAN will be an essential part of wireless networks

because compared to traditional RAN, the neutral archi-

tecture of the O-RAN can efficiently accommodate the

rising heterogeneous services demand [22]. Opening pro-

tocols and interfaces among various building blocks of the

access network reduce the operator’s and vendor’s depen-

dency on conventional network deployment and opera-

tions. Therefore, the coexistence of various heterogeneous
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technologies in O-RAN will facilitate an automated vendor

network that reduces operational cost and enhances net-

work performance [13].

The device sends a control signal to the O-RAN for an

E2E customized network configuration when it is turned

on, as shown in Fig. 2. The Service Request and

Registration Request in the control signal are

received by the CU of the respective virtual access node

(i.e., virtual Base Transceiver Station (vBTS), virtual Node

B (vNB), virtual evolved Node B (veNB), virtual Next

Generation Node B (vgNB)). The CU sends the control

signal to the unified real-time or non-real-time controller

based on the requested service sensitivity. The virtual

access node requests user information from the corre-

sponding Home Location Register (HLR) and Unified Data

Management (UDM) in the core network, which then sends

back the subscription user data and confirms if the tenant is

authorized for service from the network. If authorization

and authentication are successful, the user’s request will be

sent to the federation controller in the real-time O-RAN

controller for admission control and resource allocation by

the NSCF. However, the user’s admission will go through

Trained Model
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interference, 

● Service policies and billing

● MNO’s/ MVNO’s inventory and resource managment
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Fig. 1 FORAN architecture illustrating network operations and management functions
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the conventional process in the non-real-time O-RAN

controller. Based on the user’s preferences and demanded

service network statistics, the NSCF selects an optimal

network from the service operator list for service provi-

sioning. The optimal networks in the list are in order based

on the forecasts generated by the DCA. After that, the

federation controller sends the service request and the

session ID to the corresponding network functions in the

core to perform a customized network configuration. An

example of such functions is Mobile Switching Station

(MSS), Serving GPRS Support Node (SGSN), Mobility

Management Entity (MME), and Access and Mobility

Management Function (AMF). The ID contains the net-

work function instance address, where the NAS message

terminates [45]. Finally, the request forwards to the

respective core entities (i.e., Media Gateway (MGW),

Gateway GPRS Support Node (GGSN), Serving Gateway/

Packet Gateway (SGW/PGW), Session Management

Function (SMF), user plane function (UPF)) for gateway

selection, E2E session establishment for data or voice

communication via DU, and service management and

monitoring via QTFM.

3.3 Network description

In the proposed work, a cellular network is considered with

a set U consisting of U number of tenants, indexed by

U ¼ f1; 2; . . .;Ug, and a set M of M number of mobile

network operators (MNOs), indexed by

M ¼ f1; 2; . . .;Mg, We assume that each MNO supports a

set V ¼ f1; 2; . . .;Vg of V mobile virtual network operators

(MVNOs), each of which has a set N ¼ f1; 2; . . .;Ng of N

equal number of similar resources. Let us assume that each

v, where v 2 V is independent and different from the other

v associated with the same MNO with respect to the

capacity of the resources, guaranteed QoS, and billing. This

information is stored in the inventory matrix in the repos-

itory of DCA by the federation controller and symbolized

as P,

P ¼

v11 v12 v13 � � � v1V

v21 v22 v23 � � � v2V

..

. ..
. . .

. ..
. ..

.

vM1 vM2 vM3 � � � vMV

2
66664

3
77775
; ð1Þ

where the resource vector vij ð1�NÞ, i 2 M and j 2 V. Each
operator provides some services, as represented by the

service set S ¼ fg2; g3; g4; g5g from 2G, 3G, 4G, and 5G.

These services represent a row entry in the mask matrix G

and

G ¼

g2v11 g2v12 g2v13 � � � g2vMV

g3v11 g3v12 g3v13 � � � g3vMV

..

. ..
. . .

. ..
. ..

.

g5v11 g5v12 g5v13 � � � g5vMV

2
66664

3
77775
: ð2Þ

If the operator supports that particular service gı, where

gı 2 S and ı ¼ f2; 3; 4; 5g, then the entity is represented by

1, otherwise by zero in the mask G. Operators supporting

5G have an additional feature, ’’slicing,’’ for latency-sen-

sitive or critical applications from the tenant or for tenants

with frequently varying demand. Each 5G slicing operator

is assumed to have S number of slices with homogeneous

and heterogeneous, capacity. In that case, vij is S� N

dimension matrix. This is because each slice has the

potential of elasticity with regard to the capacity of the

network to support a massive number of connection

requests. The DCA holds this matrix for the provisioning of

services to the tenants over forecasting and optimal

admission control.

