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Abstract
We show that a problem of deleting a minimum number of vertices from a graph to
obtain a graph embeddable on a surface of a given Euler genus is solvable in time
2Cg ·k2 log knO(1), where k is the size of the deletion set, Cg is a constant depending
on the Euler genus g of the target surface, and n is the size of the input graph. On
the way to this result, we develop an algorithm solving the problem in question in
time 2O((t+g) log(t+g))n given a tree decomposition of the input graph of width t .
The results generalize previous algorithms for the surface being a sphere by Marx
and Schlotter (Algorithmica 62(3–4):807–822, 2012. https://doi.org/10.1007/s00453-
010-9484-z), Kawarabayashi (in: 50th annual IEEE symposium on foundations of
computer science, FOCS 2009, IEEE Computer Society, pp 639–648, 2009. https://
doi.org/10.1109/FOCS.2009.45) and Jansen et al. (in: Chekuri (ed) 25th annual ACM-
SIAM symposium on discrete algorithms, SODA 2014, SIAM, pp 1802–1811, 2014.
https://doi.org/10.1137/1.9781611973402.130).

Keywords Fixed-parameter tractability · Bounded genus graphs · Bounded
treewidth · Graph modification · Vertex deletion · Irrelevant vertex

1 Introduction

In recent years, a significant effort has been put into the study of parameterized com-
plexity of recognizing near-planar graphs [7,8,12], that is, graphs that become planar
after deleting a small number of vertices. Since, by the classic result of Lewis and
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Yannakakis [11], the decision version of the problem is NP-hard, it is natural to look
for fixed-parameter algorithms with various parameters.

The parameter of the size of the deletion set naturally comes from the supposed
applications: a number of efficient algorithms for planar graphs generalize well to
near-planar graphs if one supplies them with the deletion set. Formally, we define the
Planar Vertex Deletion problem as follows: given a graph G and an integer k,
decide if one can delete at most k vertices from G to obtain a planar graph.

Clearly, for a fixed integer k, the yes-instances toPlanar Vertex Deletion form
a minor-closed graph class. Consequently, from the Graph Minors theory we obtain
a nonuniform fixed-parameter algorithm for Planar Vertex Deletion (cf. [2,
Chapter 6]).

Marx and Schlotter [12] showed an explicit uniform fixed-parameter algorithm
using a typical irrelevant vertex approach. First, they observe that the formulation
of the problem as hitting all models of the forbidden minors for planar graphs (i.e.,
K5 and K3,3) leads to a fixed-parameter algorithm on bounded treewidth graphs by
relatively standard techniques. Second, it is rather easy to believe (but quite technical
to formally prove) that a middle part of a large, flat (planar), and grid-like subgraph of
the input graphwill always be disjoint with an optimal deletion set, and can be removed
without changing the answer to the problem. The combination of the excluded grid
theorem and the technique of iterative compression gives here a win-win approach:
if the treewidth of the graph is not sufficiently bounded, an irrelevant part can be
uncovered and removed.

There are two sources of potential inefficiencies in the approach ofMarx and Schlot-
ter. First, the routine for graphs of bounded treewidth that finds a minimum set hitting
all forbidden minor models works in time double-exponential in the treewidth bound.
Since the treewidth bound needs to be significantly larger than the size of the deletion
set for the irrelevant vertex argument to work, we obtain at least a double-exponential
dependency on the parameter. Second, the technique of iterative compression, at least
applied in a straightforward manner, gives at least quadratic dependency on the input
size.

Later, Kawarabayashi [8] designed a fixed-parameter algorithm with linear depen-
dency on the input size. Finally, Jansen et al. [7] showed an algorithm with running
time 2O(k log k)n, that is, with nearly single-exponential dependency on the parameter
and linear dependency on the input size.

On high level, the work [7] follows the approach of Marx and Schlotter, but it
improves upon both components. First, the authors describe a routine that explicitly
constructs partial embeddings of graphs of bounded treewidth and solves the problem
in question in time 2O(t log t)n given a tree decomposition of width t . Second, they
present arguments in the spirit of the aforementioned irrelevant vertex rule that reduce
the graph to treewidth linearly bounded in the size of the solution (deletion set). Third,
they circumvent the application of iterative compression by borrowing a trick from
Bodlaender’s algorithm for treewidth [1], where in a single step one compresses the
graph by a multiplicative factor, yielding a linear dependency on the input size.

A simple reduction from the Vertex Cover problem (replace every edge uv

with a K5 with vertices u, v, and 3 new vertices) shows that, unless the Exponential
Time Hypothesis (ETH) [6] fails, the dependency on the parameter k needs to be

123



Algorithmica (2019) 81:3655–3691 3657

2�(k) for any parameterized algorithm for Planar Vertex Deletion. Although it
is open whether Planar Vertex Deletion can be solved in 2o(k log k)nO(1) time,
we note that a lower bound by the second author [15] asserts that, unless the ETH fails,
the bounded treewidth subroutine requires dependency 2�(t log t) on the treewidth of
the graph. This implies that a hypothetical algorithm that solves Planar Vertex
Deletion in 2o(k log k)nO(1) time needs to follow a significantly different approach
compared to the one we know currently.

In the light of the aforementioned developments, in this paper, we initiate the study
of theGenus Vertex Deletion problem: given a graphG and non-negative integers
g and k, decide if one can delete atmost k vertices fromG to obtain a graph embeddable
on a surface of Euler genus at most g.

Our main result is the following:

Theorem 1.1 The Genus Vertex Deletion problem can be solved in time
2Cgk2 log knO(1), where Cg is a constant depending on g only.

In the proof of Theorem 1.1, we follow the general approach of Marx and Schlot-
ter [12]. Our main technical contribution is a generalization of the bounded treewidth
subroutine of [7] to the bounded genus case.

Theorem 1.2 Given a Genus Vertex Deletion instance (G, g, k) with |V (G)| =
n, and a tree decomposition of G of width t, one can solve the Genus Vertex
Deletion problem on (G, g, k) in time 2O((t+g) log(t+g))n.

The proof of Theorem 1.2 follows the same principle as the corresponding routine
of [7]—it builds partial embeddings for graphswith small boundaries—but its rigorous
presentation requires overcoming significant technical hurdles.

The algorithm of Theorem 1.2 can be also seen as a generalization of an algorithm
that computes the Euler genus in graphs of bounded treewidth: by setting k = 0,
we obtain an algorithm with running time 2O((t+g) log(t+g))n that checks if the input
graph is embeddable on a surface of Euler genus at most g. Such a result is not new:
a bounded treewidth routine is also a part of the current algorithms that compute
embeddings in linear time [9,13]. In particular, the work of Kawarabayashi et al. [9]
claims an algorithm with running time f (t) · n for some function f (i.e., with no
dependency on g).1

For the second part, namely the irrelevant vertex argument, we generalize the
approach of Marx and Schlotter [12]. In what follows, a set S ⊆ V (G) is a solu-
tion to a Genus Vertex Deletion instance (G, g, k) if |S| ≤ k and G − S is
embeddable in a surface of Euler genus at most g.

Theorem 1.3 There exists a sequence (Cg)g≥0 of positive integers and an algorithm
that, given a graph G, non-negative integers g and k, and a set M ⊆ V (G) such that
G − M is embeddable into a surface of Euler genus at most g, in time CgnO(1) finds
one of the following:

1 The work [9] is an extended abstract from FOCS 2008 that, to the best of our knowledge, never substan-
tiated in a full version, and we were unable to reproduce the details of this algorithm from the description
in [9].
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1. a tree decomposition of G of width at most Cg|M |1/2k3/2; or
2. a vertex w ∈ V (G) such that every solution to the Genus Vertex Deletion

instance (G, g, k) contains w; or
3. a vertex v ∈ V (G) such that for every S ⊆ V (G)\{v} the set S is a solution to the

Genus Vertex Deletion instance (G, g, k) if and only if S is a solution to a
Genus Vertex Deletion instance (G − {v}, g, k).
Theorem 1.1 follows now from Theorems 1.2 and 1.3 in a usual manner. By a

standard application of the iterative compression technique (cf. [2, Chapter 4]), we
can assume that, apart from the input Genus Vertex Deletion instance (G, g, k),
we are additionally given a setM ⊆ V (G) of size k+1 such thatG−M is embeddable
on a surface of Euler genus at most g (i.e., M is a slightly too large solution), at the
cost of an additional O(n) factor in the running time bound. We iteratively apply
the algorithm of Theorem 1.3 to (G, g, k) and M : if a vertex w or v is returned, we
delete it and restart (decreasing the parameter k by one in case of a vertex w); if a tree
decomposition is returned, we solve theGenus Vertex Deletion problem with the
algorithm of Theorem 1.2.

Since |M | = k+1, the algorithm of Theorem 1.2 is applied to a tree decomposition
of width of the order of Cgk2, yielding the bound promised in Theorem 1.1.

While the lower bound of [15] shows that the bounded-treewidth routine of The-
orem 1.2 has optimal running time (assuming ETH), we conjecture that the running
time bound of Theorem 1.1 is not optimal, and can be improved similarly as it was
in the planar case [7]. For this reason, we do not optimize the parameter dependency
in Theorem 1.3, favouring the clarity of the arguments. In other words, we view our
contribution as Theorem 1.2 being the main technical merit, with Theorem 1.3 and
the resulting Theorem 1.1 being an example application.

The paper is organized as follows: after introducing notation for permutations and
tree decompositions in Sect. 2, we discuss combinatorial embeddings in Sect. 3. The-
orem 1.2 is proved in Sect. 4, and Theorem 1.3 is proved in Sect. 5.

2 Preliminaries

2.1 Permutations, Involutions, Cycles

For a non-negative integer t , we denote [t] = {1, 2, . . . , t}. The group of all permu-
tations of a set U is denoted by Sym(U ). Given a set of permutations S ⊆ Sym(U ),
by 〈S〉 we denote the subgroup of Sym(U ) generated by S. Given a subgroup � of the
group of Sym(U ), by orb(�) we denote the family of orbits of �. For a permutation
σ , orb(σ ) is a shorthand for orb(〈σ 〉); this also allows us to speak about orbits of a
single permutation. An orbit is trivial if it consists of a single element.

A permutation σ ∈ Sym(U ) is an involution if σ(σ(i)) = i for every i ∈ U and is
fixed-point free if σ(i) �= i for every i ∈ U . Note that a permutation is a fixed-point
free involution if and only if all its orbits are of size exactly two.
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A permutation σ is a cycle permutation if it has exactly one nontrivial orbit; note
that σ needs to act cyclically on this orbit. A cycle is an unordered pair consisting of
a cycle permutation and its inverse.

We will need the operation of restricting a cycle permutation σ to a subset A of
the elements of the non-trivial orbit v of σ : the result is a permutation σA, where
σA(e) = e for every e /∈ A while for every e ∈ A we have σA(e) = σ k(e), where
k is the minimum positive integer with σ k(e) ∈ A. In other words, we shorten the
nontrivial orbit v by crossing out the elements not belonging to A. Note that if |A| ≥ 2,
then σA is also a cycle permutation, while for |A| ≤ 1 we have σA being an identity.
The definition of restricting naturally extends to cycles by restricting both components.
For a sequence P of elements of some set, by P̄ we denote its reverse.

In our work, we will often analyze the subgroup of the permutation group spanned
by two fixed-point free involutions. Observe that such an involution can be interpreted
as a perfect matching of its domain (with edges representing orbits). Consequently, if
α, β ∈ Sym(U ) are two fixed-point free involutions, then every orbit v of 〈α, β〉 can
be seen as a connected component of a union of two matchings, which is a cycle with
alternating edges corresponding to α and β, respectively. In particular, |v| = 2m is
even and (β ◦ α)m(e) = e for every e ∈ v. Moreover, the orbit v consists of elements

e, α(e), (β ◦ α)(e), α ◦ (β ◦ α)(e), . . . , (β ◦ α)m−1(e), α ◦ (β ◦ α)m−1(e).

To fix notation, let us define a cycle permutation o〈α,β〉
e of U as follows:

o〈α,β〉
e ( f ) =

⎧
⎪⎨

⎪⎩

α( f ) if f = (β ◦ α)i (e) for some i,

β( f ) if f = α ◦ (β ◦ α)i (e) for some i,

f otherwise.

Note that o〈α,β〉
e is a cycle permutation whose nontrivial orbit is v. Furthermore, while

its definition formally depends on the choice of e and the order of α and β, different
choices of e ∈ v and a potential swap of the roles of α and β lead either to o〈α,β〉

e
or its inverse. The definition of a cycle is suited to accommodate that: For the cycle
permutation o〈α,β〉

e , its cycle is denoted as ô〈α,β〉
e . By the previous argumentation, the

cycle does not depend on the order of α and β, nor on the choice of the element e
within the same orbit.

