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Abstract Let p ≥ q ≥ d+1 be positive integers and let F be a finite family of convex
sets in R

d . Assume that the elements of F are coloured with p colours. A p-element
subset of F is heterochromatic if it contains exactly one element of each colour.
The family F has the heterochromatic (p, q)-property if in every heterochromatic
p-element subset there are at least q elements that have a point in common. We show
that, under the heterochromatic (p, q)-condition, some colour class can be pierced
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by a finite set whose size we estimate from above in terms of d,p, and q. This is a
colourful version of the famous (p, q)-theorem. (We prove a colourful variant of the
fractional Helly theorem along the way.) A fractional version of the same problem
is when the (p, q)-condition holds for all but an α fraction of the p-tuples in F . We
show that, in the case that d = 1, all but a β fraction of the elements of F can be
pierced by p − q + 1 points. Here β depends on α and p,q, and β → 0 as α goes to
zero.

Keywords Colourful and fractional theorems · Gallai and Helly type results · The
(p, q)-problem

1 Introduction

Helly’s theorem states that if F is a finite family of convex sets in R
d such that

every at most (d + 1)-element subfamily of F has nonempty intersection, then the
whole family F has nonempty intersection. The condition can be relaxed leading to
the so-called (p, q)-condition of Hadwiger and Debrunner [7] and the conclusion
varies accordingly: Assuming p ≥ q ≥ d + 1, the family F has the (p, q)-property if
among every p elements of F there are q with nonempty intersection. For example,
in Helly’s theorem the family of convex sets satisfies the (d + 1, d + 1)-condition
in R

d .
A set of points with the property that every element of F contains at least one of

the points is said to pierce F . The minimum number of points that can pierce F is
called the piercing number of F , and is denoted by τ(F).

Hadwiger and Debrunner [7] asked in 1957 if the (p, q)-condition implies that
τ(F) is bounded as a function of d,p, and q . They proved this in [7] under the
condition that (d − 1)p < d(q − 1) in stronger from saying that τ(F) ≤ p − q + 1.
Note that the (d − 1)p < d(q − 1) condition is always satisfied when d = 1. The
general case had remained open for 35 years and was finally solved by Alon and
Kleitman [1] by an ingenious and very powerful method.

Theorem 1 (Alon and Kleitman [1]) Let p,q, d be positive integers with p ≥ q ≥
d + 1. Then there exists a number m(p,q, d) such that τ(F) ≤ m(p,q, d) for every
finite family F of convex sets in R

d satisfying the (p, q)-condition.

We remark here that the necessity of the condition that p ≥ q ≥ d + 1 is shown
by the example when F is a family of hyperplanes in general position. Note also that
the (p, q)-property implies the (p, q −1)-property. So the most important case of the
(p, q)-problem occurs when q = d + 1.

In this paper we consider a colourful version of the (p, q)-problem. Let F1, . . . ,Fp

be finite families of convex sets in R
d . Their union is denoted by F . One can think

of Fi as containing the elements of F coloured by colour i. A heterochromatic
p-tuple of F is just a collection of p sets C1, . . . ,Cp where Ci ∈ Fi for every
i ∈ [p] = {1, . . . , p}. Lovász [9] found a colourful version of Helly’s theorem in
1974, its proof appeared first in Bárány [2] in 1982. The coloured version says the
following.
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Theorem 2 (Lovász [9] and Bárány [2]) Let F1, . . . ,Fd+1 be finite families of convex
sets (colour classes) in R

d with F = ∪d+1
j=1Fj . If every heterochromatic (d + 1)-tuple

of F has a point in common, then there exists a family Fi whose elements have a
point in common.

The assumption of the colourful Helly theorem can be weakened in a way similar
to that of the (p, q)-problem. The family F satisfies the heterochromatic (p, q)-
condition, to be denoted by (p, q)H , if every heterochromatic p-tuple of F contains
an intersecting q-tuple.

We will use the Alon–Kleitman method to show the following.

Theorem 3 Let p,q, d be positive integers with p ≥ q ≥ d + 1. Then there exists a
number M(p,q, d) such that the following holds. Given finite families F1, . . . ,Fp of
convex sets in R

d satisfying the (p, q)H -property, there are q − d indices i ∈ [p] for
which τ(Fi ) ≤ M(p,q, d).

The necessity of the condition p ≥ q ≥ d + 1 is shown by the example when all
the Fi consist of hyperplanes in general position. One cannot hope for more than
q − d classes with bounded piercing number: this is shown by q − d colour classes
consisting of many copies of Rd and each of the remaining classes consisting of many
hyperplanes in general position.

