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Abstract The Vietoris–Rips filtration is a versatile tool in topological data analysis.
It is a sequence of simplicial complexes built on a metric space to add topologi-
cal structure to an otherwise disconnected set of points. It is widely used because it
encodes useful information about the topology of the underlying metric space. This
information is often extracted from its so-called persistence diagram. Unfortunately,
this filtration is often too large to construct in full. We show how to construct an
O(n)-size filtered simplicial complex on an n-point metric space such that its persis-
tence diagram is a good approximation to that of the Vietoris–Rips filtration. This new
filtration can be constructed in O(n log n) time. The constant factors in both the size
and the running time depend only on the doubling dimension of the metric space and
the desired tightness of the approximation. For the first time, this makes it computa-
tionally tractable to approximate the persistence diagram of the Vietoris–Rips filtration
across all scales for large data sets. We describe two different sparse filtrations. The
first is a zigzag filtration that removes points as the scale increases. The second is
a (non-zigzag) filtration that yields the same persistence diagram. Both methods are
based on a hierarchical net-tree and yield the same guarantees.

Keywords Persistent Homology · Vietoris–Rips filtration · Net-trees

1 Introduction

There is an extensive literature on the problem of computing sparse approximations
to metric spaces (see the book [29] and references therein). There is also a growing
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literature on topological data analysis and its efforts to extract topological information
from metric data (see the survey [3] and references therein). One might expect that
topological data analysis would be a major user of metric approximation algorithms,
especially given that topological data analysis often considers simplicial complexes
that grow exponentially in the number of input points. Unfortunately, this is not the
case. The benefits of a sparser representation are sorely needed, but it is not obvious
how an approximation to the metric will affect the underlying topology. The goal of
this paper is to bring together these two research areas and to show how to build sparse
metric approximations that come with topological guarantees.

The target for approximation is the Vietoris–Rips complex, which has a simplex for
every subset of input points with diameter at most some parameter α. The collection
of Vietoris–Rips complexes at all scales yields the Vietoris–Rips filtration. The persis-
tence algorithm takes this filtration and produces a persistence diagram representing
the changes in topology corresponding to changes in scale [33]. The Vietoris–Rips
filtration has become a standard tool in topological data analysis because it encodes
relevant and useful information about the topology of the underlying metric space [8].
It also extends easily to high dimensional data, general metric spaces, or even non-
metric distance functions.

Unfortunately, the Vietoris–Rips filtration has a major drawback: It’s huge! Even
the k-skeleton (the simplices up to dimension k) has size O(nk+1) for n points.

This paper proposes an alternative filtration called the sparse Vietoris–Rips filtra-
tion, which has size O(n) and can be computed in O(n log n) time. Moreover, the
persistence diagram of this new filtration is provably close to that of the Vietoris–Rips
filtration. The constants depend only on the doubling dimension of the metric (defined
below) and a user-defined parameter ε governing the tightness of the approximation.

For the k-skeleton, the constants are bounded by
( 1
ε

)O(kd)
.

The main tool we use to construct the sparse filtration is the net-tree of Har-Peled
and Mendel [25]. Net-trees are closely related to hierarchical metric spanners [22,23]
and their construction is analogous to data structures used for nearest neighbor search
in metric spaces [12,13,16].

Outline After reviewing some related work and definitions in Sects. 2 and 3, we explain
how to perturb the input metric using weighted distances in Sect. 4. This perturbation is
used in the definition of a sparse zigzag filtration in Sect. 5, i.e. one in which simplices
are both added and removed as the scale increases. The full definition of the net-trees
is given in Sect. 6. Using the properties of the net-tree and the perturbed distances, we
prove in Sect. 7 that removing points from the filtration does not change the topology.
This implies that the zigzag filtration does not actually zigzag at the homology level
(Sect. 8.1). The zigzag filtration can then be converted into an ordinary (i.e. non-
zigzag) filtration that also approximates the Vietoris–Rips filtration (Sect. 8.2). The
theoretical guarantees are proven in Sect. 9. Section 9.1 proves that the resulting
persistence diagrams are good approximations to the persistence diagram of the full
Vietoris–Rips filtration. The size complexity of the sparse filtration is shown to be
O(n) in Sect. 9.2. Finally, in Sect. 10, we outline the O(n log n)-time construction,
which turns out to be quite easy once you have a net-tree.
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2 Related Work

The theory of persistent homology [21,33] gives an algorithm for computing the
persistent topological features of a complex that grows over time. It has been applied
successfully to many problem domains, including image analysis [6], biology [11,30],
and sensor networks [18,19]. See also the survey by Carlsson for background on the
topological view of data [3]. It is also possible to consider the complexes that alternate
between growing and shrinking in what is known as zigzag persistence [4,5,27,31].

Due to the rapid blowup in the size of the Vietoris–Rips filtration, some attempts
have been made to build approximations. Some notable examples include witness
complexes [2,17,24] as well as the mesh-based methods of Hudson et al. in Euclidean
spaces [26].

