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Abstract Micro-structural analyses are an important tool
to understand material behavior on a macroscopic scale. The
analysis of a microstructure is usually computationally very
demanding and there are several reduced order modeling
techniques available in literature to limit the computational
costs of repetitive analyses of a single representative volume
element. These techniques to speed up the integration at the
micro-scale can be roughly divided into two classes;methods
interpolating the integrand and cubaturemethods. The empir-
ical interpolation method (high-performance reduced order
modeling) and the empirical cubature method are assessed
in terms of their accuracy in approximating the full-order
result. A micro-structural volume element is therefore con-
sidered, subjected to four load-cases, including cyclic and
path-dependent loading. The differences in approximating
the micro- and macroscopic quantities of interest are high-
lighted, e.g. micro-fluctuations and stresses. Algorithmic
speed-ups for both methods with respect to the full-order
micro-structural model are quantified. The pros and cons of
both classes are thereby clearly identified.
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1 Introduction

In recent years the use of composite or multi-phase, high
performance steels and hybrid materials in advanced struc-
tures has increased significantly. Due to the ability to tailor
their mechanical properties, these materials are applied
in high-tech systems and structures where optimal mate-
rial properties such as a high strength to weight ratio are
essential. To achieve these excellent properties, the under-
lying microstructures in these heterogeneous materials tend
to become increasingly complex, with strongly non-linear
behavior of the constituents.

As a consequence, the material testing procedures have
become intricate, time-consuming and expensive. The num-
ber of required experiments can be reduced drastically by
reliable modeling of the material behavior. Computational
homogenization is one of the most accurate modeling tech-
niques currently available to analyze and design the material
behavior of heterogeneous materials on a structural scale.
Microstructures of heterogeneous materials can be mod-
eled adequately, but it remains a computationally demanding
problem when applied on materials with a large scale sepa-
ration between the structural dimensions and the dimensions
of the material heterogeneities.

The early concepts of computational homogenization
were introduced by Suquet [1] and extended and refined by
several authors over the years, e.g. Renard and Marmonier
[2], Guedes and Kikuchi [3] and Terada and Kikuchi [4].
The framework captures the behavior on the macroscopic
scale by solving a boundary value problem on a represen-
tative volume element of the microstructure of the material.
Smit et al. [5] adapted the framework to account for large
deformations and rotations. Miehe et al. [6] combined this
framework with a crystal plasticity material model to study
texture development in polycrystalline metals. By means
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of a volume averaging technique, the homogenized rela-
tions between stress, stiffness and strain can be found [7].
Feyel and Chaboche modeled a SiC/Ti composite mate-
rial using computational homogenization in [8], where the
term FE2 was coined for the first time. A second-order
computational homogenization framework which inherently
accounts for the size of the microscale model was proposed
by Kouznetsova et al. [9]. More recently, computational
homogenization has been used in various fields to analyze
the material behavior, such as acoustics [10], composites
[11] among many other fields. A detailed overview of the
advances in computational homogenization is presented by
Geers et al. [12] and Matouš et al. [13].

The common denominator in the aforementioned models
is that the material behavior on the macroscale is obtained
from a detailed model of the microstructure of the material.
When themicroscopicmodel is sufficiently large anddetailed
to accurately capture the homogenized behavior of the mate-
rial it is referred to as a representative volume element (RVE).
In solving a macroscopic problem one can use the compu-
tationally homogenized model of the representative volume
element or in materials design analysis one can use the RVE
to analyze the resulting macroscopic response of different
microstructures. This requires the same microscopic RVE
problem to be resolved numerous times for different load-
cases.

One approach to decrease the required computation time
is to increase the efficiency of solving the microscopic sys-
tem of equations, Michel et al. [14] used a Fast-Fourier
Transform to reduce the computational costs of solving a
stress-controlled microscopic problem. Another approach is
to reduce the number of unknowns of themicroscopicmodel.
This can be achieved by using a more suitable global basis
to solve the problem as done using a classical Rayleigh-Ritz
technique [15].

This reduced order modeling technique was originally
proposed in the late 70’s begin 80’s with Almroth et al. and
Noor et al. [16,17]. The global basis is generated a-priori
from a local basis using Proper Orthogonal Decomposi-
tion (POD) [18] going back to the works of Pearson [19]
and Schmidt [20]. Variants to this technique are known as
principle component analysis (PCA) [21], Karhunen–Loève
transform (KLT) [22,23], proper orthogonal eigenfunctions
[24], factor analysis [25] and total least squares [26]. The
procedure of finding the global basis is strongly related to
the singular value decomposition [26].

The number of global basis functions required to cap-
ture the solution accurately is typically orders of magnitude
smaller than the number of local basis functions used in clas-
sical discretization techniques such as the Finite Element
Method. Rewriting the problem onto the global basis reduces
the size of the algebraic system of equations that needs to
be resolved at every iteration. A detailed overview of the

advances in reduced order modeling is presented in [27] and
[28].

As pointed out by Rathinam and Petzold [29] the reduc-
tion of the number of degrees of freedomdoes not necessarily
result in a reduction of the computational costs as the inte-
gration of the nonlinear terms in the model is not tackled by
the reduced basis approach. To resolve the high computa-
tional costs of evaluating the nonlinear integrand, a number
of methods have been proposed, such as Proper Generalized
Decomposition [30], which reduces the costs through sepa-
ration of variables. Transformation Field Analysis is another
semi-analytical approach, introduced by Dvorak [31], in
which the computational costs of the FE2 scheme are reduced
by assuming constant plastic strain fields. The method was
later extended byMichel and Suquet [32] to account for non-
uniform plastic strain fields. As pointed out by Hernández et
al. [33], hyper-reduction techniques can be divided into two
categories; (1) models reducing the costs by interpolation
of the nonlinear terms, i.e. Empirical Interpolation Methods
(EIM) and (2) models reducing the costs of the integration
scheme, minimizing the number of evaluations of the non-
linear term required, i.e. Cubature Methods.

Empirical interpolation of the nonlinear stress is done
by projecting locally sampled values, also known as gappy
data, onto a basis for the nonlinear term. The reconstruc-
tion of gappy data using modes is pioneered by Everson
and Sirovich [34] from which several techniques originated
such as the Empirical Interpolation Method [35], and later
the Best Point Interpolation Method (BPIM) [36], Missing
Point Estimation (MPE) [37], Discrete Empirical Interpola-
tion Method (DEIM) [38]. A comparison between different
interpolating methods is given by Soldner et al. [39]. This
review considers a geometrically non-linear hyper-elastic
RVE which is reduced using three hyper-reduction methods,
namely Discrete Empirical Interpolation Method (DEIM),
Gappy-POD andGauss-Newtonwith Approximated Tensors
(GNAT). The focus of the review by Soldner et al. lies on the
robustness of the methods.