4 Proposed forecasting and admission
control framework

In this section, we propose a forecasting and admission

control framework. This framework applies the afore-

mentioned sampling-based forecasting technique to obtain

optimal network selection by the key entities of the fed-

eration controller. The federation controller consists of

three key entities: the Demand and Capacity Analyzer

(DCA), the Network selection and configuration function

(NSCF), and QoS/QoE and Traffic Flow management

(QTFM). The systematic diagram of the proposed Fore-

casting and Admission Control (FAC) framework pro-

cessed by these entities is illustrated in Fig. 3 and discussed

in detail in the following subsections.

4.1 Forecasting and demand characterization

Traffic analysis is an essential part of traffic engineering

and is the fastest method to gain insights into the nature of

future service demand [33]. More accurate forecasting

leads to maximizing the network QoS, and resource uti-

lization, as well as QoE. In the proposed work,

SequentialMonteCarlo (SMC)-based particle filtering is

used for future demand forecasting in the wireless network.

Through this, the DCA isolates tenants with their specific

demand from each other based on the service requirement

from the heterogeneous network and then observes the

actual demand using the particle filter for future demand

forecasting, as shown in Fig 3.
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During observation, whenever the uth tenant requires

access to the network for provisioning of its service s,

where u 2 U and s 2 S, it issues a request denoted as

dun ¼ ½du1; du2; . . .; dun�, where dun 2 D. The vector dun
consists of tenant-demand-specific characteristics such as

physical resources, latency, service holding time, priority,

and cost revenue. The federation controller has to assess

that request with respect to tenant-specific application

characteristics and populate the respective coefficient as a

row entry in the demand matrix D, as illustrated in Eq. (3).

D ¼

d11 d12 d13 � � � d1N

d21 d22 d23 � � � d2N

..

. ..
. . .

. ..
. ..

.

dU1 dU2 dU3 � � � dUN

2
66664

3
77775
: ð3Þ

After resources are allocated to the tenant from a particular

network, the respective coefficients are populated as a row

entry in the allocation matrix R. Thus, after resources are

allocated to the tenant u for the service s, the vector of the

allocated resources can be indexed by

run ¼ ½ru1; ru2; . . .; run�, where run 2 R and

R ¼

r11 r12 r13 � � � r1N

r21 r22 r23 � � � r2N

..

. ..
. . .

. ..
. ..

.

rU1 rU2 rU3 � � � rUN

2
66664

3
77775
: ð4Þ

Initially, due to periodicity, the uth tenants nth resource

demand, symbolized as dðnÞ, have to be analyzed using a

probability density function (PDF) over the observation

time window, denoted by tow where tow ¼ t � tobs, as

shown in the equation below:

dðnÞ ¼
Z t

t�tobs

f ðdn;tÞ dðdn;tÞ ; ð5Þ

where dn;t 2 D, and dðnÞ is known by the ground truth

demand shown in Fig. 4. This is obtained from the initial

prior Gaussian distribution function. Now, the measured

demand, symbolized as zðnÞ, over the ground truth of the

previous interval, along with the measurement noise

covariance, � , in the system, can be obtained from

zðnÞ ¼
dðn;t�1Þ
20

þ � : ð6Þ

In view of the network capacity and required services, the

observation of the resource allocation, denoted as R, to the

tenants over observation time window (from t to tobs) with

PDF can be written as

RðnÞ ¼
Z t

t�tobs

f ðrn;tÞ dðrn;tÞ ; ð7Þ

where rn;t 2 R. RðnÞ is the observed nth resource allocation

and RðnÞ � dðnÞ. Therefore, the initially acquired tenant

QoE, symbolized as QðnÞ for nth resource, can be obtained

from

QðnÞ ¼
RðnÞ
dðnÞ

� 1: ð8Þ

The forecasting model f ð�Þ uses the particle filter estimates,

ŝ, to forecast tenant demand, symbolized as s, over dðnÞ.

Hence, the overall estimates over the forecasting window

tw (t þ 1 to t þ f ), as shown in Fig. 4, are obtained from

E½sðnÞ� ¼
Ztþf

tþ1

f ðŝn;tÞ dŝn;t ; ð9Þ

where

     Demand 
 Measurnments

Demand 
  Observations

Forecasting
     Model

(Sec 4.1)

Fuzzy logic
   Network 
  Selection
 (Sec. 4.2.1)

QoE based
 Admission
   Control
(Sec.4.2.2)

Service & Flow 
       Monitoring

(Sec. 4.3)

( )