The work most similiar to the current paper is by Chazal and Oudot [10]. In that
paper, they looked at a sequence of persistence diagrams on denser and denser sub-
samples. However, they were not able to combine these diagrams into a single diagram
with a provable guarantee. Moreover, they were not able to prove general guarantees
on the size of the filtration except under very strict assumptions on the data.

Recently, Zomorodian [32] and Attali et al. [1] have presented new methods for
simplifying Vietoris–Rips complexes. These methods depend only on the combinato-
rial structure. However, they have not yielded results in simplifying filtrations, only
static complexes. In this paper, we exploit the geometry to get topologically equivalent
sparsification of an entire filtration.

3 Background

Doubling metrics For a point p ∈ P and a set S ⊆ P , we will write d(p, S) to
denote the minimum distance from p to S, i.e. d(p, S) = minq∈S d(p, q). In a metric
space M = (P,d), a metric ball centered at p ∈ P with radius r ∈ R is the set
ball(p, r) = {q ∈ P : d(p, q) ≤ r}.
Definition 1 The doubling constant λ of a metric space M = (P,d) is the minimum
number of metric balls of radius r required to cover any ball of radius 2r . The doubling
dimension is d = �lg λ�. A metric space whose doubling dimension is bounded by a
constant is called a doubling metric.

The spread � of a metric space M = (P,d) is the ratio of the largest to smallest
interpoint distances. A metric with doubling dimension d and spread � has at most
�O(d) points. This is easily seen by starting with a ball of radius equal to the largest
pairwise distance and covering it with λ balls of half this radius. Covering all of the
resulting balls by yet smaller balls and repeating O(log�) times results in balls that
can contain at most one point each because the radii are smaller than the minimum
interpoint distance. The number of such balls is λO(log�) = �O(log λ) = �O(d).

Simplicial Complexes A simplicial complex X is a collection of vertices denoted
V (X) and a collection of subsets of V (X) called simplices that is closed under the
subset operation, i.e. σ ⊂ ψ and ψ ∈ X together imply σ ∈ X . The dimension
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Fig. 1 Top: A filtered simplicial complex. Bottom: A zigzag filtration of simplicial complexes

of a simplex σ is |σ | − 1, where |·| denotes cardinality. Note that this definition
is combinatorial rather than geometric. These abstract simplicial complexes are not
necessarily embedded in a geometric space.

Homology In this paper we will use simplicial homology over a field (see Munkres [28]
for an accessible introduction to algebraic topology). Thus, given a space X , the
homology groups Hi(X) are vector spaces for each i . Let H∗(X) denote the collection
of these homology groups for all i .

The star subscript denotes the homomorphism of homology groups induced by a
map between spaces, i.e. f : X → Y induces f� : H∗(X) → H∗(Y ). We recall the
functorial properties of the Homology operator, H∗(·). In particular, ( f ◦g)� = f� ◦g�
and idX� = idH∗(X), where id indicates the identity map.

Persistence Modules and Diagrams A filtration is a nested sequence of topological
spaces: X1 ⊆ X2 ⊆ · · · ⊆ Xn . If the spaces are simplicial complexes (as with all the
filtrations in this paper), then it is called a filtered simplicial complex (see Fig. 1,
top).

A persistence module is a sequence of Homology groups connected by homomor-
phisms:

H∗(X1)→ H∗(X2)→ · · · → H∗(Xn).

The homology functor turns a filtration with inclusion maps X1 ↪→ X2 ↪→ · · ·
into a persistence module, but as we will see, this is not the only way to get one.

One can also consider zigzag filtrations, which allow the inclusions to go in both
directions: X1 ⊆ X2 ⊇ X3 ⊆ · · · . The resulting module is called a zigzag module.

H∗(X1)→ H∗(X2)← H∗(X3)→ · · · .

The persistence diagram of a persistence module is a multiset of points in
(R ∪ {∞})2. Each point of the diagram represents a topological feature. The x and y
coordinates of the points are the birth and death times of the feature and correspond to
the indices in the persistence module where that feature appears and disappears. Points
far from the diagonal persisted for a long time, while those “non-persistent” points
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near the diagonal may be considered topological noise. By convention, the persistence
diagram also contains every point (x, x) of the diagonal with infinite multiplicity.

Given a filtration F , we let DF denote the persistence diagram of the persistence
module generated by F . The persistence algorithm computes a persistence diagram
from F [33]. It is also known how to compute a persistence diagram when F is a
zigzag filtration [4,27].

Approximating Persistence Diagrams Given two filtrations F and G, we say that
the persistence diagram DF is a c-approximation to the diagram DG if there is a
bijection φ : DF → DG such that for each p ∈ DF , the birth times of p and φ(p)
differ by at most a factor of c and the death times also differ by at most a factor of c.
The reader familiar with stability results for persistent homology [7,15] will recognize
this as bounding the �∞-bottleneck distance between the persistence diagrams after
reparameterizing the filtrations on a log-scale.

We will make use of two standard results on persistence diagrams. The first
gives a sufficient condition for two persistence modules to yield identical persistence
diagrams.

Theorem 1 (Persistence Equivalence Theorem [20], p. 159)
Consider two sequences of vector spaces connected by homomorphismsφi :Ui→Vi :

V0 �� V1 �� . . . �� Vn−1 �� Vn

U0 ��

��

U1

��

�� . . . �� Un−1 ��

��

Un

��

If the vertical maps are isomorphisms and all squares commute then the persistence
diagram defined by the Ui is the same as that defined by the Vi .