On the other hand, cubature methods reduce the cost of
the integration of the nonlinear integrand by using a reduced
set of integration points (or elements) with weights that
minimize the integration error. The first cubature method
was proposed by An et al. [40] and later Farhat et al. [41]
introduced the Energy-Conserving Sampling and Weighting
(ECSW) hyper reduction method in the field of computational
mechanics.

This paper studies the accuracy and efficiency of hyper-
reduction techniques in the context ofmicrostructural volume
element analysis. To this purpose, a detailed comparison will
be made between the Empirical Interpolation Method on the
one hand and the Cubature Method on the other hand. We
will compare two specific implementations of these meth-
ods, namely the High-Performance Reduced Order Model-
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Fig. 1 Outline of the macro-
and microscopic problem
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ing technique (HP-ROM) [42] and the Empirical Cubature
Method [33], respectively.Both implementations are selected
for their capability to handle the singularities arising when
hyper-reduction techniques are applied to microstructural
models loaded through macroscopic prescribed fields.

In this comparison emphasis is given on the reduc-
tion of the computational costs of evaluating the nonlin-
ear stress, the efficiency in terms of computational time
and accuracy in resolving the RVE problem. In partic-
ular, this comparison will focus on the path-dependency
originating from the elasto-viscoplastic material behav-
ior.

The paper is organized as follows. In Sect. 2, a small-
strain computational homogenization procedure is outlined,
after which the standard Reduced Order Modeling approach
is introduced in Sect. 3. In Sect. 4 the two classes of hyper-
reduction will be explained briefly. The core of this paper
is the evaluation of different hyper-reduction methods to
resolve the expensive computation of the stress field, as
presented in Sect. 5. The conclusions will be presented in
Sect. 6.

2 Computational homogenization

In this section, the two-scale computational homogeniza-
tion procedure will be outlined briefly. In the computational
homogenization framework a high-fidelity problem at the
macroscopic length scale lM involving microscopic details
with a characteristic length scale lm � lM is decomposed
into two boundary value problems at separate scales, as
schematically depicted in Fig. 1. By decomposing the prob-
lem into a micro- and macroscale problem, the numerical
costs of solving the full-scale problem are reduced drasti-
cally.

At the macroscale, where the variables and fields are
denoted by subscript M, the constitutive behavior is derived
from the homogenized response of a Representative Volume
Element living at the microscale. Computational homog-
enization is easily formulated as a deformation driven
problem, i.e. the RVE is loaded with a deformation tensor
from a macroscopic point, where the resulting stress ten-
sor is required. Using a Hill–Mandel based homogenization
procedure, the macroscopic stress can be derived from the
microscopic stress-field of the RVE. The macroscale prob-
lem, themicroscale problemand the couplingwill be outlined
subsequently.

2.1 Macroscale problem

The macroscopic problem is defined as a material body VM

which consist of a heterogeneous material with a particular
microstructure. A material point at the macroscopic scale is
described by its position vector X(t). The position vector on
the reference configuration at time t = 0 is denoted as X0.
In a small-strain framework the motion of a material point
over time can be described by

X = X0 + u (1)

in which u = u(X0, t) is the displacement vector. Assuming
small-strain kinematics, the strain at the macroscale, εM =
εM(X0, t) is then defined as

εM = ∇su (2)

Static equilibrium at the macroscale implies

∇ · σM + b = 0 (3)
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where the stress tensor σM(εM, ξ) depends on the strain ten-
sor εM and the history parameters ξ . The body forces are
denoted by b. The macroscopic stress σM is obtained from
the RVE problem through the micro-macroscale transition.

2.2 Microscale problem

To characterize the microstructure of the material a Rep-
resentative Volume Element Vm is defined. The position
of a material point in the RVE over time is described by
x(t). The reference configuration at t = 0 is denoted by
x0. The displacement of a material point over time is a
superposition of the displacement induced by the macro-
scopic deformation εM · x0 and the microscopic fluctuation
w = w(x0, t),

x(t) = x0 + εM · x0 + w(x0, t) in Vm (4)

The microscopic strain εm is then given by

εm = εM + ∇sw in Vm (5)

The influence of the body forces is assumed to be negligible
at this scale, such that the linear momentum balance of the
RVE simplifies to

∇ · σm = 0 in Vm (6)

where σm = σm(εm, ξ) is the microscopic Cauchy stress
and ξ are the history variables required for the constitutive
relation.

2.3 Coupling of the scales

The homogenization is based on two principles. The first
principle is the volume average of the stress or the strain,
which shouldmatch themacroscopic strain and stress respec-
tively.

εM = 1

|Vm|
∫
Vm

εm dVm

The secondprinciple is theHill–Mandel condition [43]which
prescribes that the virtual work performed per unit volume
at the macroscale should equal the volume average of the
virtual work at the microscale.

σM : δεM = 1

|Vm|
∫
Vm

σm : δεm dVm

It has been shown that periodic boundary conditions on the
microfluctuation fieldw+ = w− complywith these homoge-

nization equations. To discriminate rigid body displacements
and rotations, themicrofluctuations on the corners of theRVE
Sm are constrained by w = 0. The macroscopic stress σM is
then given by volume averaging the microscopic stress σm
and the macroscopic tangent stiffness can be deduced using,
for example, direct condensation [44].

2.4 Spatial discretization

Both the macroscopic and microscopic problems, Eqs. (3)
and (6) can be put in the weak form by following the
Bubnov–Galerkin approach. Integrating these equationswith
test-functions φM(X0) and φm(x0) respectively and applica-
tion of the divergence theorem, yields:

∫
VM

∇sφM : σM(εM) dVM =
∫
SM

φM · t dSM for all φM

(7)∫
Vm

∇sφm : σm(x, ξ) dVm = 0 for all φm

(8)

Both the macro- and microscopic domain are discretized
using standard, Lagrangian finite elements. The discretiza-
tion introduces interpolation functions Ni (X0), and nodes
for i = 1, . . . , nd

M at the macroscale and N j (x0) for j =
1, . . . , nd

m at the microscale. Here, nd
M and nd

m denote the
number of nodes and thereby implicitly define the number of
unknowns.

The trial functions φM(X0) and φm(x0) are approxi-
mated by their discrete counterparts φM(X0) ≈ φh

M(X0),
φm(x0) ≈ φh

m(x0). A similar approximation is used for the
displacement-field u(X0) ≈ uh(X0) and the microfluctua-
tion field w(x0) ≈ wh(x0).

φh
M(X0) =

∑
i

φMiNi (X0) uh(X0, t) =
∑

j

u j (t)N j (X0)

φh
m(x0) =

∑
i

φmiNi (x0) wh(x0, t) =
∑

j

w j (t)N j (x0)

where wh(x0) is constrained using periodic boundary con-
ditions on the RVE’s boundary and vanishing at the corners.
The macroscopic problem takes conventional boundary con-
ditions, e.g. displacements uh = u∗ or tractions σM ·n = t∗.
The Newton-Raphson method is used to solve the resulting
equilibrium Eqs. (7) and (8).