Fig. 3 Systematic diagram of

the proposed forecasting and

admission control (FAC)

framework
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f ðŝn;tÞ ¼
ŝt�1

2
þ 25ŝt
1þ ŝ2t

þ 8 cos ð1:2ðt � 1ÞÞ þ �ðnÞ ; ð10Þ

where ŝt�1

2
þ 25ŝt

1þŝ2t
þ 8 cos ð1:2ðt � 1ÞÞ gives the estimates

over the posterior probability distribution function, and �ðnÞ
is the noise covariance in the system. Over the forecasting

window tw, the uth tenant overall forecasted demand,

symbolized as E½s�, is obtained by E½sðnÞ� over set N ,

where jN j� 1. Now, the updated measured estimated

value, symbolized as ẑðnÞ, can be obtained from

ẑðnÞ ¼
f ðŝn;tÞ
20

: ð11Þ

Based on the estimated measured value, ẑðnÞ, from the

particle filter and the measured value from demand

observation, zðnÞ, the computed error, also known as noise

covariance, in the system can be written as

�ðnÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

t2w

Xtþf

t�tþ1

ðzðn;tÞ � ẑðn;tÞÞ2
vuut : ð12Þ

The mean squared error determines the covariance of the

observation and estimates. The �ðnÞ updates until errors in

the prediction converge, where zðnÞ � ẑðnÞ � 0.

4.2 Fuzzy-logic- and QoE-based admission
control

In the federation approach, the key objective is to provide

an efficient admission control based on the tenants fore-

casted demand, which ensures the enhanced network QoS

and provisioning of desired tenants QoE. Therefore, a Non-

Dominated Sorting Genetic Algorithm II (NSGA-II) is

considered for the optimum network selection. This is a

multi-objective elitist method of quickly obtaining non-

dominated and optimal solutions that uses an explicit

diversity preserving mechanism [46]. The given

optimization approach still considers tenant QoE and

throughput maximization for network selection to acquire

fair resource allocation and maximum utilization, as will be

explained in the following subsections.

4.2.1 Fuzzy-logic-based network selection

In this work, the federation controller deploys the fuzzy-

logic based NSGA-II framework for the tenants’ optimal

network selection, as shown in algorithm 1. The uth tenant-

forecasted demand, E½s�, on set N and service-specific

network characteristics are provided to the FLC as inputs

for selection. These characteristics include required data

rate, latency, packet loss, available bandwidth, and billing

information. Given the tenant’s forecasted demand, the

lowest and highest guaranteed resource bounds, symbol-

ized as fBðcÞ;BðhÞg, of the corresponding service network

from S Op are selected. The tenant-acceptable resource

demand among fBðcÞ;BðhÞg are represented as a genome of

size q for generation of the initial population, which is

denoted as P0. The selection criteria are required to eval-

uate the fitness of the resource demand characteristics from

the initial population following the objective function (i.e.,

desired tenant QoE and throughput maximization). The

selection process goes through several iterations, also

called generations (or gen), until they converge to a global

optimum. After crossover of the parent and mutation of the

child population, the most suitable statistics among the

service guaranteed network resource bounds are selected

with respect to their fitness for the defined objectives. The

selected resource demand statistics (sc; sh) are placed in the

tenant forecasted demand matrix, symbolized as Tenu ðq�kÞ
where k ¼ 2jN j, in descending order of the tenant Q and g
for provisioning of the service from the selected network

from S Op. This is to present the corresponding selected

network resources with guaranteed QoS to the tenant for

customized network configuration.
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Fig. 4 Long-term resource

demand forecasting; U ¼ 1 with

E½ui� ¼ 100 users, jN j ¼ 1.

tw ¼ 300 minutes, and sh ¼
½10; 100� MHz
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In addition to providing the guaranteed QoS, the uth

tenant will now be admitted to a particular service network

belonging to S Op, subject to the availability of the

resources. However, simultaneous access of various tenants

to the service network creates competition. This can lead to

network congestion. Thus, a priority-based admission

queue is generated to ensure efficient admission control. A

service allocation priority factor of the tenant, denoted as

u, can be computed as follows:

uu ¼ f ðku; wu; ju; huÞ ; ð13Þ

where ku represents the frequency of the tenant u requests,wu

represents the generated revenue, ju represents the requested
service type across default classification, and hu represents the

n resource utilization history of the tenant u, where n 2 N and

jN j is considered tobe1 for simplicity. The admissionpriority

list is generated in descending order of allocation factor in the

tenant set U. The tenant with the highest allocation factor is

served first among all tenants by the network.

4.2.2 QoE-based admission control

Each network processes admission requests in terms of QoE

constraints. A higher acquired tenant satisfaction level rep-

resents the optimal admission control, provisioning of better

QoE, and resource utilization. The acquired QoE, QðRÞ, by

tenant u will not go beyond the expected QoE bounds,

fQðcÞ;QðhÞg, where R� sh � s. Therefore, the highest

demanded QoE, denoted asQðhÞ, by the forecasted demand s
and the acquired QoE, symbolized as QðRÞ, due to acquired

resources R of the tenant u are determined as follows:

QðhÞ ¼ f ðsh; bs; is; uuÞ ; ð14Þ

QðRÞ ¼ f R; bR; iR; uuð Þ ; ð15Þ

where b, i, and u are the acceptable user-application-

specific packet loss, latency sensitivity, and priority,

respectively. To simplify, these measures are normalized to

zero or 1 for the summation in f ð�Þ. Likewise, during peak

hours the tenant served with the least-expected QoE,

denoted as QðcÞ, due to softness in its QoE demand, such

that c ¼¼ R. Thus, QðcÞ can be written as

QðcÞ ¼ f ðsc; bc; ic; uuÞ : ð16Þ

The uth tenant service request arrives in order with respect

to u from the prioritized admission queue, symbolized as

A List ¼ fu1ðQðcÞ;QðhÞÞ; u2ðQðcÞ;QðhÞÞ; :::g : ð17Þ

This is to access the optimal network from the service

operator list, S Op, which is in order according to tenant

preferences for the customized network configuration. The

NSCF assesses each tenant’s desired Q across the network

guaranteed QoS bounds, denoted as SQc and SQh
, as shown

in Algorithm 2. SQc and SQh
are the lowest and highest

service network QoS bounds, respectively. After satisfying

the available network QoS, the tenant s resource demand

(either guaranteed or demanded) will be checked against

network capacity for resource allocation. The tenant’s

resource demand should be less than the serving network

resource capacity. Thus, the tenant-acquired QoE, resource

utilization and overall network throughput are obtained to

compute the resource allocation fairness on set U. The

fairness of resource allocation of a particular service

operator network is entered into the network service

Algorithm 1: NSGA II based Optimization for Network Selection
Input: Forecasted demand (τ ), number of generations (gen), population size (ρ),
evaluation objectives (Q, and η), network resource bounds (B(γ), B(h)) and
B(γ) < τ ≤ B(h).

Output: Optimized Tenu w.r.t. Q and η.
begin

P0(τ1, τ2, . . . , τρ) = select τ from resource bounds (B(γ), B(h)) of networks
from S Op.

Fo(f1, f2, . . . , fρ) = evaluate objective (P0(τ1, τ2, . . . , τρ)).
Sort P0 w.r.t. F0.
for i = 1 → gen do

Pi,parent(τ1, τ2, . . . , τρ) = select (Pi−1(τ1, τ2, . . . , τρ)).
Pi,child(τ1, τ2, . . . , τ ρ

2
) = crossover (Pi,parent(τ1, τ2, . . . , τρ)).

Pi,child(τ1, τ2, . . . , τρ) = Pi,child(τ1, τ2, . . . , τ ρ
2
)+ mutation

(Pi,child(τ1, τ2, . . . , τ ρ
2
)).

Fi,child(f1, f2, . . . , fρ) = evaluate objective (Pi,child(τ1, τ2, . . . , τρ)).
Pi(τ1, τ2, . . . , τρ) = sort (Pi,parent + Pi,child) w.r.t. Fi and select optimal
ρ solutions.

Tenu = P .
sort S Op w.r.t. Tenu.
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profile, W List, along with the tenant-achieved QðRÞ. This

is for the federation controller to examine the fairness of

resource allocation and user satisfaction level from the

serving network. In the case of selected network resource

unavailability or unsatisfied QoS bounds for the tenant, the

next network from S Op will be examined by the NSCF

for admission control. After admission, the tenant-acquired

Q will be monitored to ensure efficient network perfor-

mance. In the case of violation of QoS/QoE bounds, the

user will be dropped from the serving network and reas-

sessed with higher priority by the NSCF. To summarize, by

optimizing the forecasted demand and service network

statistics, a customized network is selected, and resources

are allocated with guaranteed QoS bounds to ensure effi-

cient resource utilization and tenant-acquired QoE.

4.3 Service and flow monitoring

Once the decision has been made to admit the tenant to a

particular network, the network is configured with guar-

anteed QoS for the respective service provisioning

requested by the tenant. The E2E service flow should also

be monitored to ensure the tenant’s acquired QoE does not

degrade during service from the operational network, and

that traffic flow is proportional to the capacity. Therefore,

we propose a QoS/QoE and traffic flow monitoring system

(QTFM) that pursues the following goals: 1) monitor flow

to ensure the tenant’s acquired QoE is within guaranteed

bounds, where the least-expected QoE is denoted as QðcÞ
and the highest achievable QoE is denoted as QðhÞ, 2)

providing feedback to the analyzer for modification of the

forecasted demand in proportion to the actual demand, and

utilization, as shown in Fig. 3 and described in detail in the

following subsections.

4.3.1 QoS/QoE monitoring

For network operators, continuous service monitoring is

essential to ensure that network QoS and tenant QoE

remain above the agreed least guaranteed bound, where

violation in provisioning of agreed QoE and QoS can

occur. Therefore, network QoS is monitored for tenant

service duration by the QTFM to ensure the tenant’s

acquired QoE is within expected bounds, as shown in

Algorithm 3. In the case of violation of QoS/QoE bounds,

the tenant will be dropped from W List and added to the

admission queue, A List with higher priority as compen-

sation. Now, the tenant will be reassessed by the NSCF,

along with the change in QoE statistics. The QTFM will

also trigger the forecasting model to take appropriate action

to enhance the overall network’s QoS and tenant’s QoE.