We prove approximation guarantees for persistence diagrams using the following
lemma, which is a direct corollary of the Strong Stability Theorem of Chazal et al. [7]
rephrased in the language of approximate persistence diagrams.

Lemma 1 (Persistence Approximation Lemma)
For any two filtrations A = {Aα}α≥0 and B = {Bα}α≥0, if Aα/c ⊆ Bα ⊆ Acα for

all α ≥ 0 then the persistence diagram DA is a c-approximation to the persistence
diagram of DB.

Contiguous Simplicial Maps Contiguity gives a discrete version of homotopy theory
for simplicial complexes.

Definition 2 Let X and Y be simplicial complexes. A simplicial map f : X → Y
is a function that maps vertices of X to vertices of Y and f (σ ) := ⋃

v∈σ f (v) is a
simplex of Y for all σ ∈ X .

A simplicial map is determined by its behavior on the vertex set. Consequently, we
will abuse notation slightly and identify maps between vertex sets and maps between
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simplices. When it is relevant and non-obvious, we will always prove that the resulting
map between simplicial complexes is simplicial.

Definition 3 Two simplicial maps f, g : X → Y are contiguous if f (σ )∪ g(σ ) ∈ Y
for all σ ∈ X .

Definition 4 For any pair of topological spaces X ⊆ Y , a map f : Y → X is a
retraction if f (x) = x for all x ∈ X . Equivalently, f ◦ i = idX where i : X ↪→ Y is
the inclusion map.

The theory of contiguity is a simplicial analogue of homotopy theory. If two simpli-
cial maps are contiguous then they induce identical homomorphisms at the homology
level [28, Sect. 12]. The following lemma gives a homology analogue of a deformation
retraction.

Lemma 2 Let X and Y be simplicial complexes such that X ⊆ Y and let i : X ↪→ Y
be the canonical inclusion map. If there exists a simplicial retraction π : Y → X such
that i ◦π and idY are contiguous, then i induces an isomorphism i� : H∗(X)→ H∗(Y )
between the corresponding homology groups.

Proof Since i ◦ π and idY are contiguous, the induced homomorphisms (i ◦ π)� :
H∗(Y ) → H∗(Y ) and idY� : H∗(Y) → H∗(Y) are identical [28, Sect. 12]. Since
idY� = (i ◦ π)� = i� ◦ π� is an isomorphism, it follows that i� is surjective.

Since π is a retraction, π ◦ i = idX and thus (π ◦ i)� : H∗(X)→ H∗(X) and idX� :
H∗(X)→ H∗(X) are identical. Since idX� = (π ◦ i)� = π� ◦ i� is an isomorphism, it
follows that i� is injective.

Thus, i� is an isomorphism because it is both injective and surjective. ��

4 The Relaxed Vietoris–Rips Filtration

In this section, we relax the input metric so that it is no longer a metric, but it will still
be provably close to the input. The new distance adds a small weight to each point that
grows with α. The intuition behind this process is illustrated in Fig. 2. The weighted

Fig. 2 Top: Some points on a line. The white point contributes little to the union of α-balls. Bottom: Using
the relaxed distance, the new α-ball is completely contained in the union of the other balls. Later, we use
this property to prove that removing the white point will not change the topology
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Fig. 3 The weight function for a point p. The weight is 0 until just before its removal time tp . Then there
is a period of steeper increase (slope = 1/2) followed by slower increase (slope = ε)

distance effectively shrinks the metric balls locally so that one ball may be covered by
nearby balls.

Throughout, we assume the user-defined parameter ε ≤ 1
3 is fixed. Each point p

is assigned a deletion time tp ∈ R≥0. The specific choice of tp will come from the
net-tree construction in Sect. 6. For now, we will assume the deletion times are given,
assuming only that they are nonnegative. The weight wp(α) of point p at scale α is
defined as follows (Fig. 3)

wp(α) :=
{ 0 if α ≤ (1− 2ε)tp,

1
2 (α − (1− 2ε)tp) if (1− 2ε)tp < α < tp,

εα if tp ≤ α.
The relaxed distance at scale α is defined as

d̂α(p, q) := d(p, q)+ wp(α)+ wq(α).

For any pair p, q ∈ P , the relaxed distance d̂α(p, q) is monotonically non-decreasing
in α. In particular, d̂α ≥ d̂0 = d for all α ≥ 0. Although distances can grow as α
grows, this growth is sufficiently slow to allow the following lemma which will be
useful later.

Lemma 3 If d̂α(p, q) ≤ α ≤ β then d̂β(p, q) ≤ β.

Proof The weight of a point is 1
2 -Lipschitz in α, so wp(β) ≤ wp(α)+ 1

2 |β − α|, and
similarly, wq(β) ≤ wq(α)+ 1

2 |β − α|. So,

d̂β(p, q) = d(p, q)+ wp(β)+ wq(β)

≤ d(p, q)+ wp(α)+ wq(α)+ (β − α)
= d̂α(p, q)+ β − α
≤ β

Given a set P , a distance function d′ : P × P → R, and a scale parameter α ∈ R,
we can construct a Vietoris–Rips complex

VR(P,d′, α) := {σ ⊂ P : d′(p, q) ≤ α for all p, q ∈ σ }.

