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Abstract Weyl’s discrepancy measure induces a norm on R
n which shows a mono-

tonicity and a Lipschitz property when applied to differences of index-shifted se-
quences. It turns out that its n-dimensional unit ball is a zonotope that results from
a multiple sheared projection from the (n + 1)-dimensional hypercube which can be
interpreted as a discrete differentiation. This characterization reveals that this norm is
the canonical metric between sequences of differences of values from the unit inter-
val in the sense that the n-dimensional unit ball of the discrepancy norm equals the
space of such sequences.

Keywords Discrepancy · Lipschitz property · Zonotope · Hypercube

1 Motivation

In the mathematical literature discrepancy theory is devoted to problems related to
irregularities of distributions. In this context the term discrepancy refers to a measure
that evaluates to which extent a given distribution deviates from total uniformity in
measure-theoretic, combinatorial and geometric settings. This theory goes back to
Weyl [39] and is still an active field of research, see, e.g., [3, 12, 19]. Applications
can be found in the field of numerical integration, especially for Monte Carlo methods
in high dimensions, see, e.g., [28, 36, 40], or in computational geometry, see, e.g., [1,
9, 21]. For applications to data storage problems on parallel disks, see [10, 13] and
for halftoning images, see [31].

This paper is motivated by [24] which applies Weyl’s discrepancy concept in order
to derive an ordering-dependent norm for measuring the (dis-)similarity between pat-
terns. In this context the focus lies on evaluating the auto-misalignment that measures
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the deviation of some function f (·) with its translated version f (· − T ) with respect
to the lag T . The function f represents a signal, the intensity profile of a line of an
image, an image or volumetric data. The interesting point about this is that based
on Weyl’s discrepancy concept distance measures can be constructed that guarantee
the desirable registration properties: (R1) the measure vanishes if and only if the lag
vanishes, (R2) the measure increases monotonically with an increasing lag, and (R3)
the measure obeys a Lipschitz condition that guarantees smooth changes also for pat-
terns with high frequencies. As proven in [26], properties (R1)–(R3) are not satisfied
simultaneously by commonly used measures in this context like mutual information,
Kullback–Leibler distance or the Jensen–Rényi divergence measure which are spe-
cial variants of f -divergence and f -information measures, see, e.g., [4, 20, 29, 30,
37], nor do the standard measures based on p-norms or the widely used correlation
measures due to Pearson or Spearman, see [8, 17, 34].

From the point of view of applications properties (R1)–(R3) are relevant for a
variety of problems whenever the misalignment of a pattern with its shifted ver-
sion has to be evaluated. Such problems encounter as autocorrelation in signal pro-
cessing, see [5]. In computer vision such problems are particularly encountered in
stereo matching as point correspondence problem, see, e.g., [32] and [26], in tem-
plate matching, e.g., for the purpose of print inspection, see, e.g., [7] and [23], in
superpixel matching [16] or in defect detection in textured images, see [6, 25, 35]. In
these cases, for high-frequency patterns, the discrepancy norm leads to cost functions
with less local extrema and a more distinctive region of convergence in the neighbor-
hood of the global minimum compared to commonly used (dis-)similarity measures.

A further promising field of future application is related to measuring the similar-
ity between event-based signals as encountered in neuroscience due to the all-or-none
characteristics of neural signals, see, e.g., [38] and, closely related, in event-based
imaging, see, e.g., [18] and [22]. In this context it is interesting to point out that the
asynchronicity of neighboring sensor elements can lead to misaligned response se-
quences of events in time. Figure 1 illustrates a sequence of all-or-none events and
its auto-misalignment functions induced by the normalized cross-correlation on the
one hand and the discrepancy norm on the other hand. Due to properties (R1)–(R3),
the discrepancy norm induces a topology in the space of such signals which is com-
patible with the asynchronicity effect. This means that slightly shifted versions of a
sequence of events are still recognized as similar.