2.5 Computational size and cost of the problem

Applying computational homogenization to a high-fidelity
problem with ample microscopic details entails a significant
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increase of the required time and computational resources.
Despite the reductions achieved by the homogenization pro-
cedures, the size of the macroscopic problem that can be
computed within a feasible amount of time and compu-
tational resources is still limited for RVEs with nonlinear
constituents.

The term FE2 by Chaboche illustrates the computational
difficulty of the homogenization problem. An RVE needs to
be resolved in every integration point at the macroscale. The
amount of iterations required to solve themomentumbalance
on the macro- and the microscale is denoted by nit

M and nit
m

respectively. The number of Degrees of Freedom (DOF) on
the macro- and the microscale are denoted by nd

M and nd
m

respectively. For a nonlinear RVE, the required amount of
floating point operations (FLOPs) to solve the matrix-vector
equations are given by

#flopLA ∝ O
(

nit
M

)
× O

(
nd
M log(nd

M)
)

+ O (ng
M

)× O
(

nit
M

)
× O

(
nit
m

)
× O

(
nd
m log(nd

m)
)

in which #flopLA is the number of required FLOPs to solve the
matrix-vector systems in the homogenization problem.

The same scaling relation of the number of floating point
operations holds for the number of evaluations of the ordi-
nary differential equation in thematerialmodel. The ordinary
differential equation in the material model has to be solved
in every integration point at the microscale. The number of
integration points on the macro- and microscale are denoted
by ng

M and ng
m respectively. The number of FLOPs associ-

ated with solving the material model is proportional to the
number of integration points and iterations

#flopmat ∝ O
(

nit
M

)
× O (ng

M

)× O
(

nit
m

)
× O (ng

m
)

in which #flopmat is the number of required FLOPs to solve
the material models used in the RVE. The total number of
calculations is then given by

#flop ∝ #flopLA + #flopmat

The computational costs associatedwith FE2 problems are
quantitatively illustrated using a straightforward example.
Let’s consider a micro-structural element that is discretized
with a grid of 100 × 100 quadrilateral elements with 4
integration points per element, yielding ng

m ≈ 40000 and
nd ≈ 80000. When the macroscopic problem is of the same
dimension and an assumed average of 4 iterations in the
Newton-Raphson procedures, the number of FLOPs per time
increment required to solve the matrix-vector systems #flopLA
is in the order ofO (1011) and the number of FLOPs associ-

ated with solving the nonlinear material model #flopmat is in the
order of O (1010).

3 Reduced order modeling

As shown in the previous section, the computational cost
of the homogenization scales with the number of DOFs nd

M
and nd

m and the number of integration points ng
M and ng

m. By
reducing the amount of DOFs of the RVE problem, the costs
of solving the matrix-vector equations in the computational
homogenization problem will decrease proportionally.

Using a reduced basis, the finite element discretization
is mapped onto a global basis. In most physical problems
this yields a significant reduction of the required number of
DOFs nd

m since the problemwill have considerably less phys-
ical modes for the kinematics then the number of local basis
functions required to capture all the local features. Reduced
Order Modeling using the Reduced Basis technique is out-
lined in Sect. 3.1.

After the reduction of the number of DOFs the number
of integration points ng

m is still equivalent to the origi-
nal problem. The reduction of the integral is done using
High-Performance Reduced Order Modeling or Empirical
Cubature, outlined in Sect. 4.

3.1 Reduced basis approach

The number of DOFs nd scales with the spatial resolution of
the mesh. The number of kinematic modes nw present in the
RVE is independent of the spatial resolution.Moreover,many
modes have a negligible contribution. When discretizing the
RVE, without prior knowledge, the number of DOFs used
to accurately capture these kinematics is relatively high with
respect to the relevant number of relevant modes.

If there is prior knowledge of the kinematics occur-
ring in the RVE, it is possible to construct a basis that
captures the kinematics more efficiently with a limited num-
ber of DOFs. Since Computational Homogenization often
involves repetitive calculations of an RVE, it calls for an
additional optimization step. The extra computational costs
for identifying a Reduced Basis for the problem are jus-
tified by the higher costs for solving the RVE multiple
times.

To find a more optimal basis for the microscale prob-
lem, prior knowledge of the relevant kinematics needs to
be obtained. This is done by repetitively solving the RVE-
problem under different macroscopic strains εi

M(t j ) for i =
1, . . . , n� and j = 1, . . . , nt to gather a database with snap-
shots of the occurring microfluctuation fields. Here, each
separate time-step of each load-case is considered as a snap-
shot, which is numbered as k. In total there are ns = n� · nt
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snapshots of the microfluctuation field. The snapshot of the
microfluctuation field wh

k (x0) is then expressed by

wh
k (x0) = wklNl(x0) for k = 1, . . . , ns, l = 1, . . . , nd

(9)

Equation (9) can be rewritten as a matrix-vector equation
where the snapshots are collected in the so-called snapshot-

matrix X ∈ R
ns×nd in which X

∣∣∣
kl

= wkl .

An orthonormal basis is derived from the snapshot matrix
X using the Proper Orthogonal Decomposition (POD).
This mathematical procedure provides the most optimal
basis (in the least-square sense) to represent the snapshots
in combination with their corresponding eigenvalue λi

1.
The eigenvalues denote the energy-content of their corre-
sponding eigenmodes vi in representing the modes of the
DOF.

Based on their eigenvalues the most important modes can
be selected to construct a Reduced Basis for the microscale
problem. The eigenvalues and their corresponding eigenvec-
tors are sorted in descending order, allowing to construct the
basis from the first nw eigenvectors. The required number
of modes to capture the snapshot up to a given tolerance
δ ∈ [0, 1] is found by increasing nw until the following rela-
tion holds2

1 −
∑nw

i=1 λi∑ns
i=1 λi

≤ δ (10)

The Proper Orthogonal Decomposition is outlined schemat-
ically in Fig. 2.

3.2 Construction of the reduced order model

After determining the number of required modes V =
[v1, v2, . . . , vnw ] the reduced basis functions Rl(x0) can be
constructed as a linear combination of the traditional basis
functionsNm(x0) using themodes vl resulting from thePOD.

Rl(x0) =
∑

m

VlmNm(x0) (11)

Using a Galerkin approach for discretizing the reduced sys-
tem, the test and trial functions are discretized using the
reduced basis

1 Note that the singular values σi resulting from singular value decom-
position (SVD) are related to the eigenvalues of the proper orthogonal
decomposition via σi = √

λi
2 This relation holds only for fluctuation fields that are present in the
snapshot matrix.