The Vietoris–Rips complex associated with the input metric space (P,d) is Rα :=
VR(P,d, α). The relaxed Vietoris–Rips complex is R̂α := VR(P, d̂α, α).

By considering the family of Vietoris–Rips complexes for all values of α ≥ 0,
we get the Vietoris–Rips filtration, R := {Rα}α≥0. Similarly, we may define the
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relaxed Vietoris–Rips filtration, R̂ := {R̂α}α≥0. Lemma 3 implies that R̂ is indeed
a filtration. The filtrations R and R̂ are very similar. The following lemma makes this
similarity precise via a multiplicative interleaving.

Lemma 4 For all α ≥ 0, R α
c
⊆ R̂α ⊆ Rα , where c = 1

1−2ε .

Proof To prove inclusions between Vietoris–Rips complexes, it suffices to prove inclu-
sion of the edge sets. For the first inclusion, we must prove that for any pair p, q, if
d(p, q) ≤ α

c then d̂α(p, q) ≤ α. Fix any such pair p, q. By definition, wp(α) ≤ εα
and wq(α) ≤ εα. So,

d̂α(p, q) = d(p, q)+ wp(α)+ wq(α) ≤ α
c
+ 2εα = α.

For the second inclusion, d̂α ≥ d. So, if d̂α(p, q) ≤ α then d(p, q) ≤ α as well.
Thus any edge of R̂α is also an edge of Rα .

5 The Sparse Zigzag Vietoris–Rips Filtration

We will construct a sparse subcomplex of the relaxed Vietoris–Rips complex R̂α that
is guaranteed to have linear size for any α. In fact, we will get a zigzag filtration that
only has a linear total number of simplices, yet its persistence diagram is identical to
that of the relaxed Vietoris–Rips filtration.

We define the open net Nα at scale α to be the subset of P with deletion time
greater than α, i.e.

Nα := {p ∈ P : tp > α}.

Similarly, the closed net at scale α is

N α := {p ∈ P : tp ≥ α}.

The sparse zigzag Vietoris–Rips complex Qα at scale α is just the subcomplex
of R̂α induced on the vertices of Nα . Formally,

Qα := {σ ∈ R̂α : σ ⊆ Nα} = VR(Nα, d̂α, α).

We also define a closed version of the sparse zigzag Vietoris–Rips complex:

Qα := VR(N α, d̂α, α).

Note that if α �= tp for all p ∈ P then Nα = N α and Qα = Qα .
The complexes Rα , R̂α , Qα , and Qα are well-defined for all α ≥ 0, however,

they only change at discrete scales. Let A = {ai }i∈N be an ordered, discrete set of
nonnegative real numbers such that tp ∈ A for all p ∈ P and α ∈ A for any pair
p, q such that α = d̂α(p, q). That is, A contains every scale at which a combinatorial
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changes happens, either a point deletion or an edge insertion. This implies that Nai =
N ai+1 and thus, using Lemma 3, that Qai ⊆ Qai+1 .

The sparse Vietoris–Rips complexes can be arranged into a zigzag filtration Q as
follows.

Qa1 ←↩ Qa1 ↪→ Qa2 ←↩ Qa2 ↪→ · · ·

We will return to Q later as it has some interesting properties. However, at this
point, it is underspecified as we have not yet shown how to compute the deletion times
for the vertices. The next section will fill this gap.

6 Hierarchical Net-Trees

The following treatment of net-trees is adapted from the paper by Har-Peled and
Mendel [25].

Definition 5 A net-tree of a metric M = (P,d) is a rooted tree T with vertex v ∈ T
having a representative point rep(v) ∈ P . There are n = |P| leaves, each represented
by a different point of P . Each non-root vertex v ∈ T has a unique parent par(v). The
set of vertices with the same parent v are called the children of v, denoted child(v).
If child(v) is nonempty then for some u ∈ child(v), rep(u) = rep(v). The set Pv ⊆ P
denotes the points represented by the leaves of the subtree rooted at v. Each vertex
v ∈ T has an associated radius rad(v) satisfying the following two conditions.

1. Covering Condition: Pv ⊂ ball(rep(v), rad(v)), and
2. Packing Condition: if v is not the root, then

P ∩ ball(rep(v), K prad(par(v))) ⊆ Pv,

where K p (the “p” is for “packing”) is a constant independent of M and n (Fig. 4).

The radii of the net tree nodes are always some constant times larger than the
radius of their children. Simple packing arguments guarantee that no node of the tree
has more than λO(1) children, where λ is the doubling constant of the metric. The
whole tree can be constructed in O(n log n) randomized time or in O(n log�) time
deterministically [25]. Moreover, it is important to note the construction does not
require that we know the doubling dimension in advance.

Given a net-tree T for M = (P,d) and a point p ∈ P , let vp denote the least
ancestor among the nodes in T represented by p. For each p ∈ P the deletion time tp

is defined as

tp := 1

ε(1− 2ε)
rad(par(vp)).

