
Discrete Comput Geom (2014) 51:362–393
DOI 10.1007/s00454-013-9565-2

Empty Monochromatic Simplices

Oswin Aichholzer · Ruy Fabila-Monroy ·
Thomas Hackl · Clemens Huemer · Jorge Urrutia

Received: 1 October 2012 / Revised: 1 October 2013 / Accepted: 3 December 2013 /
Published online: 9 January 2014
© Springer Science+Business Media New York 2014

Abstract Let S be a k-colored (finite) set of n points in R
d , d ≥ 3, in general posi-

tion, that is, no (d + 1) points of S lie in a common (d − 1)-dimensional hyperplane.
We count the number of empty monochromatic d-simplices determined by S, that is,
simplices which have only points from one color class of S as vertices and no points
of S in their interior. For 3 ≤ k ≤ d we provide a lower bound of Ω(nd−k+1+2−d

) and
strengthen this to Ω(nd−2/3) for k = 2.

On the way we provide various results on triangulations of point sets in R
d .

In particular, for any constant dimension d ≥ 3, we prove that every set of n points
(n sufficiently large), in general position in R

d , admits a triangulation with at least
dn + Ω(logn) simplices.
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1 Introduction

Let S be a finite set of n points in R
d . Throughout this paper we assume that S is in

general position, that is, no (d + 1) points of S lie in a common (d − 1)-dimensional
hyperplane. A more formal definition of “general position” can be found in Sect. 2.1.
A subset S′ of S is said to be empty if Conv(S′) ∩ S = S′, where Conv(S′) denotes
the convex hull of S′ (please see Sect. 2.1 for a detailed definition). A k-coloring of
S is a partition of S into k nonempty sets called color classes. A subset of S is said
to be monochromatic if all its elements belong to the same color class. A d-simplex
is the d-dimensional version of a triangle.

The problem of determining the minimum number of empty triangles any set of n

points in general position in the plane contains, has been widely studied [3, 9, 12, 19]
and also the higher dimensional version of the problem has been considered [2].
In [12] it is noted that every set of n points in general position in R

d determines at
least

(
n−1
d

) = Ω(nd) empty simplices. In [2] it is shown that in a random set of n

points in R
d—chosen uniformly at random on a convex, bounded set with nonempty

interior—the expected number of empty simplices is at most cd

(
n
d

) = O(nd) (where
cd is a constant depending only on d).

The colored version of the problem has been introduced in [7] and was studied
in [1], where Ω(n5/4) empty monochromatic triangles were shown to exist in ev-
ery two colored set of n points in general position in the plane. This has later been
improved to Ω(n4/3) in [15]. Further, arbitrarily large 3-colored sets without empty
monochromatic triangles were shown to exist in the plane in [7].

In this paper we study the higher dimensional version of this colored variant.
We generalize both, the dimension and the number of colors. Specifically, we con-
sider the problem of counting the number of empty monochromatic d-simplices in a
k-colored set of points in R

d .
It is shown in [18] that every sufficiently large 4-colored set of points in general

position in R
3 contains an empty monochromatic tetrahedron. This is done by show-

ing that any set of n points in general position in R
3 can be triangulated with more

than 3n tetrahedra.
The problem of triangulating a set of points with many simplices is intimately

related to the problem of determining the minimum number of empty simplices in
k-colored sets of points in R

d . Remarkably this problem has received little attention.
For the special case of R3, it even has been pronounced “the least significant” among
the four extremal (maxmax, maxmin, minmax, minmin) problems in [10]. Conse-
quently, only a trivial lower bound and an upper bound of 7

15n2 + O(n) has been
shown there. Nevertheless, in [5] sets of n points in R

d in general position are shown
such that every triangulation of them has O(n5/3) tetrahedra, for points in R

3, and
in general O(n1/d+�d/2�·(d−1)/d) simplices for points in R

d . Furthermore, in [6] this
minmax problem is stated as Open Problem 11 in the section “Extremal Number of
Special Subconfigurations”.

In this direction we give the first, although not asymptotically improving, non-
trivial lower bound and show that for d ≥ 3 every set of n points in general position
in R

d admits a triangulation of at least dn + Ω(logn) simplices, for n sufficiently
large and d constant.
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Table 1 Number of empty monochromatic d-simplices in k-colored sets of n (sufficiently large) points
in R

d

d = 2 d ≥ 3

k = 2 Ω(n4/3) ([15] and Theorem 33) Ω(nd−2/3) (Theorem 33)

3 ≤ k ≤ d – Ω(nd−k+1+2−d
) (Theorem 29)

k = d + 1 none ([7]) at least lineara (Corollary 25)

k ≥ d + 2 none ([7]) unknown

aThe linear lower bound for d = 3 and k = 4 has been proved already in [18]

The paper is organized as follows: in Sect. 2, known results on simplicial
complexes and triangulations are reviewed; in Sect. 3, new results on simplicial
complexes and triangulations are presented; using these results in Sect. 4, high-
dimensional versions of the Order and Discrepancy Lemmas used in [1] are shown;
in Sect. 5, the lemmas of Sect. 4 are put together to prove various results on the min-
imum number of empty monochromatic simplices in sets of points in R

d . Our results
are summarized in Table 1.

To provide a better general view on the paper, and especially to visualize the in-
terrelation between the many lemmas, we present a “roadmap” through the paper in
Fig. 1. The lemmas (and theorems and corollaries) are shown in boxes, given with
their number, if applicable a special name, and the necessary preconditions. Main
results have a bold frame. The lemmas are grouped to reflect their topical and sec-
tion correlation. An arrow from a Lemma A to a Lemma B depicts, that the proof
of Lemma B uses the result of Lemma A. Theorem 35 (stated and proven in the
Conclusions section) is not depicted in Fig. 1, as there is no interrelation with other
lemmas.

2 Preliminaries

In this section, following the notation of Matoušek [13], we state the definitions and
known results regarding simplicial complexes and triangulations, that will be needed
throughout the paper. Note that in this paper we consider the number, d , of dimen-
sions and also the number, k, of different colors as constants. This means, that d and
k do not depend on the size, n, of the considered finite set of points. But of course the
required minimum size of the point set might depend on d and k.

2.1 Simplicial Complexes

Let X be a finite set of points in R
d . The convex hull of X, denoted by Conv(X), is

the intersection of all convex sets containing X. Alternatively, it may be defined as
the set of points that can be written as a convex combination of elements of X:

Conv(X) =
{ |X|∑

i=1

αixi

∣∣∣∣∣
xi ∈ X,αi ∈R, αi ≥ 0,

|X|∑

i=1

αi = 1

}

.
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Fig. 1 Roadmap through the paper

We denote the boundary of Conv(X) with CH(X). A point of X is said to be a convex
hull point if it lies in CH(X), otherwise it is called an interior point. A point set X is
said to be in convex position if every point of X is a convex hull point.

Let 0 denote the d-dimensional zero vector. A set of points {x1, . . . , xn} in R
d is

said to be affinely dependent if there exist real numbers (α1, . . . , αn), not all zero, such
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that
∑n

i=1 αixi = 0 and
∑n

i=1 αi = 0. Otherwise {x1, . . . , xn} is said to be affinely
independent. A set of points X in R

d is in general position if each subset of X with
at most d + 1 elements is affinely independent.

A simplex σ is the convex hull of a finite affinely independent set A in R
d . The el-

ements of A are called the vertices of σ . If A consists of m + 1 elements, we say
that σ is of dimension dimσ := m or that σ is an m-simplex. The convex hull of any
subset of vertices of a simplex σ is called a face of σ . A face of a simplex is again a
simplex.

A simplicial complex K is a family of simplices satisfying the following proper-
ties:

• Each face of every simplex in K is also a simplex of K.
• The intersection of two simplices σ1, σ2 ∈ K is either empty or a face of both, σ1

and σ2.

The vertex set of K is the union of the vertex sets of all simplices in K. We say that
K is of dimension m, if m is the highest dimension of any of its simplices. The size of
a simplicial complex of dimension m is the number of its simplices of dimension m.
The j -skeleton of K is the simplicial complex consisting of all simplices of K of
dimension at most j . Hence the 0-skeleton is the vertex set of K.

We now turn to finite sets of points in general position in R
d . Let S be such a set

of n elements. Note that since S is in general position we may regard CH(S) as a
simplicial complex in a natural way. Such simplicial complexes are called simplicial
polytopes. It is known that every simplicial polytope satisfies:

Theorem 1 ([4] Lower Bound Theorem) For a simplicial polytope of dimension d

let fm be the number of its m-dimensional faces. Then:

• fm ≥ (
d
m

)
f0 − (

d+1
m+1

)
m for all 1 ≤ m ≤ d − 2 and

• fd−1 ≥ (d − 1)f0 − (d + 1)(d − 2).

Note that in the Lower Bound Theorem, the word dimension refers to the dimen-
sion of the simplicial polytope as a polytope. Hence, a three dimensional simplicial
polytope would be a two dimensional simplicial complex.

2.2 Triangulations

A triangulation T of S is a simplicial complex such that its vertex set is S and the
union of all simplices of T is Conv(S). This definition generalizes the usual definition
of triangulations of planar point sets. The size of a triangulation is the number of
its d-simplices. The minimum size of any triangulation of S is known to be n − d .
We explicitly mention this result for further use:

Theorem 2 [16] Every triangulation of a set of n points in general position in R
d

has size at least n − d .

We will use the following operation of inserting a point p into a triangulation T
frequently: Let p be a point not in S but such that S ∪ {p} is also in general position,
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Fig. 2 Example in R
3 for inserting a point p into a triangulation with (left) p inside the convex hull and

(right) p outside the convex hull

and let T be a triangulation of S. If p lies in Conv(S) then p is contained in a unique
d-simplex σ of T . We remove σ from T and replace it with the (d + 1) d-simplices
formed by taking the convex hull of p and each of the (d + 1) (d − 1)-dimensional
faces of σ . If, on the other hand, p lies outside Conv(S) then a set F of (d − 1)-
dimensional faces of CH(S) is visible from p. We get a set of d-simplices formed by
taking the convex hull of p and each face of F , and add these simplices to T . In either
case the resulting family of simplices is a triangulation of S ∪ {p} (see Fig. 2).

We distinguish two different types of triangulations of a set S of n points in
general position in R

d by their construction: A shelling triangulation of S is con-
structed as follows. Choose any ordering p1,p2, . . . , pn of the elements of S and let
Si = {p1, . . . , pi}. Start by triangulating Sd+1 with only one simplex. Afterwards, for
every i > d + 1 create the triangulation of Si by inserting pi into the triangulation
of Si−1. The final triangulation of this process, that of Sn, is a shelling triangulation.
A pulling triangulation of S is constructed by choosing (if it exists) a point p of S,
such that S \ ((CH(S) ∩ S) ∪ {p}) = ∅. Then S \ {p} is in convex position. Construct
a d-simplex with p and each (d − 1)-dimensional face of CH(S) that does not con-
tain p.