The (p, q)-property ((p, q)H -property) can be weakened by requiring that all but
an α fraction of the p-tuples (or heterochromatic p-tuples) of F satisfy the (p, q)-
property ((p, q)H -property). What can one hope for under this fractional (p, q)-
condition? Perhaps F contains a subfamily G of size γ |F | with τ(G) bounded where
γ depends only on α,d,p, q . It would be desirable to have γ → 1 when α → 0. We
will make a first step in this direction, focusing on the main case q = d + 1:

Theorem 4 Let α > 0 and let p,d be positive integers with p ≥ d + 1. Then there
exists a real number γ (α,p, d) > 0 such that the following holds. Given finite families
F1, . . . ,Fp of convex sets in R

d satisfying the (p, d + 1)H -condition for all but an α

fraction of heterochromatic p-tuples of F , some family Fi contains an intersecting
subfamily of size γ |Fi |.

In the second half of the paper we will consider the same questions in dimension
one, that is, when the convex sets in F are intervals in R. In this case we prove precise
results on the piercing number.

Theorem 5 Let p ≥ q ≥ 2 be integers and F a finite family of intervals in R coloured
with p colours. If F has the (p, q)H -property, then there exists a colour class Fi ⊂ F
with the property that τ(Fi ) ≤ �p−1

q−1 	. The bound is best possible in the sense that
there is a family F satisfying the conditions for which τ(Fi ) ≥ �p−1

q−1 	 for all i ∈ [p].

Further, for coloured intervals in R the fractional (p, q)H -property implies the
desired conclusion discussed above. Namely, we prove the following result which is
a colourful and fractional version of the classical (p, q)-theorem of Hadwiger and
Debrunner for finite families of intervals in the real line.
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Theorem 6 Let p ≥ q ≥ 2 be integers, set α0 = 1
2 (p − q + 3)−1/(p−q+2) and let

α ∈ [0, α0). Then there is a number β = β(p,q,α) ∈ [0,1) and an integer n0 =
n0(p, q,α) such that the following holds. Let F be a finite and coloured family of
intervals in R with colour classes F1, . . . ,Fp where each |Fi | ≥ n0. If F satisfies
the (p, q)H -property with the exception of at most α

∏p

j=1 |Fj | heterochromatic p-
tuples, then there exists a colour class Fi ⊂ F such that the elements of Fi can be
pierced by at most p − q + 1 points with the exception of at most β|Fi | intervals.
Furthermore, β = O(α1/(p−q+2)).

We will give an example showing that the dependence β = O(α1/(p−q+2)) is best
possible. In Sect. 7 we state an extension of Theorem 6 where, under the same con-
ditions, some colour class Fi is pierced by k points except for a small fraction of the
intervals in Fi . Here k is any integer from {�p−1

q−1 	, . . . , p−q +1}. The proof is given
is Sect. 8.

Here comes the uncoloured (and fractional) version of Theorem 6. It follows from
Theorem 6 quite easily.

Theorem 7 Let p ≥ q ≥ 2 be positive integers, and let F be a finite family of n

intervals in R, and α ∈ [0,1). Then there exists a number β = β(p,q,α) ∈ [0,1)

with the property that if the family F has the (p, q)-property with the exception of at
most α

(
n
p

)
p-tuples, then the elements of F can pierced by p − q + 1 points with the

possible exception of at most βn elements. Furthermore β = O(α1/p).

As a consequence of Theorems 6 and 7, when q = 2, we obtain the following result
that shows how the monochromatic world, for intervals on the line, has influence on
the behaviour of the heterochromatic world.

Corollary 1 For every integer p ≥ 2 and every α > 0, there is β = β(p,α) > 0 such
that the following holds. Suppose that F is a finite family of intervals in R coloured
with p colours. If for every colour i, the fraction of (monochromatic) p-tuples in
Fi that are pairwise disjoint is bigger than α, then the fraction of heterochromatic
p-tuples of F that are pairwise disjoint is larger than β .

For an overview of this field and for further information we refer to the textbook
by Matoušek [10] and the survey papers by Danzer, Grünbaum, and Klee [3], and
Eckhoff [4, 5].

2 Preparations

In the above theorems the family F consists of general convex sets. However, we can
assume that every C ∈ F is a polytope by the following standard argument. Let G be
a subfamily of F with

⋂
G 
= ∅, and let z(G) be an arbitrary fixed point in

⋂
G. The

set Z consisting of the points z(G) for all G ⊂ F with
⋂

G 
= ∅ is finite. Consider now
a set K ∈ F and define P(K) as the convex hull of all points z(G) ∈ Z with K ∈ G.
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Then P(K) is a polytope, and the family F∗ = {P(K) : K ∈ F} has exactly the same
intersection properties and same piercing number as F but consists of polytopes only.

As we have seen, the (p, q)-property implies the (p, q − 1)-property. So the base
case concerns the (p, d + 1)-property. We will mainly work with this case when
d > 1.

We will need a colourful version of the fractional Helly theorem. The original
fractional Helly is due to Katchalski and Liu [8] and says the following.