The network service profile, W List, will also be updated

to maintain the network service inventory by the federation

controller.

Algorithm 2: QoE based Admission Control
Input: Service operator list (S Op), tenant forecasted demand ({τγ , τh}), and
{τγ , τh} ∈ Tenu, admission queue (A List).

Output: Ψ List = {u1(Q(R), Fη , Sv), . . .}.
for i = 1 → A List.length do

for (j = 1 → S Op.length) do
Select {SQγ , SQh

} bounds of S Op(j).
if (SQγ < Q(τh(i)) ≤ SQh

)&&(SQγ ≤ Q(τγ(i)) < SQh
) then

R Op = assign S Op(j) operator resources.
if (τh(i) ≤ R Op)||(τγ(i) > R Op) then

Allocate resources via R Op = R Op − R(i).
Obtain tenant acquired QoE via
Q(R) =

R(i)
τh(i) .

Obtain resources utilization via Ui(R(i)).
Compute throughput via ηi = pR(i)pι(i).
Update Fη by including ith tenant.
Sv = save S Op(j).
Ψ List = ui(Q(R), Fη , Sv).

else
Check j + 1 ∈ S Op for tenant resource allocation.

else
Check j + 1 ∈ S Op against tenant QoE demand.
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Algorithm 3: Service and Flow Monitoring
Input: Tenant QoE (QRu ), serving network QoS (SQ(h,u) ), service operator list
(S Op), service profile (Ψ List).

Output: Updated Ψ List.
if (QRu > SQ(h,u) ) then

Ψ List = Ψ List − u(QRu , Fη , Sv).
ϕu = increase ϕu.
A List = A List + u(Qγ , Qh).
Compute Algo. 2.
Update P via (18).
Update τ via (19).

else
u ∈ Ψ List

4.3.2 Forecasted service demand monitoring

Inefficiency in the forecasting process might over-/under-

utilize the network resources, leading to inappropriate

tenant admission to the network. This would result in a

violation of the agreed QoS/QoE, due to poor network QoS

and tenant QoE [26]. Taking into account the above-

mentioned issue, a monitoring procedure is designed to

consistently monitor the forecasted and actual demand.

This keeps track of the number of violations such as

inefficient resource utilization, huge forecasting error or

variance, agreement violation and poor QoE. For future

forecasting optimization, QTFM provides feedback to the

forecasting model, DCA, to update forecasted estimates

using the penalty history function. This is symbolized as P
and obtained on tw, such as

PðnÞ ¼ exp
pðnÞP

u2U aðu;nÞ

� �
; ð18Þ

where n 2 N , pðnÞ ¼ 1 indicates the penalty due to QoE

violation on resource demand n of the uth tenant, otherwise

zero. The admission indicator a ¼ 1 for the uth tenant due

to the acquired resource n from the subscribed operator,

respectively. On the given number of penalties for resource

demand n, the forecasted demand will be updated for future

services. Equation (10) is updated by the forecasting

modifier, (denoted as P�) is defined as

f ð^̂sn;tÞ ¼
ŝt�1

2
þ 25 ŝt
1þ ŝ2t

þ 8 cos ð1:2 ðt � 1ÞÞ þ PðnÞ �ðnÞ ;

ð19Þ

where ŝt�1

2
þ 25ŝt

1þŝ2t
þ 8 cos ð1:2ðt � 1ÞÞ gives the estimates

for the Posterior probability distribution function. �n is the

noise covariance in the system for adjusting estimates

according to actual demand. Unlike the conservative set-

ting of the existing forecasting techniques (Holt-Winters,

Bayesian, and Monte Carlo), the penalty function dynam-

ically updates the system, where no agreed QoE and QoS

violation could occur. This is due to the adaptability of the

service and flow monitoring feature, which obtains the

effective demand from the forecasted information to

release inefficient resources for better utilization, permit-

ting the network operator to accommodate more users.

5 Performance evaluation measures

We define the evaluation parameters in this section. In the

context of evaluating the proposed framework, the chosen

performance metrics set out to be the assessment of

resources and network utilization, resource allocation

fairness among the tenants as well as their associated user

satisfaction level, as discussed in the following subsections.

The performance evaluation framework is aligned with the

existing work from the literature for comparison.

