The Euler Characteristic Is the Unique Locally Determined Numerical Invariant of Finite Simplicial Complexes which Assigns the Same Number to Every Cone

R. Forman
Department of Mathematics, Rice University, Houston, TX 77251, USA
forman@math.rice.edu

Abstract. We show that a proof given by Levitt in [L] suffices to prove the stronger theorem stated in the title.

Let \(S \) denote the set of finite simplicial complexes, where we consider two complexes to be the same if they are combinatorially equivalent. Say a function

\[
\rho: S \rightarrow \mathbb{R}
\]

is \textit{locally determined} if there is a function

\[
d: S \rightarrow \mathbb{R}
\]

such that, for all finite simplicial complexes \(M \),

\[
\rho(M) = \sum_{v \text{ of } M} d(\text{link}(v))
\]

(\text{where link}(v) denotes the link of } v \text{ in } M, \text{ and we sometimes write link}(v, M) \text{ if there is possible confusion}). In this case, we write \(\rho = \rho_d \). We are primarily interested in those locally determined functions with topological significance. For example, a natural problem is to find all locally defined functions which only depend on the homotopy type of the underlying complex. This problem was posed, and completely answered, by

* This research was partially supported by the National Science Foundation and the National Security Agency.
Levitt. In [L] it is proved that

Theorem A [L]. The only locally determined real-valued homotopy invariants of finite simplicial complexes are multiples of the Euler characteristic.

It is easy to see that the Euler characteristic is, in fact, locally determined. Namely, define

$$e: S \to \mathbb{R}$$

by setting, for any finite simplicial complex N,

$$e(N) = 1 + \sum_i \frac{(-1)^{i+1}}{i+2} \text{(number of } i \text{ - simplices in } N).$$

Then, for any finite simplicial complex M,

$$\rho_e(M) = \chi(M),$$

where

$$\chi(M) = \sum_i (-1)^i \text{(number of } i \text{ - simplices in } M)$$

is the Euler characteristic of M.

Levitt also proves the following refinement of Theorem A.

Theorem B [L]. Let ρ_d be any locally determined real-valued invariant of finite simplicial complexes which is a homotopy invariant, then there is a constant c so that $\rho_d M = c \cdot e$.

Our goal in this paper is simply to point out that an argument used in [L] suffices to give a simple direct proof of the stronger theorem stated in the title. We quickly review some standard definitions. For any simplicial complex N, coneN is the join of N and a single vertex. We say a simplicial complex M is a cone if $M = \text{cone}(N)$ for some N. In the proof of Theorem B in [L], Levitt essentially proves the following theorem.

Theorem 1. Let ρ_d be any locally determined real-valued function on the set of finite simplicial complexes. Suppose there is a constant c so that $\rho_d(M) = c$ whenever M is a cone. Then $d = c \cdot e$.

Before proving this theorem we note that since all cones are homotopy equivalent, every locally determined homotopy invariant satisfies the hypotheses of Theorem 1. Thus Theorem 1 implies Theorem B (and hence Theorem A). It is interesting to observe that Theorem 1 implies that the converse is true. Namely, any locally determined invariant which gives the same answer for every cone is a homotopy invariant. Moreover, every cone is collapsible, and hence all cones are simple-homotopy equivalent (see [C] for definitions). Therefore, the above theorem implies the following strengthening of Levitt’s Theorem A.
Corollary 2. The only locally determined real-valued simple-homotopy invariants of finite simplicial complexes are multiples of the Euler characteristic.

We actually prove something somewhat more general. Namely, \(\rho_d \) need not be defined on all finite simplicial complexes. Say

\[
T \subset S
\]

is star-closed if:

(i) \(T \) contains the simplicial complex consisting of a single vertex.
(ii) \(T \) is closed under taking stars. That is, if \(M \in T \) and \(v \) is a vertex in \(M \), then \(\text{star}(v, M) \in T \).

We will prove the following generalization of Theorem 1.

Theorem 3. Let \(T \subset S \) be any star-closed set, and let \(\rho_d \) be any locally determined real-valued function on \(T \) such that there is a constant \(c \) with \(\rho_d(M) = c \) for every cone \(M \in T \). Then \(d = c \cdot e \).