Theorem 8 (Katchalski and Liu [8]) Assume α ∈ (0,1] and F is a family of n convex
sets in R

d . If at least α
(

n
d+1

)
of the (d + 1)-tuples of F are intersecting, then F

contains an intersecting subfamily of size α
d+1n.

The proof of Theorem 1 is based on the Alon–Kleitman lemma that will be stated
next. We need the following definition. Given a finite family G of convex sets in R

d ,
let Z ⊂ R

d be a finite set that contains one point from every nonempty intersection
of elements of G (as described above). Now the fractional packing number, ν∗(G), of
G is defined as

ν∗(G) = max
∑

K∈G
x(K),

where the x(K) are real variables subject to
∑

z∈K∈G
x(K) ≤ 1 (∀z ∈ Z), and x(K) ≥ 0 (∀K ∈ G).

In other words, the real variables x(K) assign weights between 0 and 1 to members
of G in such a way that the sum of weights does not exceed 1 at any point of Rd .
Since the sum of x(K) is the same at any point of the intersection of a subset of G,
the fractional packing number ν∗ does not depend on the choice of Z.

Here comes the Alon–Kleitman lemma [1].

Lemma 1 Let G be a finite family of convex sets in R
d . Then τ(G) is bounded by a

function of d and ν∗(G).

When G is a finite family of convex sets in R
d , a blown-up copy of G, Gb , is simply

the same as G with some sets repeated (possibly deleted). The size of Gb , |Gb| is the
number of sets in it counted with multiplicities. The following lemma, also from [1],
gives a simple and direct way to check whether ν∗(G) ≤ γ for some γ > 0.

Lemma 2 Let G be a finite family of convex sets in R
d and γ > 0. Then ν∗(G) ≤ γ iff

every blown-up copy of G, say Gb , contains an intersecting subfamily of size at least
γ −1|Gb|.

It will often be convenient to use the language of hypergraphs. A finite family F
of convex sets in R

d , which is partitioned into p colour classes F1, . . . ,Fp , gives rise
to a p-partite hypergraph H with partition classes F1, . . . ,Fp . The vertices of H are
the convex sets C ∈ F , its edges are of the form e = (C1, . . . ,Cp), where C1, . . . ,Cp
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is a heterochromatic p-tuple of F satisfying certain conditions. For instance e ∈ H if
the heterochromatic p-tuple C1, . . . ,Cp contains an intersecting q-tuple. We mention
further that a blown-up copy Fb of the family F gives rise to a blown-up copy Hb

of the corresponding hypergraph H: the partition classes are simply Fb
i and e =

(C1, . . . ,Cp) is an edge in Hb iff it is an edge in H.

3 Proof of Theorem 3

The proof uses the colourful version of the fractional Helly theorem.

Lemma 3 Let F1, . . . ,Fd+1 be finite families of convex sets (colour classes) in R
d ,

write F for their union and assume that α ∈ (0,1). If an α fraction of heterochromatic
(d + 1)-tuples of F are intersecting, then some Fi contains an intersecting subfamily
of size α

d+1 |Fi |.

Proof The following is the standard method. Let H be the (d + 1)-partite hy-
pergraph with class i identified with Fi and edges e ∈ H corresponding to in-
tersecting heterochromatic (d + 1)-tuples of F . Thus e is simply (C1, . . . ,Cd+1)

with Ci ∈ Fi and
⋂d+1

1 Ci 
= ∅. Set C(e) = ⋂d+1
1 Ci . Define a partial edge as

f = (C1, . . . ,Ci−1,Ci+1, . . . ,Cd+1) if the intersection, C(f ), of these d convex sets
is nonempty. Assume as we may that all C ∈ F are polytopes. Then all C(e) and
C(f ) are polytopes as well, and we can choose a vector a ∈ R

d so that the minimum
of the scalar product ax over all x in C(e) and the minimum over all x in C(f ) is
reached at unique points x(e) and x(f ).

To the best of our knowledge, the following claim was proved first by Wegner in
[11]. For the sake of completeness, we present a short and simple proof here.

Claim 1 For every e ∈ H there is a partial edge f ⊂ e with x(e) = x(f ).

Proof Let H = {x ∈R
d : ax < ax(e)}, this is an open halfspace and the definition of

x(e) implies that

H ∩ C(e) = H ∩ C1 ∩ · · · ∩ Cd+1 = ∅.