This is just the radius of the parent of vp with a small scaling factor included for
technical reasons. When the scale α reaches tp, we remove point p from the (zigzag)
filtration. The choice of weights as a function of tp guarantees that any point with
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Fig. 4 A net-tree is built over the set points from Fig. 2. Each level of the tree represents a sparse approx-
imation to the original point set at a different scale

Fig. 5 Three levels of a net tree for a collection of points in the plane. In each level, the larger disks cover
the rest of the points, whereas the smaller disks are disjoint, i.e. they pack

relaxed distance at most tp from p will also have relaxed distance at most tp from
rep(par(vp)). As we prove later, this guarantees that the topology of the Rips complex
does not change when we remove p at scale tp.

For a fixed scale α ∈ R, the set Nα is a subset of points of P induced by the net-tree.
The sets Nα are the nets of the net-tree. For any α it satisfies a packing condition and
a covering condition as defined in the following lemma.

Lemma 5 Let M = (P,d) be a metric space and let T be a net-tree for M. For all
α ≥ 0, the net Nα induced by T at scale α satisfies the following two conditions.

1. Covering Condition: For all p ∈ P, d(p,Nα) ≤ ε(1− 2ε)α.
2. Packing Condition: For all distinct p, q ∈ Nα , d(p, q) ≥ K pε(1− 2ε)α.

Proof First, we prove that the covering condition holds. Fix any p ∈ P . The statement
is trivial if p ∈ Nα so we may assume that tp ≤ α.

Let v be the lowest ancestor of p in T such that rep(v) ∈ Nα . Let u be the
ancestor of p among the children of v. If q = rep(u) then tq = rad(v)

ε(1−2ε) . By our
choice of v, q /∈ Nα and thus tq ≤ α. It follows that rad(v) ≤ ε(1 − 2ε)α. Thus,
d(p,Nα) ≤ d(p, rep(v)) ≤ rad(v) ≤ ε(1− 2ε)α.

We now prove that the packing condition holds. Let p, q be any two distinct points
of Nα . Without loss of generality, assume tp ≤ tq . Thus, q /∈ Pvp , where (as before)
vp is the least ancestor among the nodes of T represented by p. Since p ∈ Nα ,

α < tp = rad(par(vp))

ε(1−2ε) . Therefore, using the packing condition on the net-tree T ,
d(p, q) ≥ K prad(par(vp)) > K pε(1− 2ε)α.

A subset that satisfies this type of packing and covering conditions is sometimes
referred to as a metric space net (not to be confused with a range space net) or, more
accurately, as a Delone set [14]. An example is given in Fig. 5.
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7 Topology-Preserving Sparsification

In this section, we make the intuition of Fig. 2 concrete by showing that deleting a
vertex p (and its incident simplices) from the relaxed Vietoris–Rips complex R̂tp does
not change the topology.

For any α ≥ 0, we define the “projection” of P onto Nα as

πα(p) :=
{ p if p ∈ Nα,

argmin
q∈Nα

d̂α(p, q) otherwise.

The following lemma shows that the distance from a point to its projection is bounded
by the difference in the weights of the point and its projection.

Lemma 6 For all p ∈ P, d(p, πα(p)) ≤ wp(α)− wπα(p)(α).

Proof Fix any p ∈ P . We first prove that if d(p, q) ≤ wp(α) − wq(α) for some
q ∈ Nα , then it holds for q = πα(p).

If we have such a q, then the definitions of d̂α and πα imply the following.

d(p, πα(p)) = d̂α(p, πα(p))− wp(α)− wπα(p)(α)

≤ d̂α(p, q)− wp(α)− wπα(p)(α)

≤ d(p, q)+ wq(α)− wπα(p)(α)

≤ wp(α)− wπα(p)(α).

So, it will suffice to find a q ∈ Nα such that d(p, q) ≤ wp(α) − wq(α). If p ∈ Nα

then this is trivial. So we may assume p /∈ Nα and therefore tp ≤ α andwp(α) = εα.
Let u ∈ T be the ancestor of p such that rad(u) < εα

1−ε and rad(par(u)) ≥ εα
1−ε .

Let q = rep(u). Since

tq ≥ 1

ε(1− 2ε)
rad(par(u)) ≥ α

1− 2ε
,

it follows thatwq(α) = 0 and that q ∈ Nα . Finally, since p ∈ Pu , d(p, q) ≤ rad(u) ≤
εα = wp(α)− wq(α).

By bounding the distance between points and their projections, we can now show
that distances in the projection do not grow.

Lemma 7 For all p, q ∈ P and all α ≥ 0, d̂α(πα(p), q) ≤ d̂α(p, q).

Proof The bound follows from the definition of d̂α , the triangle inequality, and
Lemma 6.

Lemma 8 Let α ≥ 0 be a fixed constant. Let X be a set of points such that Nα ⊆
X ⊆ P and let K = VR(X, d̂α, α). The inclusion map i : Qα ↪→ K induces an
isomorphism at the homology level.
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Proof The map K → Qα induced by πα is a retraction because Qα ⊆ K and πα is a
retraction onto Nα , the vertex set of Qα . By Lemma 2, it will suffice to prove that πα
is simplicial and that i ◦ πα is contiguous to the identity map on K .