The question addressed in this paper therefore is what makes the discrepancy so
special when applied to differences of index shifted sequences. This paper provides
a geometric analysis that makes clear that the discrepancy norm is inherently related
to measuring the distance between index-shifted sequences.

The paper first recalls Weyl’s definition [39] in Sect. 2, formulates it as a norm on
R

n and recalls some of its properties from [23]. As the main result of this paper, in
Sect. 3 its unit ball is revealed as special zonotope. Section 4 focusses on geometric
properties of this zonotope like the number of k-dimensional faces in Sect. 4.1 and
its volume in Sect. 4.2.
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2 The Discrepancy Norm

In [39] Weyl introduces a concept of discrepancy in the context of pseudorandomness
of sequences of numbers from the unit interval. He proposes the formula

DN = sup
0≤a<b≤1

∣
∣
∣
∣

N(a,b)

N
− (b − a)

∣
∣
∣
∣

(1)

to measure the deviation of a sequence (yk)k∈{1,...,N} ⊂ (0,1) from a uniformly
distributed sequence where N(a,b) = |{k ∈ {1, . . . ,N}|yk ∈ (a, b)}|, a, b ∈ (0,1),
b > a. As a generalization, the discrepancy of measures μ and ν is defined as

D(μ,ν) = sup
A∈Ã⊂A

∣
∣μ(A) − ν(A)

∣
∣, (2)

where A is a σ -algebra of measurable sets over the domain U , and μ, ν are signed
measures defined on the measure space (U , A).

For linear combinations of Dirac measures δ{i} on Z given by μ = ∑n
i=1 xiδ{i} and

ν = ∑n
i=1 yiδ{i}, xi, yi ∈ R, and Ã a set of index intervals, Definition (2) yields

D(μ,ν) = sup
1≤n1≤n2≤n

∣
∣
∣
∣
∣

n2∑

i=n1

xi − yi
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∣
∣
∣
∣
.

Therefore, for a summable sequence of real values x = (xi)i∈Z,
∑

i∈Z
|xi | < ∞,

Weyl’s discrepancy concept leads to the definition

‖x‖D = sup
n1,n2∈Z:n1≤n2

∣
∣
∣
∣
∣

n2∑

i=n1

xi

∣
∣
∣
∣
∣
, (3)

which induces a norm, see Appendix. Applications of the norm (3) can be found in
pattern recognition [27] and print inspection in the context of pixel classification [2].
In contrast to p-norms ‖ · ‖p , ‖x‖p = (

∑

i |xi |p)(1/p), the norm ‖ · ‖D strongly de-
pends on the sign and also the ordering of the entries, as illustrated by the examples
‖(−1,1,−1,1)‖D = 1 and ‖(−1,−1,1,1)‖D = 2.

Generally, x = (xi)i with xi ≥ 0 entails ‖x‖D = ‖x‖1, and x = ((−1)i)i the equal-
ity ‖x‖D = ‖x‖∞, respectively, indicating that the more there are alternating signs
of consecutive entries, the lower is the value of the discrepancy norm. Observe
that ‖x‖∞ ≤ ‖x‖D ≤ ‖x‖1; hence, due to Hölder’s inequality, n−1/p‖x‖p ≤ ‖x‖D ≤
n1−1/p‖x‖p . For convenience, let us consider a sequence (xi)i with i ∈ In, xi = 0 for
i /∈ In, and denote by Δx(k) = ‖(xi+k − xi)i‖D the misalignment function of x with
respect to ‖ · ‖D . For the proof of the following properties, see Appendix:

(P1) ‖(xi)i∈In‖D induces a norm on R
n.

(P2) Δx(0) = 0 for all summable real sequences x.
(P3) ‖(xi)i∈In‖D = max{0,maxk∈In

∑k
i=1 xi} − min{0,mink∈In

∑k
i=1 xi}.