Let σ̂1 and σ̂2 be two cycles of disjoint setsU1 andU2, with nontrivial orbits v1 and
v2. Amerge of σ̂1 and σ̂2 is a cycle σ̂ ofU := U1∪U2, whose nontrivial orbit v consists
of exactly elements of v1 ∪ v2. Furthermore, for some choice of cycle permutations
σ1 ∈ σ̂1, σ2 ∈ σ̂2, σ ∈ σ̂ , for every i = 1, 2 and e ∈ vi , if k is the minimum positive
integer for which σ k(e) ∈ vi , then σ k(e) = σi (e). In other words, if we restrict the
cycle of the nontrivial orbit of σ̂ to the elements ofUi only, we obtain the cyclic order
of the nontrivial orbit of σ̂i .
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2.2 Tree Decompositions

A tree decomposition of a graph G is a pair (T, β), where T is a rooted tree and β is a
function β : V (T) → 2V (G) that assigns to every t ∈ V (T) a bag β(t) ⊆ V (G) such
that the following holds:

• for every edge e ∈ E(G), there is a node t ∈ V (T) with e ⊆ β(t);
• for every vertex v ∈ V (G), the set {t ∈ V (T) : v ∈ β(t)} is nonempty and induces
a connected subgraph of T.

The width of a decomposition is the maximum size of a bag, minus one.
For a tree decomposition (T, β) of a graph G, we define two auxiliary functions α

and G↓ defined on the set of nodes V (T). For a node t ∈ V (T),

• by α(t) ⊆ V (G)we denote the union of all bags of the descendants of t (including
t itself);

• by G↓(t) we denote the graph G[α(t)] − E(G[β(t)]), that is, the graph induced
by α(t) with the edges inside the bag β(t) removed.

For dynamic programming algorithms, it is often convenient to work with so-called
nice tree decompositions, where the bag of the root is empty, and every node t ∈ V (T)

is of one of the following four types:

leaf node has no children and its bag is empty;
introduce node has one child t′ such thatβ(t) = β(t′)∪{v} for some vertex v /∈ β(t′);
forget node has one child t′ such that β(t) = β(t′)\{v} for some vertex v ∈ β(t′);
join node has two children t1 and t2 with β(t) = β(t1) = β(t2).

It is well known (see, e.g., [2,10]) that, in polynomial time, one can turn any tree
decomposition of width t into an equivalent nice one having width at most t andO(n)

bags in total.

2.3 Surfaces and Embeddings

The proof of Theorem 1.2 operates on an abstract notion of a hypergraph embedding
defined and discussed in the next section. In the proof of Theorem 1.3, we rely on
standard notions of a surface and an embedding as defined in the book of Mohar
and Thomassen [14]. Since we do not use any nonstandard aspects of these notions,
and since they are very intuitive, we refrain ourselves from redefining them here. We
refer interested readers to [14, Chapters 3 and 4] for formal definitions of surfaces,
embeddings, and genera. We remark that in Sect. 3 we discuss the relation between
the abstract hypergraph embeddings used there and the (standard) graph embeddings
used in the proof of Theorem 1.3.

123



Algorithmica (2019) 81:3655–3691 3661

3 Embeddings and Operations on them

3.1 Graph and Hypergraph Embeddings

We start with a clean but abstract notion of a hypergraph embedding, and then we
restrict ourselves only to graph embeddings.

Definition 3.1 (Hypergraph embedding) A hypergraph embedding is a tuple (F, θ,

σ, φ), where F is a finite set, whose elements are called flags, and θ , σ , and φ are three
fixed-point free involutions of the set F.

Given a hypergraph embedding E = (F, θ, σ, φ), we use the notation F(E) := F
etc. Note that the number of flags needs to be even in any hypergraph embedding since
θ, σ , and φ are fixed-point free involutions.

Definition 3.2 (Connected components, vertices, edges, faces) Let E = (F, θ, σ, φ)

be a hypergraph embedding. Then

a connected component is an orbit of ccE := 〈θ, σ, φ〉;
a vertex is an orbit of VertsE := 〈σ, φ〉;
an edge is an orbit of EdgesE := 〈θ, σ 〉;
a face is an orbit of FacesE := 〈θ, φ〉.

Note that, as all three permutations of E are fixed-point free involutions, every
object (vertex, edge, or face) of E can be identified with a cycle, whose nontrivial
orbit is the object in question.

Given a hypergraph embedding E = (F, θ, σ, φ), a size-k object is an orbit of
EdgesE , VertsE , or FacesE that consists of k flags. Note that k is always a positive
even integer in this context. Also, observe that a size-2 edge corresponds to two equal
orbits of θ and σ , a size-2 vertex corresponds to two equal orbits of σ and φ, while a
size-2 face corresponds to two equal orbits of θ and φ.

We now define the genus of an embedding.

Definition 3.3 (Genus of a hypergraph embedding) Given a hypergraph embedding
E = (F, θ, σ, φ), its genus is defined as

ĝ(E) := 1
2 |F| − |orb(VertsE )| − |orb(EdgesE )| − |orb(FacesE )| + 2|orb(ccE )|.

(1)

Since the number of flags is even, the genus of a hypergraph embedding is always an
integer.

Definition 3.4 (Graph embedding) A hypergraph embedding E is a graph embedding
if every edge consists of exactly four flags.

In other words, a hypergraph embedding E = (F, θ, σ, φ) is a graph embedding if no
two orbits of θ and σ coincide, but the involutions θ and σ commute.

Observe that the formula for genus simplifies in case of a graph embedding.
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Fig. 1 Flags (gray triangles) and
involutions in an embedding

θ

θ

σ

φ

Observation 3.5 If E = (F, θ, σ, φ) is an embedding, then its genus equals

ĝ(E) := |orb(EdgesE )| − |orb(VertsE )| − |orb(FacesE )| + 2|orb(ccE )|. (2)

From this point, we use only graph embeddings in this work and call them simply
embeddings.

If two objects share a flag, we say that these objects are incident. Note that a size-
k object can be incident to at most k/2 objects of either of the other types (e.g., a
size-k vertex can be incident to at most k/2 edges and k/2 faces). In particular, in an
embedding, each edge can be incident to one or two faces and one or two vertices. An
edge incident to only one vertex is called a loop.

Let us now relate the aforementioned definition of a (combinatorial) embedding
with the topological intuition. Let G be a graph embedded on a surface. We visualize
every edge as a (thin, and possibly bent) rectangle, with a flag attached at every
corner of the rectangle (see Fig. 1). The involution θ pairs up flags on an edge that
lie on the same side. The involution σ pairs up flags on an edge that lie at the same
endpoint. Finally, the involution φ pairs up neighboring flags of consecutive edges
around a vertex. In this manner, an orbit of VertsE = 〈σ, φ〉 yields a cyclic order of
flags around a vertex, an orbit of EdgesE = 〈θ, σ 〉 yields a cyclic order of the four
flags of an edge, while an orbit of FacesE = 〈θ, φ〉 yields a cyclic order of flags
around a face. Note that our notion of a face slightly diverges from the topological
one: Topologically, a single face can be bounded by several cycles, each composed of
edges from a different connected component. In the graph embedding, we consider
each such cycle to be a separate face. Nevertheless, due to the coefficient 2 of the term
|orb(ccE )|, the formula (2) corresponds to the standard notion of the Euler genus of
an embedding.

In the other direction, note that a graph embedding E = (F, θ, σ, φ) induces nat-
urally a graph with vertex set being the set of orbits of VertsE = 〈σ, φ〉, edge set
being the set of orbits of EdgesE = 〈θ, σ 〉 and edge being incident to a vertex if
the corresponding two orbits share a flag. Observe that such an induced graph does
not contain any isolated vertices. In other words, our notion of a graph embeddings
ignores isolated vertices.

The book of Mohar and Thomassen [14] and the algorithms for finding low-genus
embeddings used in the proof of Theorem 1.3 [9,13] operate on so-called rotation
systems that consists of a cyclic order of endpoints of edges around every vertex and a
signature λ : E(G) → {±1}. Intuitively, while going along an edge ewith λ(e) = −1,
one “flips” the roles of left and right. Using the intuition in the previous paragraph,
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Fig. 2 Subsequent steps of edge deletion, assuming that all the 8 named flags are distinct

it is straightforward to transfer a rotation system into a graph embedding as defined
in this section: one splits every edge into four flags, two for each endpoint, define σ

and φ such that the orbits of 〈σ, φ〉 correspond to the cyclic order of the endpoints
in the rotation system, and finally adjust θ to reflect, for every edge e, if going along
this edge keeps the directions of the orbits (when λ(e) = 1) or reverses them (when
λ(e) = −1).

3.2 Basic Operations on Embeddings

We will need an operation of deleting an edge and a reverse operation of drawing a
new edge.

3.2.1 Deleting an Edge

Let E = (F, θ, σ, φ) be an embedding and let e be an edge of E with flags

x, x ′ = σ(x), y = θ(x), y′ = σ(y) = θ(x ′).

We define an embedding E − e, the result of deletion of the edge e from E , in the
following manner; see Fig. 2.

First, we disconnect the edge e from the rest of the embedding. For this, we modify
φ so that {x, x ′} and {y, y′} become its orbits: We set a = φ(x) and a′ = φ(x ′), and
we replace {x, a} and {x ′, a′} with {x, x ′} and {a, a′}. (Note that if a = x ′ or a′ = x ,
then this operation is void, because {x, a} = {x ′, a′} = {a, a′} = {x, x ′}.) Next, we set
b = φ(y) and b′ = φ(y′), and we replace {y, b} and {y′, b′} with {y, y′} and {b, b′}.
As the third and final step, we delete the flags of e and the corresponding orbits of all
three involutions.

Note that the first two steps cannot be conveyed in parallel because φ(y) and φ(y′)
might be altered during the first step. However, this happens only if e is a loop (with
a ∈ e or a′ ∈ e), and a direct check shows that {x, x ′} and {y, y′} both become orbits
of φ and that φ keeps being an involution. What is more, the order of the first two steps
(i.e., the arbitrary decision of processing {x, x ′} prior to {y, y′}) is irrelevant and edge
deletion results in deleting the flags of e from the cycles corresponding to the vertices
incident to e. This interpretation supports the following observation.

Observation 3.6 Let E0 = E − e for an embedding E and an edge e. For every vertex
v0 of E0, there exists a distinct vertex v of E such that the cycle of v0 is the cycle of v

with the flags of e removed. In the other direction, for every vertex v of E , either all
flags of v are contained in e, or there exists a vertex v0 of E0 with the cycle equal to
the cycle of v with the flags of e removed.
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Next, we describe how genus changes subject to edge deletion.

Lemma 3.7 Let e be an edge in the embedding E , and let E0 = E − e. Then the genus
of E0 is not larger than the genus of E . Furthermore, if e is incident to two faces or to
a size-2 vertex, then the genera of E0 and E are equal.

Proof Let E = (F, θ, σ, φ), E0 = (F0, θ0, σ0, φ0), and let x, x ′, y, y′ be the four flags
of e (aligned as in Fig. 2).We now investigate how the number of edges, vertices, faces,
and connected components can change while deleting an edge e. Observe that this
operation only affects orbits intersecting e. In particular, this yields |orb(EdgesE0)| =
|orb(EdgesE )| − 1. To analyze orbits of the remaining types, we consider several
cases.

Case A The edge e is incident to two distinct faces. Let f and f ′ be the faces
incident to e, with cycles x, y, P and x ′, y′, P ′, respectively, for some (possibly empty)
sequences of flags P and P ′.
Case A.1 Both faces f and f ′ are of size 2. In this case, both P and P ′ are empty,
so f and f ′ get deleted. Moreover, the flags of e form a single vertex (with cycle
x, y, y′, x ′) and a separate connected component; these orbits are deleted as well.
Thus,

|orb(FacesE )| − |orb(FacesE0)| = 2, |orb(VertsE )| − |orb(VertsE0)| = 1,

|orb(ccE )| − |orb(ccE0)| = 1.

Consequently, ĝ(E) − ĝ(E0) = 0.