So these d + 2 convex sets have empty intersection. By Helly’s theorem some d + 1
of them have empty intersection. This (d + 1)-tuple cannot be C1, . . . ,Cd+1 so it
is H,C1, . . . ,Ci−1,Ci+1, . . . ,Cd+1 for some i. This means that

⋂
j 
=i Cj is disjoint

from H . But it contains x(e) so x(f ) = x(e) with f = (C1, . . . ,Ci−1,Ci+1, . . . ,

Cd+1). �

Now let Ni = |Fi | for all i and let N = N1 . . .Nd+1. Write Hi for the d-partite hy-
pergraph whose edges are the partial edges f missing class i. Clearly, |Hi | ≤ N/Ni .
For f ∈ Hi let Fi (f ) = {C ∈ Fi : x(f ) ∈ C}. Note that Fi (f ) is an intersecting
subfamily of Fi . We define αi by

αiNi = max
f ∈Hi

∣
∣Fi (f )

∣
∣.
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We finish the proof by double counting the pairs (e, f ) with e ∈ H, f ⊂ e, f ∈ Hi

for some i, and x(e) = x(f ). Claim 1 says that the number of such pairs is at least
αN1 . . .Nd+1 = αN . Hence

αN ≤ number of such pairs (e, f )

=
d+1∑

i=1

∑

f ∈Hi

number of e ∈ H with (e, f ) being such a pair

≤
d+1∑

i=1

∑

f ∈Hi

|{C ∈ Fi : x(f ) ∈ C
}| ≤

d+1∑

i=1

∑

f ∈Hi

αiNi

≤
d+1∑

i=1

αiNi

N

Ni

=
d+1∑

i=1

αiN.

This implies that α ≤ ∑d+1
1 αi and so αi ≥ α

d+1 for some i. �

Proof of Theorem 3 We are going to use the Alon–Kleitman lemma (Lemma 1). We
set γ = (d + 1)

(
p

d+1

)
and want to show first that ν∗(Fi ) ≤ γ for some i ∈ [p]. So we

have to prove, by using Lemma 2, that in every blown-up copy Fb of F some Fb
i

contains an intersecting subfamily of size γ −1|Fb
i |.

We are going to use the complete p-partite hypergraph H associated with the
family F , and its blown-up copy Hb . When e = (C1, . . . ,Cp) is an edge of Hb (or
what is the same, of H) and J is a subset of [p], we write e(J ) for the partial edge
(Cj : j ∈ J ). For I ∈ ( [p]

d+1

)
define the (d+1)-partite hypergraph Hb(I ) whose classes

are Fb
i , i ∈ I , and f = (Ci : i ∈ I ) is an edge of Hb(I ) if

⋂
i∈I Ci 
= ∅.

Claim 2 Some Hb
i has at least δ|Hb

i | edges where

δ =
(

p

d + 1

)−1

.

This follows from double counting the pairs (e, f ) with e ∈ Hb and f = e(I ) ∈
Hb(I ). Set |Fb

i | = Ni (repeated sets counted with their multiplicity) and define N =
N1 . . .Np . The (p, d + 1)H -condition implies that for every e ∈ Hb there is an I ∈
( [p]
d+1

)
such that e(I ) ∈Hb(I ). This gives the first inequality below:

N ≤ number of such pairs (e, f )

=
∑

all I

∑

f ∈Hb(I )

∣
∣
{
e ∈Hb : f = e(I )

}∣
∣

≤
∑

all I

∑

f ∈Hb(I )

∏

j /∈I

Nj
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= N
∑

all I

1
∏

i∈I Ni

∣
∣Hb(I )

∣
∣.

This implies that some Hb(I ) indeed has at least δ|Hb(I )| edges. �

This finishes the proof quite quickly. The edge density in some Hb(I ) is at least δ.
By the coloured fractional Helly theorem (Lemma 3), some Fb

i with i ∈ I has an
intersecting subfamily of size δ/(d + 1)|Fb

i |. Consequently, by Lemma 2, ν∗(Fi ) ≤
(δ/(d + 1))−1 = γ .

This was the proof for the base case q = d + 1. For the general case of Theorem 3
we need to find q − d families Fi with bounded piercing number. This is quite easy:
We find the first one, say F1, with the previous proof. Then the family F \F1 is p−1
coloured, and satisfies the (p − 1, q − 1) condition. The previous proof gives another
family, say F2 with bounded τ . We repeat this process q − d times and get q − d

families with bounded piercing number. �

4 Proof of Theorem 4

The proof is simple and short. Let H be the p-partite hypergraph whose classes are
F1, . . . ,Fp and where e = (C1, . . . ,Cp) is an edge if the p-tuple C1, . . . ,Cp contains
an intersecting (d + 1)-tuple. Set Ni = |Fi | and N = N1 · · ·Np as before. Also, for
I ∈ ( [p]

d+1

)
let H(I ) be the (d +1)-partite hypergraph with classes Fi , i ∈ I and where

f = (Ci : i ∈ I ) is an edge if
⋂

i∈I Ci 
= ∅. Apply the previous double counting to the
hypergraph H (instead of Hb). The (p, d + 1)H -condition with α fraction exceptions
guarantees that H has (1 − α)N edges. The rest of the double counting is the same
and we conclude that some H(I ) has at least (1 − α)δ

