Algorithmica (2019) 81:3630-3654
https://doi.org/10.1007/s00453-019-00591-8

®

Check for
updates

Tight Tradeoffs for Real-Time Approximation of Longest
Palindromes in Streams

Pawet Gawrychowski' - Oleg Merkurev? . Arseny M. Shur? .
Przemystaw Uznanski3

Received: 18 August 2017 / Accepted: 8 April 2019 / Published online: 4 June 2019
© The Author(s) 2019

Abstract

We consider computing a longest palindrome in the streaming model, where the sym-
bols arrive one-by-one and we do not have random access to the input. While computing
the answer exactly using sublinear space is not possible in such a setting, one can
still hope for a good approximation guarantee. Our contribution is twofold. First, we
provide lower bounds on the space requirements for randomized approximation algo-
rithms processing inputs of length n. We rule out Las Vegas algorithms, as they cannot
achieve sublinear space complexity. For Monte Carlo algorithms, we prove a lower
bound of £2(M log min{|X|, M}) bits of memory; here M = n/E for approximating
the answer with additive error E, and M = logn/log(1l + ¢) for approximating the
answer with multiplicative error (1 + ¢€). Second, we design four real-time algorithms
for this problem. Three of them are Monte Carlo approximation algorithms for addi-
tive error, “small” and “big” multiplicative errors, respectively. Each algorithm uses
O(M) words of memory. Thus the obtained lower bounds are asymptotically tight
up to a logarithmic factor. The fourth algorithm is deterministic and finds a longest
palindrome exactly if it is short. This algorithm can be run in parallel with a Monte
Carlo algorithm to obtain better results in practice. Overall, both the time and space
complexity of finding a longest palindrome in a stream are essentially settled.

Keywords Palindrome - Streaming - Lower bound - Real-time algorithm

Mathematics Subject Classification 68W32 - 68W25 - 68Q25

B Pawet Gawrychowski
gawry @cs.uni.wroc.pl

Extended author information available on the last page of the article

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-019-00591-8&domain=pdf
http://orcid.org/0000-0002-8652-0490

Algorithmica (2019) 81:3630-3654 3631

1 Introduction

In the streaming model of computation, a very long input arrives sequentially in small
portions and cannot be stored in full due to space limitation. There is a variation of this
model where several passes over the input stream are available, but in this paper we
consider only the standard one-pass model. While well-studied in general, streaming
is a rather recent trend in algorithms on strings. The main goals are minimizing the
space complexity, i.e., avoiding storing the already seen prefix of the string explicitly,
and designing real-time algorithm, i.e., processing each symbol in worst-case constant
time. However, the algorithms are usually randomized and return the correct answer
with high probability. The prime example of a problem on string considered in the
streaming model is pattern matching, where we want to detect an occurrence of a
pattern in a given text. It is somewhat surprising that one can actually solve it using
polylogarithmic space in the streaming model, as proved by Porat and Porat [16].
A simpler solution was later given by Ergiin et al. [6], while Breslauer and Galil
designed a real-time algorithm [3]. Similar questions studied in such setting include
multiple-pattern matching [4], approximate pattern matching [5], and parametrized
pattern matching [11].

We consider computing a longest palindrome in the streaming model, where a
palindrome is a fragment which reads the same in both directions. This is one of the
basic questions concerning regularities in texts and it has been extensively studied
in the classical non-streaming setting, see [1,8,13,15] and the references therein. The
notion of palindromes, but with a slightly different meaning, is very important in
computational biology, where one considers strings over {A, T, C, G} and a palin-
drome is a sequence equal to its reverse complement (a reverse complement reverses
the sequences and interchanges A with 7 and C with G); see [9] and the references
therein for a discussion of their algorithmic aspects. Our results generalize to biological
palindromes in a straightforward manner.

We denote by LPS the following problem: given a string S, find the maximum length
of apalindrome in S and a starting position of a palindrome of such length in S. Solving
LPS in the streaming model was first considered by Berenbrink et al. [2], who developed
tradeoffs between the bound on the error and the space complexity for approximating

the length of the longest palindrome with either additive or multiplicative error.! They
ni/n

presented the algorithms solving the LPS problem (i) in (9(5) time and O(%) space

with the additive error E € [1, «/n]; (ii) in O(%) time and O(%) space
with the multiplicative error (1 +¢), where ¢ < 1; (iii) in O(n) time and O(/n) space
exactly, given the promise that the longest palindrome is shorter than /n. All their
algorithms are Monte Carlo, i.e., return the correct answer with high probability. They
also proved that any Las Vegas algorithm achieving additive error E must necessarily
use §2 (% log | ¥ |) bits of memory, which matches the space complexity of their Monte
Carlo solution up to a logarithmic factor in the E € [1, /n] range. These results leave

anumber of open questions both on more efficient algorithms (e.g., only the algorithm

1 If the maximum length of a palindrome in S is L, then the additive error E (resp., multiplicative error
(1 + ¢)) means that the algorithm must return a number £ > L — E (resp., £ > L/(1 + €)) and the position
of a palindrome of length £.

@ Springer

3632 Algorithmica (2019) 81:3630-3654

(iii) and a specific case of algorithm (i) are linear-time) and on tight lower bounds for
the space complexity, in particular, for Monte Carlo algorithms. In the present paper
we answer all these questions, essentially settling space and time complexity of LPS.
As in [2], we use hashes and other common primitives of the streaming model, but
otherwise our technique is different; in particular, we heavily rely on combinatorial
lemmas on strings. This paper extends the early version [10] presented at CPM 2016.