Case A.2. One of the faces f or f ′ is of size at least 4. Without loss of generality,
suppose that f is of size at least 4, i.e., P is not empty. Observe that P remains in
E0 as a sequence of flags connecting φ(x) with φ(y), where every two consecutive
flags form an orbit either of φ0 or of θ0. Consequently, neither vertex incident to e
is deleted, and these vertices still belong to the same connected component. Finally,
observe that the deletion of e replaces the faces f and f ′ with one face, whose cycle
is P P̄ ′, where P̄ ′ is the sequence P ′ reversed. Thus,

|orb(FacesE )| − |orb(FacesE0)| = 1, |orb(VertsE )| − |orb(VertsE0)| = 0,

|orb(ccE )| − |orb(ccE0)| = 0.

Consequently, ĝ(E) − ĝ(E0) = 0.

Case B The edge e is incident to one face. Let f be the face incident to e. Moreover,
let v and v′ be vertices incident to e, with x, x ′ ∈ v and y, y′ ∈ v′; note that these
vertices may coincide. We consider several cases based on the sizes of v and v′.
Case B.1 Both v and v′ are of size 2. In this case, both v and v′ get deleted along with
e. Moreover, observe that the flags of e form a single face (with cycle x, y, y′, x ′) and
a separate connected component; these orbits are deleted as well. Thus,

|orb(FacesE )| − |orb(FacesE0)| = 1, |orb(VertsE )| − |orb(VertsE0)| = 2,

|orb(ccE )| − |orb(ccE0)| = 1.
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Fig. 3 An edge e incident to a single face f and two distinct vertices of size 6 or more. The walk around
f may change the orientation between visiting both sides of e (to the left) or preserve it (to the right)

Consequently, ĝ(E) − ĝ(E0) = 0.

Case B.2 Exactly one of the vertices v and v′ is of size 2.Without loss of generality,
suppose that v′ is of size 2, whereas v contains flags φ(x) and φ(x ′) which do not
belong to e. In this case, v′ gets deleted, while v is preserved. Moreover, v is still
connected to all other vertices in the connected component of v (except for the deleted
vertex v′), so the number of connected components does not change. Finally, observe
that the cycle of f is x, y, y′, x ′, P for some non-empty sequence of flags P , which
starts with φ(x ′) and ends with φ(x). After the deletion, P forms a separate face.
Thus,

|orb(FacesE )| − |orb(FacesE0)| = 0, |orb(VertsE )| − |orb(VertsE0)| = 1,

|orb(ccE )| − |orb(ccE0)| = 0.

Consequently, ĝ(E) − ĝ(E0) = 0.

Case B.3 The vertex v = v′ is of size 4. In this case, the flags of e form a single
vertex (with cycle x, x ′, y, y′), a single face (with cycle x, y, x ′, y′), and a separate
connected component. Thus,

|orb(FacesE )| − |orb(FacesE0)| = 1, |orb(VertsE )| − |orb(VertsE0)| = 1,

|orb(ccE )| − |orb(ccE0)| = 1.

Consequently, ĝ(E) − ĝ(E0) = 1.

Case B.4 Neither v nor v′ is contained in e. In this case, the vertices v and v′ (which
may coincide) do not get deleted. The change in the number of faces depends on the
cycle of f ; see Fig. 3 for an illustration.

If the cycle of f is x, y, P, x ′, y′, P ′ (for sequences of flags P and P ′, at least one
of which is non-empty), the face f gets transformed to a face with cycle P P̄ ′, where
P̄ ′ is the reverse of P ′. Moreover, this face provides connectivity between the vertices
v and v′. Hence, neither the number of faces nor the number of connected components
changes. Thus,
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|orb(FacesE )| − |orb(FacesE0)| = 0, |orb(VertsE )| − |orb(VertsE0)| = 0,

|orb(ccE )| − |orb(ccE0)| = 0.

Consequently, ĝ(E) − ĝ(E0) = 1.
On the other hand, if the cycle of f is x, y, P, y′, x ′, P ′ (for non-empty sequences

of flags P and P ′), then the deletion of e replaces f with two faces, whose cycles are
P and P ′, respectively; hence, the number of faces increases by 1. The vertices v and
v′ may get disconnected or stay in the same connected component. Thus,

|orb(FacesE )| − |orb(FacesE0)| = −1, |orb(VertsE )| − |orb(VertsE0)| = 0,

|orb(ccE )| − |orb(ccE0)| ∈ {0,−1}.

Consequently, ĝ(E) − ĝ(E0) ∈ {0, 2}.
We conclude the proof with a simple observation that the case distinction is com-

plete. ��
A direct consequence of Lemma 3.7 is the following.

Corollary 3.8 The genus of an embedding is always non-negative.

Proof Observe that any embedding can be turned into an empty embedding (i.e., one
with no flags) by successive edge deletions. Since an edge deletion cannot increase
the genus (Lemma 3.7), and the empty embedding has genus zero, the claim follows.

��

3.2.2 Drawing a New Edge

Let us now define a reverse operation to edge deletion. Before, let us introduce a notion
of position pE (x) of a flag x . Let x, y = θ(x), y′ = σ(y), x ′ = σ(x) be the flags
contained in the edge e containing x . We set

pE (x) =

⎧
⎪⎨

⎪⎩

(φ(x), φ(y)) if φ(y) /∈ {x, x ′},
(φ(x), φ(x ′)) if φ(y) = x,

(φ(x), φ(x)) if φ(y) = x ′.

It is easy to observe that defining the process of deletion of e, we set a and b so
that (a, b) = pE (x). This lets us use pE (x) to undo the deletion. While defining the
operation of drawing a new edge, we want to avoid the need to give names to the flags
of this newly added edge. Hence, to specify its position (a, b), we write a = ⊥ instead
of a = x ′, a = � instead of a = y, a = �′ instead of a = y′, and b = ⊥ instead of
b = y′.

Let E = (F, θ, σ, φ) be an embedding, and let a ∈ F∪{⊥,�,�′} and b ∈ F∪{⊥}.
By drawing a new edge at (a, b) we mean the following operation, resulting in an
embedding E0; see Fig. 4. First, we add four new flags to F, denoted x, x ′, y, y′
henceforth. We set {x, x ′} and {y, y′} to be new orbits of σ and φ, whereas {x, y} and
{x ′, y′} to be two new orbits of θ . Next, we replace a = ⊥, a = �, a = �′, and
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Fig. 4 The result of drawing an edge (x, y, y′, x ′) at (a, b) for different combinations of a and b. Each case
is illustrated with one out of potentially many configurations. In particular, a, b ∈ F does not imply a′ ∈ F

b = ⊥ with a = x ′, a = y, a = y′, and b = y′, respectively. Finally, we adjust φ

in the following two steps: We define b′ = φ(b) and replace the orbits {y, y′} and
{b, b′}with {y, b} and {y′, b′}. (Note that if b = y′, then this operation is void because
{y, y′} = {b, b′} = {y, b} = {y′, b′}.) Then, we define a′ = φ(a) and replace the
orbits {x, x ′} and {a, a′} with {x, a} and {x ′, a′}. (Observe that this operation is void
if a = x ′.)

We defined this operation so that it is clear that if e = (x, y, y′, x ′) is an edge of E ,
then one can retrieve E from E − e by drawing a new edge at pE (x) and appropriately
identifying the four new flags with x, x ′, y, y′. It is also easy to verify that drawing a
new edge is always well-defined and that if E0 is obtained from E by drawing a new
edge e, then E = E0 − e.

Note that a = ⊥ and b = ⊥ both result in creating a new vertex (two new vertices
if a = ⊥ and b = ⊥ hold simultaneously). Moreover, if a = ⊥, then e is incident to a
size-2 vertex (x, x ′), if a = �, then e is a loop incident to two faces including a size-2
face (x, y), while if a = �′, then e is a loop incident to one face.

We identify one more special case of drawing a new edge. If a and b are distinct
flags that lie on the same face f , and furthermore, the order of flags on the cycle of
f is a, P, b, φ(b), P ′, φ(a) for some (possibly empty) sequences of flags P and P ′,
then we say that the new edge drawn at (a, b) is drawn along the boundary of f .
Observe that if this is the case, then the new edge e is incident to two faces: in the new
embedding E0, the face f has been split into a face with cycle a, P, b, y, x and a face
with cycle φ(b), P ′, φ(a), x ′, y′. We explicitly allow here also the case b = φ(a);
then the cycle of f is a, P, b for some sequence P , and the embedding E0 has new
faces with cycles a, P, b, y, x and x ′, y′, respectively.

Consequently, from Lemma 3.7 we immediately obtain the following.

Lemma 3.9 If E0 is created from E by drawing a new edge, then the genus of E0 is not
smaller than the genus of E . Furthermore, the genera of E and E0 are equal if the edge
has been drawn along a face boundary or at (a, b) with a ∈ {⊥,�}.
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3.3 t-boundaried Embeddings

Definition 3.10 (t-boundaried embedding) A t-boundaried embedding is a tuple
(E, t, L), where E = (F, θ, σ, φ) is an embedding, t is a non-negative integer, and
L is an injective function from a subset of orb(VertsE ) to [t]. The elements of the
domain of L are called labelled vertices, and the elements of [t] are labels.

The genus of a t-boundaried embedding (E, t, L) is the genus of the underlying
embedding E .

The main motivation to introduce t-boundaried embeddings is to then merge them.

Definition 3.11 (Merge of two t-boundaried embeddings) Let Ê1 and Ê2 be two t-
boundaried embeddings, where Êi = (Ei , t, Li ) and Ei = (Fi , θi , σi , φi ) for i = 1, 2,
and the sets of flags F1 and F2 are disjoint. A t-boundaried embedding Ê = (E, t, L)

with E = (F, θ, σ, φ) is a merge of Ê1 and Ê2 if it can be created by the following
process.

First, we take Ê to be a disjoint union of Ê1 and Ê2, that is, we take:

F = F1 ∪ F2 θ = θ1 ∪ θ2

σ = σ1 ∪ σ2 φ = φ1 ∪ φ2

L = L1 ∪ L2

Then, for every label 
 ∈ [t] that is contained in the image of both L1 and L2 that is,
there exists a cycle Ci corresponding to the orbit L

−1
i (
) for i = 1, 2, we modify φ on

the elements of C1 and C2 so that these elements form a single orbit of 〈σ, φ〉 whose
cycle C is a merge of C1 and C2. (Note that the cycle C is, in general, not defined
uniquely.) We assign this cycle the label 
 in the assignment L .

Observe that, as we only modify φ in the merge operation, the set of edges of a merge
is the union of the edges of the components. In particular, it follows that every edge
of a merge consists of four flags, and thus the merge is indeed a (graph) embedding.

For two t-boundaried embeddings Ê1 and Ê2, we denote the family of all merges of
Ê1 and Ê2 as M(Ê1, Ê2). Moreover, as ĝM (Ê1, Ê2) we denote the minimum genus of
a merge of Ê1 and Ê2. Formally, ĝM (Ê1, Ê2) = min{ĝ(Ê) : Ê ∈ M(Ê1, Ê2)}. A merge
Ê ∈ M(Ê1, Ê2) attaining this genus is called a genus-minimum merge.

Definition 3.12 (Equivalence of t-boundaried embeddings) Two t-boundaried embed-
dings Ê and Ê ′ are equivalent if for every t-boundaried embedding Ê0, the genera
ĝM (Ê0, Ê) and ĝM (Ê0, Ê ′) are equal.

In a certain sense, merging is a commutative and associative operation:

Observation 3.13 Let Ê1, Ê2, Ê3 be arbitrary t-boundaried embeddings with pairwise
disjoint flags, and let Ê∅ be the empty t-boundaried embedding. The function M(·, ·)
satisfies the following properties:
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1.
⋃{M(Ê1, Ê23) : Ê23 ∈ M(Ê2, Ê3)} = ⋃{M(Ê12, Ê3) : Ê12 ∈ M(Ê1, Ê2)}.

2. M(Ê1, Ê2) = M(Ê2, Ê1),
3. M(Ê1, Ê∅) = {Ê1},
Motivated by the associativity, we generalize the functions M() and ĝM () to an arbi-
trary finite arity.

3.3.1 Basic Operations on t-Boundaried Embeddings

By Observation 3.6, there is a natural correspondence between the vertices of E and
E − e for every edge e of E . This correspondence allows us to extend the definition of
edge deletion to t-boundaried embeddings: If Ê = (E, t, L) and e is an edge in E , then
a t-boundaried embedding Ê − e is defined as (E − e, t, L0), where for every vertex
v0 of E − e, the labelling L0 copies the label of the corresponding vertex v of E . Note
that the range of L0 may be a proper subset of the range of L if some labelled vertex
of Ê has all its flags contained in the deleted edge e. The characterization of vertex
cycles in Observation 3.6 lets us relate edge deletion to merging.