The set of combinatorial manifolds with (possibly empty) boundary is star-closed. Hence we have the corollary

Corollary 4. Let \(\rho_d \) be any locally determined function on the set of combinatorial manifolds with (possibly empty) boundary such that there is a constant \(c \) such that \(\rho_d(M) = c \) whenever \(M \) is a cone, then \(d = c \cdot e \).

This implies Theorem \(\text{A}' \) of [L], where there is the stronger hypothesis that \(\rho_d \) be a PL homeomorphism invariant.

Proof of Theorem 3. (The reader should note that we are following the proof of Levitt’s Theorem B in [L], and we include this proof merely for the sake of being self-contained.) Let \(\rho_d \) satisfy the hypotheses of the theorem. Without loss of generality, we may assume that, for every cone \(M \), \(\rho_d(M) = 1 \). (Namely, if \(c \neq 0 \) we can consider \(\rho_{\bar{d}} \) where \(\bar{d}' = (1/c)d \). If \(c = 0 \) we can consider \(\rho_{\bar{d}} \) where \(\bar{d}' = d + e \).) Our goal is to show that, for each finite simplicial complex \(M \in T \) and every vertex \(v \in M \), \(d(\text{link}(v)) = e(\text{link}(v)) \).

The proof will be by induction on the number \(\ell(v) \) (or \(\ell(v, M) \)) of simplices in the link of \(v \) in \(M \).

Suppose \(\ell(v) = 0 \). Let \(M' = \text{star}(v) \). Then \(M' \) consists only of the vertex \(v \), and by hypothesis \(M' \in T \). Since \(\text{star}(M') \) is a cone (on the empty set), we have

\[
1 = \rho_d(M') = d(\text{link}(v, M')).
\]

However, \(\text{link}(v, M') = \emptyset = \text{link}(v, M) \), so \(d(\text{link}(v, M)) = 1 \). On the other hand, \(1 = e(\text{link}(v)) \). Thus, if \(\ell(v) = 0 \), \(d(\text{link}(v)) = e(\text{link}(v)) \).

Suppose \(d(\text{link}(v)) = e(\text{link}(v)) \) whenever \(v \in M \in T \) satisfies \(\ell(v) \leq k - 1 \). Let \(M \in T \) and let \(v \) be a vertex in \(M \) satisfying \(\ell(v, M) = k \). Let \(M' = \text{star}(v, M) \). Then
$M' \in T$ is a cone, so

$$1 = \rho_d(M') = \sum_{\text{vertices } w \text{ in } M'} d(\text{link}(w, M')).$$

(1)

It is easy to see that, for each vertex w of M', $\ell(w, M') \leq k$. Moreover, if $\ell(w, M') = k$, then $\text{link}(w, M')$ is combinatorially equivalent to $\text{link}(v, M') = \text{link}(v, M)$. Define

$$V_1 = \{\text{vertices } w \text{ in } M' \text{ with } \ell(w, M') < k\},$$

$$V_2 = \{\text{vertices } w \text{ in } M' \text{ with } \ell(w, M') = k\}$$

and let $n = \#V_2$. By induction, for all $w \in V_1$,

$$d(\text{link}(w, M')) = e(\text{link}(w, M')).$$

For all $w \in V_2$,

$$d(\text{link}(w, M')) = d(\text{link}(v, M')) = d(\text{link}(v, M)).$$

Substituting into formula (1), we have

$$1 = n \cdot d(\text{link}(v, M)) + \sum_{w \in V_1} e(\text{link}(w, M')).$$

On the other hand, we already know

$$1 = \chi(M') = \sum_{\text{vertices } w \text{ in } M'} e(\text{link}(w, M')) = n \cdot e(\text{link}(v, M)) + \sum_{w \in V_1} e(\text{link}(w, M')).$$

Hence we must have

$$d(\text{link}(v, M)) = e(\text{link}(v, M)),$$

as desired.

\[\square \]

References

Received April 2, 1999, and in revised form October 6, 1999.