3 Results on Triangulations and Simplicial Complexes

In this section we present some results on triangulations and simplicial complexes
that will be needed later, but are also of independent interest. We begin by showing
that every point set can be triangulated with a “large number” of simplices. We use
the same strategy as in [18].

3.1 Large Sized Triangulations

First we prove a lower bound on the size for a triangulation of a convex set of points,
by building a shelling triangulation for a special sequence of points.

Lemma 3 Every set S of n > d(d + 1) points in convex and general position in R
d

(d > 2) has a triangulation of size at least (d + 1)n − cd , with cd = d3 + d2 + d .

Proof The 1-skeleton of CH(S) is a graph of n vertices and, by the Lower Bound

Theorem (Theorem 1, for m = 1), of at least dn − d(d+1)
2 edges. Therefore, as long

as n > d(d + 1) there will be a vertex of degree at least 2d in this graph.
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Set Sn := S and let Gn be the 1-skeleton (as a graph) of CH(Sn). In general once
Si is defined, let Gi be the 1-skeleton (as a graph) of CH(Si). Let pi be a vertex of
degree at least 2d in Gi , with n ≥ i > d(d + 1). We construct a shelling triangulation
Tn of Sn, with size as claimed in the lemma.

Starting with Sn, iteratively remove a vertex pi from Si , i.e., Si−1 = Si \ {pi}.
Observe that |Si | = i. The iteration stops with Si−1 = Sd(d+1) as i > d(d + 1). Con-
struct an arbitrary shelling triangulation Td(d+1) of Sd(d+1). By Theorem 2, Td(d+1)

has size at least d(d + 1) − d = d2. Complete Td(d+1) to a shelling triangulation Tn

by inserting the points pi in reversed order of their removal (i from d(d + 1) + 1
to n).

We prove that with each inserted point pi at least (d + 1) d-simplices are added to
the triangulation. Let �i be the degree of pi in Gi and recall that �i ≥ 2d . Consider
the neighbors q1, . . . , q�i

of pi in Gi . Let Π be a (d − 1)-dimensional hyperplane
separating pi and Si−1, and let q ′

1, . . . , q
′
�i

be the set of intersections of Π with the
lines spanned by pi and each of q1, . . . , q�i

.
Note that q ′

1, . . . , q
′
�i

are a set of points in convex position in R
d−1 and that the

(d − 1)-dimensional faces of CH(Si−1), which are visible to pi , project to a triangu-
lation of q ′

1, . . . , q
′
�i

in Π . By Theorem 2, every triangulation of �i points in R
d−1

has size at least �i − (d − 1) ≥ d + 1. Thus, at least (d + 1) d-simplices are added
when inserting pi . Hence, the constructed shelling triangulation Tn has size at least
d2 + (d + 1)(n − d(d + 1)), which is the claimed bound of (d + 1)n − cd , with
cd = d(d + 1)2 − d2 = d3 + d2 + d . �

Using this result it is easy to give a lower bound on the triangulation size for
general point sets in dependence of a certain subset property.

Lemma 4 Let S be a set of points in general position in R
d (d > 2). Let P and Q be

two disjoint sets, such that S = P ∪ Q and Q is in convex position. If |Q| > d(d + 1)

then there exists a triangulation of S of size at least (d + 1)|Q| + |P | − cd , with cd

defined as in Lemma 3.

Proof By Lemma 3, Q has a triangulation T of size at least (d + 1)|Q| − cd ,
if |Q| > d(d + 1). Inserting each point of P into T adds at least one d-simplex
to T per point in P . This results in a triangulation of S with size at least
(d + 1)|Q| + |P | − cd . �

Combining the previous two lemmas we prove a new non-trivial lower bound for
the size of triangulations with an additive logarithmic term.

Theorem 5 Every set S of n > 4d2(d+1) points in general position in R
d (d > 2), with

h convex hull points, has a triangulation of size at least dn + max {h,
log2(n)

2d
} − cd ,

with cd as defined in Lemma 3.

Proof Let P be the set of convex hull points of S. We distinguish two cases:

• |P | = h > log2(n)/(2d). By Lemma 3, there exists a triangulation of P of size at
least (d +1)h−cd , as h > d(d +1). Insert the remaining n−h points of S \P into
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this triangulation. Since these points are inside Conv(P ), each of them contributes
with d additional d-simplices to the final triangulation. Therefore, the resulting
triangulation has size at least dn + h − cd > dn + log2(n)

2d
− cd .

• |P | = h ≤ log2(n)/(2d). By the Erdős–Szekeres Theorem (see [11]) and its best
known upper bound (see [17]), S contains a subset Q of at least

|Q| > log2(n)

2
> d(d + 1)

points in convex position. Let P ′ = P \Q. Apply Lemma 4 to obtain a triangulation
T of P ′ ∪ Q of size at least (d + 1)|Q| + |P ′| − cd . Insert the remaining points of
S \ (P ′ ∪Q) into T . Since these inserted points are in the interior of Conv(P ′ ∪Q),
each of them contributes with d additional d-simplices to the final triangulation.
Therefore, this triangulation has size at least

d
(
n − |Q| − ∣∣P ′∣∣) + (d + 1)|Q| + ∣∣P ′∣∣ − cd

= dn + |Q| − (d − 1)
∣∣P ′∣∣ − cd > dn + log2(n)

2
− (d − 1)

log2(n)

2d
− cd

≥ dn + log2(n)

2
− log2(n)

2
+ log2(n)

2d
− cd,

which is dn + log2(n)

2d
− cd . �

Note that cd in Lemma 3 can be improved to d(d+1)2

2 + d(d+1)
12 = d3

2 + 13d2

12 + 7d
12 .

Instead of stopping the process at Sd(d+1), we continue the iteration using a vertex
of degree 2d − 1 for Si with d(d + 1) ≥ i >

d(d+1)
2 , a vertex of degree 2d − 2 for Si

with d(d+1)
2 ≥ i >

d(d+1)
3 , and so on. This way, instead of a triangulation of size at

least d2, we can guarantee a triangulation Td(d+1) of size at least

d∑

i=1

((
2d − i − (d − 1)

)d(d + 1)

i(i + 1)

)

≥ 3

4
d(d + 1)2 − d(d + 1) · min

{
d + 1

4
+ 1

12
, ln (d + 1)

}
,

which results in the claimed improvement of cd for d ≥ 3. Thus, for d = 3 Theorem 5
can be improved to 3n+ max {h,

log2 n

6 }− 25. Note that this corresponds to the bound
from [10], that every set of n points in general position in R

3, with h convex hull
points, has a tetrahedralization of size at least 3(n − h) + 4h − 25 for h ≥ 13.

3.2 Pulling Complexes

Let S be a set of n points in general position in R
d . In this section we present lemmas

that allow us to construct d-simplicial complexes of large size on S, such that their
d-simplices contain a pre-specified subset of S in their vertex set. We begin with a
result for point sets, whose convex hull is a simplex.

Lemma 6 Let S be a set of n ≥ d + 1 points in general position in R
d (d ≥ 1),

such that Conv(S) is a d-simplex. For every convex hull point p of S, there exists a
triangulation of S such that (d − 1)n − d2 + 2 of its d-simplices have p as a vertex.
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Fig. 3 Illustration of the proof of Lemma 6 for n = 7 and d = 2

Proof We use induction on n, see Fig. 3 for an illustration. Start with a triangula-
tion T consisting only of the d-simplex Conv(S). If n = (d + 1), T is a triangulation
with (d − 1)n − d2 + 2 = (d − 1)(d + 1) − d2 + 2 = 1 empty simplex containing p

as vertex.
Assume n > d + 1. Let q be the interior point of S closest to the only face of

Conv(S) not incident to p. (If there exist more then one such closest points, then
choose an arbitrary one of them as q .) Insert q into T . This results in a triangula-
tion of size (d + 1) in which d of its d-simplices, σ1 . . . σd , have p as a vertex. Note
that the remaining d-simplex does not contain any point of S in its interior. We ap-
ply induction on σ1 . . . σd . Let ni (1 ≤ i ≤ d) be the number of points of S interior
to σi ,

∑d
i=1 ni = n − (d + 1) − 1. For each σi we obtain a triangulation such that

(d − 1)(ni + (d + 1)) − d2 + 2 of its d-simplices have p as a vertex. The union of
the triangulations of each σi is a triangulation of S, and

d∑

i=1

(
(d − 1)ni + (d − 1)(d + 1) − d2 + 2

)

= (d − 1)

d∑

i=1

(ni) + d = (d − 1)n − d2 + 2

of its d-simplices have p as a vertex. �

The next three lemmas give, for every point of a general point set in R
d , a lower

bound on the number of interior disjoint d-simplices incident to p, for the cases
d = 2, d = 3, and d > 3, respectively.

Lemma 7 Let S be a set of n ≥ 3 points in general position in R
2. For every point p

of S there exists a 2-dimensional simplicial complex of size at least (n − 2) and such
that all of its triangles have p as a vertex.

Proof Do a cyclic ordering around p of the points of S \ {p}. Construct a 2-dimen-
sional simplicial complex by forming a triangle with p and every two consecutive
elements determining an angle less than π . This simplicial complex has at least n− 2
triangles and they all contain p as a vertex. �
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Lemma 8 Let S be a set of n ≥ 4 points in general position in R
3. For every point p

of S there exists a triangulation of S such that at least:

• 2n − 6 of its 3-simplices have p as a vertex, if p is an interior point of S.
• 2n − �(p) − 4 of its 3-simplices contain p as a vertex, if p is a convex hull point

of S and �(p) is its degree in the 1-skeleton of CH(S).

Proof Let S′ be the set of convex hull points of S and n′ = |S′|. Construct a pulling
triangulation T ′ w.r.t. p of S′ ∪ {p}. By definition all 3-simplices of T ′ contain p

as a vertex. For every 3-simplex σ of T ′, let η be the number of points of S interior
to σ . By applying Lemma 6 we can triangulate σ , such that 2(η + 4)− 7 = 2η + 1 of
its 3-simplices have p as a vertex. Repeat this for every 3-simplex of T ′, to obtain a
triangulation T of S.

By Theorem 1, CH(S) has (at least) 2n′ − 4 faces. For d = 3 this lower bound is
tight.