∏
i∈I Ni edges with the same

δ as before. The colourful fractional Helly theorem implies that some Fi (with i ∈ I )
has an intersecting subfamily of size (1 − α)δ/(d + 1)|Fi |. �

5 Coloured Families of Intervals in R

Let p be a positive integer, and let F be a finite family of intervals in R, coloured with
p colours. The intervals with colour i form the subfamily Fi . We may assume (after
applying the standard method from Sect. 2) that all intervals in F are closed. Clearly,
there is a δ > 0 such that any two disjoint intervals in F are at least at distance δ

from each other. Now replace each interval I ∈ F by an open interval I ∗ containing
I and contained in a δ/3 neighbourhood of I . This gives rise to a new family F∗.
It is evident that this can be done in such a way that no two intervals in F∗ have a
common endpoint. It is also clear that F∗ has the same intersection pattern and the
same values for τ(F∗) and τ(F∗

i ) as F . From now on we assume that F consists of
bounded open intervals no two of which have a common endpoint.

The following lemma, in a slightly different setting, was proved by Gyárfás and
Lehel in [6]. For the sake of completeness, we present the short and simple proof.
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Lemma 4 (Gyárfás and Lehel [6]) Assume that F is a finite family of intervals in
R, coloured with p colours such that each colour class contains at least p pairwise
disjoint intervals. Then there exists a pairwise disjoint heterochromatic p-tuple in F .

The proof goes by induction on p. The case p = 1 is obvious. For the induction
step p − 1 → p, (p ≥ 2) let a be the leftmost right endpoint of all intervals in F .
We assume, without loss of generality, that a is the right endpoint of some interval
I1 from the first colour class F1. Delete all intervals from F \F1 that contain a. The
resulting family F ′ of intervals is coloured with p − 1 colours, and each colour class
F ′

j contains at least p − 1 disjoint intervals as only intervals containing the point
a have been deleted from Fi . The induction hypothesis guarantees the existence of
disjoint intervals Ij ∈F ′

j ⊂ Fj , j ∈ {2, . . . , p}. All of these p − 1 intervals are to the
right of a, and so I1, I2, . . . , Ip is a heterochromatic p-tuple consisting of disjoint
intervals. �

We need the following lemma.

Lemma 5 Let p ≥ q ≥ 2 be integers and F a finite family of intervals in R coloured
with p colours. If F has the (p, q)H -property, then there is a colour class Fi such
that τ(Fi ) ≤ p − q + 1.

Note that for p = 2, Lemma 5 is the colourful Helly theorem (Theorem 2) in one
dimension.

The proof is indirect, elementary and constructive. We describe the argument in
detail because the construction will be used later to improve the upper bound on
τ(Fi ).

Assume, on the contrary, that τ(Fi ) ≥ p − q + 2 for each i = 1, . . . , p. We will
find a heterochromatic p-tuple in F in which no q elements intersect, and thus reach
a contradiction.

The indirect assumption implies that each colour class Fi must contain at least
p − q + 2 pairwise disjoint intervals. Lemma 4 yields the existence of a pairwise
disjoint heterochromatic (p−q +2)-tuple of intervals {I1, . . . , Ip−q+2} with Ij ∈Fj

for j = 1, . . . , p − q + 2.
Select one arbitrary interval Ik ∈ Fk from each one of the remaining colour classes

k = p − q + 3, . . . , p. Clearly, the set of intervals {I1, . . . , Ip} is a heterochromatic
p-tuple with the property that any q-element subset of it must contain two disjoint
intervals from the set {I1, . . . , Ip−q+2} and thus cannot be intersecting. �

Note that in the case q = 2, the upper bound in Lemma 5 is best possible. This
fact is shown by the following example.

Example 1 Let p ≥ q = 2 be positive integers. For every i ∈ [p] the family Fi con-
sists of the same p − 1 pairwise disjoint intervals I1, . . . , Ip−1. So F consists of p

copies of each Ij . The pigeonhole principle shows that F has the (p,2)H -property.
At the same time, τ(Fi ) = p − 1 for each colour class.
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6 Proof of Theorem 5

Lemma 5 implies that τ(Fi ) ≤ p − q − 1 for at least one colour class. It is easy to
see (we omit the details) that

⌊
p − 1

q − 1

⌋

= max

{

m ∈N| q ≤
⌈

p

m

⌉}

. (1)

Set

m := min
{
τ(Fi ) : i = 1, . . . , p

}
.

This implies that there are at least m pairwise disjoint intervals in each colour class
Fi ⊂ F . According to Lemma 5, 1 ≤ m ≤ p − q + 1. Let

p = km + r, where k, r ∈ N and 0 ≤ r < m.

For each 0 ≤ l ≤ k − 1, Lemma 4 yields the existence of m pairwise disjoint
intervals {Ilm+1, . . . , I(l+1)m} of mutually different colours with Ilm+j ∈ Flm+j for
j = 1, . . . ,m.