φh(x0, t) =
∑

i

Φi (t)Ri (x0)

wh(x0, t) =
∑

j

W j (t)R j (x0)

which Φ j and Wi are the reduced test and microfluctuation
coefficients. Substituting the reduced functions into the weak
formulation of the microscopic momentum balance (8) the
following reduced internal force f̄ int is found

f̄ inti (wh) = −
∫
Vm

∇sRi (x0) : σm(εM, W , ξ) dVm (12)

= −Vil

∫
Vm

∇sNl(x0) : σm(εM, W , ξ) dVm (13)

with i = 1, . . . , nw andW the reduced vectorwith unknowns
[W1, W2, . . . , Wnw ]T used to discretize the microfluctuation
field. The number of modes nw is often orders of magnitude
smaller than the number of DOFs nd. The linear momentum
balance is solved using the same Newton-Raphson proce-
dure for the microscale problem. The computational costs
for solving the system of equations scales proportionally to
the number of microfluctuation modes nw.

#flopLA ∝ O
(

nit
M

)
× O

(
nd
M log(nd

M)
)

+ O (ng
M

)× O
(

nit
M

)
× O

(
nit
m

)
× O (nw log(nw)

)

After reducing the number of microfluctuation DOFs, the
computational costs for solving the RVE problem are deter-
mined by the solution of the material-model. Due to the
nonlinear character of the internal force, the integral in equa-
tion (13) can not be precomputed. This procedure remains
computationally expensive since the material model needs to
be resolved on each integration point to compute the integral
of the internal force.

4 High-performance reduced order modeling

In this section two approaches to reduce the costs of evalu-
ating the nonlinear internal force are reviewed:

1. The Empirical Interpolation Method (EIM) [42] projects
the nonlinear termonto a reduced basis for the stress field.
The stress field is approximated by the reduced modal
basis, enabling pre-computation of the integral.

2. Alternatively, the integration scheme can be reduced
directly. This approach is known in literature as Energy-
Conserving Sampling and Weighting (ECSW) hyper
reduction method or Empirical Cubature Method (ECM)
[33]. The integration costs are reduced by using a prese-
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Fig. 2 Outline of the proper
orthogonal decomposition

X =

V =

Proper Orthogonal Decomposition

Mode Selection

+
λi

i

lected subset of sampling points and assigning a positive
weighting factor to them.

4.1 Empirical interpolation method

In the Empirical Interpolation Method, the stress field
is approximated by interpolating between weighted stress
modes Ψ j (x0) dependent on the microscopic coordinates,
which are scaled by the coefficientsC j (εM, ξ) that depend on
the macroscopic deformation εM and material point history
ξ . The advantage of introducing modes for the stress-field is
that the integration of these modes can be performed in the
off-line stage since the interpolating coefficients no longer
have a spatial dependency.

Theweighted strainmodesΦk(xg) are constructed by tak-
ing the symmetric gradient of the micro-fluctuation modes
weighted by the square-root of the integrationweight (includ-
ing the Jacobian). The weighted stress modes μk(xg) are
obtained from the square-root weighted stress snapshot
matrix X

σ
. The orthogonal weighted stress-basis can be

obtained by applying a standard POD procedure on the vec-
torized components of the sampled stresses or by using a
tensorial decomposition such as the procedure outlined by
Roussette et al. [45].

Φk(xg) = √
wg∇sRk(xg) (14)

Ψ k(xg) = μk(xg) (15)

The square-root weighted stress and strain can be approxi-
mated as

√
wgεm(xg) ≈

∑
i

Φ i (xg)Wi (16)

√
wgσm(xg, ξ , εM) ≈

∑
j

Ψ j (xg)C
j (εM, ξ) (17)

Substituting the stress basis (14) into the reduced ordermodel
(12) after applying Gaussian quadrature to calculate the inte-
gral leads to the following expressions for the internal force
vector.

f̄ inti (wh) = −
ng∑

g=1

Φ i (xg)Ψ
j (xg) C j (εM, ξ) (18)

The modal coefficients C j (εM, ξ) are to still be determined
for the current strain state. The stress modes are weighted by
selecting a set of integration points as sampling points and
applying a Least-Square fitting such that the error between
these points and the approximated stresses will beminimized
in the Least-Squares sense.

4.1.1 Reformulation of the ill-posed stress–strain problem

The stress- and strain basis are composed out of stress- and
strain-fields resulting from the converged linear momentum
balance (8). This leads to an ill-posed system of equations
since the reduced linear momentum balance (18) constructed
using the modal bases for the stress- and strain fields is in
equilibrium regardless of the coefficients Cσ , as stated in
[42].

In order to solve this problem, the Expanded Basis
Approach (EBA) is applied,where the stress-basisΨ and cor-
responding coefficients Cσ are enriched with the weighted
strain basis Φ and corresponding (inadmissible) coefficients
Cε, such that the basis does not satisfy equilibrium indepen-
dently of the coefficients Cσ .

Ψ ex = Ψ ⊕ Φ (19)
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By rewriting the strains and stresses in Voigt notation,
the tensorial bases Ψ and Φ are reformatted into the matrix
formats Ψ andΦ respectively. An example of this procedure
is illustrated for a set of two-dimensional strain modes:

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(x1)|xx Φ2(x1)|xx . . . Φnw(x1)|xx

Φ1(x1)|yy Φ2(x1)|yy . . . Φnw(x1)|yy

2Φ1(x1)|xy 2Φ2(x1)|xy . . . 2Φnw(x1)|xy

Φ1(x2)|xx Φ2(x2)|xx . . . Φnw(x2)|xx
...

...
...

2Φ1(xng)|xy 2Φ2(xng)|xy . . . 2Φnw(xng)|xy

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

The gappy stress basis Ψ̂ is formed by selecting all the rows
corresponding to the selected integration points xg for g ∈ I
where I is the set with selected integration point indices.

The coefficients for the expanded basis (19) C =
[CT

σ , CT
ε ]T are identified from a set of n̂g � ng sampled

gappy stresses in Voigt notation σ̂ to approximate the stress
in the Least-Squares sense using:

(
Cσ

Cε

)
=
[

Ψ̂
T
Ψ̂ Ψ̂

T
Φ̂

Φ̂
T
Ψ̂ Φ̂

T
Φ̂

]

︸ ︷︷ ︸
M̂

−1 [
Ψ̂

T

Φ̂
T

]
σ̂ (20)

Using the Schur complement, the coefficients C can be
expressed by

Cσ = Ψ̂
†
(
σ̂ − Φ̂Cε

)
(21)

Cε = S−1Φ̂
T
(

I − Ψ̂ Ψ̂
†
)

σ̂ (22)

in which the matrix Ψ̂
†
is the pseudo-inverse of the gappy-

stress basis matrix and S is Schur’s complement matrix
defined by

Ψ̂
† =

(
Ψ̂

T
Ψ̂
)−1

Ψ̂ (23)

S = Φ̂
T
(

I − Ψ̂ Ψ̂
†
)

(24)

Matrix S is invertible since the sampled stressed are chosen

such that Ψ̂ ex is of full rank. The problem can be rewritten
into finding a solution for which the inadmissible coefficients
vanish, i.e. Cε = 0, such that the stress solution is interpo-
lated using only stress basis vectors in equilibrium. Since S
is non-singular, as shown by [42], the coefficients can only
be 0 when the following holds:

Φ̂
T
(

I − Ψ̂ Ψ̂
†
)

︸ ︷︷ ︸
Φ∗

σ̂ (W , εM) = 0 (25)

This form of the problem is referred to as the hyper-reduced
problem [42].