• If p is an interior point of S, T ′ contains a 3-simplex for every face of CH(S).
Therefore, summing over all these faces we get

∑
(2η + 1) = 2

∑
(η) + 2n′ − 4 = 2

(
n − n′ − 1

) + 2n′ − 4 = 2n − 6

of the 3-simplices in T have p as a vertex.
• If p is a convex hull point of S, T ′ contains a 3-simplex for every face of CH(S)

not having p as a vertex. This is equal to 2n′ − 4 − �(p), where �(p) is the degree
of p in the 1-skeleton of CH(S). Therefore,

∑
(2η + 1) = 2

∑
(η) + 2n′ − 4 − �(p) = 2

(
n − n′) + 2n′ − 4 − �(p)

= 2n − �(p) − 4

of the 3-simplices in T have p as a vertex. �

Lemma 9 Let S be a set of n > 4d2(d+1) points in general position in R
d (d > 3).

For every point p of S, there exists a d-dimensional simplicial complex K with vertex
set S, such that K has size strictly larger than (d − 1)n + log2 n

2(d−1)
− 2cd−1 and all its

d-simplices have p as a vertex, with cd defined as in Lemma 3.

Proof For every point q ∈ S distinct from p let rq be the infinite ray with origin
p and passing through q . Let Π be a halving (d − 1)-dimensional hyperplane of
S passing through p, not containing any other point of S. Further, let Π1 and Π2
be two (d − 1)-dimensional hyperplanes parallel to Π containing Conv(S) between
them and not parallel to any of the rays rq .

Project from p every point in S \ {p} to Π1 or Π2, in the following way. Every
ray rq intersects either Π1 or Π2 in a point q ′. Take q ′ to be the projection of q

from p. Let S′
1 and S′

2 be these projected points in Π1 and Π2, respectively. Both, S′
1

and S′
2, are sets of points in general position in R

d−1, with |S′
1| = n1 = �n−1

2 � and

|S′
2| = n2 = �n−1

2 �, where both, n1 and n2, are strictly larger than 4(d−1)2d .
By Theorem 5, there exist triangulations T1 of S′

1 and T2 of S′
2 of size at least

(d − 1)n1 + log2(n1)

2(d−1)
− cd−1 and (d − 1)n2 + log2(n2)

2(d−1)
− cd−1, respectively. Consider

the simplicial complexes K1 and K2 that arise from replacing every point q ′ in a
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simplex of T1 or T2 with its preimage q in S \ {p}. The (d − 1)-simplices of K1 and
K2 are all visible from p. Hence, we obtain a simplicial complex K of dimension d ,
by taking the convex hull of p and each (d − 1)-simplex of K1 and K2. Obviously,
all d-simplices of K contain p as a vertex. The size of K is at least

(d − 1)(n1 + n2) + log2(n1) + log2(n2)

2(d − 1)
− 2cd−1

= (d − 1)n − (d − 1) + log2(n1n2)

2(d − 1)
− 2cd−1

≥ (d − 1)n + log2(
n(n−2)

4 )

2(d − 1)
− 2cd−1 − (d − 1)

= (d − 1)n + log2(n)

2(d − 1)
− 2cd−1 + log2(n − 2) − log2(4)

2(d − 1)
− (d − 1)

> (d − 1)n + log2(n)

2(d − 1)
− 2cd−1 + 2d2(d + 1) − 1 − 2

2(d − 1)
− (d − 1)

> (d − 1)n + log2(n)

2(d − 1)
− 2cd−1 + (d − 1)2.

This is strictly larger than (d − 1)n + log2(n)

2(d−1)
− 2cd−1. �

We now consider not only one point, but subsets X of point sets in R
d (d > 3). The

next three lemmas, applicable for 1 ≤ |X| ≤ d − 3, |X| = d − 1, and |X| = d − 2,
respectively, provide lower bounds on the number of interior disjoint d-simplices
which all share the points in X. Note that the second lemma in the row, Lemma 11,
is true for d ≥ 3.

Lemma 10 Let S be a set of n > 4d2(d+1) points in general position in R
d (d > 3).

For every set X ⊂ S of r points (1 ≤ r ≤ d − 3), there exists a d-dimensional
simplicial complex K with vertex set S, such that K has size strictly larger than
(d − r)n + log2 n

2(d−r)
− 2cd−1 and all its d-simplices have X in their vertex set, with cd

defined as in Lemma 3.

Proof The case r = 1 is shown in Lemma 9. Thus assume that r > 1. Let Π be
the (r − 1)-dimensional hyperplane containing X and let Π ′ be a (d − (r − 1))-
dimensional hyperplane orthogonal to Π . Project S orthogonally to Π ′, and let S′
be the resulting image. The set X is projected to a single point pX in Π ′. Obviously
|S′| = n− r + 1 > 4(d−r+1)2(d−r+2). Apply Lemma 9 to S′, and obtain a (d − r + 1)-
dimensional simplicial complex K′ with vertex set S′ of size at least

(d − r)(n − r + 1) + log2(n − r + 1)

2(d − r)
− 2cd−r

= (d − r)n + log2 n

2(d − r)
− 2cd−r − (d − r)(r − 1) + log2(1 − r−1

n
)

2(d − r)

> (d − r)n + log2 n

2(d − r)
− 2cd−1,

such that all the (d − r + 1)-simplices of K′ have pX as a vertex.
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Fig. 4 Illustration of the proof
of Lemma 11 for n = 7 and
d = 3

To get K from K′, lift each simplex of K′ to the convex hull of the preimage of its
vertex set. Thus K is a d-dimensional simplicial complex with vertex set S and size
larger than (d − r)n + log2 n

2(d−r)
− 2cd−1. As all (d − r + 1)-simplices of K′ have pX

as a vertex, each d-simplex of K has X as a vertex subset. �

Lemma 11 Let S be a set of n > d points in general position in R
d (d ≥ 3). For every

set X ⊂ S of d − 1 points, there exists a d-dimensional simplicial complex K with
vertex set S, such that K has size at least n − d , and all d-simplices of K have X in
their vertex set.

Proof The proof is similar to that of Lemma 10, with the difference that we cannot
apply Lemma 9.

Let Π be the (d − 2)-dimensional hyperplane containing X and let Π ′ be a
2-dimensional hyperplane orthogonal to Π . Project S orthogonally to Π ′, and let S′
be its image. The set X is projected to a single point pX of Π ′ (see Fig. 4). Obviously
|S′| = n − d + 2 ≥ 3. Apply Lemma 7 to S′, and obtain a 2-dimensional simplicial
complex K′ with vertex set S′ of size at least (n − d + 2) − 2 = n − d , such that all
triangles of K′ have pX as a vertex.

To get K from K′, lift each triangle of K′ to the convex hull of the preimage of its
vertex set. Thus K is a d-dimensional simplicial complex with vertex set S and size
n − d . Since all triangles of K′ have pX as a vertex, all d-simplices of K have X as a
vertex subset. �

Note that Lemmas 10 and 11 leave a gap for r = d − 2. In this case, the point set
is projected to a 3-dimensional hyperplane, where the guaranteed bounds on incident
3-simplices vary significantly for extremal and interior points, see Lemma 8. Thus we
make a weaker statement for this case, which will turn out to be sufficient anyhow.

Lemma 12 Let S be a set of n > d + 5 points in general position in R
d (d > 3).

Let X ⊂ S be a subset of d − 2 points. Denote with Π the (d − 3)-dimensional hy-
perplane containing X and with Π ′ a 3-dimensional hyperplane orthogonal to Π .
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Project S orthogonally to Π ′, and let S′ be the resulting image. The set X is pro-
jected to a single point pX in Π ′.

If pX is an interior point of S′, then there exists a d-dimensional simplicial com-
plex K with vertex set S, such that K is of size at least 2n−2d −8 and all d-simplices
of K have X in their vertex set.

Proof Obviously |S′| = n−d −1 > 4. As pX is assumed to be an interior point of S′,
apply Lemma 8 to S′, and obtain a 3-dimensional simplicial complex K′ with vertex
set S′ of size at least 2(n − d − 1) − 6 = 2n − 2d − 8, such that all the 3-simplices of
K′ have pX as a vertex.

To get K from K′, lift each 3-simplex of K′ to the convex hull of the preimage of
its vertex set. Thus K is a d-dimensional simplicial complex with vertex set S and
size at least 2n−2d −8. As all 3-simplices of K′ have pX as a vertex, each d-simplex
of K has X as a vertex subset. �

In the light of the previous lemma it is of interest to know the conditions for
a subset X of S in R

d (d > 3) to project to an interior point of S′. We make the
following statement.

Lemma 13 Let S be a set of n > d points in general position in R
d (d > 3) and let

X ⊂ S be a subset of d − 2 points. With Π denote the (d −3)-dimensional hyperplane
spanned by X and with Π ′ a 3-dimensional hyperplane orthogonal to Π . Project S

orthogonally to Π ′ and denote with S′ the resulting image of S and with pX the
image of X, respectively. Then pX is an extremal point of S′ if and only if Conv(X)

is a (d − 3)-dimensional facet of CH(S).

Proof If Conv(X) is a (d − 3)-dimensional facet of CH(S), then there exists a
(d − 1)-dimensional hyperplane ΠT “tangential” to Conv(S), containing only X

and having all other points of S on one side. Thus, there exists a “tangential” plane
Π ′

T = ΠT ∩ Π ′ at pX , such that all points of S′ \ {pX} are on one side of Π ′
T . Hence,

pX is extremal.
If Conv(X) is not a (d − 3)-dimensional facet of CH(S), then all (d − 1)-

dimensional hyperplanes containing X have points of S on both sides, and therefore
pX is not extremal in S′. Assume the contrary: at least one (d − 1)-dimensional hy-
perplane, ΠT , containing X exists, such that all points of S \ X are on one side of
ΠT . Then we could tilt ΠT keeping all of its contained points and consuming the
ones it hits while tilting, until ΠT contains d points; i.e., until ΠT consumed two
more points, q1 and q2. Still all points of S, except the ones contained in ΠT , are
on one side of ΠT . Observe that a hyperplane spanned by d points (in a point set in
general position) is a (d − 1)-dimensional hyperplane. Hence, ΠT has become a sup-
porting hyperplane of a (d − 1)-dimensional facet, Conv(X ∪ {q1, q2}), of CH(S).
As the convex hull of every subset of (X ∪ {q1, q2}) is a facet of CH(S), this is a
contradiction to the assumption that Conv(X) is not a (d − 3)-dimensional facet of
CH(S). �
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4 Higher Dimensional Versions of the Order and Discrepancy Lemmas

We prove the higher dimensional versions of the Order and Discrepancy Lemmas
from [1]. The proofs are essentially the same as in the planar case, with the difference
that some facts we used in the plane are now provided by the lemmas in the previous
sections.

Recall that in a partial order a chain is a set of pairwise comparable elements,
whereas an antichain is a set of pairwise incomparable elements.

4.1 Order Lemma

Lemma 14 Let S be a set of η + d + 1 points (η ≥ 0) in general position in R
d

(d ≥ 2), such that Conv(S) is a d-simplex. Then there exists a triangulation of S,
such that at least (d − 1)η + η(2(1−d)) + 1 of its d-simplices contain a convex hull
point of S.