If r > 0, then, again by Lemma 4, there exist r pairwise disjoint intervals
{Ikm+1, . . . , Ip} of mutually different colours, one from each of the remaining r

colour classes Fkm+1, . . . ,Fp . The set {I1, . . . , Ip} just constructed is a pairwise dis-
joint heterochromatic p-tuple of intervals, which consists of �p/m� groups and each
group contains m disjoint intervals (all of them of distinct colours) except the last
group which contains r disjoint intervals.

If q > �p/m�, then the pigeonhole principle guarantees that any q-element subset
of {I1, . . . , Ip} contains two intervals from the same group and so they are disjoint.
This contradicts the hypothesis of the theorem, implying that q ≤ �p/m�. Formula
(1) then shows that indeed m ≤ �p−1

q−1 	. �

The following example shows that upper bound in Theorem 5 is best possible.

Example 2 Let p ≥ q ≥ 2 be positive integers and let m = �p−1
q−1 	. Let the family F

consist of m pairwise disjoint intervals I1, I2, . . . , Im, each taken with multiplicity p,
and let the colour classes be Fi := {I1, . . . , Im}, for all i = 1, . . . , p.

It is clear that F satisfies the (p, q)H -property because any heterochromatic p-
tuple of intervals must contain at least q copies of one of the intervals I1, . . . , Im,
again by the pigeonhole principle. Further, τ(Fi ) = �p−1

q−1 	 for all i = 1, . . . , p.

Remark 1 There is no similar theorem in the uncoloured case: the (p, q)-condition
implies τ(F) ≤ p − q + 1 (by the Hadwiger–Debrunner results [7]) and this bound
is best possible, as shown by p − q + 1 disjoint intervals, one of them taken with
arbitrary (large) multiplicity, and the others with multiplicity one. This means that,
not surprisingly, the (p, q)H -condition on p repeated copies of F is stronger than the
(p, q)-condition on F .
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Remark 2 Under the hypotheses of Theorem 5, there exists a colour class, say F1 ⊂
F , with τ(F1) ≤ �p−1

q−1 	. Then the subfamily F \ F1 satisfies the (p − 1, q − 1)H
property and Theorem 5 guarantees the existence of a colour class, say F2 ⊂ F \F1,
with τ(F2) ≤ �p−2

q−2 	. Repeating this argument q − 2 times, we obtain q − 2 colour

classes, say Fk , k = 1, . . . , q − 2, with τ(Fk) ≤ �p−k
q−k

	.
Let p ≥ 3. Assume that the family F is coloured with p colours and has the

(p,p − 1)H -property. Applying the above argument to F , we obtain that p − 3 of
the colour classes of F have piercing number one and one colour class has piercing
number at most two.

7 An Extension of Theorem 6 and a Construction

Theorem 5 says that, under the (p, q)H -condition, some colour class of the family F
of intervals can be pierced by �p−1

q−1 	 points. Thus, it is not surprising that Theorem 6
can be generalised so that all intervals of some colour class are pierced by k points,
where k ∈ {�p−1

q−1 	, . . . , p − q + 1}:

Theorem 9 Let p ≥ q ≥ 2 be integers, k another integer with �p−1
q−1 	 ≤ k ≤ p−q+1,

h = q − 1 + �(q − p − 1)/k	, and α ∈ [0, α0) where α0 = 1
2 (k + 2)−1/(p−h). Then

there is a number β = β(p,q, k,α) ∈ [0,1) and an integer n0 = n0(p, q, k,α) such
that the following holds. Let F be a finite and coloured family of intervals in R with
colour classes F1, . . . ,Fp where each |Fi | ≥ n0. If F satisfies the (p, q)H -property
with the exception of at most α

∏p

j=1 |Fj | heterochromatic p-tuples, then there exists
a colour class Fi ⊂ F such that the elements of Fi can be pierced by at most k points
with the exception of at most β|Fi | intervals. Furthermore, β = O(α1/(p−h)).

Note that this is exactly Theorem 6 when k = p − q + 1 and h = q − 2. We
mention further that, as one can easily see, the h defined above is the largest integer
l satisfying �p−l

q−l
	 ≤ k.

In the next section we shall prove Theorems 9 and 6 simultaneously. The proof
will use the following construction. Assume that G is a finite family of bounded open
intervals in R with no two intervals having the same endpoint. Suppose that a is
the right endpoint of some interval from G. We construct a subfamily G(a) of G as
follows. Denote by T (a) the collection of all intervals I ∈ G lying to the left of a and
by G(a) the collection of all intervals to the right of a.

Now let G = {I1, . . . , In}, each Ii is open and no two intervals have a common
endpoint. Define t := �γ n� where γ > 0 is a parameter.