Let us overview the obtained results. First, we show that Las Vegas algorithms
cannot achieve sublinear space complexity at all; thus, in the streaming model
LPS can be solved only with high probability. Second, we prove a lower bound of
£2(M log min{| X'|, M}) bits of memory for Monte Carlo algorithms; here M = n/E

for approximating the answer with additive error E € [1,n], and M = lo;;%

approximating the answer with multiplicative error (1 4 &), where ¢ > n=9%_ After
this, we design three linear-time, and even real-time, Monte Carlo algorithms match-
ing these lower bounds up to a logarithmic factor (moreover, the match is exact for
wide ranges of involved parameters).

for

— Algorithm A for LPS with additive error E € [1, n]uses O(n/E) words of memory.
Compared to (i), it uses the same space, works faster if E = o(y/n), and lifts
the restriction on E; another advantage is independence of the working time of
the error. The space usage exactly matches the lower bound under reasonable
assumptions | X| > n00l E < 09

— Algorithm M for LPS with multiplicative error ¢ € (0, 1] uses O(log(TnS)) words
of memory. Compared to (ii), the space bound is lowered by at least the factor
of ¢! (since log(1 + ¢) is equivalent to & whenever ¢ < 1), the time bound is
lowered by the factor of ¢ =2 - log . The space usage matches the lower bound up
to a logarithmic factor in the worst case (if ¢ is a constant and | X'| = O(logn));
the match is exact if ¢ < n=00! | ¥| > 5001

— Algorithm M’ for LPS with multiplicative error ¢ € (1, n] uses O(loifé%) words
of memory. It has no analogs in [2] and matches the space lower bound up to a
logarithmic factor

Finally we present, for any m, a deterministic O(m)-space real-time Algorithm E,
solving LPS exactly if the answer is less than m and detecting a palindrome of length
> m otherwise. This is a significant improvement over (iii). Algorithm E shows that
if the input stream is fully random, then with high probability its longest palindrome
can be found exactly by a real-time algorithm within logarithmic space.

The paper is organized as follows: we study lower bounds in Sect. 2, and algo-
rithms in Sect. 3. We also note that Monte Carlo algorithms compute hash values of
certain substrings of the input string and use these values to check whether a sub-
string is a palindrome; false positives correspond to hash collisions, false negatives
are impossible.

1.1 Notation and Definitions

Let S denote a string of length n over an alphabet ¥ = {1,..., N}, where N is
polynomial in n. We write S[i] for the ith symbol of S and S[i ... j] for its substring

@ Springer

Algorithmica (2019) 81:3630-3654 3633

(or factor) S[i1S[i+1]--- S[j1; thus, S[1...n] = S. A prefix (resp. suffix) of S is
a substring of the form S[1 ... j] (resp., S[j...n]). A string S is a palindrome if it
equals its reversal S[n]S[n—1]---S[1]. By L(S) we denote the length of a longest
palindrome which is a factor of S. The symbol log stands for the binary logarithm.

We consider the streaming model of computation: the input string S[1 . . . n] (called
the stream) is read left to right, one symbol at a time, and cannot be stored, because
the available space is sublinear in n. The space is counted as the number of O(log n)-
bit machine words. An algorithm is real-time if the number of operations between
two reads is bounded by a constant. An approximation algorithm for a maximization
problem has additive error E (resp., multiplicative error ¢) if it finds a solution with
the cost at least OPT — E (resp., %), where O PT is the cost of optimal solution;
here both E and ¢ can be functions of the size of the input. For an instance LPS(S) of
the LPS problem, O PT = L(S).

A Las Vegas algorithm always returns a correct answer, but its working time and
memory usage on the inputs of length n are random variables. A Monte Carlo algorithm
gives a correct answer with high probability (greater than 1 —1/n) and has deterministic
working time and space.

2 Lower Bounds

In this section we use Yao’s minimax principle [18] to prove lower bounds on the
space complexity of the LPS problem in the streaming model, where the length n and
the alphabet X' of the input stream are specified. We denote this problem by LPS x[n].

Theorem 1 (Yao’s minimax principle for randomized algorithms) Let X be the set of
inputs for a problem and A be the set of all deterministic algorithms solving it. For
everyx € X and a € A, let c(a, x) > 0 be the cost of running a on x.

Let P,Q be probability distributions over A and X, respectively.
Then max,cx Es~plc(A, x)] > mingc 4 Ex~glc(a, X)].

We use the above theorem for both Las Vegas and Monte Carlo algorithms. For
Las Vegas algorithms, we consider only correct algorithms, and c(x, a) is the mem-
ory usage. For Monte Carlo algorithms, we consider all algorithms (not necessarily
correct) with memory usage not exceeding a certain threshold, and c(x, a) is the cor-
rectness indicator function, i.e., c(x, a) = 0 if the algorithm is correct and c(x, a) = 1
otherwise.

Our proofs will be based on appropriately chosen padding. The padding requires a
constant number of fresh characters. If X' is twice as large as the number of required
fresh characters, we can still use half of it to construct a difficult input instance, which
does not affect the asymptotics. Otherwise, we construct a difficult input instance over
X, then add enough new fresh characters to facilitate the padding, and finally reduce
the resulting larger alphabet to binary at the expense of increasing the size of the input
by a constant factor.

Lemma 1 For any alphabet ¥ = {1,2, ..., 0} there exists a morphism h : X* —
{0, 1}* such that, for any ¢ € X, |h(c)| = 20 + 6 and, for any string w, w contains a
palindrome of length € if and only if h(w) contains a palindrome of length (20 4 6) - £.