Proof Let I be the set of the η interior points of S. Let F = {F1, . . . ,Fd+1} be the
set of the (d − 1)-dimensional faces of CH(S). For each Fi ∈ F we define a partial
order ≤Fi

on I . We say that p ≤Fi
q (p, q ∈ I ) if p is in the interior of the d-simplex

Conv(Fi ∪{q}). Our goal is to obtain a “long” chain C∗ with respect to some F ∗ ∈F
such that |C∗| ≥ η(2(1−d)).

By Dilworth’s Theorem [8] w.r.t. ≤Fd+1 , there exists a chain or an antichain Cd+1

in I of size at least
√

η ≥ η(2(1−d)). If Cd+1 is a chain then we obtain C∗ = Cd+1,

|C∗| ≥ η(2(1−d)), and F ∗ = Fd+1. Otherwise, we iteratively apply Dilworth’s Theorem
w.r.t. ≤Fi

to the points of the antichain Ci+1, i from d down to 3, to obtain a chain or

antichain Ci of size at least
√|Ci+1| = η(2(i−d−2)). As soon as Ci is a chain, terminate

with C∗ = Ci , F ∗ = Fi , and |C∗| ≥ η(2(1−d)). Otherwise, the process ends with the
antichain C3 of size at least η(2(1−d)). Observe that an antichain with respect to all
but two faces is a chain with respect to the remaining two faces. Hence, C∗ = C3,
F ∗ = F2, with |C∗| ≥ η(2(1−d)).

Let p1 ≤F ∗ · · · ≤F ∗ pr (r = |C∗|) be the points of C∗. Construct a triangulation T
of S, starting with T consisting only of the d-simplex Conv(S). Then insert the points
of C∗ into T in the order pr, . . . ,p1. With each step one d-simplex is replaced by
(d + 1) new ones. This results in an intermediate triangulation T of ((S ∩ CH(S)) ∪
{p1 . . . pr}) consisting of (dr + 1) many d-simplices, each of which having at least
one point in CH(S) as a vertex.

Let σi , 1 ≤ i ≤ dr + 1, be the d-simplices of T , let ηi be the number of interior
points of σi , and let pi be a vertex of σi that is also in CH(S). By Lemma 6 there
exists a triangulation of S ∩σi such that (d −1)(ηi +d +1)−d2 +2 = (d −1)ηi +1
of its d-simplices have pi as a vertex. Therefore, the remaining points can be inserted
into T , such that at least

dr+1∑

i=1

(
(d − 1)ηi + 1

) = (d − 1)(η − r) + (dr + 1) = (d − 1)η + r + 1
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of the d-simplices of T have at least one point in CH(S). Since r ≥ η(2(1−d)), at least
(d − 1)η + η(2(1−d)) + 1 many d-simplices have at least one point in CH(S). �

We are now able to prove the high-dimensional variation of the “Order Lemma”:

Lemma 15 (Generalized Order Lemma) Let S be a set of n ≥ d +1 points in general
position in R

d (d > 2) with h = |S ∩ CH(S)|. Then there exists a triangulation of S,
such that at least (d − 1)n + (n − h)(2

(1−d)) + 2h − cd of its d-simplices have at least
one point in CH(S), with cd as defined in Lemma 3.

Proof Let S′ = S ∩ CH(S) be the set of convex hull points of S. If h > d(d + 1),
then by Lemma 3 there exists a triangulation of S′ of size τ ≥ (d + 1)h − cd .
If h ≤ d(d + 1), then by Theorem 2 any triangulation of S′ has size at least
τ ≥ h − d = (d + 1)h − dh − d ≥ (d + 1)h − cd .

Let σi , 1 ≤ i ≤ τ , be the d-simplices of the triangulation of S′, and let ηi be the
number of interior points of σi . By Lemma 14 there exists a triangulation Ti of S ∩σi ,

such that at least (d − 1)ηi + η
(2(1−d))
i + 1 of the d-simplices of Ti have at least one

point in CH(S ∩ σi). In total we obtain a triangulation T of S, such that at least

τ∑

i=1

(
(d − 1)ηi + η

(2(1−d))
i + 1

) ≥ (d − 1)

τ∑

i=1

(ηi) +
(

τ∑

i=1

ηi

)(2(1−d))

+ τ

≥ (d − 1)(n − h) + (n − h)(2
(1−d)) + (d + 1)h − cd

= (d − 1)n + (n − h)(2
(1−d)) + 2h − cd

of the d-simplices of T have at least one point in CH(S). �

4.2 Discrepancy Lemma

Let S be a k-colored set of n points in general position in R
d and let S1, S2, . . . , Sk

be its color classes. Recall that we consider k and d to be constants w.r.t. n, i.e.,
k and d are independent of n. We define the discrepancy δ(S) of S to be the sum
of differences between the sizes of its biggest chromatic class and the remaining
classes. Let Smax be the chromatic class with the maximum number of elements.
Then δ(S) = ∑

(|Smax| − |Si |) = (k − 1)|Smax| − |S \ Smax| = k|Smax| − n. Further,
we denote with Smin the chromatic class with the least number of elements.

We start with two statements describing the interaction of δ(S), Smax, and Smin.

Lemma 16 Let S be a k-colored set of n points in R
d . Let f(n,d,k) be some function

on k, d , and n. If |Smin| ≤ n
k

− (k − 1) · f(n,d,k) then |Smax| ≥ n
k

+ f(n,d,k), and
δ(S) ≥ k · f(n,d,k).

Proof From |Smin| ≤ n
k

− (k − 1) · f(n,d,k) we get

|S \ Smin| = n − |Smin| ≥ n − n

k
+ (k − 1) · f(n,d,k) = (k − 1) ·

(
n

k
+ f(n,d,k)

)
.
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As there exist (k − 1) color classes besides |Smin|, all not bigger than |Smax|, we have
|Smax| ≥ n

k
+ f(n,d,k). This leads to

δ(S) = k|Smax| − n ≥ k

(
n

k
+ f(n,d,k)

)
− n = k · f(n,d,k). �

The following corollary is a direct consequence of Lemma 16.

Corollary 17 Let S be a k-colored set of n points in R
d . Let f(n,d,k) be some function

on k, d , and n. If δ(S) < k · f(n,d,k) then |Smin| > n
k

− (k − 1) · f(n,d,k).

The previous two technical statements will be needed for the Theorems 27
and 28. For the sake of completeness we state the “original” Discrepancy Lemma
for d = k = 2 from [1].

Lemma 18 (Discrepancy Lemma [1]) Let S be a 2-colored set of n ≥ 3 points in gen-
eral position in R

2, such that δ(S) ≥ 2. Then S determines at least δ(S)−2
6 (n + δ(S))

empty monochromatic triangles.

In the following we proof the high-dimensional variation of this “Discrepancy
Lemma”:

Lemma 19 (Generalized Discrepancy Lemma) Let S be a k-colored set of
n > k · 4d2(d+1) points in general position in R

d , with d ≥ k > 3. Then S determines
Ω(nd−k+1 · (δ(S) + logn)) empty monochromatic d-simplices.

Proof Consider a subset X of d − k + 1 points of Smax. From the requirements of the
lemma we have d > 3, |Smax| ≥ �n

k
� > 4d2(d+1), and 1 ≤ |X| ≤ d − 3. Thus we may

apply Lemma 10 to X which guarantees the existence of a d-simplicial complex KX

with vertex set Smax, such that KX has size strictly larger
(
d − (d − k + 1)

)|Smax| + log2 |Smax|
2(d − (d − k + 1))

− 2cd−1

= (k − 1)|Smax| + log2 |Smax|
2(k − 1)

− 2cd−1

and all d-simplices of KX have X in their vertex set. Since every point of S \ Smax

is in at most one d-simplex of KX , KX contains at least δ(S) + log2 |Smax|
2(k−1)

− 2cd−1
empty monochromatic d-simplices.

We do this counting for each of the
( |Smax|
d−k+1

)
subsets of (d − k + 1) points of

Smax, and overcount each empty monochromatic d-simplex at most
(

d+1
d−k+1

)
times.

Hence, in total we get
( |Smax|
d−k+1)

( d+1
d−k+1)

· (δ(S) + log2 |Smax|
2(k−1)

− 2cd−1) empty monochromatic

d-simplices. As |Smax| ≥ �n
k
�, and d , cd−1 (see Lemma 3), and k are constant w.r.t. n,

we get Ω(nd−k+1 · (δ(S) + logn)) empty monochromatic d-simplices in S. �

Observe, that this “Generalized Discrepancy Lemma” is not applicable for small
values of k and d . With the 2-colored variant in R

2 already provided in Lemma 18
([1]), we generalize it to R

d in the next lemma.
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Lemma 20 Let S be a 2-colored set of n > 2d points in general position in R
d , with

d ≥ 3. Then S determines Ω(nd−1 · δ(S)) empty monochromatic d-simplices.

Proof Consider a subset X of d − 1 points of Smax. From the requirements of the
lemma we have d ≥ 3, |Smax| ≥ �n

2 � > d , and |X| = d − 1. Thus we may apply
Lemma 11 to X which guarantees the existence of a d-simplicial complex KX with
vertex set Smax, such that KX has size at least |Smax| − d and all d-simplices of KX

have X in their vertex set. Since every point of S \ Smax is in at most one d-simplex
of KX , KX contains at least δ(S) − d empty monochromatic d-simplices.

We do this counting for each of the
(|Smax|

d−1

)
subsets of (d − 1) points of Smax,

and overcount each empty monochromatic d-simplex at most
(
d+1
d−1

) = (
d+1

2

)
times.

Hence, in total we get
(|Smax|

d−1 )

(d+1
2 )

· (δ(S) − d) empty monochromatic d-simplices.

As |Smax| ≥ �n
2 �, and d is constant w.r.t. n, we get Ω(nd−1 · δ(S)) empty monochro-

matic d-simplices in S. �

The still missing 3-colored case of the “Discrepancy Lemma” turns out to be quite
difficult. In the remaining three lemmas of this section we will first prove the variant
for R3, then give a general bound for Rd and d > 4, and lastly providing the missing
case of R4.

Lemma 21 Let S be a 3-colored set of n ≥ 12 points in general position in R
3. Then

S determines at least δ(S)−10
12 · n + 3 empty monochromatic 3-simplices.

Proof Let p be a point of Smax. From the requirements of the lemma we have d = 3
and |Smax| ≥ �n

3 � ≥ 4. Thus we may apply Lemma 8 to p which guarantees the exis-
tence of a 3-simplicial complex Kp with vertex set Smax, such that all 3-simplices of
Kp have p as a vertex, and Kp has size at least

• 2|Smax| − 6 if p is an interior point of Smax and
• 2|Smax| − �(p) − 4 if p is a convex hull point of Smax and �(p) is the degree of p

in the 1-skeleton of CH (Smax).