Observation 3.14 Consider a merge Ê of t-boundaried embeddings Ê1 and Ê2. For
every edge e of Ê1, we have that Ê − e is a merge of Ê1 − e and Ê2.

Similarly, we can define the operation of drawing a new edge in a t-boundaried
embedding; if a new vertex is created by this operation (due to a or b being equal to
⊥), we need to specify its label (or the fact that it is unlabelled). Thus, for each label 

unused in Ê , we add a special value ⊥
 available for a and b, denoting the fact that the
new vertex is labelled 
; the ordinary ⊥ denotes the fact that it is unlabelled. Unlike
Observation 3.14, its counterpart for drawing an edge requires dealing with a special
situation.

Observation 3.15 Consider a merge Ê of t-boundaried embeddings Ê1 and Ê2, and let
Ê ′
1 be an embedding obtained from Ê1 by drawing an edge at (a, b). Then a merge of

Ê ′
1 and Ê2 can be obtained from Ê by drawing an edge at (ã, b̃) , where ã = a and

b̃ = b except for the following situation: if a = ⊥
 (or b = ⊥
) for a label 
 used in Ê
but not in Ê1, then ã (resp. b̃) is an arbitrary flag of Ê contained in a vertex with label

.

3.4 Nice Embeddings

We say that a vertex or a face is isolated if its set of flags forms a separate connected
component.

Definition 3.16 (Nice (t-boundaried) embedding) A t-boundaried embedding Ê =
(E, t, L) with E = (F, θ, σ, φ) is nice if the following two conditions hold:

1. If an unlabelled vertex consists of less than 6 flags, then it is isolated. Equivalently,
size-2 unlabelled vertices are forbidden, while each size-4 unlabelled vertex must
be incident to a loop.
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2. If an edge e is incident to two faces, then for every face f incident to e, if we
denote by x and y = θ(x) the two flags contained both in f and e, then there is a
flag z ∈ f \{x, y, φ(x), φ(y)} contained in a labelled vertex.

Our goal in this section is to show that any embedding can be turned into an equiv-
alent nice one. The main motivation for such a cleaning step is that a nice embedding
enjoys a good size bound due to the Euler formula-style estimations, presented in the
next section.

3.4.1 Nice Embeddings are Small

Lemma 3.17 A t-boundaried nice embedding Ê = (E, t, L) of genus ĝ(Ê) satisfies

|F(E)| ≤ 48t + 24ĝ(Ê).

Proof Let E = (F, θ, σ, φ). We perform a discharging argument. The setup is as
follows:

• every labelled vertex receives a charge of 2;
• every isolated vertex receives a charge of 1;
• every isolated face receives a charge of 1;
• every edge receives a charge of 5

6 .

The total initial charge is at most

2t + 2|orb(ccE )| + 5
6 |orb(EdgesE )|.

Then, we move the charge according to the following rules:

1. Every labelled vertex that is incident to only one face sends a charge of 1 to the
face it is incident to.

2. Every edge that is incident only to labelled vertices divides a charge of 2
3 equally

among the faces it is incident to. In other words, every flag in such an edge sends
a charge of 1

6 to the face it is contained in.
3. Every edge that is incident to two vertices, one labelled and one unlabelled, gives

a charge of 1
3 to the unlabelled incident vertex and divides the remaining charge

of 1
2 equally between the faces it is incident to. In other words, in the first step

every flag in such an edge contained in an unlabelled vertex sends a charge of 1
6

to the vertex it is contained in. In the second step, every flag in such an edge sends
a charge of 1

8 to the face it is contained in.
4. Every edge that is incident only to unlabelled vertices divides a charge of 2

3 equally
among the vertices it is incident to. In other words, every flag in such an edge sends
a charge of 1

6 to the vertex it is contained in.

Clearly, every edge is left with a non-negative charge (0 or 1
6 ). We now show that at

the end of the process, every vertex and every face has a charge of at least one.
First, let us consider a vertex v. If v is labelled or isolated, 1 out of its initial charge

remained, and the claim is straightforward. Next, we assume that v is unlabelled and
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not isolated. By the first property of a nice embedding, v is of size at least 6. It received
exactly 1

6 from each of its flags, i.e., at least 1 in total.
Consider now a face f . Wemake a case distinction depending on howmany flags of

f belong to labelled vertices and how these flags are located on the cycle corresponding
to f .

No flags of f belong to a labelled vertex Observe that every edge e incident to f is
incident only with one face, as otherwise it would contradict the second property of a
nice embedding. Consequently, f is isolated and it received an initial charge of 1.

Exactly 2 flags of f belong to a labelled vertex Suppose f is incident to only one
labelled vertex v and shares two flags x and y = φ(x) with v. Let e be the edge
containing x . By the second property of a nice embedding, f is the only face incident
to e. Consequently, σ(x) belongs to f . Since σ(x) also belongs to v, which is a labelled
vertex, we infer that y = σ(x), the vertex v is of size 2, and f is the only face v is
incident to. Thus, f received a charge of 1 from v.

Exactly 4 flags of f belong to labelled vertices and they are consecutive along f .
Let x , y = θ(x), x ′ = φ(x), and y′ = φ(y) be these four flags, and let e be the edge
containing x and y. If e is incident to two faces, then it violates the second property
of a nice embedding. Otherwise, the orbit {σ(x), σ (y)} of θ appears on f . Since only
4 flags of f belong to labelled vertices, we need to have {σ(x), σ (y)} = {x ′, y′}, so
f is an isolated face of size 4. Hence, it received an initial charge of 1.

The face f consists of 6 flags and they all belong to labelled vertices In this case all
flags in f are contained in edges incident only to labelled vertices. Thus, f receives
a charge of 1

6 from each of these flags, which is 1 in total.

Along f there exist two nonconsecutive orbits of φ that are included in labelled
vertices Let {x, x ′} and {y, y′} be these orbits. Since they are nonconsecutive,
θ(x), x, x ′, θ(x ′), θ(y), y, y′, θ(y′) are eight pairwise distinct flags in f . Each such
flag belongs to an edge incident to at least one labelled vertex and thus sends a charge
of at least 1

8 to the face f .
Note that the last three cases cover the case of f having at least 4 flags contained

in labelled vertices.
We have shown that there was enough charge so that every vertex and every face

received a charge of at least one. Consequently,

|orb(FacesE )| + |orb(VertsE )| ≤ 2t + 2|orb(ccE )| + 5
6 |orb(EdgesE )|.

Together with (2), this implies

ĝ(Ê) = |orb(EdgesE )| − |orb(FacesE )| − |orb(VertsE )| + 2|orb(ccE )|
≥ 1

6 |orb(EdgesE )| − 2t,
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i.e.,

|F| = 4|orb(EdgesE )| ≤ 48t + 24ĝ(Ê).

��

3.4.2 Making an Embedding Nice

Let Ê = (E, t, L) be a t-boundaried embedding with E = (F, θ, σ, φ). Our goal now
is to obtain an equivalent nice embedding. To this end, we show that the following
three operations lead to equivalent embeddings:

1. deleting an edge incident to an unlabelled size-2 vertex;
2. deleting an edge violating the second property of the definition of a nice embed-

ding;
3. suppressing a size-4 unlabelled vertex that is not isolated.

We will henceforth call them simplifying operations.

Lemma 3.18 (Deleting an edge incident to a size-2 unlabelled vertex) If e is an edge
of Ê incident to an unlabelled vertex of size 2, then Ê − e and Ê are equivalent.

Proof We consider merges of Ê and Ê − e with an arbitrary t-boundaried embedding
Ê0.

First, let ÊM be a genus-minimum merge of Ê0 and Ê . Observation 3.14 yields
ÊM − e ∈ M(Ê0, Ê − e). Combined with Lemma 3.7, this implies ĝM (Ê0, Ê − e) ≤
ĝ(ÊM − e) ≤ ĝ(ÊM ) = ĝM (Ê0, Ê).

In the other direction, let Ê ′
M be a genus-minimum merge of Ê − e and Ê0. Let

e = (x, y, y′, x ′), where {x, x ′} is an unlabelled size-2 vertex so that pÊ (x) is of the
form (x ′, b). Consequently, Ê can be obtained from Ê − e by drawing a new edge e
at (⊥, b) for some b. By Observation 3.15, a merge ÊM ∈ M(Ê0, Ê) can be obtained
from Ê ′

M by drawing a new edge at (ã, b̃). Since a = ⊥, we have ã = ⊥, so the genera
of ÊM and Ê ′

M are equal due to Lemma 3.9. Hence, ĝM (Ê0, Ê) ≤ ĝ(ÊM ) = ĝ(Ê ′
M ) =

ĝM (Ê0, Ê − e). ��
Lemma 3.19 (Deleting an edge violating the second property of the definition of nice
embedding) Let e be an edge in a t-boundaried embedding Ê that is incident to
two faces. Furthermore, assume that some face f incident to e has the following
property: if x and y = θ(x) are the two flags shared between e and f , then each flag
z /∈ {x, φ(x), y, φ(y)} of f belongs to an unlabelled vertex. Then Ê is equivalent with
Ê − e.

Proof Again, we consider merges of Ê and Ê − e with an arbitrary t-boundaried
embedding Ê0.

In one direction, the proof is the same as in the proof of the previous lemma:
Observation 3.14 and Lemma 3.7 imply ĝM (Ê0, Ê − e) ≤ ĝM (Ê0, Ê).

In the other direction, let Ê ′
M be a genus-minimum merge of Ê0 and Ê − e. We

consider two cases depending on whether f is of size 2.
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If so, then pÊ (x) is of the form (y, b), and Ê can be obtained from Ê−e by drawing
a new edge at (�, b) for some b. By Observation 3.15, a merge ÊM ∈ M(Ê0, Ê) can
be obtained from Ê ′

M by drawing a new edge at (ã, b̃). Since a = �, we have ã = �,
so the genera of ÊM and Ê ′

M are equal due to Lemma 3.9.
Next, suppose that f contains a flag z /∈ {x, y}. Since e is incident to 2 faces, we

conclude that φ(x) and φ(y) do not belong to e, and Ê can be obtained from Ê − e
by drawing a new edge at (a, b) for a = φ(x) and b = φ(y). By Observation 3.15,
a merge ÊM ∈ M(Ê0, Ê) can be obtained from Ê ′

M by drawing a new edge at (a, b).
Let the cycle of f be x, a, P, b, y for some (possibly empty) sequence of flags P .
By the assumptions of the lemma, every flag of P belongs to an unlabelled vertex.
Consequently, in Ê ′

M there exists a face f ′ whose cycle contains consecutive flags
a, P, b on its cycle, as no orbit of φ or θ on a, P, b has been altered. This means that
a new edge drawn at (a, b) is actually drawn along a face boundary. Hence, the genera
of ÊM and Ê ′

M are equal due to Lemma 3.9.
In both cases, we obtain ĝM (Ê0, Ê) ≤ ĝ(ÊM ) = ĝ(Ê ′

M ) = ĝM (Ê1, Ê − e). ��

For the last basic operation, we need to formally define it. Let Ê = (E, t, L) be a
t-boundaried embedding with an unlabelled size-4 vertex v that is not isolated. Since
v is not isolated, v is incident to two edges e1 and e2, and each ei is incident to v and
a vertex vi �= v. Note that it is possible that v1 = v2.

Let x1 and x2 = φ(x1) be two flags in v such that xi belongs to ei . Furthermore, let
yi = θ(xi ); note that yi lies in ei . We delete all four flags of v and replace the orbits
of θ on e1 and e2 with {y1, y2} and {σ(y1), σ (y2)}. In other words, we replace e1 and
e2 with a new edge with flags y1, y2, σ (y1), σ (y2). We now formally verify that the
output embedding is an equivalent one.

Lemma 3.20 (Suppressing a size-4 unlabelled vertex that is not isolated)The operation
of suppressing a size-4 unlabelled vertex leads to an equivalent embedding.

Proof We interpret the suppressing operation as a sequence of one edge drawing and
two edge deletions.

Observe that y1, x1, x2, y2 are four distinct flags that lie on the same face f and,
furthermore, they are consecutive in this order along the cycle of f . Let us draw a new
edge e f along the boundary of f , at y1 and y2, obtaining an embedding Ê ′. Note that
in Ê ′ there is a new face f ′ with cycle (z1, y1, x1, x2, y2, z2), where {z1, z2} is a new
orbit of θ contained in the edge e f . Furthermore, the edge e f with face f ′ fulfills the
assumptions of Lemma 3.19, and its deletion from Ê f gives Ê . Consequently, Ê ′ and
Ê are equivalent.