@ Springer

3634 Algorithmica (2019) 81:3630-3654

Proof We set:
h(c) = 11°01°7¢100119~€01¢1.

Clearly |h(c)] = 20 + 6 and, because every h(c) is a palindrome, if w contains a
palindrome of length £ then 2 (w) contains a palindrome of length (20 + 6) - £. Now
assume that 4 (w) contains a palindrome T of length (20 + 6) - £, where £ > 1. If
£ = 1 then we obtain that w should contain a palindrome of length 1, which always
holds. Otherwise, T' contains 00 inside and

— either is centered inside some 00 and thus corresponds to a palindrome of odd
length £ in w;

— or is centered in the middle between two consecutive occurrences of 00 and thus
corresponds to a palindrome of even length £ in w.

In either case, the claim holds. O

For the padding we will often use an infinite string v = 01102120313 .. ., or more
precisely its prefixes of length d, denoted v(d). Here 0 and 1 should be understood as
two characters not belonging to the original alphabet. The longest palindrome in v(d)
has length O(+/d).

Theorem 2 (Las Vegas approximation) Let A be a Las Vegas streaming algorithm
solving LPS x [n] with additive error E < 0.99n or multiplicative error (1 +¢) < 100
using s(n) bits of memory. Then E[s(n)] = £2(nlog|X|).

Proof By Theorem 1, it is enough to construct a probability distribution Q over X"
such that for any deterministic algorithm D, its expected memory usage on a string
chosen according to Il is £2(n log | ¥'|) in bits.

Consider solving LPS x[n] with additive error E. We define Q as the uniform dis-
tribution over v(%)x$$yv(%)R, where x, y € > = 5 - % — 1, and $ is a special
character not in X. Let us look at the memory usage of D after having read v(%)x. We
say that x is “good” when the memory usage is at most ’% log | ¥'| and “bad” otherwise.
Assume that %|Z‘|"/ of all x’s are good, then there are two strings x # x’ such that
the state of D after having read both v(%)x and v(%)x/ is exactly the same. Hence the
behavior of D on v(%)x$$va(§)R and v(%)x/$$va(%)R is exactly the same. The
former is a palindrome of length n = 2n’ + E + 2, so D must answer at least 2n’ + 2,
and consequently the latter also must contain a palindrome of length at least 2n" + 2.
A palindrome inside v(%)x’ $$va(%)R is either fully contained within v(%), x’,

xR or it is a middle palindrome. But the longest palindrome inside v(%) is of length

OWE) < 2n’ 42 (for n large enough) and the longest palindrome inside x or x ¥ is of
length n’ < 2n’ + 2, so since we have exluded other possibilities, v(£)x'$$xRv(5)R
contains a middle palindrome of length 2n" 4+ 2. This implies that x = x’, which is
a contradiction. Therefore, at least %|E|", of all x’s are bad. But then the expected
memory usage of D is at least "Z/ log | ¥'|, which for E < 0.99n is 2 (nlog|X]) as
claimed.

@ Springer

Algorithmica (2019) 81:3630-3654 3635

Now consider solving LPS x[#] with multiplicative error (1 + ¢). An algorithm with
multiplicative error (1+4-¢) can also be considered as having additive error E = n- 1+,
so if the expected memory usage of such an algorithmis o(n log | X'|) and (14¢) < 100
then we obtain an algorithm with additive error E < 0.99n and expected memory usage
o(nlog|X]), which we already know to be impossible. O

Now we move to Monte Carlo algorithms. We first consider exact algorithms solving
LPS 5 [n]; lower bounds on approximation algorithms will be then obtained by padding
the input appropriately. We introduce an auxiliary problem midLPS x[n], which is to
compute the length of the middle palindrome in a string of even length n over an
alphabet X

Lemma 2 There exists a constant y such that any randomized Monte Carlo streaming
algorithm A solving midLPSx[n] or LPSx[n] exactly with probability 1 — % uses at
least y - nlogmin{| X'|, n} bits of memory.

Proof First we prove that if A is a Monte Carlo streaming algorithm solving
midLPS 5 [n] exactly using less than | 5 log | X'|] bits of memory, then its error proba-
bility is at least — TEl EI

By Theorem 1, it is enough to construct probability distribution Q over X" such
that for any deterministic algorithm D using less than | 5 log | ¥'|| bits of memory, the
expected probability of error on a string chosen according to Q is at least ﬁ

Letn’ = 5. Forany x € > ke {1,2,...,n'}and ¢ € X we define
w(x, k, ¢) = x[1]x[2]x[3] ... x[n'Ix[n']x[n’ — 1]x[n’ = 2]...x[k + 1]c0F L.

Now @ is the uniform distribution over all such w(x, k, ¢).

Choose an arbitrary maximal matching of strings from =" into pairs (x, x) such
that D is in the same state after reading either x or x’. At most one string per state
of D is left unpaired, that is at most 2Lz loglx-1 strings in total. Since there are
| o = on'logl Xl > 9. pl3leglZ =T pogsible strings of length n’, at least half of
the strings are paired. Let s be longest common suffix of x and x’, so x = vcs and
x" = v/c's, where ¢ # ¢’ are single characters. Then D returns the same answer on
w(x,n —|s|,¢)and w(x’, n’ —|s|, ¢), even though the length of the middle palindrome
is exactly 2|s| in one of them, and at least 2|s| 4 2 in the other one. Therefore, D errs
on at least one of these two inputs. Similarly, it errs on elther w(x n’ —|s|,c") or
w(x,n’ — |s|, ¢). Thus the error probability is at least - | 1 = Al ZI