Since every point of S \ Smax is in at most one 3-simplex of Kp , Kp contains at least
δ(S) − 6 empty monochromatic d-simplices if p is an interior point of Smax, and
δ(S) − �(p) − 4 empty monochromatic d-simplices if p is a convex hull point of
Smax.

We do this counting for each point in Smax, and overcount each empty monochro-
matic 3-simplex at most 4 times. Denote with h the number of convex hull points of
Smax. We know from Theorem 1 that summing over all convex hull points of Smax we
have

∑
�(p) = 2 · (3h − 6) = 6h − 12. Hence, in total we get

1

4
·
((

δ(S) − 6
) · (|Smax| − h

) + (
δ(S) − 4

) · h −
∑

�(p)
)

= 1

4
· ((δ(S) − 6

) · |Smax| − 4h + 12
) ≥ δ(S) − 10

4
· |Smax| + 3

empty monochromatic 3-simplices. As |Smax| ≥ �n
3 �, we get at least δ(S)−10

12 · n + 3
empty monochromatic 3-simplices in S. �
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Lemma 22 Let S be a 3-colored set of n > 3d + 15 points in general position in R
d

(d > 4). Then S determines Ω(nd−2 · δ(S)) empty monochromatic d-simplices.

Proof Consider a subset X of d − 2 points of Smax. Note that |Smax| ≥ �n
3 �. Denote

with Π the (d − 3)-dimensional hyperplane containing X and with Π ′ a 3-dimen-
sional hyperplane orthogonal to Π . Project Smax orthogonally to Π ′, and let S′

max be
the resulting image. The set X is projected to a single point pX in Π ′.

By Lemma 13, pX is an extremal point of S′
max only if Conv(X) is a (d − 3)-

dimensional facet of CH(Smax). By the upper bound theorem [14], the convex hull

of a point set in R
d has size at most Θ(n� d

2 �). Obviously, this bound applies to the
number of all ξ -dimensional facets, 1 ≤ ξ < d , of CH(Smax), as d is constant, i.e.,
independent of |Smax|.

On the other hand, the total number of different subsets of d − 2 points of Smax is
(|Smax|

d−2

) ≥ ( n
3

d−2

) = Θ(nd−2). As d − 2 > � d
2 � for d > 4, there exist

Θ
(
nd−2) − Θ

(
n� d

2 �) = Θ
(
nd−2)

different subsets X, such that pX is an interior point of S′
max.

For each such subset X apply Lemma 12, as |Smax| ≥ �n
3 � > d + 5 and d > 3.

This guarantees for each X the existence of a d-simplicial complex KX with vertex
set Smax, such that KX has size at least 2|Smax| − 2d − 8 and all d-simplices of KX

have X in their vertex set. Since every point of S \ Smax is in at most one d-simplex
of KX , KX contains at least δ(S) − 2d − 8 empty monochromatic d-simplices.

As we can do this counting for Θ(nd−2) different subsets, and overcount each
empty monochromatic d-simplex at most

(
d+1
d−2

)
times, we get at least

Θ
(
nd−2) · (δ(S) − 2d − 8

)

empty monochromatic d-simplices in total. �

For R4 the simple asymptotic counting from the previous proof does not work.
We have to take a more detailed look.

Lemma 23 Let S be a 3-colored set of n > 27 points in general position in R
4. Then

S determines Ω(n2 · δ(S)) empty monochromatic 4-simplices.

Proof Note that |Smax| ≥ �n
3 �. Recall that the size of CH(Smax) is bounded by

O(|Smax|� 4
2 �) = O(|Smax|2). Thus, there are also at most quadratically many edges

on CH(Smax). We distinguish two cases depending on the number of edges on
CH(Smax).

(1) If less than quadratically many edges are on CH(Smax), then there exist
Θ(|Smax|2) many pairs of points of Smax that are no 1-dimensional facet of
CH(Smax). Consider a subset X of 2 points of Smax, forming such a pair. De-
note with Π the line containing X and with Π ′ a 3-dimensional hyperplane
orthogonal to Π . Project Smax orthogonally to Π ′, and let S′

max be the result-
ing image. The set X is projected to a single point pX in Π ′. By Lemma 13,
pX is an interior point of S′

max, as Conv(X) is not an edge of CH(Smax). Apply
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Lemma 12 to X, as |Smax| ≥ �n
3 � > d + 5 and d = 4 > 3. This guarantees for X

the existence of a 4-simplicial complex KX with vertex set Smax, such that KX

has size at least 2|Smax| − 16 and all 4-simplices of KX have X in their vertex
set. Since every point of S \ Smax is in at most one 4-simplex of KX , KX con-
tains at least δ(S) − 16 empty monochromatic 4-simplices. As we can do this
counting for Θ(|Smax|2) = Θ(n2) different subsets, and overcount each empty
monochromatic 4-simplex at most

(5
2

)
times, we get at least Θ(n2) · (δ(S) − 16)

empty monochromatic 4-simplices in total.
(2) If there are Θ(|Smax|2) many edges on CH(Smax), then there are also Θ(|Smax|2)

many tetrahedra on CH(Smax) (because the number of tetrahedra is at least a sixth
of the number of edges), and obviously |Smax ∩ CH(Smax)| = Θ(|Smax|). For a
point p ∈ Smax make a pulling triangulation Kp of (Smax ∩ CH(Smax)) ∪ {p}.
Inserting the remaining points of Smax into Kp does not decrease the number of
4-simplices in Kp , which have p as a vertex. Remove all 4-simplices from Kp

that don’t have p as a vertex. Then Kp is a 4-dimensional simplicial complex,
such that every 4-simplex has p as a vertex and Kp is of size
(a) Θ(|Smax|2), if p is an interior point of Smax, or
(b) Θ(|Smax|2) − �(p), if p is an extremal point of Smax, where �(p) is the

number of tetrahedra in CH(Smax), having p as a vertex.
For case (b) observe, that

∑
p∈(Smax∩CH(Smax))

�(p) = 4 ·Θ(|Smax|2). Thus on av-
erage, at least Ω(|Smax|) points of Smax have at most O(|Smax|) incident tetrahe-
dra in CH(Smax). Hence, Θ(|Smax|2) − �(p) = Θ(|Smax|2) for Θ(|Smax|) points
in Smax, which we can all choose for the point p.

All 4-simplices of Kp are empty of points of Smax by construction. Since
every point of S \ Smax is in at most one 4-simplex of Kp , Kp contains
at least Θ(|Smax|2) − 2|Smax| + δ(S) − 2d − 8 = Θ(n2) empty monochro-
matic 4-simplices. Note that δ(S) = O(n). As we can do this counting for
Θ(|Smax|) = Θ(n) different points, and overcount each empty monochromatic
4-simplex at most 5 times, we get Ω(n3) ≥ Ω(n2 · δ(S)) empty monochromatic
4-simplices in total. �

With this last lemma in a line of five lemmas in total and including [1], we now
have a “Discrepancy Lemma” type of statement for all k-colored point sets in R

d , for
every combination of d ≥ 2 and 2 ≤ k ≤ d .

5 Empty Monochromatic Simplices in k-Colored Point Sets

In this section we present our results on the minimum number of empty monochro-
matic d-simplices determined by any k-colored set of n points in general position
in R

d . Some first bounds follow directly from the results in the previous section.

Theorem 24 Every (d + 1)-colored set S of n ≥ (d + 1) · 4d(cd+1) points in general
position in R

d (d > 2), cd defined as in Lemma 3, determines an empty monochro-
matic d-simplex.
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Proof Let Smax be the largest chromatic class of S. From the requirements of the
theorem we have d > 2 and |Smax| ≥ � n

d+1� ≥ 4d(cd+1) = 4d4+d3+d2+d > 4d2(d+1).

By Theorem 5, Smax has a triangulation T of size at least d|Smax| + log2 |Smax|
2d

− cd .
All the d-simplices of T are of the same color and empty of points of Smax. There
are at most d|Smax| points in S of the remaining colors, and each of these points is in
at most one d-simplex of T .

Therefore, at least log2 |Smax|
2d

− cd ≥ 2d(cd+1)
2d

− cd = 1 of the d-simplices of T are
empty of points of S. �

Note that d > 2 is crucial here, as for d = 2 Devillers et al. [7] showed that there
are arbitrarily large 3-colored sets which do not contain an empty monochromatic
triangle.

As an immediate corollary of Theorem 24 we have:

Corollary 25 Every (d + 1)-colored set S of n ≥ (d + 1) · 4d(cd+1) points in general
position in R

d (d > 2), cd defined as in Lemma 3, determines at least a linear number
of empty monochromatic d-simplices.

Proof By Theorem 24 there exists a constant μd ≤ (d + 1) · 4d(cd+1) such that every
subset of S of μd points determines at least one empty monochromatic d-simplex. Di-
vide S (with parallel (d −1)-dimensional hyperplanes) into � n

μd
� subsets of μd points

each. Hence, in total there exist at least � n
μd

� empty monochromatic d-simplices
in S. �

The next result follows immediately from Lemma 19 and provides a first general
lower bound.

Corollary 26 Let S be a k-colored set of n > k · 4d2(d+1) points in general position
in R

d , with d ≥ k > 3. Then S determines Ω(nd−k+1 logn) empty monochromatic
d-simplices.

Proof This is a direct consequence of Lemma 19 since every colored set has discrep-
ancy at least 0. �

We will further improve on this result in Theorem 29 below. The next theorem is
central for this improvement and provides a relation between the number of empty
monochromatic d-simplices of an arbitrary color in a d-colored point set S ⊂ R

d ,
and convex subsets of S with high discrepancy.

Theorem 27 Let S be a d-colored set of n ≥ 3d · (2cd)(2
d−1) points in general po-

sition in R
d , d > 2 and cd as defined in Lemma 3. For every 1 ≤ j ≤ d , either there

are Ω(n1+2−d
) empty monochromatic d-simplices of color j , or there is a convex set

C in R
d , such that |S ∩ C| = Θ(n) and δ(S ∩ C) = Ω(n(2−d )).

Proof The general idea for the proof is to iteratively peel convex layers of color j

from the point set. For each layer we use the Generalized Order Lemma to obtain
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Fig. 5 2D-sketch to illustrate
the nomenclature of the proof of
Theorem 27. White points are
points of chromatic class j ,
black points are points of the
other color classes

roughly n(21−d ) empty monochromatic d-simplices of color j . If at any moment the
discrepancy is large enough we terminate the process with the desired convex set C.
Otherwise, the iteration stops after at most 1

8n(1−2−d ) steps.
Let Si be the d-colored set of points in iteration step i. With Si,l we denote the

chromatic classes of Si , and with Si,max/Si,min we denote the largest/smallest chro-
matic class of Si , respectively. Note that a point of Si can only be in one chromatic
class, and that

⋃d
l=1 Si,l = Si . The iteration starts with S1 = S. For i > 1 smaller sets

are constructed, such that Si+1 ⊂ Si and Si+1,l ⊆ Si,l . Let ñ = n
3d

. As an invariant
through all iterations we guarantee

Invariant: |Si | ≥ (d + 1)ñ.