Then, we delete edges e1 and e2 from Ê ′, obtaining an embedding Ê ′′. Our goal
is to show that such an operation leads to an equivalent embedding; note that if we
rename the flags of e f to y1, y2, σ (y1), σ (y2), we obtain the output embedding of
the suppressing operation. The proof of equivalence of Ê ′′ and Ê ′ is similar to that of
Lemma 3.19, but without most of the special cases due to the existence of the edge
e f .

Let Ê0 be an arbitrary t-boundaried embedding. By Observation 3.14 and
Lemma 3.7, ĝM (Ê0, Ê ′′) ≤ ĝM (Ê0, Ê ′).
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For the other direction, let Ê ′′
M = (E ′′

M , t, L ′′
M ) be a genus-minimum merge of Ê0

and Ê ′′. Note that pÊ ′(x1) = (x2, z1) and pÊ ′−e1
(x2) = (x ′

2, z2). Hence, Ê ′ can be

retrieved from Ê ′′ by drawing edge e2 at (⊥, z2) and then edge e1 at (x2, z1). By
Observation 3.15, a merge Ê ′

M ∈ M(Ê0, Ê ′) can be retrieved from Ê ′′
M by drawing an

edge e2 at (⊥, z2) and then e1 at (x2, z1). Lemma 3.9 asserts that the first of these
operations preserves the genus. As for the second operation, we observe that after
drawing e2 flags x2, y2, z2, z1 form a fragment of a face boundary and that e1 is drawn
along it. Hence, Lemma 3.9 also implies that the genera of Ê ′′

M and Ê ′
M are equal. We

infer ĝM (Ê0, Ê ′) ≤ ĝ(Ê ′
M ) = ĝ(Ê ′′

M ) = ĝM (Ê0, Ê ′′), which concludes the proof of the
lemma. ��

Armed with the three basic operations, we are now ready to prove the following
statement.

Lemma 3.21 There exists a polynomial-time algorithm that, given an arbitrary t-
boundaried embedding, computes an equivalent nice one by successive applications
of the simplifying operations.

Proof Let Ê be a t-boundaried embedding. If Ê is nice, we can just return Ê . Otherwise,
observe that any object that violates the niceness of Ê gives rise to an applicability
of one of the simplifying operations. An edge violating the second property of a
nice embedding can be deleted from Ê ; the resulting embedding is equivalent due
to Lemma 3.19. Similarly, Lemma 3.18 lets us safely delete the edge incident to an
unlabelled size-2 vertex, and a size-4 unlabelled vertex that is not isolated can be
suppressed due to Lemma 3.20.

Finally, note that each execution of a simplifying operation strictly decreases the
number of flags in the embedding. Consequently, in polynomial time we obtain an
equivalent nice embedding. ��

Due to Lemma 3.17, this algorithm can be applied to transform a t-boundaried
embedding into an equivalent one with flags from a small universe.

Corollary 3.22 There exists a function U (t, g) = 48t + 24g and a polynomial-time
algorithm that, given a universe U and a t-boundaried embedding Ê such that |U| ≥
U (t, ĝ(Ê)), constructs an equivalent t-boundaried embedding Ê ′ whose flags F(Ê ′)
form a subset of U.

4 Bounded Treewidth Graphs

In this section, we prove Theorem 1.2. Without loss of generality, we can assume that
the input tree decomposition (T, β) of the input graph G is a nice tree decomposition
of width less than t , that is, every bag of (T, β) is of size at most t .

We further refine (T, β) as follows. First, with every node t we associate a graph
G(t), initialized as G(t) := G↓(t). In the refinement process, we will maintain the
invariant that at every node t, the graphG(t) is a subgraph ofG[α(t)] and a supergraph
of G↓(t); in particular, V (G(t)) = α(t). Note that onlyO(t2) bits are needed to keep
G(t) at every node t since it suffices to store which edges of G[β(t)] belong to G(t).
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For every forget node t, we perform the following refinement process. Let t′ be the
child of t, and let v be the forgotten vertex, i.e., {v} = β(t′)\β(t). Let e1, e2, . . . , e


be the edges incident to v that have their second endpoint in β(t). Note that, since we
do not allow loops in the input graph G, then {e1, e2, . . . , e
} are exactly the edges
that are present in G↓(t) but are not present in G↓(t′). Our goal is to refine the edge tt′
of T by inserting a number of vertices on this edge so that the transition from G↓(t′)
to G↓(t) is smoother.

More precisely, we subdivide the edge tt′ 
 times, inserting a path comprising
vertices t1, t2, . . . , t
 in this order, such that t1 becomes the child of t, and t
 becomes
the parent of t′. Furthermore, to every node ti we add a second child si that is a leaf of
the treeT. The new node si is of a new type, namely an edge leaf : we set β(si ) = β(t′),
V (G(si )) = β(t′), and E(G(si )) = {ei }. The node ti is a join node with β(ti ) = β(t′)
and G(ti ) = G↓(t) − {e1, e2, . . . , ei−1}.

This completes the description of the tree decomposition refinement. By this step,
we have obtained the following properties: at every introduce or forget node t with
child t′, we have E(G(t)) = E(G(t′)), while at every join node t with children t1
and t2 we have E(G(t)) = E(G(t1)) � E(G(t2)). Furthermore, note that we have
introduced two nodes for every edge of G, giving O(nt) new nodes in total.

We compute a labelling function � : V (G) → [t] such that � is injective on every
bag of (T, β); such a labelling � is straightforward to construct in a top-to-bottom
fashion using the fact that every bag of (T, β) is of size at most t .

With the refined tree decomposition, we perform a bottom-up dynamic program-
ming algorithm. Fix a node t ∈ V (T). For a subset A ⊆ α(t) and an embedding E
of G(t)[A], we can naturally equip E with a structure of a t-boundaried embedding
by assigning labels �|β(t) (which is an injective function). We will denote such a
t-boundaried embedding at node t as bnd(t, E). Intuitively, the bnd function extends
an embedding E with a “boundary” induced by t (because β(t) is a “boundary” of
G(t) as a subgraph of G).

At t, we maintain a DP table with values T [t, X , Ê] ∈ {0, 1, . . .} ∪ {+∞} for
every set X ⊆ β(t) and for every t-boundaried embedding Ê whose labels belong
to �(β(t)\X) and whose flags form a subset of a universe U(t). These universes are
chosen to be of sizeU (t, g) = O(t + g) as defined in Corollary 3.22, and so that they
are disjoint between leaves, edge leaves, and join nodes. The universe U(t) of a forget
or an introduce node t is shared with the only child of t.

Aiming for an intuitive semantics, we would like the value T [t, X , Ê] to indicate
the minimum size of a deletion set Y ⊆ α(t)\β(t) such that G(t) − (X ∪ Y ) can
be embedded equivalently with Ê . However, this natural definition causes several
technical issues, including the following two:

• We would need to make sure T [t, X , Ê] = T [t, X , Ê ′] if the Ê and Ê ′ are
equivalent; this seems to require a subroutine testing whether two t-boundaried
embeddings are equivalent.

• Consider retrieval of the witness embedding of G(t) − (X ∪ Y ), where t is a
join node with children t1 and t2. If T [t, X , Ê] = T [t1, X , Ê1] + T [t1, X , Ê2]
and Ê is equivalent to a merge Ê ′ ∈ M(Ê1, Ê2), a natural strategy would be to
merge the embeddings of G(ti ) − (X ∪ Yi ) equivalent to Êi into an embedding
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of G(t) − (X ∪ Y1 ∪ Y2) equivalent to Ê ; however, it is not clear whether such a
merge exists.

While handling these issues seems to require much effort, they are mere artifacts of the
natural yet very strong requirements on the values of the DP table. Hence, we reduce
these conditions to the bare essentials and maintain only the following two properties:

(a finite value yields a small deletion set) If T [t, X , Ê] �= +∞, then for every
t-boundaried embedding Ê0 with flags disjoint with U(t), there exists a set Y ⊆
α(t)\β(t) of size at most T [t, X , Ê] and an embedding E of G(t) − (X ∪ Y ) such
that ĝM (Ê0,bnd(t, E)) ≤ ĝM (Ê0, Ê).
(a good deletion set is represented in the table) For all sets X ⊆ β(t) and
Y ⊆ α(t)\β(t), every embedding E of G(t) − (X ∪ Y ) of genus at most g, and
every t-boundaried embedding Ê0 such that the flags of Ê0 are disjoint with both
the flags of E and with U(t), there exists an entry T [t, X , Ê] ≤ |Y | such that
ĝM (Ê0, Ê) ≤ ĝM (Ê0,bnd(t, E)).

Compared to the intuitive semantics, the above invariants include only one inequality
from the definition of equivalence. Moreover, the existential quantifiers are moved
past the universal quantifiers so that the embeddings can be constructed based on Ê0.
These two features let us avoid the aforementioned two issues.

We remark that in both properties one can restrict Ê0 to use only labels of
�(β(t)\X), as only those labels actively participate in the merge operation.

Having weakened the invariants, we need to make sure that they are strong enough
to be still useful for theGenus Vertex Deletion problem.More precisely, we shall
prove for the root r of T that the minimum value T [r,∅, ·] is the size of the minimum
solution toGenus Vertex Deletionon (G, g). Recall thatβ(r) = ∅ andG(r) = G.
By the second invariant, an optimum solution Y ∗ and the underlying embedding E∗
of G − Y ∗ when merged with the empty embedding Ê∅ has its corresponding entry
T [r,∅, Ê∗] ≤ |Y ∗|. In the other direction, the first invariant ensures that for every
entry T [r,∅, Ê] and again the empty embedding Ê∅, there exists a deletion set Y of
size at most T [r,∅, Ê] and an embedding E of G − Y such that

ĝ(E) = ĝ(bnd(r, E)) = ĝM (Ê∅,bnd(r, E)) ≤ ĝM (Ê∅, Ê) = ĝ(Ê) ≤ g.

In particular, Y is a solution to Genus Vertex Deletion on (G, g).
We now show how to compute the values T [t, X , Ê] in a bottom-up fashion. The

table is always initializedwith values+∞ and its entries are altered through a sequence
of updates. We say that updating a cell T [t, X , Ê] with a value a results in setting
T [t, X , Ê] := min(a, T [t, X , Ê]). An update is successful if the stored value changed.

4.1 Leaf Nodes

A leaf node t has an empty graph G(t), which makes processing it very simple: we
just construct the empty t-boundaried embedding Ê∅ and update the cell T [t,∅, Ê∅]
with a value 0. Note there are other cells T [t,∅, Ê] with Ê equivalent to the empty
embedding, but we keep their initial values +∞. As we prove below, our invariants
are weak enough to allow for handling them this way.

123



Algorithmica (2019) 81:3655–3691 3677

First property Consider the only cell T [t,∅, Ê∅] with a finite value (equal to 0) and
an arbitrary t-boundaried embedding Ê0. Taking Y = ∅ and the empty embedding
E∅ of the empty graph G(t), we obtain ĝM (Ê0,bnd(t, E∅)) = ĝM (Ê0, Ê∅) due to
bnd(t, E∅) = Ê∅.
Second property Since G(t) is empty, it suffices to consider X = ∅, Y = ∅, the
empty embedding E∅ of the empty graph, and an arbitrary t-boundaried embed-
ding Ê0. Observe the empty t-boundaried embedding Ê∅ = bnd(t, E∅) satisfies both
T [t,∅, Ê∅] = 0 = |Y | and ĝM (Ê0, Ê∅) = ĝM (Ê0,bnd(t, E∅)).

4.2 Edge Leaf Nodes

Recall that an edge leaf node t satisfies α(t) = β(t) and |E(G(t))| = 1. Moreover,
the only edge {v, v′} of G(t) is not a loop because we do not allow loops in the input
graph G. For an edge leaf node t, we construct two t-boundaried embeddings: an
empty embedding Ê∅ and an embedding Ê obtained from Ê∅ by drawing an edge at
(⊥�(v),⊥�(v′)) using flags from the universe U(t) associated with the edge leaf node
in question. For each X ⊆ β(t) \ {v, v′}, we update T [t, X , Ê] with a value 0, while
for the remaining subsets X ⊆ β(t), we update T [t, X , Ê∅] with a value 0. Note that
in the first case, there are other cells T [t,∅, Ê ′] with Ê ′ isomorphic to Ê (equal to Ê
up to renaming flags), but we keep their values +∞.