Since Qα and K are Vietoris–Rips complexes, it will suffice to prove these facts
for the edges:

1. πα is simplicial: for all p, q ∈ X , if d̂α(p, q) ≤ α then d̂α(πα(p), πα(q)) ≤ α,
and

2. i ◦πα and idK are contiguous: for all p, q ∈ X , if d̂α(p, q) ≤ α then all six edges
of the tetrahedron {p, q, πα(p), πα(q)} are in K .

The first statement follows from two successive applications of Lemma 7. The second
statement follows from Lemma 6 for the edges {p, πα(p)} and {q, πα(q)} and from
Lemma 7 for the other edges.

Corollary 1 For all α ∈ A, the inclusions f : Qα ↪→ Qα , g : Qα ↪→ R̂α , and
h : Qα ↪→ R̂α induce isomorphisms at the homology level.

Proof The inclusions f and g induce isomorphisms by applying Lemma 8 with X =
N α and X = P respectively. Composing the inclusions, we get that g = h ◦ f . Thus,
at the homology level, we get h� = g� ◦ f −1

� is also an isomorphism.

8 Straightening Out the Zigzags

In this section, we show two different ways in which zigzag persistence may be avoided.
First, in Sect. 8.1, we show that the sparse zigzag filtration Q does not zigzag at the
homology level. Then, in Sect. 8.2, we show how to modify the zigzag filtration so it
does not zigzag as a filtration either.

The advantage of the non-zigzagging filtration is that it allows one to use the
standard persistence algorithm, but it has larger size in the intermediate complexes.
As we will see in Sect. 9.2, the total size is still linear.

8.1 Reversing Homology Isomorphisms

The backwards arrows in the zigzag filtrationQ all induce isomorphisms. At the homol-
ogy level, these isomorphisms can be replaced by their inverses to give a persistence
module that does not zigzag. That is, the zigzag module

· · · → H∗(Qα)
∼=← H∗(Qα)→ H∗(Qβ)

∼=← H∗(Qβ)→ · · ·
can be transformed into

· · · → H∗(Qα)
∼=→ H∗(Qα)→ H∗(Qβ)

∼=→ H∗(Qβ)→ · · · .
The latter module implies the existence of another that only uses the closed sparse
Vietoris–Rips complexes:

· · · → H∗(Qα)→ H∗(Qβ)→ · · · .
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Note that this module does not duplicate the indices in the zigzag. In these various
transformations, we have only reversed or concatenated isomorphisms, thus we have
not changed the rank of any induced map H∗(Qα)→ H∗(Qβ). As a result the persis-
tence diagram DQ is unchanged.

This is novel in that we construct a zigzag filtration and we apply the zigzag persis-
tence algorithm, but we are really computing the diagram of a persistence module that
does not zigzag. The zigzagging can then be interpreted as sparsifying the complex
without changing the topology.

8.2 A Sparse Filtration Without the Zigzag

The preceding section showed that the sparse zigzag Vietoris–Rips filtration does not
zigzag as a persistence module. This hints that it is possible to construct a filtration
that does not zigzag with the same persistence diagram. Indeed, this is possible using
the filtration

S := {Sak }ak∈A, where Sak :=
k⋃

i=1

Qai .

We first prove that H∗(Qak ) and H∗(Sak ) are isomorphic.

Lemma 9 For all ak ∈ A, the inclusion h : Qak ↪→ Sak induces a homology isomor-
phism.

Proof We define some intermediate complexes that interpolate between Qak and Sak .

Ti,k :=
k⋃

j=i

Qa j .

In particular, we have that Qak = Tk,k and Sak = T1,k . The map h can be expressed as
h = h1 ◦ · · · ◦ hk−1, where hi : Ti+1,k ↪→ Ti,k is an inclusion. It will suffice to prove
that each hi induces an isomorphism at the homology level for each i = 1 . . . k−1. By
Lemma 2, it will suffice to show that the projection πai : Ti,k → Ti+1,k is a simplicial
retraction and hi ◦ πai and idTi,k are contiguous.

Let σ ∈ Ti,k be any simplex. So, σ ∈ Qa j for some integer j such that i ≤ j ≤ k.
First, we prove that πai is a retraction. If σ ∈ Ti+1,k then j ≥ i + 1. So, σ ⊆

N a j ⊆ Nai and thus πai (σ ) = σ because πai is a retraction onto Nai by definition
when viewed as a function on the vertex sets.

Second, we show that πai is a simplicial map from Ti,k to Ti+1,k . Since it is a
retraction, it only remains to show that πai (σ ) ∈ Ti,k when σ ∈ Ti,k \Ti+1,k , i.e. when
j = i . In this case, πai (σ ) ∈ Qai because πai : Qai → Qai is simplicial (as shown
in the proof of Lemma 8). Since Qai ⊆ Qai+1 ⊆ Ti,k , it follows that πai (σ ) ∈ Ti,k as
desired.
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Last, we prove contiguity. We need to prove that σ ∪ πai (σ ) ∈ Ti,k . If j > i , then
σ ∪ πai (σ ) = σ ∈ Ti,k as desired. If i = j , then σ ∪ πai (σ ) ∈ Qai as shown in the
proof of Lemma 8. Since Qai ⊆ Ti,k , it follows that σ ∪ πai (σ ) ∈ Ti,k as desired.