Now we can prove the lemma for midLPS x[n] with a standard amplification trick.
Say that we have a Monte Carlo streaming algorithm, which solves midLPSx[n]
exactly with error probability ¢ using s(n) bits of memory. Then we can run its k
instances simultaneously and return the most frequently reported answer. The new
algorithm needs O(k - s(n)) bits of memory and its error probability &, satisfies the
inequality

k S
g < Z <i)(1 —g)lghTl < 2k k2 = (4e)k/2,

2i<k

@ Springer

3636 Algorithmica (2019) 81:3630-3654

_ 1 _ log(4/n)
Letk = 6 og(/(ST We have

1 1—0(1) logn
K= — =@ =y-
61+1log|X|/logn logn + log | X|

1
1 in{| X|, n},
1o 5] 1o min{ 1.)

for some constant y. Now we can prove the theorem. Assume that A uses less than
k -nlog|X¥| = y - nlogmin{|X|, n} bits of memory. Then running L% > %%
(which holds since k¥ < %) instances of A in parallel requires less than |5 log | X|]

bits of memory. But then the error probability of the new algorithm is bounded from

above by
4\ 3/16x 1\ 18/16 1
— = <
n n|X| ~ n|X|

which we have already shown to be impossible.

The lower bound for midLPS 5[] can be translated into a lower bound for solving
LPS 5-[n] exactly by padding the input so that the longest palindrome is centered in the
middle. Let x = x[1]x[2]. .. x[n] be the input for midLPS x;[n]. We define

w(x) = x[1]x[2]x[3]...x[n/2]1000...0 1x[n/2 + 1]...x[n].

n

Now if the length of the middle palindrome in x is k, then w(x) contains a palindrome
of length at least n 4+ k + 2. In the other direction, any palindrome inside w(x)
of length > n must be centered somewhere in the middle block consisting of only
zeroes and both ones are mapped to each other, so it must be the middle palindrome.
Thus, the length of the longest palindrome inside w(x) is exactly n 4+ k + 2, so
we have reduced solving midLPS x[n] to solving LPSx[2n + 2]. We already know
that solving midLPS »[n] with probability 1 — % requires y - nlogmin{| X[, n} bits
of memory, so solving LPSx[2n + 2] with probability 1 — ﬁ >1- rll requires
y -nlog{|X|,n} >y’ (2n +2) logmin{| X|, 2n + 2} bits of memory. Notice that the
reduction needs O(logn) additional bits of memory to count up to n, but for large n
this is much smaller than the lower bound if we choose y’ < %. O

To obtain a lower bound for Monte Carlo additive approximation, we observe that
n—FE
]

any algorithm solving LPS 5 [n] with additive error E can be used to solve LPS 5[%=

exactly by inserting % zeroes between every two characters, in the very beginning,
and in the very end. However, this reduction requires log(%) < logn additional bits
of memory for counting up to % and cannot be used when the desired lower bound on
the required number of bits §2 (% logmin(| X, %) is significantly smaller than log n.
Therefore, we need a separate technical lemma which implies that both additive and
multiplicative approximation with error probability % require §2 (log n) bits of space.

Lemma 3 Let A be any randomized Monte Carlo streaming algorithm solving LPS 5 [n]
with additive error at most 0.99n or multiplicative error at most n®* and error
probability % Then A uses §2 (log n) bits of memory.

@ Springer

Algorithmica (2019) 81:3630-3654 3637

Proof By Theorem 1, it is enough to construct a probability distribution Q over X"
such that for any deterministic algorithm D using at most s(n) = o(logn) bits of

memory, the expected probability of error on a string chosen according to Q is W >
1

.

Letn' = s(n) + 1. Forany x,y € X", let w(x, y) = v(% — n")RxyRv(& —n).
Observe that if x = y then w(x, y) contains a palindrome of length n, and otherwise
the longest palindrome there has length at most 2n” + O(/n) = O(/n), thus any
algorithm with additive error of at most 0.99n or with a multiplicative error at most
n%4 must be able to distinguish between these two cases (for 1 large enough).

Let S € X" bean arbitrary family of strings of length n’ such that |§| = 2 - 25("),
and let Q be the uniform distribution on all strings of the form w(x, y), where x and
y are chosen uniformly and independently from S. By a counting argument, we can
create at least |4ﬂ pairs (x, x’) of elements from S such that the state of D is the same
after having read v(4 — n/)®x and v(§ — n/)Rx’. (If we create the pairs greedily, at
most one such x per state of memory can be left unpaired, so at least |S| — 25 = %
elements are paired.) Thus, D cannot distinguish between w(x, x’) and w(x, x), and

between w(x’, x") and w(x’, x), so its error probability must be at least % = 4.2£(n) .

Thus if s(n) = o(logn), the error rate is at least % for n large enough, a contradiction.
O

Combining the reduction with the technical lemma and taking into account that we
are reducing to a problem with string length of ® (%), we obtain the following.

Theorem 3 (Monte Carlo additive approximation) Let A be any randomized Monte
Carlo streaming algorithm solving LPS x[n] with additive error E with probability
— % If E < 0.99n then A uses 2 (g logmin{|X|, £}) bits of memory.