4.1.2 Gappy point selection

To complete the hyper-reduced model a set of integration
points xg for which g ∈ I suitable for the Empirical Interpo-
lation of the stress field is chosen. This is done by using the
snapshots of the stress field as samples to find a set of integra-
tion points that yield a good approximation of the complete
stress-field. It is computationally intractable to evaluate the
approximative qualities of the subset of integration points
for all

(ng
n̂g
)
possible combinations. Therefore the sub-optimal

Greedy algorithm is applied to find a set of integration points
which has a good interpolating quality for the snapshot data
[42].

To improve the stability of the system of equations, the
selected points are complemented with a second set of points
selected from the remaining integration points. These points
are selected using the Greedy algorithm using a criterion that
aims at optimizing the conditioning of the resulting reduced
tangent stiffness matrix.

Accuracy points Hernández et al. [42] select the integration
points based onminimizing the error between the stress snap-
shots σ j and the interpolated stress σ ∗

j (Ψ, I) constructed
using the subset of integration points xg with g ∈ I. The
error in the stress approximation is given by

ε(Ψ, I) =
√√√√ ns∑

j=1

‖σ j − σ ∗
j (Ψ, I)‖2 (26)

which is split up by Hernández et al. [42] into a truncation
error that represents the error introduced due to the use of
a reduced stress basis and a reconstruction error εrec. The
reconstruction error measures the error introduced by the
Least-Squares fit of the stresses onto the modal basis, which
is given by

εrec = 1

|Vm| ‖Ψ Ψ TX − R(I)XI‖F (27)

This error measure is used to select the integration points that
are best suited for an accurate stress interpolation.

Stability points Hernández reported that using integration
points that are only selected on the basis of accuracy, pro-
vides a system of equations that is not unconditionally stable.
Therefore, the set of selected integration points needs to be
complementedwith a set of extra points to ensure the stability
of the system. The same Greedy selection procedure is used
with a criterion that aims to optimize the positive-definiteness
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of the tangent stiffness matrix. To ensure maximum stability,
the criterion given in [42] that needs to be minimized reads

cond(K ) ∝ ‖R̂Φ̂‖F
‖(I − R̂)Φ̂‖F

(28)

This yields a second set of integration points in favor of the
stability of the Empirical Stress Interpolation.

4.1.3 Reconstruction of the reduced stress field

The resulting weighted stress field in the RVE is given by
the Empirical Interpolation (17). The coefficients Cσ can be
found using the expression (21) by substituting Cε = 0.

σ(xg, t) = Ψ Ψ̂
†

︸ ︷︷ ︸
R

σ̂ (x̂g, t). (29)

where R is referred to as the weighted reconstruction matrix.
To reconstruct the macroscopic stress, the reconstructed

stress-field σm(xg, t) has to be integrated over the RVE and
volume averaged. The relation between the gappy-stress and
the macroscopic stress is then given by the following linear
operator:

T = 1

|Vm|
[√

w1 I ,
√

w2 I , . . .
√

w
g
n I

]
R (30)

which projects the gappy stresses σ̂ onto the macroscopic
stress σM = T σ̂ .

4.2 Empirical cubature method

Instead of approximating the stress field using a Proper
Orthogonal Basis constructed from the stress snapshots, the
expensive integral of the internal forces can be approximated
using the Empirical Cubature Method.

For a polynomial FEM basis one can construct an
exact quadrature scheme. This classical Gaussian quadra-
ture scheme approximates the integral summing up weighted
samples of the integrand at specific points, the Gauss inte-
gration points

f inti =
∫
Vm

∇sN(x) : σ(x) dVm ≈
ng∑

g=1

wg∇sN(xg) : σ(xg)

(31)

wherewg denote theGaussian quadrature weights (including
the determinant of the Jacobian).

When rewriting the problem using the reduced-order basis
to (12) one can imagine that it is possible to reduce the inte-
gration as well since the number of unknowns describing the
integrand has decreased drastically. The underlying idea of
the reduced integration is to select a subset of integration
points and appoint a (positive) weight to them such that they
approximate the integral as accurately as possible. This con-
cept is demonstrated in [33,40,41].

The method will be outlined briefly in two steps. First the
determination of the integrationweights is discussed; next the
selection procedure for the integration points is presented.

4.2.1 Determining the integration weights

To determine the weights, the internal force contributions at
each integration point f p

i (xg) under snapshot p = 1, . . . , ns

resulting from each modal virtual strain ∇sRi (xg) for i =
1, . . . , nw are considered. The modal internal force contri-
butions for each snapshot are collected in a snapshot matrix
X

f
∈ R

ng×nw ·ns .

X
f

=

⎡
⎢⎢⎢⎣

f 11 (x1) . . . f 1nw(x1) f 21 (x1) . . . f ns
nw(x1)

f 11 (x2) . . . f 1nw(x2) f 21 (x1) . . . f ns
nw(x2)

...
...

...
...

f 11 (xng) . . . f 1nw(xng) f 21 (xng) . . . f ns
nw(xng)

⎤
⎥⎥⎥⎦

(32)

furthermore the resulting integrals are collected in the right-
hand side vector b = [F1

1 , . . . ,F1
nw ,F2

1 , . . . ,Fns
nw ]T in

which F j
i = ∫

Vm
f j
i (x) dVm. The integration error for a

selected subset of integration pointsG ⊂ {1, 2, . . . , ng}using
the associated integration weights αi for i ∈ G is found by

εF = ‖JGα − b‖2 (33)

where the matrix JG is defined by

JG =

⎡
⎢⎢⎢⎣

f 11 (xG1) f 11 (xG2) . . . f 11 (xGn̂g
)

f 12 (xG1) f 12 (xG2) . . . f 12 (xGn̂g
)

...
... . . .

...

f ns
nw(xG1) f ns

nw(xG2) . . . f ns
nw(xGn̂g

)

⎤
⎥⎥⎥⎦ (34)

To find the optimal weights, the following minimization
problem has to be solved

G, α = argmin
G⊂{1,ng},α>0

‖JGα − b‖2 (35)

123



160 Comput Mech (2018) 62:151–169

in which n̂g integration points need to be selected and
their corresponding (positive) integration weights α need to
be determined.