5.1 Resources utilization

To capture tenant admission by the vth network operator at

a given time t, au is introduced as a binary indicator that

takes the value 1 if the tenant is admitted to the network,

subject to the resources and service availability. Otherwise

the value of zero is taken. After successful admission to the

network, the nth resource assigned to the tenant u from the

service operator resource pool is defined as

Ru ¼ au Ru;n ; ð20Þ

where Ru � sh. Now the aggregate resources assigned to the

tenant set U is obtained from
X
u2U

au Ru;n �R Op : ð21Þ

Aggregate resources should not exceed the network

capacity. The uth tenant utility (symbolized as Uu) w.r.t. Ru

is computed by

UuðRuÞ ¼ a exq ; ð22Þ

where x is the difference between the achieved and desired

resources, q and a represent the utility function slope and
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utility function curve slope. Now, the virtual operator v

network utility can be given by

Uv ¼
X
u2U

Uu ðRuÞ : ð23Þ

Subsequently, on the basis of virtual network operator

utility, Uv, the mean network utility, represented as UNet on

set M and V can be obtained from

UNet ¼
1

MV

XM
i¼1

XV
j¼1

Uvij : ð24Þ

5.2 Resource allocation fairness

Maximum resource utilization as well as tenants’ acquired

throughput is crucial to attain the objective of revenue

maximization. Higher acquired throughput indicates a

higher fairness of resource allocation and better tenant QoE

on admission [47]. Admission control fairness, FA, is

obtained by

FA ¼
P

u2U au
� �2

U �
P

u2U ðauÞ
2
; ð25Þ

where a 2 f0; 1g subject to the availability of service and

resources by the subscribed operator v. Similarly, on

admission resource allocation is also a key factor to be

considered. This determines the acquired throughput on the

probability of resource utilization (pR) within the given

latency constraints (pi) at the massive number of tenant

demand, which is computed as:

gu ¼ pR pi : ð26Þ

Significantly, the fairness factor in resource allocation can

be achieved as follows:

F g ¼
P

u2U gu
� �2

U �
P

u2UðguÞ
2
: ð27Þ

6 Simulation results

A simulation model developed in MATLAB to evaluate the

performance of the proposed framework. A virtual network

is constructed with a set of varied system parameters to

support four distinguished services. The number of tenants

associated with the virtual network is considered to be U ¼
½5; 330� for a heterogeneous service provisioning. The

average number of users associated with the tenant u is

E½ui� ¼ 100, as considered in [26] and [27]. Significantly,

b ¼ ½10�2; 10�7�, i ¼ ½10; 200� ms, u ¼ ½1; 5�, sh ¼
½10; 100� MHz, and R Op ¼ 500 are the considered ranges

of tenant-service-specific packet loss, latency sensitivity,

priority, desired resource demand, and available operator

resources for each service belong to S, respectively. The
overall demand is normalized to 0 or 1 for simplicity.

Figures 5, 6, 7, 8, and 9 show the performance of the

proposed dynamic traffic forecasting and fuzzy-based

admission control in the context of user satisfaction level,

resource allocation fairness, and utilization gain. The

results are compared with existing schemes in the literature

and summarized in Table 3. We compare to mobile traffic

forecasting (MTF) [26], reinforcement learning (RL-NSB)

[27], online auction (ORAN) and greedy algorithm [48],

and bankruptcy game (BG) [49], based resource allocation

and admission control schemes.

6.1 Impact of forecasting

Demand forecasting is an essential part of traffic engi-

neering and network management. It helps the operator to

plan network and resource allocation to ensure better user

QoE and network QoS. Therefore, the proposed framework

admitting tenants to a corresponding network based on

their forecasted demand. The impact of forecasting on

tenant-acquired QoE, resource allocation, user satisfaction

level, and load distribution is illustrated in Figs. 5, 6 and 7

.

6.1.1 Tenant’s QoE and fairness

Figure 5 shows the proposed framework’s performance

concerning a tenant’s perceived QoE and resource alloca-

tion fairness for forecasted guaranteed resource bounds

(sc ¼ 0:8 and sh ¼ 1). It can be observed that the trend of

resource allocation fairness is more than 97% over the

entire range of U on sc and sh demand. Fairness of allo-

cation begins to rise with more tenant’s arrival onto the

network for the provisioning of their requested services.

This rise is due to resource allocation between their guar-

anteed and desired demand approximately close to their

actual demand originating by the forecasting modifier’s

convergence. Hence, the relative gain in acquired resource

allocation fairness by sc over sh is 0.5% at U ¼ 150. This

change in gain is noticeable in the case of a fully loaded

network to keep tenant admission rejection from the net-

work as low as possible. The proposed approach gives a

good estimation of future demand due to self-healing of the

forecasted demand by the continuous monitoring of

tenant’s QoE, and network’s QoS. Thus, efficient demand

forecasting and monitoring result in more appropriate

network selection and admission control for the tenants.

The achieved average QoE is also high at the beginning

of the acquired result. This is because tenants are acquiring
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resources for their forecasted demand at sh ¼ 1, which

might be greater than the actual demand obtained after

modification of the forecasted demand. The achieved QoE

begins to decline with an increase in the number of tenants.