Proof Define 0 = min{|X|, %}. Because of Lemma 3 it is enough to prove that
(% logo) is a lower bound when

n

E < logo. @))

SRR

logn

Assume that there is a Monte Carlo streaming algorithm A solving LPSx[n] with
additive error E with probability 1 — %, using o(% log o) bits of memory. Let n" =
'Ef ﬁ > % (the last inequality, equivalentton > FE - %, holds because E < 0.99n
and because we can assume E > 200). Given a string x[1]x[2]...x[n'], we run A
on 0Fx[1]10E/2x[2]05/2x[3]...0E/2x[n'10E/2, using log(E/2) < logn additional
bits of memory, get some answer R, and then return the number {ﬁj We call

this new Monte Carlo streaming algorithm A’. Recall that A reports the length of the
longest palindrome with additive error E. Therefore, if the original string contains a
palindrome of length r, the new string contains a palindrome of length % S(r+1)+r,
so R > r(E/2+ 1) and A’ will return at least r. In the other direction, if A’ returns r,
then the new string contains a palindrome of length r(E /2 + 1). If such palindrome is
centered so that x[i] is matched with x[i 4 1] for some i, then it clearly corresponds

@ Springer

3638 Algorithmica (2019) 81:3630-3654

to a palindrome of length 7 in the original string. But otherwise every x[i] within the
palindrome is matched with 0, so in fact the whole palindrome corresponds to a streak
of consecutive zeroes in the new string and can be extended to the left and to the right to
start and end with OF , so again it corresponds to a palindrome of length r in the original
string. Therefore, A’ solves LPS 5:[n'] exactly with probability 1 — m >

1— # and uses 0(’1/(15/2;# logo) +logn = o(n'log o) + log n bits of memory.

But this is smaller than the lower bound of Lemma 2:
y -n'logmin{| X, n’} > g -n'logo + g . %logo > g -n'logo +logn

(the last inequality follows from (1)). This contradiction finishes the proof. O

Finally, we consider multiplicative approximation. The proof follows the same basic
idea as of Theorem 3, however is more technically involved. The main difference is
that due to uneven padding, we are reducing to midLPS [n'] instead of LPS »[n'].

Theorem 4 (Monte Carlo multiplicative approximation) Let A be any randomized
Monte Carlo streaming algorithm solving LPS s [n] with multiplicative error (1 + ¢€)

with probability 1 — % 0% < & < %% ghen A uses
1 : 1 .
Q(log(()%ig) log min{| X, log?%}) bits of memory.

Proof For ¢ > n%9! the claimed lower bound reduces to $2(1) bits, which obviously

holds. Thus we can assume that ¢ < n%%!, Define

1 logn

o =min{|¥|, ——— —2}.
50 log(1 + 2¢)
First we argue that it is enough to prove that .4 uses Q(bg(’% log o) bits of memory.

Since log(1 + 2¢) < 0.001logn + o(logn), we have

1 logn
———— —2>18—0(1) 2
50 log(1 + 2¢)
and consequently
1 1 1
LU S-S LI 3)
50 log(1 + 2¢) log(1 + 2¢)
Finally, observe that
log(1 4 2¢) = O (log(1l + ¢)) (@)

because log2(1 + ¢) = @ (log(l + ¢)) for e > 1, and log(1 + &) = O(¢) fore < 1.
From (3) and (4) we conclude that

. logn
1 =0\l 2, ——1}). 5
0go <0gmm{| | lOg(l—l—S)}) (5)

@ Springer

Algorithmica (2019) 81:3630-3654 3639

logn

Because of Lemma 3 and Egs. (4) and (5), it is enough to prove that £2 (5557 D) logo)
is a lower bound when
log(1 1 26) < y - 227 ©)
0 e —
g Y o0

logn

as otherwise ‘Q(log(l+s) logo) = ‘Q(logl(ol%m logo) = 2(logn).

Assume that there is a Monte Carlo streaming algorithm A solving LPS x[n] with
multiplicative error (1 + ¢) with probability 1 — % using o(logz%g) log o) bits of
memory. Let x = x[1]x[2]...x[n']x[n" 4+ 1]...x[2n'] be an input for midLPS 5 [2n'].
We choose n’ so that n = (1 4 2¢)" *1 - n%% Then n’ = log(5, *") — 1 =
ﬁbg&% — 1. We choose ig, i1, i2, i3, . .., i,y sothatig+...+ig = [(1+2¢)4t!.
n0'991 for any 0 < d < n’. (Observe that for ¢ = 29 we have ip > n%% and
I, ..0,0ig > 21001 _ 1.) Finally we define

w(x) = v(iy) Ex[1Gr_DE .. x[0n' o) RvGo)x[n’ + 1Iv@) . .. x[20 oGy).

If x contains a middle palindrome of length exactly 2k, then w(x) contains a middle
palindrome of length 2(1 4 2¢)**1. 1% Also, based on the properties of v, any non-
middle centered palindrome in w (x) has length at most O(+/n), which is less than n99
for n large enough. Since [2(142¢)%-n%997.(14¢) < (1 +28)F-n0P+1)-(1+¢) <
2(1 + 28)k+1 - 1999 value of k can be extracted from the answer of A. Thus, if A
approximates the middle palindrome in w(x) with multiplicative error (1 4 ¢) with
probability 1 — % using o(logz%s) log o) bits of memory, we can construct a new

algorithm A" solving midLPS x:[2n'] exactly with probability 1 — % >1-— % using

logn__, +1 %)
O\ ————10g0 ogn
log(1 + ¢) ¢ £

bits of memory. By Lemma 2 we get a lower bound

logn
21’1 X, 2 1 -2yl
y - 2n' logmin{|X|, 2n'} = 50 log(l +2¢) ogo y logo
y logn
> — . ————1logo +logn —2ylogo, (8)

100 log(1 + 2¢)

where the last inequality holds because of (6). On the other hand, for large n

y logn
100 log(1 + 2¢)
1 logn
- (ﬁlog(l +2¢)
- o(“’i
log(1 +¢)

logo — 2y logo +logn
— 2)y10ga + logn
loga) + logn

@ Springer

3640 Algorithmica (2019) 81:3630-3654

so (8) exceeds (7), a contradiction. O

3 Real-Time Algorithms

In this section we design real-time Monte Carlo algorithms within the space bounds
matching the lower bounds from Sect. 2 up to a factor bounded by log n. The algorithms
make use of the hash function known as the Karp—Rabin fingerprint [12]. We first
describe this function and its properties and then provide an overview of our algorithms.