Theorem 2 The persistence diagrams of Q and S are identical.

Proof For any ai , ai+1 ∈ A, we get the following commutative diagram where all
maps are induced by inclusions.

H∗(Qai )

∼= ���
��

��
��

H∗(Qai )
∼=��

����
��

��
��

�� H∗(Qai+1)

∼=
����

��
��

��

H∗(Sai )
�� H∗(Sai+1)

Lemma 9 and Corollary 1 show that the indicated maps are isomorphisms. As
in Sect. 8.1, we reverse the isomorphism H∗(Qai ) → H∗(Qai ) to get the following
diagrams, which also commutes.

H∗(Qai )

∼=
��

�� H∗(Qai+1)

∼=
��

H∗(Sai )
�� H∗(Sai+1)

Therefore, by the Persistence Equivalence Theorem, DQ = DS.

8.3 The Connection with Extended Persistence

The sparse Rips zigzag has the property that every other space is the intersection of
its neighbors on either side. That is, by a simple exercise, one can show that Qai =
Qai ∩ Qai+1 . Carlsson et al. give a general method for comparing such zigzags to
filtrations that do not zigzag in their work on levelset zigzags induced by real-valued
functions [5]. They proved that the Mayer-Vietoris diamond principle from a paper
by Carlsson and De Silva [4] allows one to relate the persistence diagram of such a
zigzag with the so-called extended persistence diagram of the union filtration. In our
case, this result implies that the persistence diagram of the sparse zigzag Vietoris–Rips
filtration can be derived from the persistence diagram of the extended filtration

H∗(T1,1) �� · · · �� H∗(T1,N )

��
H∗(T1,N , TN ,N ) · · ·�� H∗(TN ,N , T1,N )��

where N = |A|, Ti,k :=⋃k
j=i Qa j as in the proof of Lemma 9, and H∗(TN ,N , Ti,N ) is

the homology of TN ,N relative to Ti,N , or equivalently, the homology of the quotient
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TN ,N/Ti,N . The first half of this filtration is precisely the sparse Vietoris–Rips filtration
S.

In light of this result, we see that Lemma 9 implies that there is nothing interesting
happening in the second half of the extended filtration. In the language of extended
persistence, this means that there are no extended or relative pairs. Thus, as shown
in Theorem 2, there is no need to compute the extended persistence to compute the
persistence of the sparse Vietoris–Rips filtration.

9 Theoretical Guarantees

There are two main theoretical guarantees regarding the sparse Vietoris–Rips filtra-
tions. First, in Sect. 9.1, we show that the resulting persistence diagrams are good
approximations to the true Vietoris–Rips filtration. Second, in Sect. 9.2, we show that
the filtrations have linear size.

9.1 The Approximation Guarantee

In this section we prove that the persistence diagram of the sparse Vietoris–Rips
filtration is a multiplicative c-approximation to the persistence diagram of the standard
Vietoris–Rips filtration, where c = 1

1−2ε . The approach has two parts. First, we show
that the relaxed filtration is a multiplicative c-approximation to the classical Vietoris–
Rips filtration. Second, we show that the sparse and relaxed Vietoris–Rips filtrations
have the same persistence diagrams, i.e. that DQ = DR̂. By passing through the
filtration R̂, we obviate the need to develop new stability results for zigzag persistence.

Theorem 3 For any metric space M = (P,d), the persistence diagrams of the cor-
responding sparse Vietoris–Rips filtrations Q = Q(M) and S = S(M) both yield
c-approximations to the persistence diagram of the Vietoris–Rips filtration R =
R(M), where c = 1

1−2ε and ε ≤ 1
3 is a user-defined constant.

Proof By Lemma 4, we have a multiplicative c-interleaving between R and R̂. Thus,
the Persistence Approximation Lemma implies that DR̂ is a c-approximation to DR.

We have shown in Theorem 2 that DQ = DS, so it will suffice to prove that
DQ = DR̂. The rest of the proof follows the same pattern as in Theorem 2. For any
ai , ai+1 ∈ A, we get the following commutative diagram induced by inclusion maps.

H∗(Qai )

∼= ���
��

��
��

H∗(Qai )
∼=��

∼=
����

��
��

��
�� H∗(Qai+1)

∼=
����

��
��

��

H∗(R̂ai )
�� H∗(R̂ai+1)

Corollary 1 implies that many of these inclusions induce isomorphisms at the homol-
ogy level (as indicated in the diagram). As a consequence, the following diagram also
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commutes and the vertical maps are isomorphisms.

H∗(Qai )

∼=
��

�� H∗(Qai+1)

∼=
��

H∗(R̂ai )
�� H∗(R̂ai+1)

So, the Persistence Equivalence Theorem implies that DQ = DR̂ as desired.