Observe that for every X ⊆ β(t), the graph G(t) − X has (up to isomorphism)
a unique embedding: an empty embedding E∅ if X ∩ {v, v′} �= ∅ (when the graph
has no edges) and a planar embedding E otherwise (when the graph has one edge).
Moreover, bnd(t, E∅) = Ê∅ and bnd(t, E) is isomorphic to Ê . Consequently, one can
easily prove (like for the leaf nodes) that the DP table T [t, ·, ·] satisfies the required
properties.

4.3 Introduce Nodes

Let t be an introduce node with child t′ and let v be the introduced vertex. Observe
that G(t) can be obtained from G(t′) by introducing v as an isolated vertex. To handle
t, we iterate over finite cells T [t′, X , Ê] and copy their values to both T [t, X , Ê] and
T [t, X∪{v}, Ê]. The notion of an embedding ignores isolated vertices, so the resulting
table satisfies the required properties by the inductive assumption on the table of the
child t′.

4.4 Forget Nodes

Let t be a forget node with child t′ and let v be the forgotten vertex. Note that, due to
the refinement step, we have G(t′) = G(t). The only difference between the nodes t
and t′ is that if we consider some embedding E of a subgraph of G(t), then bnd(t′, E)

assigns a label�(v) to the vertex v, while inbnd(t, E) the vertex v remains unlabelled.
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Before we proceed, let us formally introduce the operation of forgetting a label.
Given a t-boundaried embedding Ê = (E, t, L) and a label 
 ∈ [t], we say that
Ê ′ = (E, t, L ′) is obtained from Ê by forgetting the label 
 if L ′(v) is undefined for
v ∈ L−1(
) and L ′(v) = L(v) otherwise; note that Ê ′ = Ê if 
 is not in the range of
L . The resulting t-boundaried embedding Ê ′ is denoted Ê � 
. As observed above, for
any embedding Ê of a subgraph of G(t), we have bnd(t, E) = bnd(t′, E) � �(v).

This behavior is straightforward to implement in our DP tables. For every cell
T [t′, X , Ê]with v ∈ X , we update the cell T [t, X\{v}, Ê]with a value T [t′, X , Ê]+1:
when v is deleted, the embedding does not change, but we need to account for the
vertex v in the value of the cell. For every cell T [t′, X , Ê] with v /∈ X , on the other
hand, we update the cell T [t, X , Ê � �(v)] with a value T [t′, X , Ê].

Before we formally verify that the entries for node t satisfy the required properties,
let us we explore the interplay between merging and forgetting a label.

Observation 4.1 Let Ê1 and Ê2 be t-boundaried embeddings with disjoint flags and let

 ∈ [t]. We have

{Ê � 
 : Ê ∈ M(Ê1 � 
, Ê2)} = M(Ê1 � 
, Ê2 � 
) = {Ê � 
 : Ê ∈ M(Ê1, Ê2 � 
)}.

Consequently,

ĝM (Ê1 � 
, Ê2) = ĝM (Ê1 � 
, Ê2 � 
) = ĝM (Ê1, Ê2 � 
).

First propertyTake a cell T [t, X , Ê]with a finite value and a t-boundaried embedding
Ê0. Let T [t′, X ′, Ê ′] be the last cell that caused an update in the value of T [t, X , Ê];
observe that X = X ′ \ {v} and Ê = Ê ′ � �(v).

We inductively apply the first property to the cell T [t′, X ′, Ê ′] for the embedding
Ê ′
0 := Ê0��(v). This results in a set Y ′ of size at most T [t′, X ′, Ê ′] and an embedding

E ′ of G(t′) − (X ′ ∪ Y ′) such that ĝM (Ê ′
0,bnd(t′, E ′)) ≤ ĝM (Ê ′

0, Ê ′).
To prove the first property for T [t, X , Ê], we consider two cases. If v ∈ X ′, we set

Y := Y ′ ∪ {v} so that X ∪ Y = X ′ ∪ Y ′ and |Y | = |Y ′| + 1 ≤ T [t′, X ′, Ê ′] + 1 =
T [t, X , Ê]. Otherwise, we set Y := Y ′, which also yields X ∪ Y = X ′ ∪ Y ′ and
|Y | = |Y ′| ≤ T [t′, X ′, Ê ′] = T [t, X , Ê]. In either case, we also take E := E ′ so that
Observation 4.1 yields

ĝM (Ê0,bnd(t, E)) = ĝM (Ê ′
0,bnd(t′, E ′)) ≤ ĝM (Ê ′

0, Ê ′) = ĝM (Ê0, Ê)

due to bnd(t, E) = bnd(t′, E ′) � �(v), Ê ′
0 = Ê0 � �(v), and Ê = Ê ′ � �(v).

SecondpropertyTake sets X andY aswell as embeddings E and Ê0 as in the statement
of the second property. If v ∈ Y , take Y ′ := Y\{v} and X ′ := X ∪ {v}; otherwise,
take Y ′ := Y and X ′ := X . In both cases, we have X ∪ Y = X ′ ∪ Y ′, X ′ ⊆ β(t′), and
Y ′ ⊆ α(t′)\β(t′). Moreover, define E ′ := E and Ê ′

0 := Ê0 � �(v). We inductively
apply the secondproperty for t′, X ′,Y ′,E ′, and Ê ′

0 to obtain an entryT [t′, X ′, Ê ′] ≤ |Y ′|
such that ĝM (Ê ′

0, Ê ′) ≤ ĝM (Ê ′
0,bnd(t′, E ′)). While processing the cell T [t′, X ′, Ê ′],

the algorithm attempts an update on a cell T [t, X , Ê] for Ê = Ê ′��(v). A direct check
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shows that regardless ofwhether v belongs toY or not, it follows that T [t, X , Ê] ≤ |Y |.
Moreover, Observation 4.1 yields

ĝM (Ê0, Ê) = ĝM (Ê ′
0, Ê ′) ≤ ĝM (Ê ′

0,bnd(t′, E ′)) = ĝM (Ê0,bnd(t, E))

due to bnd(t, E) = bnd(t′, E ′) � �(v), Ê ′
0 = Ê0 � �(v), and Ê = Ê ′ � �(v). Thus,

Ê fulfills the second property for X , Y , E , and Ê0.
This completes the description and the proof of correctness of the computations at

forget nodes.

4.5 Join Nodes

Let t be a join node with children t1 and t2. Note that we have V (G(t1))∩V (G(t2)) =
β(t), V (G(t1)) ∪ V (G(t2)) = V (G(t)) and E(G(t)) = E(G(t1)) � E(G(t2)).

To compute the table T [t, ·, ·], we iterate over sets X ⊆ β(t). For each X , we
construct all t-boundaried embeddings Ê ′ whose flags form a subset of U(t1)∪U(t2).
We discard embeddings with ĝ(Ê ′) > g and those whose labels do not belong to
�(β(t)\X). For each remaining embedding Ê ′, we construct two t-boundaried embed-
dings Êi (for i ∈ {1, 2}) by deleting all the edges except those contained in U(ti ). We
check if Ê ′ is a merge of Ê1 with Ê2 and discard it otherwise. We also discard Ê ′ if
T [ti , X , Êi ] = +∞ for some i . If Ê ′ has not been discarded, we apply Corollary 3.22
to construct an equivalent embedding Ê whose flags belong to U(t), and we update
T [t, X , Ê] with T [t1, X , Ê1] + T [t2, X , Ê2].

Observe that for each pair (X , Ê ′), the procedure described above takes polynomial
time.Thenumber of sets X is 2|β(t)| ≤ 2t ,while the number of considered t-boundaried
embeddings Ê ′ is 2O(u log u), where u = |U(t1) ∪ U(t2)| = 2U (t, g) = O(t + g).
Consequently, the overall processing time of the node t is 2O((t+g) log(t+g)).

We now formally verify that the entries for node t satisfy the required properties.

First propertyTake a cell T [t, X , Ê]with a finite value and a t-boundaried embedding
Ê0. Assume the value of T [t, X , Ê] comes from considering cells T [ti , X , Êi ] and a
merge Ê ′ of Ê1 and Ê2. By the equivalence of Ê and Ê ′, we have

ĝM (Ê0, Ê1, Ê2) ≤ ĝM (Ê0, Ê ′) = ĝM (Ê0, Ê).

By Observation 3.13, a genus-minimum merge of Ê0, Ê1, and Ê2 can be obtained by
merging Ê01 ∈ M(Ê0, Ê1) with Ê2. We apply the first property to the cell T [t2, X , Ê2]
with Ê01, obtaining a set Y2 and an embedding E2 of G(t2) − (X ∪ Y2) such that
|Y2| ≤ T [t2, X , Ê2] and ĝM (Ê01,bnd(t2, E2)) ≤ ĝM (Ê01, Ê2). Consequently,

ĝM (Ê0, Ê1,bnd(t2, E2)) ≤ ĝM (Ê01,bnd(t2, E2)) ≤ ĝM (Ê01, Ê2) = ĝM (Ê0, Ê1, Ê2).

By Observation 3.13, a genus-minimum merge of Ê0, Ê1, and bnd(t2, E2) can be
obtained by merging Ê02 ∈ M(Ê0,bnd(t2, E2)) with Ê1. We apply the first property
to the cell T [t1, X , Ê1] with Ê02, obtaining a set Y1 and an embedding E1 of G(t1) −
(X ∪ Y1) such that |Y1| ≤ T [t1, X , Ê1] and ĝM (Ê02,bnd(t1, E1)) ≤ ĝM (Ê02, Ê1).
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Consequently,

ĝM (Ê0,bnd(t1, E1),bnd(t2, E2)) ≤ ĝM (Ê02,bnd(t1, E1)) ≤ ĝM (Ê02, Ê1)
= ĝM (Ê0, Ê1,bnd(t2, E2)).

By Observation 3.13, a genus-minimum merge of Ê0, bnd(t1, E1), and bnd(t2, E2)
can be obtained by merging Ê12 ∈ M(bnd(t1, E1),bnd(t2, E2)) with Ê0. Let E be
the embedding underlying Ê12 and let Y = Y1 ∪ Y2. Then, E is an embedding of
G(t) − (X ∪ Y ) such that Ê12 = bnd(t, E). Hence,

ĝM (Ê0,bnd(t, E)) = ĝM (Ê0, Ê12) = ĝM (Ê0,bnd(t1, E1),bnd(t2, E2)) ≤ ĝM (Ê0, Ê),

and the proof of the first property is finished.

SecondpropertyTake sets X andY aswell as embeddings E and Ê0 as in the statement
of the second property. For i = 1, 2, take Yi = Y ∩ α(ti ) and Ei to be the embedding
E restricted to the edges of G(ti ) (i.e., with the edges of G(t3−i ) deleted). Note
that bnd(t, E) ∈ M(bnd(t1, E1),bnd(t2, E2)) and that each Ei is an embedding of
G(ti ) − (X ∪ Yi ) of genus at most g. Hence,

ĝM (Ê0,bnd(t1, E1),bnd(t2, E2)) ≤ ĝM (Ê0,bnd(t, E)).

By Observation 3.13, a genus-minimum merge of Ê0, bnd(t1, E1), and bnd(t2, E2)
can be obtained by merging Ê02 ∈ M(Ê0,bnd(t2, E2)) with bnd(t1, E1). We apply
the second property to t1, X , Y1, E1, and Ê02, obtaining an entry T [t1, X , Ê1] ≤ |Y1|
such that ĝM (Ê02, Ê1) ≤ ĝM (Ê02,bnd(t1, E1)). Consequently,

ĝM (Ê0, Ê1,bnd(t2, E2)) ≤ ĝM (Ê02, Ê1) ≤ ĝM (Ê02,bnd(t1, E1))
= ĝM (Ê0,bnd(t1, E1),bnd(t2, E2)).

By Observation 3.13, a genus-minimum merge of Ê0, Ê1, and bnd(t2, E2) can be
obtained by merging Ê01 ∈ M(Ê0, Ê1) with bnd(t2, E2). We apply the second prop-
erty to t2, X , Y2, E2, and Ê01, obtaining an entry T [t2, X , Ê2] ≤ |Y2| such that
ĝM (Ê01, Ê2) ≤ ĝM (Ê01,bnd(t2, E2)). Consequently,

ĝM (Ê0, Ê1, Ê2) ≤ ĝM (Ê01, Ê2) ≤ ĝM (Ê01,bnd(t2, E2)) = ĝM (Ê0, Ê1,bnd(t2, E2)).