(P4) Δx(k) ≤ |k| · L, where L = maxi xi − mini xi , k ∈ Z, and xi ≥ 0.
(P5) Δx(k) = Δx(−k) for x = (xi)i with xi ≥ 0 and k ∈ Z.
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Fig. 1 Figure (a) shows a time series with 0 or 1 values in the depicted interval and 0 outside. Figure (b)
shows its misalignment function induced by the normalized cross-correlation (dotted line) and the discrep-
ancy norm (solid line)

(P6) For x = (xi)i with xi ≥ 0, the function Δx(·) is monotonically increasing on
N ∪ {0}.

The equation of (P3) allows us to compute the discrepancy of a sequence of length n

with O(n) operations instead of O(n2) number of operations resulting from the orig-
inal Definition (3). Especially the monotonicity (P6) and the Lipschitz property (P4)
are interesting properties for applications in the field of signal analysis. It is instruc-
tive to point out that the Lipschitz constant in (P4) does not depend on frequencies or
other characteristics of the sequence x. Properties (P4), (P5), and (P6) are illustrated
in Figs. 1(a) and 1(b), which demonstrate the behavior of the misalignment function
of a sequence of all-or-none events. While Fig. 1(a) shows typical local minima of
the misalignment function with respect to the Euclidean norm, Fig. 1(b) visualizes the
symmetry property (P5), the monotonicity property (P6), and the boundedness of its
slope due to the Lipschitz property (P4) of the corresponding misalignment function
induced by the discrepancy norm.

3 The Unit Ball of the Discrepancy Norm as Convex Polytope

In this section we consider the unit ball of the discrepancy norm in dimension n ∈ N,
B

(n)
D = {x ∈ R

n|‖x‖D ≤ 1}, as geometric object. Definition (3) immediately leads to
the representation

B
(n)
D =

{

(xi)i ∈ R
n

∣
∣
∣
∣
− 1 ≤

n
∑

i=1

1I (i)xi ≤ 1, I ∈ In

}

, (4)

where In denotes the set of subintervals from {1, . . . , n}, and 1I (·) the indicator func-
tion given by 1I (i) = 1 if and only if i ∈ I . Equation (4) represents the unit ball B

(n)
D

as bounded intersection of a set of half-spaces, which shows that the unit balls of the
discrepancy norm are convex polytopes. Figures 2(a) and 2(b) illustrate the unit balls
B

(n)
D for n = 2 and n = 3. Lemma 1 shows a first relationship between B

(n)
D and the

(n + 1)-hypercube.
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Fig. 2 Illustration of the unit balls of the discrepancy norm in R
2 and R

3

Lemma 1 Let x = (xi)i ∈ [−1,1]n with ‖x‖D ≤ 1. Then,

(c, c + x1, c + x1 + x2, . . . , c + x1 + · · · + xn) ∈ [0,1]n+1 (5)

if and only if

− n

min
k=1

{

0,

k
∑

j=1

xj

}

≤ c ≤ 1 − n
max
k=1

{

0,

k
∑

j=1

xj

}

. (6)

The constant c is uniquely determined if and only if ‖x‖D = 1.

Proof Note that if minn
k=1{0,

∑k
j=1 xj } < 0, then

n

min
i=1

{

− n

min
k=1

{

0,

k
∑

j=1

xj

}

+
i

∑

j=1

xj

}

= 0, (7)

and that if maxn
k=1{0,

∑k
j=1 xj } > 0, there holds

n
max
i=1

{

1 − n
max
k=1

{

0,

k
∑

j=1

xj

}

+
i

∑

j=1

xj

}

= 1. (8)

According to property (P3), the assumption ‖x‖D ≤ 1 implies

0 ≤ − n

min
k=1

{

0,

k
∑

j=1

xj

}

+
i

∑

j=1

xj ≤ 1 − n
max
k=1

{

0,

k
∑

j=1

xj

}

+
i

∑

j=1

xj ≤ 1, (9)
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which shows that condition (6) implies formula (5). Formulas (7) and (8) reveal that
the bounds 0 and 1 in inequality (9) are assumed, showing the necessity of condi-
tion (6). �

Given a sequence x = (x1, . . . , xn) with ‖x‖D ≤ 1 Lemma 1 reveals that x can be
represented as a sequence of differences yi+1 − yi , i ∈ In, with yi ∈ [0,1], and that
such a representation is uniquely determined if ‖x‖D = 1. This observation motivates
Lemma 2, which points out a fundamental relationship between the discrepancy and
the maximum norm.