4.2.2 Reformulation of the ill-posed minimization problem

Note that problem (35) is again ill-posed for the case inwhich
the integrals of the internal force fields are all equilibrium
solutions of the RVE problem. This yields a right-hand side
vector b = 0, therefore theminimization problem (35) yields
the trivial solution to the problem α = 0. The ill-posed prob-
lem is regularized by integrating an extra function g(x) = 1
which needs to result in the volume of the RVE |Vm| [33].

JG =

⎡
⎢⎢⎢⎢⎢⎣

f 11 (xG1) f 11 (xG2) . . . f 11 (xGn̂g
)

f 12 (xG1) f 12 (xG2) . . . f 12 (xGn̂g
)

...
... . . .

...

f ns
nw(xG1) f ns

nw(xG2) . . . f ns
nw(xGn̂g

)

g(xG1) g(xG2) . . . g(xGn̂g
)

⎤
⎥⎥⎥⎥⎥⎦

b =

⎛
⎜⎜⎜⎜⎜⎝

0
0
...

0
|Vm|

⎞
⎟⎟⎟⎟⎟⎠

(36)

4.2.3 Cubature weights

It is intractable to evaluate all the
(ng

n̂g
)
possible combinations.

To obtain a good approximation of the minimum a Greedy
procedure is applied to select the integration points that are
suitable to reduce the integration error. For a given subset
of integration points G the coefficients α can be determined
using a Least-Square (andwhen negative values occur aNon-
Negative Least-Square) algorithm.

The criterion used to identify candidate points, selects
the point that is currently most aligned to the residual
of the snapshot integrals. This procedure repeats until
enough integration points are selected to drop the residual
under the required tolerance for the integration accuracy
or the maximum number of gappy integration points n̂g is
reached.

Box 1: Construction of the Empirical Cubature
Scheme

Start out with a set of available integration points
A ← {1, 2, .., ng}, an empty set S ← ∅ and counter
m ← 0 for the selected points and the integration resid-
ual r ← b.

WHILE ‖r‖2
|Vm | > δ AND m < n̂g

1. Select a candidate integration point i for which g is
most aligned to the residual:

z = argmax
i∈A\S

gT
i

r

gT
i

g
i

in which gT
i
is the i th row from matrix J

f
.

2. Add this point to the selected point set S ← S∪{i}.
3. Minimize residual r by solving α using a Least-

Squares

α ← argmin
α

‖JSα − b‖

4. If there are negative weights αi < 0 for i =
1, 2, .., rank(S) solve the non-negative least-squares
problem.

α ← argmin
α≥0

‖JSα − b‖

and remove all the integration points with zero
weights from the selected set

α+ ← {αi |αi > 0 for i = 1, 2, .., m}
S+ ← {Si |αi > 0 for i = 1, 2, .., m}

after which α ← α+ and S ← S+.
5. Update residual r = ‖JSα − b‖ and set the number

of selected integration points m ← rank(S)
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Table 1 The material properties used for the matrix and fibers of
the composite problem. The matrix material is modeled as an elasto-
viscoplastic material, whereas the fiber is assumed to be elastic

Material E ν γ0 n σ
y
0 H m

GPa – m−1 – GPa GPa –

Matrix 0.1 0.3 0.05 0.05 0.002 0.006 1.2

Fibres 1.0 0.3 – – – – –

It is not trivial to reconstruct the microscopic stress field
from the sampled stresses as the Empirical Cubature Method
does not use stress-modes. One can however follow the
approach proposed by [33] to reconstruct the microscopic
stress field using the weighted reconstruction matrix R for
the selected integration points.

4.2.4 Reduced integration of the RVE

The linear momentum balance with reduced internal force
(12) is solved by using the Empirical Cubature scheme to
resolve the integral. This leads to the following reduced inte-
gration scheme

f̄ inti (W ) = −
n̂g∑

i=1

αi∇sRi (xSi ) : σm(εM, W , xSi , ξSi
) (37)

for which the unknown reduced micro-fluctuations W can be
solved using a Newton-Raphson method.

5 A comparative analysis of EIM versus ECM

To assess the performance of the hyper-reduced models, a
critical comparison is made between the empirical models,
the reduced order models and the full-order model of a RVE.
Focus is put on the suitability for the hyper-reducedmodels as
a stand-in replacement of the complex full-ordermodel of the
RVE in a computational homogenization framework. Small
plane-strain is assumed in the model of the RVE. The RVE
consists of fibers in a softmatrix. Thematrix ismodeled using
a small-strain elasto-viscoplastic material constitutive law of
De Souza Neto et al. [46, p. 148]. The fibers are elastic. The
difference in stiffness of the fibers and thematrix is chosen to
be a factor 10 to replicate a carbon-fiber epoxy bundle. The
properties of both phases in the RVE are listed in Table 1.

In which E is the Young’s modulus, ν the Poisson’s ratio,
γ0 the initial slip rate, n the rate exponent, σ

y
0 the initial

yield stress, H the hardening parameter and m the hardening
exponent. A time-increment �t = 2.5 × 10−4s is used.

Thedimensions and topologyof the compositemicrostruc-
ture are shown in Fig. 3. The topology ismeshed using 20,602

Fibers

Matrix

L

L

l

Fig. 3 Discretization of the composite microstructure with the fiber
and matrix phases. The domain width and height are given by L = 2.0.
The RVE contains a total of 30 circular fibers with diameter l = 0.20.
The domain consists of 20,206 triangular elements

bilinear triangular elements and 10,462 nodes. The full-order
problem uses 20,602 integration points for integration and
20,924 degrees of freedom to discretize the microfluctua-
tions.

5.1 Snapshot construction

The reduced order models are initialized using an orthogonal
set ofmacroscopic strains (computed off-line). The full-order
model results for themicrofluctuations and stresses are stored
in the snapshot matrix for each time-increment. The loading
paths chosen to initialize the model run from 0 to 0.2εeqM in
20 steps in the εxx , εyy and εxy direction. In this way 60
equilibrium configurations are obtained.

The microfluctuation and stress-modes are determined
from the snapshot matrices using POD. The eigenvalues that
correspond to these modes are shown in Fig. 4. To investi-
gate the influence of the number ofmodes taken into account,
two reductions are formulated with a different number of
modes. The reduced microfluctuation basis is formed out of
the nw = 10 and nw = 20most dominant modes of the POD.
In the remainder, these reductions will be denoted as the
low- and high-fidelity models, respectively. The same num-
ber of modes are used to approximate the stress-field in the
empirical interpolationmodel. In correspondence to Hernán-
dez [42], the number of sampling points used for accuracy
and stability corresponds to the number of stress- and strain-
modes respectively.

To generate the empirical cubature scheme, a cut-off tol-
erance on the integration error is required. The order of
magnitude of the interpolation error is predicted by the sumof
the squared eigenvalues of the truncated modes of the stress
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Fig. 4 The eigenvalues corresponding to the microfluctuation and
stress modes

Table 2 The number of microfluctuation modes used in the reduced
and hyper-reduced models, the number of modes used for the empirical
interpolation of the stress-field and the number of sample points in the
empirical cubature model required to achieve the specified integration
tolerance

ROM EIM ECM
nw nσ δ → n̂g

Low-fidelity 10 10 10−3 → 67

High-fidelity 20 20 10−4 → 321

basis. These interpolation errors δ1 = 10−3 and δ2 = 10−4

are used as tolerances to cut of the integration point selection
algorithm.