The right endpoints of the Ij s form an increasing sequence of n distinct numbers.
Let a1 be its t th element, in other words, a1 is the t th smallest right endpoint of the
intervals in G. Then T1 = T (a1) consists of exactly t intervals and every interval in
G1 = G(a1) is to the right of a1.

Assume that the families Gj ⊂ Gj−1 ⊂ · · · ⊂ G have already been constructed.
Assuming that |Gj | ≥ t , let aj+1 the t th smallest right endpoint of the intervals in Gj .
Then Tj+1 = T (aj+1) consists of exactly t intervals, and we set Gj+1 = Gj (aj+1).
We can continue this construction as long as |Gj | ≥ t .
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Fig. 1 Construction of Ti

and Gk

Fact The points a1, . . . , ak pierce all but kt + |Gk| intervals from G, cf. Fig. 1.

8 Proof of Theorems 9 and 6

We assume again that all intervals in F are open and no two of them have a common
endpoint. Let ni = |Fi |, ti = �γ ni� where γ = (2α)1/(p−h), and define β = (k +2)γ .
Note that β < 1 follows because α < α0.

For each colour class Fi ⊂ F , i ∈ [p] we apply the above construction giving
points ai

1, . . . , a
i
j and sets T i

1 , . . . T i
j , and call the class short if the construction cannot

be continued up to j = k. We note that we are done if some Fi is short; the Fact from
Sect. 7 shows that points ai

1, . . . , a
i
j pierce all but at most j ti + |F j

i | < (j + 1)ti <

(k + 1)�γ ni� < βni intervals from Fi . Here the last inequality follows from the
choice of β and ni ≥ n0 and α < α0.

So we assume that there are no short colour classes, that is, ai
k exists for all i. Let

T i denote the set of intervals in Fi that are to the right of ai
k . It follows that |T i

j | = ti

for j = 1, . . . , k and any two intervals from two different sets among T i
1 , . . . , T i

k , T i

are disjoint.
We are going to show that |T i | < ti for some i. This will finish the proof since

then Fi is pierced by the points ai
1, . . . , a

i
k except for at most kti +|T i | < (k + 1)ti =

(k + 1)�γ ni� < βni intervals where, again, the last inequality follows the same way
as above. So assume, on the contrary, that |Ti | ≥ ti for all i.

For i ∈ [p − h] we define a family of intervals Gi by setting

Gi := {(−∞, ai
1

)
,
(
ai

1, a
i
2

)
, . . . ,

(
ai
k,∞

)}
,

their union, G, is a family of intervals coloured with p − h colours.

Claim 3 For each i ∈ [p − h] there is an interval Ij (i) ∈ Gi such that no q − h of the
Ij (i)s intersect.

Proof If k = p − q + 1, then h = q − 2, and Lemma 4 guarantees the existence of a
pairwise disjoint heterochromatic (k + 1)-tuple in G. If k < p −q + 1, then no Gi can
be pierced by k points, and so by Theorem 5, G does not have the (p − h,q − h)H -
property. (This is where we use the choice of h.) Consequently, there are intervals
Ij (i) ∈ Gi for each i ∈ [p − h] such that no q − h of the Ij (i)s intersect. �

Define Si as the set of intervals from Fi that are contained in Ij (i), so Si coincides
with some T i

j or T i . Consequently, |Si | ≥ ti for all i.
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We count those heterochromatic p-tuples that contain one interval from every Si ,
i ∈ [p − h]. Such a p-tuple cannot contain an intersecting q-tuple. Their number is
at least

p−h∏

i=1

|Si |
p∏

j=p−h+1

|Fj | ≥
p−h∏

i=1

ti

p∏

j=p−h+1

nj ≥ γ p−h

p∏

i=1

ni = 2α

p∏

i=1

ni,

a contradiction, as F contains at most α
∏p

1 ni heterochromatic p-tuples with no
intersecting q-tuple. �

Remark 3 This proof gives a little more, namely the following. Under the conditions
of the theorem there are at least h + 1 colour classes Fi that can be pierced by k

points except for βni intervals. The argument is easy: assume there are l short colour
classes. We are done if l ≥ h + 1. Suppose then that l ≤ h. There are p − l ≥ p − h

non-short colour classes and any p −h of them can be used in the above proof to give
another non-short colour class with the required piercing property. We can repeat the
argument getting further and further non-short colour classes until we have a total of
h + 1 colour classes, each pierced by a set of size at most k except for a β fraction of
the intervals in the class.

The following example shows that the order of magnitude of β in Theorem 9 is
optimal.

Example 3 Let p ≥ q ≥ 2 be positive integers, define k and h as above, let 0 < β <

1/(p−h+1) be a real number to be specified later, and set δ = (k+1)β . Fix pairwise
disjoint intervals I1, . . . , Ik+1 and a big interval I containing their union. The family
Fi is the same for all i ∈ [p]: it contains each of I1, . . . , Ik+1 with multiplicity βn,
and the interval I with multiplicity (1 − δ)n. Hence such an Fi is pierced by k points
except for βn intervals.