Lemma 2 Let x = (xi)i ∈ R
n+1, n ∈ N. Then,

∥
∥(xi+1 − xi)i∈In

∥
∥

D
= ∥

∥
(

xi − min{xi}
)

i∈In+1

∥
∥∞. (10)

Proof Consider an x with ‖x − mini{xi}‖∞ > 0 and set x̃i = xi−mini {xi }‖x−mini {xi }‖∞ ∈ [0,1].
Then by the Lipschitz property (P4) we get

∥
∥(x̃i+1 − x̃i )i

∥
∥

D
≤ 1. (11)

Since maxi{x̃i} = 1 and mini{x̃i} = 0, there are indices i0 and i1 such that x̃i0 = 1
and x̃i1 = 0. Without loss of generality, let us assume that i0 < i1. Then ‖(x̃i+1 −
x̃i )i‖D ≥ |x̃i1 − x̃i1−1 + · · · + x̃i0+1 − x̃i0 | = 1, which, together with (11), yields
‖(x̃i+1 − x̃i )i‖D = 1, and hence ‖(xi+1 − xi)i‖D = ‖x − mini{xi}‖∞. �

For convenience, let us define that for a sequence x = (xi)i∈In ∈ R
n, the index

interval C ⊆ In is called a core discrepancy interval with respect to x if and only if for
any subset C̃ ⊆ C with |∑

i∈C̃
xi | = ‖x‖D , it follows that C̃ = C. Note that for any

x, due to the definition of the discrepancy norm, there is at least one core discrepancy
interval. Further, for convenience, let 0 = (0, . . . ,0)T and 1 = (1, . . . ,1)T .

With these prerequisites we come to the central result of this paper that character-
izes the vertices vert(B(n)

D ) of B
(n)
D in terms of vertices of the hypercube of dimension

(n + 1).

Lemma 3 x ∈ R
n is a vertex of the convex polytope B

(n)
D if and only if ‖x‖D = 1 and

x ∈ {−1,0,1}n.

Proof First of all we show that B
(n)
D equals the convex hull of D(n) = {c ∈

{−1,0,1}n|‖c‖D = 1}.
Observe that conv(D(n)) ⊆ B

(n)
D follows immediately from definition (3) and the

representation (4) as x ∈ D(n) implies supn1,n2∈Z:n1≤n2
|∑n2

i=n1
xi | ≤ 1.

What remains to be shown is that an arbitrary x ∈ B
(n)
D can be represented as a

convex combination of elements from the set D(n).
Therefore, suppose that x /∈ {−1,0,1}n with ‖x‖D = 1. Let C = {n1, . . . , n2} ⊆ In

be a core discrepancy interval with respect to x. Without loss of generality we may
assume that

∑

i∈C xi > 0.
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Let us consider the cases n1 > 1 or n1 = 1. For the case that n1 > 1, let us set

αi :=
n1−1
∑

j=i

xj . (12)

Observe that αi∗ > 0 for some index i∗ ∈ {1, . . . , n1 − 1} entails
∑n2

i=i∗ xi = αi∗ +
∑n2

i=n1
xi >

∑n2
i=n1

xi = ‖x‖D and, therefore, contradicts the fact that C is a core
discrepancy interval. From this it follows that

αi ≤ 0 (13)

for all indices i ∈ {1, . . . , n1 − 1}.
Now, arrange the partial sums αi , i ∈ {1, . . . , n1 − 1}, in an increasing order: 0 ≤

−αr1 ≤ −αr2 ≤ · · · ≤ −αrn1−1 , and set (k ∈ {1, . . . , n1 − 1})

λ1 := −αr1,

λk+1 := αrk − αrk+1 .
(14)