By Observation 3.13, a genus-minimum merge of Ê0, Ê1, and Ê2 can be obtained by
merging Ê12 ∈ M(Ê1, Ê2) with Ê0. Observe that the algorithm constructs Ê12 as one
of the t-boundaried embeddings over U(t1) ∪ U(t2). Since Ê12 is a merge of Ê1 and
Ê2, it attempts an update on the cell T [t, X , Ê] for Ê equivalent to Ê12 with the value
T [t1, X , Ê1] + T [t2, X , Ê2] ≤ |Y1| + |Y2| ≤ |Y |. Since
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ĝM (Ê0, Ê) = ĝM (Ê0, Ê12) = ĝM (Ê0, Ê1, Ê2) ≤ ĝM (Ê0,bnd(t, E)),

the entry T [t, X , Ê] fulfills the second property for X , Y , E , and Ê0.

4.6 Summary

We have concluded the descriptions and correctness proofs of the operations at
the nodes of the tree decomposition. To analyze the running time, we observe that
|V (T)| = O(nt) and that at every node t, our algorithm takes 2O((t+g) log(t+g)) time
to fill the DP table. This completes the proof of Theorem 1.2.

5 Irrelevant Vertex

In this section, we prove Theorem 1.3:

Theorem 1.3 There exists a sequence (Cg)g≥0 of positive integers and an algorithm
that, given a graph G, non-negative integers g and k, and a set M ⊆ V (G) such that
G − M is embeddable into a surface of Euler genus at most g, in time CgnO(1) finds
one of the following:

1. a tree decomposition of G of width at most Cg|M |1/2k3/2; or
2. a vertex w ∈ V (G) such that every solution to the Genus Vertex Deletion

instance (G, g, k) contains w; or
3. a vertex v ∈ V (G) such that for every S ⊆ V (G)\{v} the set S is a solution to the

Genus Vertex Deletion instance (G, g, k) if and only if S is a solution to a
Genus Vertex Deletion instance (G − {v}, g, k).
The argumentation is heavily inspired by the corresponding planar case by Marx

and Schlotter [12]. As in most irrelevant vertex arguments, we follow the typical
outline:

1. Run an approximation algorithm for treewidth and, in case it returns that the
treewidth of the graph is larger than the required threshold, find a large grid minor.
Here, a linear dependency on the grid size and treewidth in bounded genus graphs
is known [4], and one can find the corresponding grid minor efficiently.

2. Show that a vertex w ∈ M that is connected to many places in the grid that are far
apart needs to be included in every solution, exactly as it is in the planar case. In
the absence of such a vertex, a large part of the grid minor is flat, that is, embeds
planarly and does not have any internal connections to the modulator M .

3. Prove that a middle vertex of such a flat part is irrelevant. Here, the challenge is to
argue that in every solution there exists an embedding of the remaining part that
draws the flat part indeed in a flat manner.

We use the following two auxiliary results on Euler genus throughout this section:

Lemma 5.1 ([5, Lemma B.6]) Let � be a surface of Euler genus g and let C be a set
of g+1 disjoint circles in �. If �\ ⋃ C has a connected component D0 whose closure
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in � meets every circle in C, then at least one of the circles in C bounds a disc in �

that is disjoint from D0.

Lemma 5.2 (Stahl and Beineke [16]) The Euler genus of the graph G equals the sum
of the Euler genera of the blocks (the 2-connected components) of G.

LetG, k, g, andM be such as in the statement ofTheorem1.3.We start by computing
an embedding E0 of G − M into a surface of Euler genus at most g, using either the
algorithm of Kawarabayashi et al. [9] or the older algorithm of Mohar [13].2 This
takes time C1

gn for some constant C1
g depending only on g.

The algorithm represents the embedding as a (hyper)graph embedding defined in
Sect. 3, that is, as E = (F, θ, σ, φ). As discussed in Sect. 3, it is straightforward to
treat this embedding as a rotation system as defined by Mohar and Thommassen [14].
In particular, it allows us to project E down on any subgraph of G by omitting the
flags not from the subgraph in any orbit of ccE = 〈θ, σ, φ〉, VertsE := 〈σ, φ〉,
EdgesE := 〈θ, σ 〉, or FacesE := 〈θ, φ〉.

5.1 Finding a Large Grid

We apply constant-factor approximation algorithms for treewidth [3, Theorem 3.10]
and largest excluded grid minor [3, Theorem 3.11] in graphs with a fixed excluded
minor. The algorithms do not need to compute a near-embedding of G because E0
serves this purpose. As described in [3, Theorems 3.10 and 3.11], the algorithms
therefore run in time C2

gn
O(1) and are C3

g-approximations, where C2
g and C3

g depend
only on g.

If the resulting tree decomposition is of width at most C4
g |M |1/2k3/2 for some

sufficiently large constant C4
g , then we directly return it. Otherwise, by choosing the

constantC4
g appropriately, we get a gridminor of side-length�(|M |1/2(k+g)3/2g1/2)

as the dependency of treewidth and the largest grid minor in graphs excluding a fixed
minor is linear [4].

A wall of side-length 
 (see Fig. 5 for an illustration) consists of:

• 
 + 1 paths P0, P1, . . . , P
, where each path Pi is of length 2
 + 1, with vertices
vi, j , 0 ≤ j ≤ 2
 + 1 in this order, except for the path P0 that is one edge shorter
and does not contain the vertex v0,2
+1 and the path P
 that is one edge shorter
and does not contain the vertex v
,0 if 
 is even and the vertex v
,2
+1 if 
 is odd;

• edges vi, jvi+1, j for every pair (i, j) ∈ {0, 1, . . . , 
 − 1} × {0, 1, . . . , 2
 + 1} of
integers of the same parity.

Note that, in our definition, a wall of side-length 
 has a natural planar embedding
(as in Fig. 5) and the infinite face is surrounded by a simple cycle, which we call the
surrounding cycle of the wall. Furthermore, the vertex v�
/2�,
 is called the middle
vertex of the wall.

2 The work [9] appeared so far only as an extended abstract in conference proceedings.
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Fig. 5 A wall of side-length 4 and a subdivision of this wall

Clearly, a grid of side-length 
 contains a wall of side-length �
/2� as a subgraph.
Furthermore, a wall has maximum degree three. Consequently, if a graph contains
a grid of side-length 
 as a minor, it also contains a subdivision of a wall of side-
length �
/2� as a subgraph. This allows us to henceforth focus on the case when
in G − M we get a subdivision W0 of a wall W�

0 of side-length 
0, where 
0 ≥
c5|M |1/2(k + g)3/2g1/2 and c5 can be chosen arbitrarily large.

In the wall W�
0 , we identify g + 1 pairwise disjoint subwalls of side-length 
1 =

�(
0/
√
g) ≥ c6|M |1/2(k + g)3/2 (where the constant c6 can be chosen arbitrarily

large by choosing c5 large as well), leaving enough space between the subwalls so
that the part ofW�

0 not contained in any of the subwalls is connected. By Lemma 5.1,
for at least one of the identified subwalls, its surrounding cycle, when projected toW0
in G − M , bounds a disc in the considered embedding of G − M . Consequently, the
natural projection onto G − M of at least one of the identified subwalls is planarly
embedded in E0. We denote this subwall as W�

1 , its projection in G − M (being a
subdivided wall) asW1, and the part of G − M embedded in the closed disc separated
by the surrounding cycle of W1 by G1 (in particular, the surrounding cycle of W1 is
included in G1).

In what follows, we mostly focus on G1 and W1. Without loss of generality, we
henceforth assume that G1 is connected: G1 can be disconnected only if G − M is
disconnected, and a connected component of G − M is planarly drawn inside one of
the faces of the connected component of G1 that contains W1. If this is the case, we
move the drawings of all such planar components into another face of the embedding,
one not in the disc bounded by the surrounding cycle of W1.

Observe that a wall admits only one planar embedding with its surrounding cycle as
the boundary of the infinite face. Consequently, the embedding E0, restricted toW1, is
the natural embedding of a subdivision of a wall as depicted in Fig. 5. In what follows,
we will analyze many wall-like subgraphs of W1; the above observation implies that
all these subgraphs inherit this natural embedding.

5.2 Filtering out theModulator Neighbors

We now show that if a vertex w ∈ M is adjacent to many scattered vertices of G1,
then it needs to be included in every solution. Recall that the boundary cycle of W1
encloses a disc containingW1 in the considered embedding E0 ofG−M , andG1 is the
part of the graph G − M that is enclosed by this boundary cycle. As discussed earlier,
the embedding E0, restricted to W1, is the natural embedding of a wall as depicted in
Fig. 5. This allows us to introduce the following definition.
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Fig. 6 A part of the subdivided wall W1 (gray) with balls B(v, 2) highlighted in black for two vertices
v ∈ I (w) surrounded by circles. The dashed paths is an example of a family P(·, ·) consisting of three
paths

For a vertex v ∈ V (G1) and an integer 
, the radius-
 ball B(v, 
) around v is
defined as follows: we take all faces f of the embedding of the subdivided wallW1 in
E0, except for the infinite face, that contain v either inside or on the boundary, mark
all faces that lie in face-vertex distance (in the embedding of W1 in E0, but excluding
traversal through the infinite face) at most 
 from one of these faces f and put into
B(v, 
) all vertices of G1 that are contained inside or on the boundary of marked
faces. Observe that from the fact thatG1 is connected it follows that every ball B(v, 
)

induces a connected subgraph of G1.
For every vertex w ∈ M , we create a set I (w) ⊆ V (G1) as follows. We start with

I (w) = ∅ and every vertex of V (G1) unmarked (the marking scheme is performed
from scratch for distinct vertices w ∈ M). As long as there exists an unmarked
neighbor v of w in G1, we insert v into I (w) and mark all vertices of B(v, 
2) for

2 = c2(k + g + 1), where c2 is an integer constant to be fixed later. We claim that if
I (w) is too large, the vertex w needs to be deleted in any solution to Genus Vertex
Deletion.

Lemma 5.3 Let w ∈ M be a vertex for which |I (w)| > k + g + 1. Then w belongs to
every solution to the Genus Vertex Deletion instance (G, g, k).

Proof Suppose the contrary, and let S be a solution that does not contain w. That is,
|S| ≤ k, and G − S admits an embedding E into a surface of Euler genus at most g.

Consider subgraphs B(v, 
2/4) for v ∈ I (w). By the construction of I (w), these
subgraphs are vertex-disjoint. Furthermore, as 
2/4 is much larger than k, for every
v1, v2 ∈ I (w), v1 �= v2, there exists a setP(v1, v2) of k+1 vertex-disjoint paths inG1
connecting the outer boundary of B(v1, 
2/4)with the outer boundary of B(v2, 
2/4),
without any internal vertex in any of the subgraphs B(v, 
2/4) for v ∈ I (w); see Fig. 6.
Let I ′ be the set of these vertices v ∈ I (w) such that S is disjoint with V (B(v, 
2/4));
since |S| ≤ k, we have |I ′| > g + 1.
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v0

w

Fig. 7 Illustration how to contract a ball B(v, 2) as in Fig. 6 into a K−
5 as in the proof of Lemma 5.3

Construct a minor H of G − S as follows. Pick some arbitrary v0 ∈ I ′ and contract
B(v0, 
2/4) onto v0. For every v ∈ I ′\{v0}, contract onto v0 a path of P(v0, v) that
is disjoint with S. For every v ∈ I ′\{v0}, contract B(v, 
2/4) into a K

−
5 (a five-vertex

clique with one edge missing; recall that B(v, 
2/4) contains a large wall, being part
of W1) such that one of the two nonadjacent vertices is adjacent to w and the other to
v0; see Fig. 7 for an illustration. Finally, contract all edges incident with w, including
the edge wv0. Observe that we have obtained a graph isomorphic to |I ′| − 1 copies
of a five-vertex clique K5 (one for each B(v, 
2/4) for v ∈ I ′\{v0}) with one vertex
from each clique identified with w. Since K5 is not planar, by Lemma 5.2, the Euler
genus of G − S is at least |I ′| − 1 > g, a contradiction. ��

Consequently, if there exists w ∈ M with |I (w)| > k + g + 1, then we can return
w as the second result of the algorithm of Theorem 1.3. Henceforth, we will assume
that |I (w)| ≤ k + g + 1 for every w ∈ M .

Recall that W1 is a subdivision of the wall W�
1 of side-length 
1, where 
1 ≥

c6|M |1/2(k + g)3/2 and c6 can be chosen arbitrarily large. This lets us identify n2
disjoint subwalls of side-length 
2 = c2(k + g+ 1), where n2 ≥ c7|M |(k + g) and c7
can be chosen arbitrarily large. Note that |⋃w∈M I (w)| = O(|M |(k+ g)) and that all
vertices of NG(M)∩V (G1) are located in

⋃
w∈M,v∈I (w) B(v, 
2). Each ball B(v, 
2)

may intersect only a constant number of the identified subwalls of side-length 
2.
Hence, if c7 is sufficiently large, there is a subdivisionW2 of a wallW�

2 of side-length

2 = c2(k + g + 1) such that no vertex of a graph G2, defined as the part of G1 that
is enclosed by the surrounding cycle of W2, is a neighbor of a vertex in M . Note that
only the vertices on the surrounding cycle of G2 may have neighbors in G − V (G2).
With G2 and W2, we proceed to the next section.