The iteration stops either if a convex set C is found, with |S ∩ C| = Θ(n) and

δ(S ∩ C) ≥ ñ(2−d )

(d−1)
, or after at most 1

8n(1−2−d ) steps.
Consider the ith step of the iteration. We will prove inequalities on the sizes of

different subsets, their discrepancy, and the size of chromatic classes. With Ri we
denote the j th chromatic class in step i, i.e., Si,j of Si . Further, let hi be the number of
points in Ri ∩CH (Ri) and let Xi = Si ∩Conv (Ri), such that the chromatic classes of
Xi are Xi,l = Si,l ∩ Conv (Ri), with Xi,max and Xi,min being the largest and smallest
chromatic class of Xi , respectively. See also Fig. 5 for an illustration of the different
sets. The next iteration step i + 1 will consist of Si+1 = Xi \ (Ri ∩ CH (Ri)) and
Si+1,l = Si,l ∩ Si+1.

(1) δ(Si) < ñ(2−d )

d−1 .

If δ(Si) ≥ ñ(2−d )

d−1 , then the iteration terminates with C = Conv(Si), as S ∩ C = Si

and |Si | = Θ(n) by the invariant.

(2) |Ri | > |Si |
d

− ñ(2−d )

d
> ñ.

By inequality (1), δ(Si) < ñ(2−d )

d−1 = d · ñ(2−d )

d(d−1)
. Applying Corollary 17 we get

|Si,min| >
|Si |
d

− (d − 1) · ñ(2−d )

d(d−1)
= |Si |

d
− ñ(2−d )

d
≥ (d+1)ñ−ñ(2−d )

d
> ñ. Obviously

|Ri | ≥ |Si,min|, which proves the inequality.

(3) δ(Xi) < ñ(2−d )

d−1 .
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Obviously, |Xi | ≥ |Ri |. Thus, by inequality (2), |Xi | > ñ = Θ(n). Hence, if

δ(Xi) ≥ ñ(2−d )

d−1 , then the iteration terminates with C = Conv(Xi).

(4) (d − 1)|Ri | − |Xi \ Ri | > −ñ(2−d ).
Assume the contrary: (d − 1)|Ri | − |Xi \ Ri | ≤ −ñ(2−d ), which can be rewrit-

ten to d|Ri | ≤ |Xi | − ñ(2−d ). From inequality (3) we know that δ(Xi) < ñ(2−d )

d−1 ,

which implies by Corollary 17 that |Xi,min| >
|Xi |
d

− ñ(2−d )

d
. As obviously

|Ri | ≥ |Xi,min|, we get |Xi | − ñ(2−d ) ≥ d|Ri | > |Xi | − ñ(2−d ), which is a con-
tradiction.

(5) |Si \ Xi | < 2ñ(2−d ).
Assume the contrary: |Si \ Xi | ≥ 2ñ(2−d ). Using inequality (3) and the definition
for the discrepancy we get

ñ(2−d )

d − 1
> δ(Xi) = (d − 1)|Xi,max| − |Xi \ Xi,max| ≥ (d − 1)|Ri | − |Xi \ Ri |.

Further, we know that |Xi \Ri | = |Si \Ri |− |Si \Xi | and from inequality (2) we

know |Ri | > |Si |
d

− ñ(2−d )

d
. Together with the assumption this leads to

ñ(2−d )

d − 1
> (d − 1)|Ri | − |Si \ Ri | + |Si \ Xi |
= d|Ri | − |Si | + |Si \ Xi | > |Si | − ñ(2−d ) − |Si | + 2ñ(2−d ) = ñ(2−d ),

which is a contradiction.

(6) δ(Si+1) < ñ(2−d )

d−1 .
Note that δ(Si+1) = δ(Xi \ (Ri ∩ CH (Ri))) by the definition of the next iteration
step. Although inequality (6) looks very similar to inequality (1), we have to
prove it here, because we may not assume the invariant for the next step, yet.
Using inequality (5) we can give the following bound:

|Xi | = |Si | − |Si \ Xi | > |Si | − 2ñ(2−d ).

From inequality (3) we get (d − 1)|Xi,max| − |Xi \ Xi,max| = δ(Xi) < ñ(2−d )

d−1 and

therefore |Ri | ≤ |Xi,max| <
|Xi |+ ñ(2−d )

d−1
d

. Combining these inequalities and using
the invariant for |Si |, we get

|Si+1| ≥ |Xi | − |Ri | > |Xi | −
|Xi | + ñ(2−d )

d−1

d
>

d − 1

d

(|Si | − 2ñ(2−d )
) − ñ(2−d )

d(d − 1)

≥ (d − 1)(d + 1)

d
ñ − 2(d − 1)2 + 1

d(d − 1)
ñ(2−d ).

As d > 2 we may evaluate this relation to |Si+1| > 8
3 ñ − 3

2 ñ(2−d ) > ñ = Θ(n).

Hence, if δ(Si+1) ≥ ñ(2−d )

d−1 , then the iteration terminates with C = Conv(Si+1).

(7) hi < 2ñ(2−d ).
As always, assume the contrary: hi ≥ 2ñ(2−d ). We distinguish two cases on
whether Ri is the largest chromatic class of Xi or not.
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(a) If Ri �= Xi,max then Si+1,max = Xi,max and

|Si+1 \ Si+1,max| = |Xi \ Xi,max| − hi.

Using inequality (6) and the definition for the discrepancy, we get

ñ(2−d )

d − 1
> δ(Si+1) = (d − 1)|Si+1,max| − |Si+1 \ Si+1,max|

= (d − 1)|Xi,max| − |Xi \ Xi,max| + hi = δ(Xi) + hi,

which is a contradiction to the assumption, as δ(Xi) ≥ 0.
(b) If Ri = Xi,max, recall that Ri+1 denotes the j th color class of Si+1 and ob-

serve that Ri+1 = Ri \ (Ri ∩ CH (Ri)). From inequality (3) and Ri = Xi,max

we derive ñ(2−d )

d−1 > δ(Xi) = d|Ri | − |Xi | = d(|Ri+1| + hi) − (|Si+1| + hi),

and get |Ri+1| < ñ(2−d )

d(d−1)
+ |Si+1|+hi

d
− hi = |Si+1|

d
− (d − 1) · (hi

d
− ñ(2−d )

d(d−1)2 ).
As |Si+1,min| ≤ |Ri+1| we get from Lemma 16 that

δ(Si+1) ≥ d ·
(

hi

d
− ñ(2−d )

d(d − 1)2

)
= hi − ñ(2−d )

(d − 1)2
.

Using inequality (6) and inserting the assumption for hi , results in the con-

tradiction ñ(2−d )

d−1 > δ(Si+1) ≥ ñ(2−d )

d−1 · (2(d − 1) − 1
d−1 ), as d > 2.

Using these inequalities we can provide a lower bound on the number of empty
monochromatic d-simplices of color j per step and hence, in total, and prove the
invariant on |Si |. From inequality (2) we know that |Ri | > ñ = n

3d
≥ d + 1. Thus we

may apply the Generalized Order Lemma (Lemma 15) to Ri , which guarantees at
least (d − 1)|Ri | + (|Ri | − hi)

(21−d ) + 2hi − cd interior disjoint d-simplices of color
j with at least one point in CH(Ri) each. Only points of (Xi \ Ri) can be in these
d-simplices, and each of these |Xi \ Ri | points lies inside at most one d-simplex.
Therefore, there exist at least

(d − 1)|Ri | − |Xi \ Ri | +
(|Ri | − hi

)(21−d ) + 2hi − cd =: τi

empty monochromatic d-simplices of color j , each of them having at least one point
in CH(Ri). Using the inequalities (4), (2), (7), and hi ≥ 0, we get

τi > −ñ(2−d ) + (
ñ − 2ñ(2−d )

)(21−d ) + 0 − cd ≥ ñ(21−d )

10
,

where the last inequality holds for ñ ≥ (2cd)(2
d−1).

Recall that the next iteration step i + 1 considers Si+1 = Xi \ (Ri ∩ CH (Ri)) and
Si+1,l = Si,l ∩ Si+1, for 1 ≤ l ≤ d . Note that all empty monochromatic d-simplices
of color j from step i have at least one vertex in CH (Ri). As the points of CH (Ri)

are not in Si+1, we do not overcount.
The iteration either terminates with a convex set C, such that |S ∩ C| = Θ(n) and

δ(S ∩ C) ≥ ñ(2−d )

d−1 = Ω(n(2−d )), or it ends after 1
8n(1−2−d ) steps. With at least ñ(21−d )

10
empty monochromatic d-simplices of color j per step we get

ñ(21−d )

10
· 1

8
n(1−2−d ) = 1

80
·
(

n

3d

)(21−d )

· n(1−2−d ) = Ω
(
n(1+2−d )

)

such simplices in total.
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It remains to prove the invariant |Si+1| ≥ (d + 1)ñ. After each step we have
Si+1 = Xi \ (Xi ∩ CH (Ri)) and thus |Si+1| = |Si | − |Si \ Xi | − hi . With inequal-
ities (5) and (7) we get |Si+1| > |Si | − 2ñ(2−d ) − 2ñ(2−d ) = |Si | − 4ñ(2−d ). Therefore,
starting with S1 = S, there are at least

n − 4ñ(2−d ) · 1

8
n(1−2−d ) = 3dñ − 1

2
· ñ(2−d ) · 3dñ

(3dñ)(2
−d )

= ñ

(
3d − 3d

2 · (3d)(2
−d )

)

≥ 3d

2
ñ > (d + 1)ñ

points left after 1
8n(1−2−d ) steps, as d > 2. �

We generalize the last result to k-colored point sets, for 3 ≤ k ≤ d .

Theorem 28 Let S be a k-colored set of n ≥ 2d−k(3k · (2cd)(2
k−1) +1) points in gen-

eral position in R
d , d > 2 and cd defined as in Lemma 3. For every 3 ≤ k ≤ d and

every 1 ≤ j ≤ k, either there are Ω(nd−k+1+2−d
) empty monochromatic d-simplices

of color j , or there is a convex set C in R
d , such that |S ∩ C| = Θ(n) and

δ(S ∩ C) = Ω(n(2−d )).

Proof For fixed k we prove the theorem by induction on the dimension, and use Theo-
rem 27 as an induction base for d = k > 2. Consider the induction step (d − 1) −→ d ,
for d > k. Denote with Sj the j th, and with Smin the smallest chromatic class of S.