Let p be a fixed prime from the range [n3+°‘, n4+°‘] for some @ > 0, and r be a
fixed integer randomly chosen from {1, ..., p—1}. For a string S, its forward hash
and reversed hash are defined, respectively, as

#F(S) = (ism -ri) mod p and $R(S) = (iS[i] : r"—f“) mod p.
i=1

i=1

Clearly, the forward hash of a string coincides with the reversed hash of its reversal.
Thus, if u is a palindrome, then ¢* (1) = ¢®(u). The converse is also true modulo
the (improbable) collisions of hashes, because for two strings u# # v of length m, the
probability that ¢ (1) = ¢ (v) is at most m/p. This property allows one to detect
palindromes with high probability by comparing hashes. (This approach is somewhat
simpler than the one of [2]; in particular, we do not need ““fingerprint pairs” used there.)
In particular, a real-time algorithm makes O(n) comparisons and thus faces a collision
with probability O (n~!~%) by the choice of p. All further considerations assume that
no collisions happen. For an input stream S, we denote F (i, j) = ¢F(S[i... j])
and FR(i, j) = ¢®(S[i ... j]). Hashes of substrings can be extracted in constant time
from the hashes of prefixes, as the next observation shows.

Proposition 1 [3] The following equalities hold:

Fr,)=~ (FFQL jy = FF(1i=1) mod p,
FRG, j)y=FRQ, j) = r/7 ' FR1,i—=1) mod p.
Definition 1 For an input stream S, its i-th frame 1(i) is defined as the tuple
G, FFQ,i=1), FR1,i=1),r~%"Y mod p, r' mod p).
The proposition below is immediate from definitions and Proposition 1.

Proposition 2 (1) Given 1(i) and S[i], the tuple 1(i+1) can be computed in O(1)
time.

(2) GivenI(i)andI(j+1), the string S[i ... j] can be checked for being a palindrome
in O(1) time.

All algorithms in this section follow the same scheme. The outer cycle works in
n = |S| iterations; on ith iteration, the symbol S[i] is read and processed, and the
(i 4+ 1)th frame is computed from the ith frame. Each algorithm computes all frames

@ Springer

Algorithmica (2019) 81:3630-3654 3641

but stores only a fraction of them, based on the available space. After reading S[i], each
algorithm checks whether some suffix of S[1...i] is a palindrome of bigger length
than the longest previously found palindrome, and updates the longest palindrome
respectively. The suffixes available for this check depend on stored frames; each check
takes (1) time by Proposition 2 (2). Several combinatorial lemmas are proved to show
that on each iteration it is sufficient to check a constant number of suffixes.

Assume that S[i . .. j]is the longest palindrome in S. It is quite probable that the ith
frame will be unavailable after reading S[j]. However, we will be able to show that in
all cases some “close enough” (i+k)th frame will be available after reading S[j—k].
Then the palindrome S[i+k ... j—k] will be found at the (j—k)th iteration, providing
the approximation of the longest palindrome within the required error bound.

The technical part of the algorithms is the maintenance of the list of stored frames in
a way that (a) guarantees the approximation error; (b) provides a constant-time access
to the frames needed on each particular iteration; (c) allows a constant-time update at
each iteration.

3.1 Additive Error

Theorem 5 There is a real-time Monte Carlo algorithm solving each instance LPS(S)
with the additive error E = E(n) using O(n/E) space, where n = |S|.

First we present a simple (and slow) algorithm which solves the posed problem,
i.e., finds in § a palindrome of length ¢(S) > L(S) — E, where L(S) is the length of
the longest palindrome in S. Later this algorithm will be converted into a real-time
one. We store the frames /(j) for some values of j in a doubly-linked list SP in
the decreasing order of j’s. The longest palindrome currently found is stored as a
pair ani_wer = (pos, len), where pos is its initial position and /en is its length. Let
tg =151

In A%gorithm ABasic we add /() to the list SP for each j divisible by 7g. This
allows us to check, at ith iteration, any factor of the form S[ktg ...i] for being a
palindrome. We assume throughout the section that at the beginning of ith iteration
the frame /(i) is stored in a variable 1.

Algorithm 1 : Algorithm ABasic, ith iteration

1: if i mod g = O then

2: add I to the beginning of SP

3: read S[i]; compute /(i + 1) from /51 < I(i + 1)

4: for all elements v of SP do

5: if S[v-i...i]is apalindrome and answer.len < i—v - i+1 then
6: answer < (v.i,i—v.i+1)

Proposition 3 Algorithm ABasic finds in S a palindrome of length £(S) > L(S) — E
using O(n/E) time per iteration and O(n/E) space.

@ Springer

3642 Algorithmica (2019) 81:3630-3654

too long—mnot a palindrome

candidate !

candidate !

too short !