Then, we have λi ≥ 0 for i ∈ {1, . . . , n1 − 1}, and due to −αr1 = λ1 and −αrk =
λ1 + · · · + λk , we obtain

∑n1−1
i=1 λi ≤ maxn1−1

i=1 {−αi} ≤ 1. Consequently,

λ0 := 1 −
n1−1
∑

i=1

λi ∈ [0,1]. (15)

Finally, we get the representation

αrk = λ1 · v(αrk , λ1) + · · · + λn1−1 · v(αrk , λn1−1 + · · · + λ1),

where

v(α,λ) =
{−1 if λ ≤ −α

0 else.

Next let us define the auxiliary vectors s(0), s(1), . . . , s(n1−1) ∈ {−1,0}(n1−1) given by

s(0) := 0,

s(j) :=
(

v

(

α1,

j
∑

l=1

λl

)

, . . . , v

(

αn1−1,

j
∑

l=1

λl

))T

,
(16)

where j ∈ {1, . . . , n1 − 1}. Observe that the vectors (16), the scalars (14) and (15)
yield

⎛

⎜
⎝

α1
...

αn1−1

⎞

⎟
⎠ =

n1−1
∑

j=1

λj s(j) + λ0s(0).
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Hence,
⎛

⎜
⎜
⎜
⎝

x1
x2
...

xn1−1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

α1 − α2
...

αn1−2 − αn1−1
αn1−1 − 0

⎞

⎟
⎟
⎟
⎠

=
n1−1
∑

j=1

λj g̃(j) + λ0g̃(0),

where g̃(0) = 0 and

g̃(j) :=

⎛

⎜
⎜
⎜
⎜
⎝

v(α1,
∑j

l=1 λl) − v(α2,
∑j

l=1 λl)
...

v(αn1−2,
∑j

l=1 λl) − v(αn1−1,
∑j

l=1 λl)

v(αn1−1,
∑j

l=1 λl) − 0

⎞

⎟
⎟
⎟
⎟
⎠

∈ {−1,0,1}n1−1.

Note that g̃(1), . . . , g̃(n1−1) ∈ D(n1−1) because of

∥
∥g̃(j)

∥
∥

D
= max

k

{

0, v

(

αk,

j
∑

l=1

λl

)}

︸ ︷︷ ︸

0

−min
k

{

0, v

(

αk,

j
∑

l=1

λl

)}

= 1

for j ∈ {1, . . . , n1 −1}. Note that also g̃(0) can be represented as a convex combination
of vectors of D(n1−1), e.g., g̃(0) = 1

2 (1,−1,0, . . . ,0)T + 1
2 (−1,1,0, . . . ,0)T . This

proves that (x1, . . . , xn1−1) can be represented as a convex combination of elements

g(i) ∈ D(n1−1). (17)

For the other case that n1 = 1, let us set βi := ∑i
j=n1

xj where i ∈ {n1, . . . , n2}.
If n1 = n2, the core discrepancy interval property of C entails that xn1 = 1. There-
fore, let us consider the case n2 > n1. Then, the assumption βi∗ < 0 for some index
i∗ ∈ {n1, . . . , n2 − 1} leads to

∑n2
i=n1

xi = βi∗ + ∑n2
i=i∗ xi implying that

∑n2
i=i∗ xi >

∑n2
i=n1

xi . This contradicts the core discrepancy interval property of C; hence, in anal-
ogy to the case n1 > 1 and formula (13), we get that βi ≥ 0 for all i ∈ {n1, . . . , n2}.
Now, reasoning steps analogous to the case n1 > 1 can be applied in order to show
that (xn1 , . . . , xn2) can be represented as a convex combination of elements

s(j) ∈ D(n2−n1+1). (18)

If n2 = n, we are ready, and if n2 < n, then let us consider γi := ∑n
j=n2+1 xj , which,

in analogy to the case n1 > 1 leads to γi ≤ 0, for which the same reasoning as in case
n1 > 1 can be applied showing that (xn2+1, . . . , xn) can be represented as a convex
combination of elements

l(k) ∈ D(n−n2). (19)
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Putting all together, formulas (17), (18), (19) show that x can be represented by ele-
ments

⎛

⎝

g(i)

s(j)

l(k)

⎞

⎠ ∈ D(n)

showing that conv(D(n)) = B
(n)
D .