In the remainder of this paper, three different techniques
will be compared: (1) standard reduced order (with full
integration), (2) empirical interpolation and (3) empirical
cubature models. A summary of all the specifications of the
(Hyper-)Reduced Order Models in terms of modes and sam-
pling points are given in Table 2.

In order to assess the achieved approximative qualities of
the reduced models, the microfluctuations and micro- and
macroscopic stresses are compared to the full-order model.
In the reduced order model there is no loss of information
present during the integration of the stress-field to obtain
the internal forces. Therefore, this model can be regarded
as the best-approximation for the applied reduced basis and
serves as a reference model to investigate the performance
of the hyper-reduced models. The achieved time reduction
will be evaluated by comparing the CPU-time required to
perform the computations to the CPU-time required to solve
the original full-order model.

5.2 Uniaxial loading

The accuracy of the empirical methods are first investigated
for one of the load-cases used to generate the snapshots (εxx

M ).

This case serves to highlight the influence of the reduced
stress integration in the (hyper-)reduced order models. Note
that the modes required to represent the microfluctuation and
the stress-fields are then present up to the cut-off tolerance of
the POD basis. The effects of the stress-field reconstruction
for EIM and integral reconstruction for ECM using gappy
sampling on the final deformation and stress fields will there-
fore be dominant.

The Representative Volume Element is loaded with a
macroscopic strain εMxx from 0 to 0.2 in 20 time-increments
(each with the specified time-step �t). Figure 5 shows the
RVEs loaded up to a macroscopic strain of εM,xx = 0.2. The
deformed RVEs solved by the full-order model and the low-
fidelity hyper-reduced models are plotted in Fig. 5a–c. Not
surprisingly, the essential deformationmodes for this case are
all captured by the low-fidelity models. Themicrofluctuation
wx along the line A–B and the errors, defined as

εw = w̄x (xarc) − wx (xarc)

wx (xarc)

for the hyper-reducedmodels, are plotted in Fig. 5d, e respec-
tively. The error of the hyper-reduced RVEs are both of order
O (10−4

)
or lower.

Secondly, the errors in the microscopic stress field
are analyzed. The stress fields σ̄ (x) resulting from the
(hyper-)reduced models are compared to the stress field σ(x)
of the FOM model. It should be noted that the local-stress
field for the ECM method is obtained by creating the recon-
struction operator R for the sampled points. The error in the
stress in the xx-direction εσxx is defined as

εσxx =
∫
Vm

‖σ̄xx(x) − σxx(x)‖2 dVm∫
Vm

‖σxx(x)‖2 dVm
(38)

The stress residuals are depicted in Fig. 6. For both the LoFi
and the HiFi model, the EIMmethod performs better than the
ECM method. This difference results from the extra infor-
mation that the empirical interpolation model uses from the
stress-modes. Since these modes contain a lot more spatial
details, the stress-field is captured more accurately.

Furthermore, it can be concluded that the error bounds,
although they are lower, do not differ significantly between
the LoFi and the HiFi models. The volume averaged error in
the stress dropped significantly for both models.

The macroscopic stress resulting from full- and
(hyper-)reduced order models are plotted in Figs. 7 and 8.
For this load-case the resultingmacroscopic stresses show no
large deviations from the full-order result. Interestingly, the
errors plotted on the right hand side, showa clear difference in
the EIM and ECM approximation of the macroscopic stress.
TheEIMapproximation follows the error trendof the reduced
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Fig. 5 The deformed RVE under macroscopic strain εM,xx = 0.2 resolved with the full-order method (a), EIM (b) and ECM (c). The microfluc-

tuations along line A–B and the relative error εw = w̄x −wFOM
x

wFOM
x

plotted in (d) and (e) respectively

Fig. 6 Residual fields of the
microscopic stress component
σxx in the loading direction xx
for the hyper-reduced models
w.r.t. the full-order solution. The
first row shows the residual for
the Lo-Fidelity EIM (a) and
ECM (b) models and the second
row shows the residual for the
Hi-Fidelity EIM (c) and ECM
(d) models
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order model, while the error made by the ECMmodel is sev-
eral decades higher than the error of the reduced ordermodel.

The error in the microfluctuations of the hyper-reduced
models (w̄) relative to the full-order model (w) is plotted in
Fig. 9. The error is defined as follows:

εw =
∫
Vm

‖w̄(x) − w(x)‖2 dVm∫
Vm

‖w(x)‖2 dVm
(39)

The error in the microfluctuation fields decreases with
increasing number of strain modes. The reduction in error
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Fig. 7 Macroscopic stress–strain plot in xx-direction for the full-order model and the low-fidelity reduced order models
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Fig. 8 Macroscopic stress–strain plot in xx-direction for the full-order model and the high-fidelity reduced order models
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Fig. 9 Error in the integrated micro-fluctuation fields for the full-order model and the hyper-reduced models

is however not equal for each increment. The error in the
empirical cubature method between εMxx = 0.00 and 0.10
is significantly reduced (where most of the non-linearity is
concentrated) by the added modes and integration points.

It is noteworthy that the reduction by the empirical inter-
polation method seems to outperform the empirical cubature
method only to small extent, which is remarkable since the
difference in approximation errors of the macroscopic stress
for both models differed by several decades.

The computation times for all models are assessed on a
single CPU (Intel® Xeon® CPU E5-2667 v3 processor @
3.20GHz), without parallelization to keep the comparison

clear. The speed-up with respect to the full-order model are
presented in Table 3. The speed-up for the ROM model is
relatively insensitive to the number of modes used and the
gain in computational time is small compared to the full-
ordermodel of theRVE.This illustrates the poor performance
of classical ROM for non-linear reduced models. The EIM
model speeds up between a factor 112 and 123 times. The
speed-up in the ECM models are between 73 and 113 times.
TheECMmodel is somewhat slower due to the larger amount
of integration points required.
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Table 3 Speed-up of the tensile simulations running on a single CPU

Case Method Speed-up

LoFi HiFi

Tensile FOM 1× 1×
ROM 1.32× 1.12×
EIM 111.92× 123.65×
ECM 113.33× 73.60×

5.3 RVE under biaxial loading

A biaxial load is applied next to test the performance of the
reducedmodels under loads not present in the snapshots used
to train them. The macroscopic strain is increased to εM =[
0.2, 0.0
0.0, 0.2

]
in 20 equal load-increments.