5.3 Middle Vertex of a Flat Part is Irrelevant

Let v be the vertex of W2 that corresponds to the middle vertex of W�
2 . We show

that v is irrelevant, that is, it can be returned as the third outcome of Theorem 1.3.
Clearly, if S is a solution to (G, g, k), then S\{v} is a solution to (G − {v}, g, k). In
the other direction, suppose that there exists S ⊆ V (G)\{v} of size at most k such
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Fig. 8 A circular wall of height 9 and circumference 12 containing two rings. Their central circles are
marked with black squares and the faces belonging to the territories of the rings are shaded in gray

that G − {v} − S admits an embedding E into a surface of Euler genus at most g. We
would like to enhance this embedding so that it also accommodates v.

Recall that the side-length 
2 ofW�
2 equals c2(k + g+ 1) for a constant c2 that we

can choose arbitrarily large. Observe that if c2 is large enough, then we can find inW2
a subdivision W3 of a circular wall of height h3 = 5(k + g) + 9 and circumference

3 = max(3, k+1) so that v is located inside the inner cycle of the wall; see Fig. 8 for
the definition of a circular wall. A way how to find a circular wall inside a regular one
is depicted in Fig. 9; the crucial observation is that a wall of side-length h contains
�(h) concentric cycles with two consecutive cycles connected by a matching of size
�(h), and the endpoints of the consecutive matchings interleaved as required.

A circular wall of height h contains h+1 naturally defined concentric cycles that we
enumerate with integers 0, 1, . . . , h, starting from the inside. Next, in W3 we identify
k + g + 2 rings (which are subdivisions of concentric circular walls of height 4 and
circumference 
3) that are vertex-disjoint, that is, the i th ring (0 ≤ i ≤ k + g + 1)
uses (5i)th up to (5i + 4)th concentric cycle of the wall W3; see Fig. 8. LetR0 be the
family of identified rings.

For a ring R ∈ R0, we say that the central circle of R is the 2nd circle (i.e., the one
between the two middle layers of the ring), the inner boundary circle is the 0th circle
and the outer boundary circle is the 4th circle.
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Fig. 9 How to find a subdivision of a circular wall inside a regular one

Recall that the embedding E0, restricted toW1, is the natural embedding of a subdi-
vision of a wall as depicted in Fig. 5. SinceW3 is a subgraph ofW1, the embedding E0
embeds W3 and all rings ofR0 as in Fig. 8. This allows us to introduce the following
definitions.

Let R ∈ R0. A face of R in the embedding E0 restricted to R is small if it is not
the outer face nor the face inside the 0th (innermost) cycle, and central if it is incident
to the 2nd (central) circle. The territory of R, denoted by T (R), is the subgraph of
G that consists of R and everything that is drawn in the embedding E0 in the small
faces of R. Note that T (R) is a planar graph, and the subgraphs {T (R) : R ∈ R0} are
vertex-disjoint.

Let R ⊆ R0 be the family of these rings for which T (R) is disjoint with S. As
|R0| = k + g + 2 and the subgraphs T (R) are vertex-disjoint, we have |R| ≥ g + 2.

The previously defined inside-to-outside order of the concentric cycles in W3
imposes a natural linear order on the rings of R0 and the corresponding induced
order of R. This allows us to speak about two consecutive rings of R orR0.

We say that a ring R ∈ R is embedded plainly in the embedding E if for every
central face f of R, the cycle C f that surrounds f in E0, is a two-sided cycle3 in E
that bounds a disc on one side, and the graph R − V (C f ) is drawn on the other side.
The following lemma is an easy corollary of Lemma 5.1:

Lemma 5.4 There exists a ring R ∈ R that is embedded plainly in E .
Proof Suppose the contrary. For every ring R ∈ R, let C(R) be the cycle around
a small face of R that violates the definition of a plainly embedded ring. Consider
a graph G ′ = G − {v} − M − S − ⋃

R∈R V (C(R)). We shall prove that it has a
large connected component D which contains R′ := R\V (C(R)) for each R ∈ R.
First, note that R′ is itself connected and the boundary circles of R of are preserved

3 Informally, a cycle C is two-sided in an embedding E if, while going along the cycle in the embedding
and keeping track which incident face of the currently traversed edge is to the left and to the right, we end
up in the same state as the one we started with. For a formal definition of one- and two-sided cycles in
rotation systems, we refer to Chapter 4 of the book of Mohar and Thomassen [14].
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in R′. Thus, it suffices to prove that for every two consecutive rings R1, R2 ∈ R
(where R1 is inside R2, that is, the concentric cycles of W3 that are part of R1 have
lower indices than the ones of R2), the inner boundary circle of R2 is connected to
the outer boundary circle of R1. Observe that the part of W3 between these circles is
a subdivision circular wall of circumference 
3 and some positive height. Thus, there
are 
3 ≥ k+1 vertex-disjoint paths between the two boundary circles. These paths are
disjoint with {v}, M , and

⋃
R∈R V (C(R)), and at least one of them must be disjoint

with S. Hence, one of these paths is preserved in G ′. We conclude that the claimed
component D indeed exists.

We now aim at applying Lemma 5.1. Consider the surface where the embedding
E embeds the graph G − S and remove from this surface the images of C(R) for
all R ∈ R. Let DE be the component of this difference that contains the image of
D. Since D is adjacent to every cycle C(R), the images of C(R) are in the closure
of DE . By Lemma 5.1, as |R| > g, there exists R ∈ R such that C(R) bounds a
disc that is disjoint with DE . In particular, the disk does not contain the image of
R′ = R\V (C(R)). This is a contradiction with the choice of C(R). ��

Let R ∈ R be a plainly embedded ring, and let CR be the central circle of R. A
direct corollary of the definition of a plainly embedded ring is the following.

Corollary 5.5 In the embedding E , CR is a two-sided cycle, and its incident edges of
R are partitioned between the sides of CR exactly as in the embedding E0.
Proof Recall that the embedding E0, restricted to W1, is the natural embedding of a
subdivision of a wall as depicted in Fig. 5. Consequently, the ring R is embedded by
E0 as in Fig. 8.

Traverse the cycle CR in the embedding E0 and let e1 and e2 be two edges of
R\E(CR) that are incident to CR and that are two consecutive edges on the same side
of CR in E0.

Furthermore, let P be the path between e1 and e2 in CR that is not incident to any
other edge of R\E(CR) on the same side as e1, and let f be the face of the embedding
E0 restricted to R that is incident to e1, e2, and P; see also Fig. 10. Let e be the other
edge of R\E(CR) incident to P (the one that is drawn on the opposite side of CR than
e1 in the embedding E0).

Since R is plainly embedded in E , C f bounds a disc in E that does not
contain any edge from R − V (C f ). This implies that C f bounds a face in
the embedding E restricted to R. Thus, as we traverse P in E , the edges e1
and e2 are on one side, and e is on the other side. Since the choice of e1, e2, and
f is arbitrary, the claim follows. ��
Corollary 5.5 allows us to speak about the inner and outer side of CR in E : the

sides of CR that contain incident edges inside CR and outside CR in E0.
A bridge is a connected componentC ofG−V (R), together with the edges joining

C with V (R). Furthermore, an edge e /∈ E(R) with both endpoints in V (R) is also a
bridge on its own. For a bridge B, the vertices of V (B)∩V (R) are attachment points.

A bridge B is central if it has at least one attachment point, but all its attachment
points lie in V (CR). Note that, since R is contained in W2, a central bridge is disjoint
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e1

e2

e

P
f

Fig. 10 Illustration for the proof of Corollary 5.5

with M and in the embedding E0 it is drawn inside one of the small faces of R incident
to CR . In particular, a central bridge is a subgraph of the territory of R.

Let H be the subgraph ofG−M that consists of: the part of G−M that is enclosed
on the same side of CR in the embedding E0 as the vertex v (i.e., on the disc, flat side
of CR), together with all central bridges. In other words, H is a subgraph of G − M
induced by the vertices of CR and all connected components of G − M − V (CR)

that are contained in the same connected component of G − M as CR , except for the
connected component ofG−M−V (CR) that contains the outermost concentric cycle
of R. The boundary of H , denoted ∂H , is the set of vertices of H that have incident
edges of G that do not belong to H .

Let us now make a few important observations about the graph H . First, by the
definition of H (in particular, inclusion of all central bridges) and the choice of W2
(so that G2 is disjoint from any neighbors of M), all boundary vertices of H lie on
CR , which induces a two-sided curve both in E0 and E . Second, since the embedding
of E0 restricted to W1 is the natural embedding of a wall (as in Fig. 5), the embedding
E0 restricted to H is a planar embedding EH of H that keeps all vertices of ∂H on the
infinite face. Furthermore, there exists a closed simple curve γ0 in EH that visits all
vertices of ∂H in the same cyclic order as they appear on CR and, apart from these
vertices, is contained in the infinite face of this planar embedding.

Armed with these observations, we now modify the embedding E of G − S − {v}
as follows. We start by deleting all edges of H and vertices of V (H)\∂H . Let E1 be
the resulting embedding. We claim that there exists a face f in E1 that contains all
the vertices of ∂H and, furthermore, there exists a closed curve γ in the embedding
E that visits all vertices of ∂H exactly in the order how they appear on CR and, apart
from these vertices, is contained in f . To see this, recall that R is drawn plainly in
the embedding E and, consequently, the area on the inner side of the cycle CR in the
embedding E (i.e., a sufficiently narrow strip on the inner side of CR) belongs to a
single face of E1. This face of E1, denoted f , contains the image of CR in its closure
in the embedding E . The image of CR forms the curve γ as specified above.

We nowmerge the embeddings E1 and EH into a single embedding along the curves
γ0 and γ . That is, we start with E1, then we embed H according to the embedding
EH into the face f , and finally we identify the corresponding vertices of ∂H using
the existence of the curves γ and γ0. In this manner, we obtain an embedding E2 of
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G − (S\V (H)) into the same surface as the embedding E , concluding the proof that
v ∈ V (H) is irrelevant.

This completes the proof of Theorem 1.3.

6 Conclusions

In this work, we have developed fixed-parameter algorithms for the Genus Ver-
tex Deletion problem with solution size and treewidth parameterizations, putting
particular effort into optimizing the dependency on the treewidth in the running time
bound.

We remark that, although our formal statement of Genus Vertex Deletion
involves only bounding the Euler genus of the output graph, only minor changes to
our algorithms are required if one demands the final graph to be embeddable in an
orientable surface of some genus. In terms of combinatorial embeddings studied in
Sect. 3, an embedding is orientable if the set of flags can be partitioned into two parts
such that every orbit of σ , θ , and φ contains two flags from different sets. The crucial
observation is that deleting an edge, drawing an edge along a face boundary, and sup-
pressing a size-4 vertex that is not isolated, applied to an orientable embedding results
in an embedding that is also orientable. Consequently, if we allow only orientable
embeddings in the dynamic programming algorithm of Sect. 4, we obtain the desired
variant of Theorem1.2 for orientable surfaces. Finally, the arguments of Sect. 5 operate
in the language of modifying an embedding in a fixed surface; therefore, also without
any changes, they yield a variant of Theorem 1.3 for orientable surfaces.

We further note that the dynamic programming behind Theorem 1.2 can be trivially
extended to theweighted setting,where deleting a vertexv incurs a penaltyw(v) ∈ R+.
On the other hand, Theorem 1.3 can only be extended to support integer weights if k
is defined as the total budget for vertex deletions.

We would like to conclude with two open questions stemming from our research.
First:Canweobtain a 2O(Cgk log k)n-time algorithm forGenus Vertex Deletion,

following the ideas of [7] for the planar case? Our bounded treewidth routine suits
such an algorithm, but the irrelevant vertex argument does not.

Second, andmore challenging:What canwe say about a possible dependency on the
parameter k for the problem of deleting k vertices to an arbitrary minor-closed graph
family? A similar question can be asked for the parameter treewidth. Here, the main
challenge is that it is harder to certify being H -minor-free for an arbitrary graph H ,
while one can certify being of bounded genus by giving a corresponding embedding.
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