Finally we show that all elements of D(n) are vertices of conv(D(n)). Suppose
that v0 ∈ D(n) can be represented as convex combination of elements vi ∈ D(n)\{v0},
i ∈ {1, . . . , |D(n)| − 1}, i.e.,

v0 =
∑

i

λivi , (20)

∑

i λi = 1, λi ≥ 0. Then, due to Lemma 1 and the fact that ‖vi‖D = 1, i ∈
{0, . . . , |D(n)| − 1}, there are constants ci such that vi = (ci, ci + vi

1, . . . , ci + vi
1 +

· · · + vi
n) ∈ [0,1]n+1, where vi = (vi

1, . . . , v
i
n). Since vi

j ∈ {−1,0,1}, Lemma 1 tells

that ci = 1 − maxn
k=1{0,

∑k
j=1 vi

j } ∈ {0,1}. From this it follows that vi ∈ {0,1}n+1.

Further, ‖vi‖D = 1 implies vi ∈ {0,1}n+1\{0,1}. Note that vi �= vj implies vi �= vj .
Now, let us consider the linear mapping

D
(

(xi)i∈In+1

) = (xi+1 − xi)i∈In , (21)

where (xi)i∈In+1 ∈ {0,1}n+1\{0,1}. Equation (20) expressed in terms of (21) means
that D(v0) = ∑

i λi D(vi ), which entails D(v0) = D(
∑

i λivi ). Since D(v) = D(w)

implies v = w + c · 1 for some c ∈ R, we obtain

∑

i

λivi = v0 + c · 1. (22)

Since {v0 + c · 1|c ∈ R} ∩ [0,1]n+1 = {v0}, we obtain c = 0 in Eq. (22), and hence
v = w. This proves the injectivity of the mapping (21).

Note that v0 is a vertex of the hypercube and
∑

i λivi is an element of the hyper-
cube [0,1]n+1. But v0 as a vertex of the hypercube cannot be represented as a convex
combination of other vertices of the hypercube [0,1]n+1 different from v0, which by
means of the injectivity of (21) shows that assumption (20) cannot be true. Conse-
quently, we get D(n) = vert(conv(D(n))), and together with the first part of the proof,
conv(D(n)) = B

(n)
D , we conclude that vert(B(n)

D ) = D(n), which ends the proof. �

Next, the main result that characterizes the unit ball of the discrepancy norm by
means of the mapping (21) is stated.

Theorem 1 Let B
(n)
D denote the n-dimensional unit ball of the discrepancy norm,

n ≥ 1.

(a) The mapping D : {0,1}n+1\{0,1} 
→ vert(B(n)
D ) given by D((xi)i∈In+1) = (xi+1 −

xi)i∈In is a one-to-one correspondence.



802 Discrete Comput Geom (2012) 48:793–806

Fig. 3 Illustration of bijection between the set of vertices of B
(n)
D

and those of [0,1]n+1 without the
diagonal elements by means of (21) for N = 2

(b) B
(n)
D = conv({(yi+1 − yi)

n
i=1|yi ∈ {0,1}}).

Proof The injectivity of the mapping (21) can be shown by induction. In order to
prove the surjectivity of the mapping (21), let us consider x ∈ vert(B(n)

D ), which by
Lemma 3 is equivalent to ‖x‖D = 1 and x ∈ {−1,0,1}n. Due to Lemma 1, there is a
uniquely determined integration constant c = 1 − maxk∈In{0,

∑k
j=1 xj } ∈ [0,1] such

that (c, c+x1, . . . , c+x1 +· · ·+xn) ∈ [0,1]n+1. The assumption xi ∈ {−1,0,1} and
‖x‖D = 1 therefore implies y = (c, c + x1, . . . , c + x1 + · · · + xn) ∈ {0,1}n+1\{0,1};
hence there is a sequence y = (yi)i∈In+1 ∈ {0,1}n+1\{0,1} such that (xi)i∈In =
(yi+1 − yi)i∈In . Equation (b) of Theorem 1 directly follows from the bijectivity of
the mapping (21). �

Figure 3 illustrates the bijectivity of the mapping (21) for n = 2.