However, it is over 99% on the entire range of U. This is

because tenants are acquiring resources between their

guaranteed and desired demand approximately close to

their actual demand to reduce the number of rejections and

improve fairness among tenants. The relative loss in the

QoE by sc over sh is 0.6% at U ¼ 150, which is noticeably
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low in the case of a fully loaded network to keep the

tenants’ admission rejection from the network as low as

possible. Hence, the proposed framework is slightly better

at managing a massive number of tenant’s demand,

because of the adaptability of the convergence to actual

demand. This framework achieves a higher QoE and fair-

ness of resource allocation on massive connectivity

demand.

6.1.2 User satisfaction level on forecasting

Monitoring of various parameters during service provi-

sioning is an added feature of the proposed framework that

can impact user satisfaction level. Figure 6 indicates the

user satisfaction of 300 tenants with approximately 100

users each. User satisfaction is computed by the accepted

user’s acquired QoE from guaranteed resource bounds

(sc ¼ 0:8 and sh ¼ 1) over the desired QoE and the average

of the total number of received requests. This user

satisfaction level reflects the proportion of the accepted

users on their desired QoE for service provisioning. The

achieved performance of the proposed framework is

superior compared to its counterparts that are ORAN and

greedy algorithms [48]. The relative gains of the proposed

framework at U ¼ 50 are 8% with ORAN, and 20% with

the greedy algorithm, respectively. The variance between

the gain increases when the tenants’ number and associated

users increase. The relative gains of the proposed frame-

work at U ¼ 300 are 25% with ORAN and 58% with the

greedy algorithm.

First, with fewer tenants and associated users arriving,

the acquired user satisfaction will be greater, because each

tenant’s user has access to their desired demand. However,

with an increase in the number of tenants and users, con-

gestion occurs. This situation can cause the network to

become inefficiently saturated, which leads to an increasing

number of user backing off from the service or being

rejected, as seen at U ¼ 300 in the case of ORAN and
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greedy approaches from [48]. However, the proposed

framework reduces rejection by provisioning services from

the optimal network within the guaranteed bounds close to

the tenant’s effective demand due to its QoS/QoE moni-

toring feature. The monitoring feature helps the efficient

distribution of traffic flow among the services of set S to

ensure efficient admission control and resource allocation.

In contrast, existing schemes have higher rejection rates

due to competition among users for limited desired

resources and adoption of the greedy approach. This defi-

ciency in the existing scheme results in the degradation of

user satisfaction and network resource utilization.

6.1.3 Traffic/load distribution across heterogeneous
services

A detailed analysis of the traffic distribution across

heterogeneous services belonging to set S is presented

here. Figure 7 illustrates the average network utilization

with and without the proposed demand forecasting and

admission control framework. The results are obtained on a

fully loaded network, for instance, if 300 tenants arrive on

the network. It can be observed that on admission without

forecasting, 4G and 5G networks are inefficiently saturated

with 100% network utilization. This network saturation

results in the tenant’s QoE dropping due to congestion and

more tenants being rejected or backing off from the service

network, whereas, in the 2G and 3G network, resources are

underutilized with 62%, and 66% network utilization,

respectively. In O-RAN enabled networks, these circum-

stances become costly for the network operator due to

under/over-utilized resources in the respective networks.

This increases not only the operational cost but also

reduces overall network performance and tenant acquired

QoE.

Network utilization achieved by the proposed frame-

work is superior to the legacy approach in heterogeneous

services provisioning from set S at more than 95%. The

proposed FAC framework minimizes the drawbacks of the

legacy approach by dynamically forecasting traffic demand

for tenants’ optimal admission through the fuzzy-logic-

based network selection. The fuzzy-logic approach helps

the efficient distribution of the traffic load based on the

demanded services and available capacity of various

heterogeneous networks. The proposed forecasting frame-

work’s self-organization feature ensures that the networks

do not saturate with 100% load. In congestion, the pro-

posed framework permits the tenant to accept resources

over guaranteed bounds close to network capacity. In this

way, each service will accept only relevant demand to

accommodate more tenants in the agreed QoE. In contrast,

without forecasting, traffic is randomly admitted by the

network on their desired demand and sensitivity, which

leads to congestion and over/under network utilization.

6.2 Impact of optimization and service
monitoring

Information about the tenants’ demand is crucial for fuzzy-

logic optimization. However, uncertainty in the tenant

forecasted demand can lead to inefficient admission. When

a tenant wishes to gain access to the network, the proposed

framework learns and leverages the information from the

tenants’ history to improve the efficiency of the demand

forecasting and admission control mechanism. These

improvements reduce network saturation and increase

network utilization, as shown in Figs. 8 and 9.