[too short |

|| [[T || ||]
Te answer.len

e | oo -

Fig. 1 Seeking for a longer palindrome. Squares indicate the numbers j such that the frame 7(j) is
stored; brackets show substrings that can be checked for being palindromes. By Lemma 4, only substrings-
“candidates” can be palindromes of length > answer.len

Proof Both the time and space bounds arise from the size of the list S P, which is
bounded by n/tr = O(n/E); the number of operations per iteration is proportional to
this size due to Proposition 2. Now let S[i ... j] be a longest palindrome in S and let
j—i > E (otherwise there is nothing to prove). Let k = fé]tg. Theni < k <i+1g,
and S[[k...j—(k—i)] is a palindrome obtained from S[i ... j] by deleting (k — i)
letters from each end. At the kth iteration, 7 (k) was added to S P; then the palindrome
Slk ... j—(k—i)] was considered at the (j — (k — i))th iteration. Its length is

j—(k—i)—k+1=j—i+1—=2(k—i)>L(S) —2tg > L(S) — E,

so the longest palindrome found by Algortihm ABasic is at least this long. O
The resource to speed up Algorithm ABasic stems from the following
Lemma4 During one iteration, the length answer len is increased by at most2 - tg.

Proof Let S[j ...i]be the longest palindrome found at the ith iteration. If i — j + 1 <
2t then the statement is obviously true. Otherwise the palindrome S[j+fg ...i—tg]
of length i — j + 1 — 2¢g was considered before (at the (i —¢g)th iteration), and the
statement holds again. O

Lemma 4 implies that at each iteration SP contains only two frames that can
increase answer .len (see Fig. 1). Hence we get the following Algorithm A.

Algorithm 2 : Algorithm A, ith iteration
1: if i mod tg = O then
2: add [to the beginning of SP

3. if i = tg then

4: sp < first(SP)

5: read S[i]; compute (i + 1) from I; 1 < I(i + 1)

6: sp < previous(sp) > if exists
7: while i — sp.i + 1 < answer.len and (sp # last(SP)) do

8: sp < next(sp)

9: for all existing v in {sp, next(sp)} do

10: if S[v.i...i]is a palindrome and answer.len < i—v.i+1 then

11: answer < (v.i,i—v.i+1)

Due to Lemma 4, the cycle at lines 9-11 of Algorithm A computes the same
sequence of values of answer as the cycle at lines 4-6 of Algorithm ABasic. Hence

@ Springer

Algorithmica (2019) 81:3630-3654 3643

1 8 16 21 24 28 32 36 38 40 42 44 46 53
\ || || I || || | Bl B E BN

Fig. 2 The state of the list SP after the iteration i = 53 (g = 1 is assumed). Black squares indicate the
numbers j such that the frame /() is currently stored. For example, (9) implies #/(28) = 214242 — 3,
so 1(28) will stay in S P until the iteration 28 + 32 = 60

it finds a palindrome of required length by Proposition 3. Clearly, the space used by
the two algorithms differs by a constant. To prove that an iteration of Algorithm A
takes (1) time, it suffices to note that the cycle in lines 7-8 performs at most two
iterations. Theorem 5 is proved.

3.2 Multiplicative Error for £ < 1

Theorem 6 There is a real-time Monte Carlo algorithm solving each instance LPS(S)

with multiplicative error ¢ = ¢(n) € (0, 1] using O(%) space, where n = |S§|.
As in the previous section, we first present a simpler algorithm MBasic with non-

linear working time and then upgrade it to a real-time algorithm. The algorithm must

find a palindrome of length ¢(S) > % The next lemma is straightforward.

Lemma5 Ife € (0, 1], the condition £(S) = L(S)(1 — §) implies £(S) = X5,

We set ¢, = [log 2. The main difference in the construction of algorithms with
the multiplicative and additive error is that here all frames are added to the list S P, but
then, after a certain number of iterations, are deleted from it. The number of iterations
the frame 7 (7) is stored in S P is determined by the time-to-live function #/(i) defined
below. This function is responsible for both the correctness of the algorithm and the
space bound.

Algorithm 3 : Algorithm MBasic, ith iteration

1: add I to the beginning of SP

2: for all vin SP do

3. if v.i + nl(v.i) =i then

4: delete v from SP

5: read S[i]; compute /(i + 1) from 151 < I(i + 1)

6: for all vin SP do

7: if S[v.i...i]is a palindrome and answer.len < i—v.i+1 then
8: answer < (v.i,i—v.i+1)

Let B(i) be the position of the rightmost 1 in the binary representation of i (the
position 0 corresponds to the least significant bit). We define

(i) = 29:F2HPO ©)
The definition is illustrated by Fig. 2. Next we state a few properties of the list SP.

@ Springer

3644 Algorithmica (2019) 81:3630-3654

Lemma6 For any integers a > 1 and b > 0, there exists a unique integer j €
la, a + 2°) such that ttl(j) > 29720,

Proof By (9), 1tl(j) > 29+2+P if and only if B(j) > b, i.e., j is divisible by 2” by the
definition of 8. Among any 2° consecutive integers, exactly one has this property. O

Figure 2 shows the partition of the range (0, /] into intervals having lengths that
are powers of 2 (except for the leftmost interval). In general, this partition consists of
m — g, intervals, which are, right to left,

(i — 2972 4], (i =293 — 29 H2) 2™, i — 2", (0,1 — 2™, (10)

where m = [logi] — 1 (if m < g, there is a single interval). Lemma 6 and (9) imply
the following lemma on the distribution of the elements of SP.

Lemma 7 After each iteration, the first interval (resp., the last interval; each of the
remaining intervals) in (10) contains 292 (resp., at most 29: 11 : exactly 29:11) posi-
tions for which the frames are stored in the list SP.