Suppose that a given heterochromatic p-tuple P of F is bad in the sense that it
does not contain an intersecting q-tuple. Say, the p-tuple contains exactly l copies of
I and sj copies of Ij , j ∈ [k + 1]. We check that l ≤ h. This is trivial if k = p −q + 1
since then h = q − 2 and l > h would imply l ≥ q − 1. Thus P would contain an
intersecting p-tuple. If k < p − q + 1 and l > h, then sj ≤ q − 1 − l for all j , and the
definition of h would give

p = s1 + · · · + sk+1 + l ≤ (k + 1)(q − 1 − l) + l = k(q − 1 − l) + q − 1 < p,

a contradiction.
We call the sequence s1, . . . , sk+1, l the profile of P . The number of possible pro-

files of bad p-tuples with l copies of I is an integer f (p,q, l), independent of n. Set
f (p,q) = ∑h

0 f (p,q, l).
The number of bad p-tuples with a fixed profile s1, . . . , sk+1, l is

(
(1 − δ)n

)l
(βn)s1(βn)s2 · · · (βn)sk+1 = (1 − δ)lβp−lnp.
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As β < 1/(p − h + 1) the total number of bad p-tuples is

h∑

l=0

f (p,q, l)(1 − δ)lβp−lnp

≤
h∑

l=0

f (p,q,h)(1 − δ)hβp−hnp

= f (p,q)
(
1 − (k + 1)β

)h
βp−hnp = αnp,

when we define β by requiring f (p,q)(1− (k+1)β)hβp−h = α. It is easy to see that
for α small enough there is a unique solution β in the interval (0,1/(p − h + 1)) and
β = Ω(α1/(p−h)). The order of magnitude β = O(α1/(p−h)) in Theorem 9 is indeed
best possible.

9 Proof of Theorem 7

Set |F | = n, t = �γ n� where γ = (q − 1)(p−1)/pα1/p , and k = p − q + 1. We apply
the construction of Sect. 7 to F . If it stops before reaching ak , then we are done
the same way as before. So assume the construction produces points a1, . . . , ak and
families of intervals T1, . . . , Tk, T from F . Then |Ti | = t for all i and we are done,
again, if |T | < t . So assume, for a contradiction, that |T | ≥ t .

Next we derive a lower bound on the number of p-tuples in F that contain no
intersecting q-tuple. We only consider the following specific types of p-tuples: all
intervals are from T1 ∪· · ·Tk ∪T with at least one interval and at most q −1 intervals
from every set T1, . . . , Tk and T . We will call such a p-tuple bad. Every q-tuple from
a bad p-tuple contains intervals from at least two of the sets T1, . . . , Tk, T and thus
its intersection is empty. Therefore a bad p-tuple does not have the q-intersection
property.

A bad p-tuple has, say, si intervals from Ti for i = 1, . . . , k, and l intervals from T .
Then p = s1 + · · · + sk + l and s1, . . . , sk and l are integers from [q − 1]. Call the
sequence s1, . . . , sk, l the profile of the given p-tuple, and let g(p,q, l) be the number
of profiles of bad p-tuples with |T | = l. The number of bad p-tuples with given
profile s1, . . . , sk, l is

(|T |
l

) k∏

i=1

(
t

si

)

≥
( |T |

l

)l k∏

i=1

(
t

si

)si

>

( |T |
q − 1

)l k∏

i=1

(
t

q − 1

)si

=
( |T |

q − 1

)l(
t

q − 1

)p−l

.

Let N denote the total number of bad p-tuples. As g(p,q, l) ≥ 1,

N >

q−1∑

l=1

g(p,q, l)

( |T |
q − 1

)l(
t

q − 1

)p−l

≥ 1

(q − 1)p

q−1∑

l=1

|T |l tp−l ,
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which is a non-decreasing function of |T |. As |T | ≥ t , we have

N > (q − 1)
1

(q − 1)p
tp ≥ 1

(q − 1)p−1

(
(q − 1)

p−1
p α

1
p
)p

np = αnp > α

(
n

p

)

.

This contradicts the assumption of Theorem 7, and so |T | < t must be true.
Further, a1, . . . , ak pierce all but at most (k + 1)t intervals from F and so β =
O(α1/p). �

Under the conditions of Theorem 7 one can give a better bound, namely, β =
O(α1/(p−q+2)) provided n > pp/α. To prove this one should take each set in F with
multiplicity p giving colour classes F1, . . . ,Fp and apply Theorem 6 to this new
family. We omit the details. We mention that the monochromatic version of Example
3 shows that this β is of order α1/(p−q+2) when α is small and n > pp/α.
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