9.2 The Linear Complexity of the Sparse Filtration

In this section, we prove that the total number of simplices in the sparse Vietoris–Rips
filtration is only linear in the number of input points. We start by showing that the
graph of all edges appearing in the filtration has only a linear number of edges.

For a point p ∈ P , let E(p) be the set of neighbors of p whose removal time is at
least as large as that of p:

E(p) := {q ∈ P : tp ≤ tq and (p, q) ∈ Qtp }.

To compute the filtrations Q and S, it suffices to compute E(p) for each p ∈ P . In
fact S∞ is just the clique complex on the graph of all edges (p, q) such that q ∈ E(p).

Lemma 10 Given a set of n points in a metric space M = (P,d) with doubling
dimension at most d and a net-tree with parameter ε ≤ 1

3 , the cardinality |E(p)| is at

most 1
ε

O(d)
for each p ∈ P.

Proof Let �(E(p)) denote the spread of E(p). Since E(p) is a finite metric with
doubling dimension at most d, the number of points is at most �(E(p))O(d). So, it
will suffice to prove that for all p ∈ P , �(E(p)) = O

( 1
ε

)
.

The definition of E(p) implies that E(p) ⊆ Ntp and so by Lemma 5, the nearest
pair in E(p) are at least K pε(1 − 2ε)tp apart. For q ∈ E(p), since (p, q) ∈ Qtp ,

d(p, q) ≤ d̂tp (p, q) ≤ tp. It follows that the farthest pair in E(p) are at most 2tp

apart. So, we get that �(E(p)) ≤ 2tp
K pε(1−2ε)tp

= O
( 1
ε

)
as desired.

We see that the size of the graph in the filtration is governed by three variables:
the doubling dimension, d; the packing constant of the net-tree, K p; and the desired
tightness of the approximation, ε. The preceding Lemma easily implies the following
bound on the higher order simplices.

Theorem 4 Given a set of n points in a metric space M = (P,d) with doubling
dimension d, the total number of k-simplices in the sparse Vietoris–Rips filtrations Q
and S is at most

( 1
ε

)O(kd)
n.
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10 An Algorithm to Construct the Sparse Filtration

The net-tree defines the deletion times of the input points and thus determines the per-
turbed metric. It also gives the necessary data structure to efficiently find the neighbors
of a point in the perturbed metric in order to compute the filtration. In fact, this is exactly
the kind of search that the net-tree makes easy. Then we find all cliques, which takes
linear time because each is subset of E(p) for some p ∈ P and each E(p) has constant
size.

As explained in the Har-Peled and Mendel paper [25], it is often useful to augment
the net-tree with “cross” edges connecting nodes at the same level in the tree that are
represented by geometrically close points. The set of relatives of a node u ∈ T is
defined as

Rel(u) := {v ∈ T : rad(v) ≤ rad(u) < rad(par(v)) and

d(rep(u), rep(v)) ≤ Crad(u)},

where C is a constant bigger than 3. 1 The size of Rel(u) is a constant using the same
packing arguments as in Lemma 10.

This makes it easy to do a range search to find the points of E(p). In fact, we will
find the slightly larger set E ′(p) = N tp ∩ ball(p, tp). The search starts by finding u
the highest ancestor of vp whose radius is at most some fixed constant times tp. Since
the radius increases by a constant factor on each level, this is only a constant number
of levels. Then the subtrees rooted at each v ∈ Rel(u) are searched down to the level
of vp. Thus, we search a constant number of trees of constant degree down a constant
number of levels. The resulting search finds all of the points of E(p) in constant time
(see Fig. 6).

Since the work is only constant time per point, the only superlinear work is in the
computation of the net-tree. As noted before, this requires only O(n log n) time.

11 Conclusions and Directions for Future Work

We have presented an efficient method for approximating the persistent homology of
the Vietoris–Rips filtration. Computing these approximate persistence diagrams at all
scales has the potential to make persistence-based methods on metric spaces tractable
for much larger inputs.

Adapting the proofs given in this paper to the Čech filtration is a simple exercise.
Moreover, it may be possible to apply a similar sparsification to complexes filtered by
alternative distance-like functions like the distance to a measure introduced by Chazal
et al. [9].

1 The precise value of C depends on some constants chosen in the construction of the net-tree and can be
extracted from the Har-Peled and Mendel paper. For our purposes, we only need the fact that it is bigger
than 3.
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Fig. 6 To find the nearby points at or above the level of vp in the net-tree only requires traveling up
a constant number of levels and then searching the relative trees

Another direction for future work is to identify a more general class of hierarchical
structures that may be used in such a construction. The net-tree used in this paper is
just one example chosen primarily because it can be computed efficiently.

The analytic technique used in this paper may find more uses in the future. We
effectively bounded the difference between the persistence diagrams of a filtration
and a zigzag filtration by embedding the zigzag filtration in a topologically equivalent
filtration that does not zigzag at the homology level. This is very similar to the relation-
ship between the levelset zigzag and extended persistence demonstrated by Carlsson
et al. [5]. In that paper, such a technique gave some stability results for levelset zigzags
of real-valued Morse functions on manifolds. It may be that other zigzag filtrations
can be analyzed in this way.
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