4 Geometric Characteristics of the n-Dimensional Unit Ball of the Discrepancy
Norm

In this section Theorem 1 is applied in order to determine geometric characteristics
of B

(n)
D like the number of k-dimensional faces and its volume.

4.1 Number of k-Dimensional Faces

The following corollary relates the number of k-dimensional faces of the n-
dimensional unit ball of the discrepancy norm to the number of corresponding faces
of the (n + 1)-dimensional hypercube.

Corollary 1 Let Dk,n denote the number of k-faces of B
(n)
D , n ∈ N, 0 ≤ k < n. Then

Dk,n = 2 ·
(

n + 1
k

)
(

2n−k − 1
)

. (23)
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Proof First of all let us denote by Hk,n the number of k-dimensional faces of the
n-dimensional unit hypercube [0,1]n. As it is well known from the theory of regu-
lar polytopes, see, e.g., [11], we have Hk,n = 2n−k

( n
k

)

. Observe that k-faces of the
(n + 1)-hypercube cannot contain the elements 0 and 1 together if 0 ≤ k < n + 1,
n ≥ 1. Therefore, for 0 ≤ k < n+1, there are Zk,n+1 = 2

(
n+1
k

)

k-faces of the (n+1)-
hypercube that contain either 0 or 1. Further, observe that for k = n, all k-faces con-
tain either 0 or 1, which also can be seen from the identity Zn,n+1 = Hn,n+1.

Now we consider k < n and apply the mapping D of Theorem 1 on the (n + 1)-
hypercube [0,1]n+1. Observe that the elements 0,1 ∈ [0,1]n+1 are mapped to the in-
ner point 0 of B

(n)
D . Note that a k-face F of the (n+ 1)-hypercube can be represented

by means of a linear combination of (n+ 1) vertices, i.e., F = {ei0 +∑k
l=1 λleil |λl ∈

[0,1]}, where ei denotes the ith unit vector. We show that a k-dimensional face of the
(n+ 1)-hypercube which does not contain either 0 or 1 is mapped to a k-dimensional
face of B

(n)
D .

For this, let us consider the set of linearly independent vectors {ei0 − ei1, . . . , ei0 −
eik }. The linear independency of the mapped vectors {D(ei0 − ei1), . . . , D(ei0 − eik )}
follows from the observation that

∑k
l=1 λl D(ei0 − eil ) = 0, i.e., D(

∑k
l=1 λl(ei0 −

eil )) = 0, can only be satisfied if there is a real c ∈ R such that
∑k

l=1 λl(ei0 − eil ) =
c1. Since k < n and eil ∈ {0,1}n+1, there is an index k∗ ∈ {1, . . . , n + 1} for which
the corresponding coordinate is zero for all vectors eil , l ∈ {0, . . . , k}. This implies
c = 0, hence λl = 0 for l ∈ {1, . . . , k} due to the assumption that the set of vectors
{ei0 − ei1, . . . , ei0 − eik } is linearly independent. From this and from Theorem 1 it
follows that there is a one-to-one mapping between the set of k-faces of the (n + 1)-
hypercube that do not contain 0 or 1 to the set of k-faces of B

(n)
D . This implies Dk,n =

Hk,n+1 − Zk,n+1, which equals (23). �

In particular, B
(n)
D has D0,n = 2n+1 − 2 vertices, D1,n = (n + 1)(2n − 2) edges,

and Dn−1,n = n(n + 1) facets D(Fij ), i �= j , of dimension (n − 1), where Fij =
{ei + ∑

k �=i,j λkek|0 ≤ λk ≤ 1} and i, j ∈ In+1. Note that Fij = Fji + (ei − ej ).