If δ(S) ≥ n(2−d )

k−1 then C = Conv(S) is the desired convex set, with |S ∩ C| = Θ(n)

and δ(S ∩C) = Ω(n(2−d )). Thus assume that δ(S) < n(2−d )

k−1 = k · n(2−d )

k(k−1)
. From Corol-

lary 17 we know that |Sj | ≥ |Smin| > |S|
k

− (k − 1) · n(2−d )

k(k−1)
= n−n(2−d )

k
≥ n

2k
= Θ(n).

Let p ∈ Sj be a point of color j . For every point q ∈ S \ {p} let rq be the infinite
ray with origin p and passing through q . Let Π ′ and Π ′′ be two (d − 1)-dimensional
hyperplanes containing Conv(S) between them and not parallel to any of the rays rq .
See Fig. 6 for a sketch. Project from p every point in S \ {p} to Π ′ or Π ′′, in the fol-
lowing way. Every ray rq intersects either Π ′ or Π ′′ in a point q ′ or q ′′, respectively.
Take q ′ or q ′′ to be the projection of q from p. Let S′ and S′′ be the sets of these
projected points in Π ′ and Π ′′, respectively. The bigger set, assume w.l.o.g. S′ in Π ′,
is a set of at least n−1

2 points in general position in R
d−1.

Apply the induction hypothesis to S′ and get either (a) Ω(nd−1−k+1+2−d
) empty

monochromatic (d − 1)-simplices of color j , or (b) a convex set C in R
d−1, such that

|S′ ∩ C| = Θ(n) and δ(S′ ∩ C) = Ω(n(2−d+1)).
For case (b) observe, that the preimage of the point set of a convex set in

Π ′ is the point set of a convex set in R
d . Hence, C is a convex set in R

d ,
such that |S ∩ C| = Θ(n) and δ(S ∩ C) = Ω(n(2−d+1)), which trivially implies
δ(S ∩ C) = Ω(n(2−d )).
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Fig. 6 Illustration of the projection, R3 to two 2-dimensional hyperplanes in the sketch, in the proof of
Theorem 28

For case (a) note that, if X is the vertex set of an empty monochromatic (d − 1)-
simplex of color j in Π ′, then Conv(X ∪ p) is an empty monochromatic d-simplex
of color j in R

d . Repeat the projection and the induction for each point p ∈ Sj and
assume that this always results in case (a) (because the proof is completed if case (b)
happens once). This results in a total of

|Sj |
d+1 ·Ω(nd−k+2−d

) = Ω(nd−k+1+2−d
) empty

monochromatic d-simplices of color j , as each d-simplex gets overcounted at most
(d + 1) times. �

Combining the last theorem with the “Generalized Discrepancy Lemma” (Lem-
ma 19) and its different versions for the 3-colored case (Lemmas 21 to 23), we can
prove one of our main results.

Theorem 29 Any k-colored set S of n points in general position in R
d , d ≥ k ≥ 3,

determines Ω(nd−k+1+2−d
) empty monochromatic d-simplices.

Proof By Theorem 28 either there exist Ω(nd−k+1+2−d
) empty monochromatic

d-simplices, or there exists a convex set C in R
d , such that |S ∩ C| = Θ(n)

and δ(S ∩ C) = Ω(n(2−d )). In the latter case, there exist Ω(nd−k+1+2−d
) empty

monochromatic d-simplices by applying Lemma 19 (for d ≥ k > 3), Lemma 21 (for
d = k = 3), Lemma 23 (for d = 4 and k = 3), or Lemma 22 (for d > 4 and k = 3) to
the point set (S ∩ C). �

6 Empty Monochromatic Simplices in Two Colored Point Sets

For the sake of simplicity, we call the two color classes of a bichromatic point set S

“red” and “blue”, and denote these point sets with R and B , respectively. Observe,
that the discrepancy δ(S) = (k−1)|Smax|− |S \Smax| simplifies to δ(S) = ||R|− |B||
for the bichromatic case k = 2. This is the same notion of discrepancy as used in [1]
and [15].
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Note further, that assuming an upper bound for the discrepancy,

δ(S) = ∣∣|R| − |B|∣∣ < fn,

for a bicolored set of n points, leads to lower and upper bounds for the cardinality of
both color classes in a simple way. The inequality reformulates to |R|− |B| < fn and
|R| − |B| > −fn. Using |R| = |S| − |B| and |B| = |S| − |R| we make the following
simple observation, which will be used frequently later on.

Observation 30 Let S be a bicolored set of n points in R
2, partitioned into a red

point set R and a blue point set B . Let fn be some function on n. If δ(S) < fn, then
|B| − fn < |R| < |B| + fn and |R| − fn < |B| < |R| + fn, and n−fn

2 < |R| <
n+fn

2

and n−fn

2 < |B| < n+fn

2 .

Using the Order and Discrepancy Lemmas from [1], Pach and Tóth [15] prove
that the number of empty monochromatic triangles in bichromatic point sets in the
plane is Ω(n4/3). We adapt this proof technique to our notation and explicitly state,
in Theorem 31, an intermediate result showing the central trade off between many
empty monochromatic triangles and large convex sets. This result will be generalized
to higher dimensions in Theorem 32.

Theorem 31 Let S be a bicolored set of n points in general position in R
2, parti-

tioned into a red point set R and a blue point set B . Then either there exist Ω(n4/3)

empty red triangles, or there exists a convex set C in R
2, such that |S ∩ C| = Θ(n)

and δ(S ∩ C) = ||C ∩ R| − |C ∩ B|| = Ω( 3
√

n).

Proof Following the lines of [15], we call a point p ∈ S rich if at least
3√n
3 empty

monochromatic triangles in S have p as a vertex. The general idea for the proof is to
iteratively remove a rich red point from the point set. We show that it is possible to
find either n

5 rich red points or a convex set C with the desired properties.
If there exists some convex set C in R

2, such that |S ∩ C| = Θ(n) and
δ(S ∩ C) = Ω( 3

√
n), then the theorem is proven. Hence, assume its nonexistence.

Let Si be the bicolored set of points in iteration step i, and let Ri and Bi be its
color classes. Further, let hi be the number of convex hull points of Ri and let
Xi = Si ∩ Conv (Ri). See also Fig. 5 for an illustration of the different sets. The
iteration starts with S1 = S. For i > 1 smaller sets Si+1 are constructed, by removing
one rich red point from Si . Considering the ith iteration (1 ≤ i ≤ n

5 ), we can state the
following relations:

(1) |Si | = |S| − (i − 1) > n − n
5 + 1 = Θ(n).

(2) δ(Si) <
3√n
20 .

By relation (1), |Si | = Θ(n). Thus, if δ(Si) ≥ 3√n
20 , then we can set C = Conv (Si),

implying |S∩C| = Θ(n) and δ(S∩C) = Ω( 3
√

n), which we assumed not to exist.

(3) |Ri | > 2n
5 − 3√n

40 and |Bi | > 2n
5 − 3√n

40 .
Using inequality (1) and (2), and Observation 30 we get

|Ri | > |Si | − 3√n
20

2
>

4n

10
−

3
√

n

40
and |Bi | > |Si | − 3√n

20

2
>

4n

10
−

3
√

n

40
.
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(4) δ(Xi) <
3√n
20 .

Obviously, |Xi | ≥ |Ri | = Θ(n), by inequality (3). Thus, δ(Xi) ≥ 3√n
20 again sup-

plies us with some C = Conv (Si), which we assumed not to exist.

(5) |Si \ Xi | < 3√n
10 .

Note that |Si \ Xi | = |Bi \ Xi |. Using inequality (4) and Observation 30 we get

|Bi ∩ Conv(Xi)| = |Bi |− |Si \Xi | = |Xi \Ri | > |Ri |− 3√n
20 . Using inequality (2)

we get |Si \ Xi | < |Bi | − |Ri | + 3√n
20 ≤ δ(Si) + 3√n

20 < 2
3√n
20 .

(6) hi <
3√n
10 .

Let X′
i = Xi \ (Xi ∩ CH(Ri)). Obviously, |X′

i | ≥ |Bi | − |Si \ Xi |, and con-

sequently |X′
i | > 4n

10 − 3√n
40 − 3√n

10 = Θ(n) by inequality (3) and (5). There-

fore, we can assume δ(X′
i ) = |(|Ri | − hi) − |Xi \ Ri || <

3√n
20 , because the con-

trary would imply the existence of some C = Conv (X′
i ), which we assumed

not to exist. From |Xi \ Ri | − (|Ri | − hi) <
3√n
20 and inequality (4) we get

hi < |Ri | − |Xi \ Ri | + 3√n
20 = δ(Xi) + 3√n

20 <
3√n
20 + 3√n

20 .

Using these inequalities we can prove the existence of rich points. Let p1, . . . , phi

be the convex hull points of Ri in counter clock-wise order. Triangulate CH(Ri) by
adding the diagonals p1pj , for 3 ≤ j ≤ (hi −1). In the resulting triangulation let �j ,
2 ≤ j ≤ (hi − 1), be the triangle p1pjpj+1. With S(�j ) denote the bicolored set of
points interior to �j and let R(�j ) and B(�j ) be its color classes.

(7) δ(S(�j )) = ||R(�j )| − |B(�j )|| < 3√n
10 for every 2 ≤ j ≤ (hi − 1).

Assume the contrary: δ(S(�j )) ≥ 3√n
10 for some �j , 2 ≤ j ≤ (hi − 1). Consider

the three regions (�2 ∪ · · · ∪ �j−1), �j , and (�j+1 ∪ · · · ∪ �hi−1). At least one
of these three regions contains at least

|Xi | − hi

3
= |Si | − |Si \ Xi | − hi

3
>

1

3

(
n − n

5
+ 1 −

3
√

n

10
−

3
√

n

10

)
>

n

5

interior points, by inequality (1), (5), and (6).
If |S(�j )| ≥ n

5 = Θ(n), then we can set C = Conv (S(�j )), which we assumed
not to exist. Thus assume w.l.o.g. that region (�2 ∪ · · · ∪ �j−1) has at least n

5
interior points, i.e., |S(�2) ∪ · · · ∪ S(�j−1)| ≥ n

5 = Θ(n). Note that also
∣
∣S(�2) ∪ · · · ∪ S(�j−1) ∪ S(�j )

∣
∣

= ∣∣S(�2) ∪ · · · ∪ S(�j−1)
∣∣ + ∣∣S(�j )

∣∣ ≥ n

5
= Θ(n).