6.2.1 Priority-based supervised admission
with optimization

Figure 8 illustrates the performance of the proposed

framework concerning bandwidth utilization with varying

traffic demand and compared with schemes documented in

the existing literature. The gain is computed by the average

bandwidth utilization by the tenants on forecasted and

legacy demand as in [27]. The relative gains in bandwidth

utilization by the proposed framework are 81:43% and

72:22% on RL-NSB [27] and 94:69% and 92% on MTF

[26] at U ¼ 5. This utilization gain is by the proposed

forecasting modifier (P�) and admission priority factor (u).
P� optimizes the forecasted demand through fuzzy-logic-

based optimal network selection and service monitoring to

maximize resource utilization. u prioritizes tenant admis-

sion to the network after reviewing the tenant history to

earn more revenue through efficient resource utilization. In

addition, existing schemes admit users on their arrival on

the network according to their resource demand

forecasting.

It can be noticed that resource utilization is continuously

increasing as the number of tenants increases. Such as at

U ¼ 20 resource utilization by the proposed framework is

above 95%. Similarly, the achieved relative gains at U ¼
20 with P� and � are 3% and 2% with RL-NSB, and 55%

and 54% with MTF, respectively. As the existing schemes

admit the users on their demand forecasting only, it takes

time to converge to an optimal solution and improve the

admission process. Therefore, existing schemes show less

utilization at the beginning and converge to higher uti-

lization as the number of tenants and processing time

increases. However, in the proposed approach, with fewer

tenants arriving, the resources are allocated over the

tenants’ expected QoE bounds, and the remaining resour-

ces will be placed in the pool to be used by other operators

for providing services to their associated tenants. This
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provides the operator with an incentive to lease as many

resources as possible to earn more revenue corresponding

to resource utilization. In the case of congestion, through

negotiation, tenants are accommodated at their guaranteed

demand to minimize rejection or backing-off from the

network. The proposed admission control and resource

allocation mechanism are efficient for forecasted demand,

due to the priority factor and self-organized forecasting

mechanism. This yields better performance in terms of

resource utilization and acquired QoE.

6.2.2 Resource allocation with optimization

For optimal network selection, the fitness function and its

relationship with the data are the keys to optimization. This

determines the appropriate network for the tenant and fair

resource distribution among tenants in the network. Fig-

ure 9 illustrates the fairness of resource allocation on U ¼
½315; 330� tenants, with 100 users each, across various

approaches. The results achieved are compared with the

work in [49]. In the proposed admission scheme, fairness is

computed as the tenants’ acquired average throughput on

the given load, whereby each user shares the same pro-

portion in terms of resource utilization and acquired QoE.

The result indicates that the proposed QoE-based admis-

sion scheme acquires efficient allocation with a fairness

index of approximately 1 compared to the bankruptcy

game allocation scheme with its fairness index floating

around 0.99. This is because in bankruptcy game scheme,

users randomly form coalitions for network admission and

resource allocation. This leads to more users rejections due

to competition on limited resources and congestion gen-

erated by inefficient admission control. The relative gain in

fairness by the proposed framework is 0:6% and 0:65% at

U ¼ 315 and U ¼ 330. The rise in gain is low but

noticeable on the entire range of U. This gain is achieved

on the availability of optimal network solutions and multi-

variate priority feature for tenant’s admission and resource

allocation, which is obtained via fuzzy-logic-based net-

work selection in the proposed framework. It helps to

accommodate as many tenants as possible along with

guaranteed resource allocation, to claim a lower number of

tenants rejection or back-off from the network. Thus,

efficient admission control and resource allocation lead to

network utilization being maximized, as well as fairness

among tenants, as summarized in Table 3.

7 Conclusion

In this paper, we proposed a dynamic traffic forecasting

and admission control framework for a federated open

radio access network (O-RAN). In this framework, a three-

stage approach, namely demand and capacity analyzer,

network selection and configuration, and QoS/QoE and

traffic flow management have been proposed. This frame-

work predicts the future traffic demand for the optimal

network selection among multiple heterogeneous access

networks and resource management to ensure better tenant

QoE and O-RAN network utilization. The considered

demand characteristics are bandwidth, latency sensitivity,

quality of service demand, service priority type, and packet

loss ratio. In this work, a fuzzy-logic-based network

selection scheme with a multi-variate admission priority

feature is introduced for optimal admission control and

service allocation to the tenants. Moreover, a QoS/QoE-

based service monitoring approach is also presented to

update the demand via a forecasting modifier to allocate

resources approximately closer to the tenant’s actual

demand, which improves overall network QoS and tenant

QoE. The proposed framework outperforms the existing

legacy approaches in terms of enhanced tenant QoE and

fairness of resource allocation, efficient network utiliza-

tion, and better user satisfaction levels for various hetero-

geneous services of future wireless networks. For future

work, we aim to enhance the framework with signaling

optimization on homogeneous user-application-specific

characteristics for service provisioning of complex net-

works of the future.
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