4.2 Volume of B
(n)
D

Using the terminology of the theory of convex polytopes, see, e.g., [14, 41], the
volume can be obtained by looking at B

(n)
D as zonotope generated by a projection

from the hypercube [0,1]n+1 followed by a product of shearing transformations.
The (n + 1) unit vectors e1, . . . , en+1 are mapped to the Minkowski sum genera-
tors g1, . . . ,gn+1. Since the unit ball is decomposed by the sheared projection of n

faces out of (n+1) possibilities with each face mapped to an n-dimensional subbody
of B

(n)
D of volume one, we obtain Corollary 2.

Corollary 2 V (B
(n)
D ) = n + 1, n ∈ N.

It is interesting that the volume V (B
(n)
D ) = n + 1 of the n-dimensional unit ball of

the discrepancy norm increases linearly with its dimension n, while for p-norms with

1 ≤ p < ∞, it can be shown that rnV (B
(n)
‖·‖p

)
n→∞−→ 0 for any r > 0, see, e.g., [15, 33].
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5 Conclusion

In this paper Weyl’s discrepancy norm was studied from a geometrical point of view
by considering its unit ball. Thinking of sequences and differentiation in the sense
that two consecutive entries are subtracted, it was shown that the unit ball of Weyl’s
discrepancy norm of dimension n results from differentiating the unit hypercube of
dimension (n + 1). It was shown how this interpretation helps to derive and prove
properties of the discrepancy norm, as, for example, that the volume of the unit ball of
dimension n equals n + 1. This paper was motivated by considering the discrepancy
norm as dissimilarity measure for pattern analysis. In the near future, it is planned to
investigate the relevance of the discrepancy norm in various fields of pure and applied
mathematics. Particularly, research will be dedicated to the determination of the dis-
tribution of the diameter of a random walk, the discrete mathematical foundation of
event-based image processing, and the improvement of stereo matching and related
algorithms.
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Appendix

Here the proofs of properties (P1)–(P6) of Sect. 2 are outlined.
‖(xi)i∈In‖D = 0 implies maxn,m∈I |∑n

i=m xi | = 0; hence x(i) = 0 for all i ∈ In.
Homogeneity and triangle inequality immediately follow from Eq. (3). For (P3), let us
consider the sequence (xi)i∈In , and let us set xi := 0 for i /∈ In. We are distinguishing

two cases. First, let us suppose that there are indices ñ1, ñ2 with
∑ñ1

i=−∞ xi < 0 and
∑ñ2

i=−∞ xi > 0. Then

∥
∥(xi)i∈In

∥
∥

D
= max

n1,n2∈In

∣
∣
∣
∣
∣

n2∑

i=−∞
xi −

n1−1
∑

i=−∞
xi

∣
∣
∣
∣
∣
= max

n2∈Z

n2∑

i=−∞
xi − min

n1∈Z

n1∑

i=−∞
xi

= max

{

0,max
k∈In

k
∑

i=1

xi

}

− min

{

0,min
k∈In

k
∑

i=1

xi

}

.

Secondly, if either
∑k̃

i=−∞ xi ≤ 0 for all k ∈ Ik or
∑k̃

i=−∞ xi ≥ 0 for all k ∈ Ik

we also get ‖(xi)i∈In‖D = max{0,maxk∈In

∑k
i=1 xi}−min{0,mink∈In

∑k
i=1 xi}. The

Lipschitz property (P4), the symmetry property (P5), and the monotonicity (P6) fol-
low from the observation

∥
∥(xi − xi−k)i

∥
∥

D
= max

{

0, sup
n∈Z

n
∑

i=n−k+1

xi

}

− min

{

0, inf
n∈Z

n
∑

i=n−k+1

xi

︸ ︷︷ ︸

0

}

, (24)

where xi ≥ 0 is assumed.
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