From the FOMand ECM stress fields presented in Fig. 10,
it is clear that all the dominant plastic zones are recovered
by the reduced model. The stress–strain curves of the biax-
ial load-case presented in Fig. 11, indicate that in the linear
regime the EIM model outperforms the ECM model. Since
the corresponding modes are present, the stress approxima-
tion of the interpolating model is more accurate. However,
when entering the plastic regime, the ECM model seems
to perform at consistent error level, while the error in the
macroscopic von-Mises stress predicted by the EIM model
increases due to lack of the sampling points required to accu-
rately interpolate the stress modes for this load case.

The cpu-times of the simulations are given in Table 4.
The hyper-reduced methods EIM and ECM are 54 and 88
times faster than the full-order method respectively. The dif-
ference in speed-up between the empirical interpolation and
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Fig. 10 The resulting stresses in xx and yy direction of the full- and reduced-order model of the RVE under biaxial loading
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Table 4 Speed-ups of the
biaxial simulations on a single
CPU

Case Method Speed-up
HiFi

Biaxial FOM 1×
ROM 1.04×
EIM 88.42×
ECM 53.57×

the empirical cubature method can be explained by the extra
gappy points required by ECM to obtain accurate solutions.

5.4 Path dependency

To investigate the sensitivity of both reduced models to his-
tory dependent behavior, the models are preloaded with 10

increments of strain in the xx-direction εM =
[
0.1, 0.0
0.0, 0.0

]
.

After preloading the RVE, the model is loaded under shear

εM =
[
0.0, 0.5
0.5, 0.0

]
. Themacroscopic vonMises stress at each

increment is plotted in Fig. 12.
In the first regime, the EIM model is more accurate than

the ECM model due to availability of the correct modes.
When entering the shear strain regime at increment 10, the
ECM method starts to perform better than the EIM method.
The EIM model depends strongly on the stress-modes found
during the off-line phase. Since the reduced-model was only
trained usingRVEswith virginmaterialwithout prior loading
history, the required modes are not present to accurately cap-
ture the path-dependent stress fields. The small dependence
on stress modes makes the ECM easier to train. Obviously,
strain modes are also different for different loading paths,
whereas themodes found in the snapshots includemonotonic
paths only. For this small-strainmodel, thismainly effects the
stresses, since the ECM does not show a significant drop in
accuracy after increment 10.

Table 5 Speed-ups of the path dependent simulations on a single CPU

Case Method Speed-up
HiFi

Path dependent FOM 1×
ROM 1.25×
EIM 131.42×
ECM 69.50×

The speed-up achieved by the (hyper-)reduced models
for the path-dependent case is presented in Table 5. The
speed-ups achieved during the path-dependent loading are
comparable to the speed-up factors found in the biaxial test-
case presented in Table 4.

5.5 Cyclic loading

Finally, the behavior of the models under repetitive load-
ing is analyzed. The RVE is exposed to a cyclic load in the
xx-direction, shifting its history increasingly further away
from its virgin state. The loading direction corresponds to
the snapshots, excluding the influence of any interpolation in
between different loading directions.

The stress–strain curve is shown in Fig. 13. The error in
between the full-order model and the hyper-reduced models
increases slowly over the increments. Due to the single load-
ing direction the difference between the EIM and the ECM
method is much less pronounced than in the path depen-
dent case. When switching between tensile and compressive
loading, the error shows significant jumps indicating that the
unloading stage, which is absent in the off-line initialization
stage, is hard to capture for both the ECM and EIM models.

The speed-up achieved by the (hyper-)reduced models for
the cyclic load-case are presented in Table 6. Although the
runtime of the simulations is longer due to the extra incre-
ments, the speed-ups achieved during the path-dependent

Increment
0 15 20105

Increment
0 15 20105

1.0

2.0

3.0

4.0

5.0

6.0

0.0

×10−3

σ
v
m

M

10−2

10−3

10−4

10−5

10−1

E
rr
or

|σ̄
v
m

M
−

σ
v
m

M
|

|σ
v
m

M
|

ECM
EIM

ECM
EIM
FOM

Fig. 12 Macroscopic stress–strain curve for sequential path dependent loading in two directions: first 10 strain increments up to εMxx = 0.1 followed
by 10 strain increments up to εMxy = 0.1
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Table 6 Speed-ups of the cyclic
loading simulations on a single
CPU

Case Method Speed-up
HiFi

Cyclic FOM 1×
ROM 1.19×
EIM 114.95×
ECM 56.84×

loading are comparable to the speed-up factors found in the
previous test-cases presented in Tables 4 and 5.

6 Conclusions

Both the empirical interpolation method and empirical cuba-
turemethod yield a significant reduction in computation time
and memory footprint compared to traditional ROM. Both
models are capable of interpolating between the sampled
deformations as shown for the biaxial load-case. When the
load-case includes unsampled states of the history parame-
ters, the empirical interpolationmethod result in errors above
1% for the macroscopic stress with respect to the full-order
model. The empirical cubature method is less sensitive to the
extrapolation of the snapshot space, since it only depends on
the strain modes and not on the stress-modes.

The main asset of the ECM method is that it naturally
preserves the stability of the full-order model and there-
fore does not require the added stabilization needed for the
EIMmethod.However,with the stabilizing integration points
added, the EIMmodels showed good convergence for all the
cases demonstrated in Sect. 5, using the (heuristic) criterion
of nw stabilization points suggested in literature.

The empirical cubature method requires more compu-
tational time and has a larger memory footprint than the
empirical interpolation method due to the extra integration
points needed to accurately capture the behavior of the full-

ordermodel. The EIMmethod outperforms the ECMmethod
when on-line computational efficiency is considered due to
the extra information it has available in the stress-modes.
However, this dependence on stress-modes makes EIM also
more vulnerable for ill-sampled path dependent problems, as
demonstrated in the path-dependent and cyclic examples.

The largest reduction in required memory and compu-
tation time can therefore be achieved using the empirical
interpolationmethod in a computational homogenization set-
ting, due to the smaller amount of memory required to store
the history of the sampling. To get accurate results, the high-
dimensional snapshot space needs to be sampled sufficiently
well such that the paths found in the macroscopic problem
can be interpolated sufficiently accurate by the EIM model.

Herein lies an open challenge, since the material model
used in the above examples requires 7 history parameters
and 3 strain parameters to calculate the macroscopic stress,
the sample space of the model is 10 dimensional. It is there-
fore not trivial to obtain a sufficiently dense sampling of the
parameter-space to capture the path-dependent macroscopic
stress.

In the considered computational homogenization prob-
lems, the microscopic RVE has to be evaluated numerous
times in the deformation and history space. It is therefore nec-
essary to construct an accurate yet compact snapshot space.
The empirical interpolation method is expected to be suffi-
ciently accurate for many engineering purposes (within 10%
error). However, when a higher accuracy is required, ECM
methods are more promising since they are less prone to pro-
duce large interpolation errors. In problems with a strong
path-dependence, it is more straightforward to construct an
accurate snapshot space for ECM models.
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