Then either the points inside region (�2 ∪ · · · ∪ �j−1) have high

discrepancy, δ(S(�2) ∪ · · · ∪ S(�j−1)) ≥ 3√n
20 , and thus we can set

C = Conv (S(�2) ∪ · · · ∪ S(�j−1)), or the discrepancy in region
(�2 ∪ · · · ∪ �j−1 ∪ �j ) is high,

δ
(
S(�2) ∪ · · · ∪ S(�j−1) ∪ S(�j )

)

≥ δ
(
S(�j )

) − δ
(
S(�2) ∪ · · · ∪ S(�j−1)

)
>

3
√

n

20
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and thus we can set C = Conv(S(�2) ∪ · · · ∪ S(�j−1) ∪ S(�j )). Both times the
existence of a convex set C, with |S ∩ C| = Θ(n) and δ(S ∩ C) = Ω( 3

√
n), is

a contradiction to its assumed nonexistence and consequently a contradiction to

the assumed existence of some �j , 2 ≤ j ≤ (hi − 1), with δ(S(�j )) ≥ 3√n
10 .

By inequalities (3) and (6) we have

hi−1∑

j=2

(∣∣R(�j )
∣∣) = |Ri | − hi >

4n

10
−

3
√

n

40
−

3
√

n

10
>

3n

10
.

Hence, there exists a �j , such that |R(�j )| > 3n
10(hi−2)

> 3n2/3. Further, using

inequality (7) and Observation 30 we have |B(�j )| < |R(�j )| + 3√n
10 . Applying

Lemma 14 for d = 2 we know that there exist at least |R(�j )| + √|R(�j )| + 1
interior disjoint red triangles, each with a point in CH(�j ). At least

∣
∣R(�j )

∣
∣ +

√∣
∣R(�j )

∣
∣ + 1 − ∣

∣B(�j )
∣
∣ >

∣
∣R(�j )

∣
∣ +

√∣
∣R(�j )

∣
∣ + 1 − ∣

∣R(�j )
∣
∣ −

3
√

n

10

>
√

3n2/3 −
3
√

n

10
> 3

√
n

of these triangles are empty of points, and at least a third of them has the same point
p in CH(�j ) and thus in CH(Ri). Hence, p is a rich point.

If i < n
5 then let Si+1 = Si \ {p}, i = i + 1, and iterate. As all triangles counted

so far have p as a vertex, and p does not belong to the point sets of future iterations,
we do not overcount. The process either terminates with a convex set C, such that
|S ∩ C| = Θ(n) and δ(S ∩ C) = Ω( 3

√
n), or it ends after n

5 steps. For each rich point

we can count at least
3√n
3 empty red triangles. As we get n

5 rich points and do not

overcount we get n
5 · 3√n

3 = Ω(n4/3) empty red triangles in total. �

Combining Theorem 31 with Lemma 18 proves the bound of Ω(n4/3) empty
monochromatic triangles for the 2-colored case in the plane, already shown in [15].
However, Theorem 31 can be generalized to R

d :

Theorem 32 Let S be a bicolored set of n points in general position in R
d (d ≥ 2),

partitioned into a red point set R and a blue point set B . Then either there exist
Ω(nd−2/3) empty red d-simplices, or there exists a convex set C in R

d , such that
|S ∩ C| = Θ(n) and δ(S ∩ C) = Ω( 3

√
n).

Proof We prove the theorem by induction on the dimension d (recall that d is a con-
stant, independent of n), and use Theorem 31 as an induction base for d = 2. Consider
the induction step (d − 1) −→ d , for d > 2. If δ(S) ≥ 3

√
n then C = Conv(S) is the

desired convex set, with |S ∩ C| = Θ(n) and δ(S ∩ C) = Ω( 3
√

n). Thus assume that

δ(S) < 3
√

n. From Observation 30 we know that |R| > n− 3√n
2 = Θ(n).

Let p ∈ R be a red point. For every point q ∈ S \ {p} let rq be the infinite ray
with origin p and passing through q . Let Π ′ and Π ′′ be two (d − 1)-dimensional
hyperplanes containing Conv(S) between them and not parallel to any of the rays rq .
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See Fig. 6 (for the very similar proof of Theorem 28) for a sketch. Project from p

every point in S \ {p} to Π ′ or Π ′′, in the following way. Every ray rq intersects
either Π ′ or Π ′′ in a point q ′ or q ′′, respectively. Take q ′ or q ′′ to be the projection
of q from p. Let S′ and S′′ be the sets of these projected points in Π ′ and Π ′′,
respectively. The bigger set, assume w.l.o.g. S′ in Π ′, is a set of at least n−1

2 points
in general position in R

d−1.
Apply the induction hypothesis to S′ and get either (a) Ω(nd−1−2/3) empty red

(d − 1)-simplices, or (b) a convex set C in R
d−1, such that |S′ ∩ C| = Θ(n) and

δ(S′ ∩ C) = Ω( 3
√

n).
For case (b) observe, that the preimage of a point set of a convex set in Π ′ is

the point set of a convex set in R
d . Hence, C is a convex set in R

d , such that
|S ∩ C| = Θ(n) and δ(S ∩ C) = Ω( 3

√
n).

For case (a) note that, if X is the vertex set of an empty red (d − 1)-simplex in
Π ′, then Conv(X ∪ p) is an empty red d-simplex in R

d . Repeat the projection and
the induction for each red point p ∈ R and assume that this always results in case (a)
(because the proof is completed if case (b) happens once). This results in a total
of |R|

d+1 · Ω(nd−1−2/3) = Ω(nd−2/3) empty red d-simplices, as each d-simplex gets
overcounted at most (d + 1) times. �

Combining Theorem 32 with the two variants of the “Discrepancy Lemma” for the
bicolored case (Lemmas 18 and 20), allows us to generalize the bound on the number
of empty monochromatic triangles for the bicolored case in the plane, to R

d .

Theorem 33 Any bicolored set S of n points in general position in R
d , d ≥ 2, deter-

mines Ω(nd−2/3) empty monochromatic d-simplices.

Proof By Theorem 32 either there exist Ω(nd−2/3) empty monochromatic d-simpli-
ces, or there exists a convex set C in R

d , such that |S ∩ C| = Θ(n) and
δ(S ∩ C) = Ω( 3

√
n).

In the former case the theorem is proven. In the latter case, if d = 2 then there exist
Ω(n2−1+1/3) = Ω(n4/3) empty monochromatic triangles (2-simplices) by applying
Lemma 18 to (S ∩C), and if d > 2 then there exist Ω(nd−1+1/3) = Ω(nd−2/3) empty
monochromatic d-simplices by applying Lemma 20 to (S ∩ C). �

7 Conclusions

In this paper we generalized known bounds on the number of empty monochromatic
triangles and tetrahedra on colored point sets to higher dimensions. Our results are
summarized in Table 1 (Sect. 1).

As main results, in Theorem 33, we proved that any bicolored point sets in R
d

determines Ω(nd−2/3) empty monochromatic d-simplices. For 3 ≤ k ≤ d , in The-
orem 29, we proved that any k-colored point set in R

d determines Ω(nd−k+1−2−d
)

empty monochromatic d-simplices. Further, we extended the linear lower bound for
the number of empty monochromatic tetrahedra in 4-colored point sets in R

3 to a
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linear lower bound for the number of empty monochromatic d-simplices in (d + 1)-
colored point sets in R

d , Corollary 25.
Observe that in the “Generalized Discrepancy Lemma” (Lemma 19) in fact all

empty monochromatic d-simplices of the provided bound are of the same color. This
is also true for the Discrepancy Lemmas (Lemmas 18, 20, 21, 22, and 23) for small
values of k and d , for which the “Generalized Discrepancy Lemma” is not applica-
ble. As Corollary 26 is a direct consequence of Lemma 19, we can state that: Every
k-colored set of n > k · 4d2(d+1) points in general position in R

d , with d ≥ k > 3,
determines Ω(nd−k+1 logn) empty monochromatic d-simplices, which are all of the
same color.

In order to prove our lower bounds on the number of empty monochromatic
d-simplices, we proved a result that is interesting on its own right. Theorem 5
shows that a simplicial complex with at least dn + max {h,

log2(n)

2d
} − cd , with

cd = d3 + d2 + d , d-simplices exists for any point set in R
d (points in general posi-

tion).
Although still linear, this is a first non-trivial bound, of interest in view of the

following open problem stated by Brass et al. [6]: What is the maximum number
Rd(n) such that every set of n points in general position in d-dimensional space has
a triangulation consisting of at least Rd(n) simplices? Moreover, Urrutia [18] posed
the following open problem:

Problem 34 Is it true that for any point set in general position in R
3 there exists a

triangulation with super linear many 3-simplices?

A positive answer to this question implies that any k coloring of a set of points with
n elements in general position, always contains an empty monochromatic simplex,
k constant, and n sufficiently large.

Unfortunately, proving or disproving Problem 34 seems to be illusive and remains
open. On the other hand, it is well known that any set of n points on the momentum
curve (x, x2, x3) has a triangulation with a quadratic number of 3-simplices. Aside
from this, we are not aware of many families of point sets in general position in
R

3 for which it is known that there exist triangulations with a quadratic number of
3-simplices.

We close our paper with the following result that somehow suggests that any point
set with n elements in R

d is not far from a point set that generates a quadratic number
of interior disjoint 3-simplices:

Theorem 35 Any set X of n points in general position in R
3 is contained in a set S

with 2n points in general position in R
3 such that S determines at least

(
n
2

)
interior

disjoint 3-simplices.

Proof Let v1, . . . , vn be n different unit vectors, no two of which are parallel to each
other, nor parallel to any segment determined by any two elements of X. For each
point pi , 1 ≤ i ≤ n, in X let qi = pi + ε · vi be a point of S \ X, where ε is a small
enough constant. Let σi,j = Conv({pi, qi,pj , qj }) be a 3-simplex. As X is in general
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position, it is easy to see, that for all (i, j) �= (r, s) the 3-simplices σi,j and σr,s have
disjoint interior. �

Note that in many instances it will not be possible to complete the set of
3-simplices obtained in the proof above to a full triangulation of S. Nevertheless,
this shows that the families of point sets admitting a quadratic number of interior dis-
joint empty 3-simplices may not have any special properties that would allow us to
characterize them.

Clearly, the construction used in Theorem 35 can be generalized to higher dimen-
sions. We conjecture:

Conjecture 1 For each d ≥ 3 and every constant k, there exists a constant f (d, k)

such that every set S ∈ R
d of more than f (d, k) points with arbitrary k-coloring has

a monochromatic empty d-simplex.

Even more so, we believe that the answer to Problem 34 is “Yes” and that this
actually extends to higher dimensions.

Conjecture 2 For each d ≥ 3 and every point set S ∈R
d there exists a triangulation

with super linear many d-simplices.

Of course, proving this stronger Conjecture 2 would imply a proof for Conjec-
ture 1: Construct a triangulation of super linear size on the biggest color class R ⊆ S.
There exist only linear many differently colored points in S \ R to fill the super linear
many monochromatic d-simplices on R. Hence, there exists at least one monochro-
matic empty d-simplex.
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