The number of the intervals in (10) is O(log(ne)), so from Lemma 7 and the
definition of g, we have the following.

Lemma 8 After each iteration, the size of the list SP is O(%).

Proposition 4 Algorithm MBasic finds a palindrome of length £(S) > % using
O(log(TM)) time per iteration and O(log#) space.

Proof Both the time per iteration and the space are dominated by the size of the list
S P. Hence the required complexity bounds follow from Lemma 8. For the proof of
correctness, let S[i . .. j] be a palindrome of length L(S). Further, letd = [log L(S)].

If d < g + 2, the palindrome S[i ... j] will be found exactly, because /(i) is in
S P at the jth iteration:

Pml() =i +29F2 > 4294 S i L L) > .
Otherwise, by Lemma 6 there exists a unique k € [i,i + 2‘1"18*1) such that 7l (k) >
24+1 Hence, the palindrome S[i+(k—i) ... j—(k—i)] will be found at the iteration
j — (k — i), because I (k) is in SP at this iteration:
k+ (k) > i + (k) > i +2¢F! > j=>j—(k—=1i).

The length of this palindrome satisfies the requirement of the proposition:

j— k=)= @+ (k=) +1=L(S) -2k —i) > L(S) — 2974
> L(S) — L(8)/2% = L($)(1 —¢/2).

The reference to Lemma 5 finishes the proof. O

@ Springer

Algorithmica (2019) 81:3630-3654 3645

Now we speed up Algorithm MBasic. It has two slow parts: deletions from the list
S P and checks for palindromes. Lemmas 9 and 10 show that, similar to Sect. 3.1,
O(1) checks are enough at each iteration.

Lemma 9 Suppose that at some iteration the list SP contains consecutive elements
1(d), I(c), I(b), I(a). Thenb —a <d —b.

Proof Let j be the number of the considered iteration. Note thata < b < ¢ < d.
Consider the interval in (10) containing a. If a € (j — 29:+2 jl,thenb —a = 1and
d — b = 2, so the required inequality holds. Otherwise, let a € (j — 29:+2+* j —
29:+2+x=11 Then by (9) B(a) > x; moreover, any frame (k) such thata < k < j
and B(k) > x isin SP. Hence, b —a < 2*. By Lemma 7 each interval, except for the
leftmost one, contains at least 295! > 4 elements. Thus each of the numbers b, c, d
belongs either to the same interval as a or to the previous interval (j — 24 +2+x=1
29e+2HX=2]. Again by (9) we have B(b), B(c), B(d) = x — 1. S0 c—b,d—c = 2* 7!,
implying the result. O

We want to avoid checking all frames from the list S P at line 7 of Algorithm MBasic.
Asin Sect. 3.1, we can save comparisons for the frames / (a) where a is too big (even
if S[a ...n] is a palindrome, its length is at most /en) or too small (S[a . ..n] is not
a palindrome, since otherwise its “central” subpalindrome of length greater than /en
have been considered at one of the previous iterations). We call an element /(a) of
S P valuable at ith iteration if a is neither too big nor too small in the sense above.
Thus it is enough to check the condition in line 7 only for the frames valuable at the
current iteration.

Lemma 10 At each iteration, S P contains at most three valuable frames. Moreover, if
1(d"), 1(d) are consecutive elements of SP such thati — d' < answer.len < i —d,
where i is the number of the current iteration, then the valuable frames are consecutive
in SP, starting with 1(d).

Proof Let d be as in the condition of the lemma. If 1 (d) is followed in S P by at most
two frames, we are done. If it is not the case, let the next three frames be 7 (¢), 1 (), and
I(a), respectively. If S[a .. .i]is a palindrome then S[a+(b—a)...i—(b—a)] is also
a palindrome. At the iteration i —(b—a) the frame I (b) was in S P, so this palindrome
was considered by the algorithm. Hence, at the ith iteration the value answer.len is
at least the length of this palindrome, whichisi —a + 1 — 2(b — a). By Lemma 9,
b—a <d—b,implying answer.len >i —a+1—(b—a)—(d—-b)=i—d+ 1.
This inequality contradicts the definition of d; hence, S[a ... i] is not a palindrome.
By the same argument, the frames following / (a) in S P do not produce palindromes
as well. Thus, only the frames 1(d), I(c), I (b) are valuable. O

Lemma 10 tells us that it is sufficient to execute lines 7-8 of Algorithm MBasic for
at most three consecutive elements of SP (the picture is as in Fig. 1, but with up to
three “candidates”). Now we turn to deletions. The function #/(x) has the following
nice property.

Lemma 11 The function x — x + ttl(x) is injective.

@ Springer

3646 Algorithmica (2019) 81:3630-3654

Proof Note that B(x + ttl(x)) = B(x) from the definition of 77/. Hence the equality
x + ttl(x) = y + ttl(y) implies B(x) = B(y), then ttl(x) = ttl(y) by (9), and finally
X =y. O

Lemma 11 implies that at most one element is deleted from SP at each iteration.
To perform this deletion in O(1) time, we need an additional data structure. By BS(x)
we denote a linked list of maximal segments of 1’s in the binary representation of x.
For example, the binary representation of x = 12345 and B S(x) are as follows:

1B|12{11|10(9|8|7]6|5|4|3|2|1
1[1/0(1]0]{0|0]|0|L|1|1]0]O

BS(12345) = {[0, 0], [3, 5], [10, 10], [12, 13]}

— O

Clearly, BS(x) uses O(log x) space.
Lemma 12 Both $(x) and BS(x + 1) can be obtained from BS(x) in O(1) time.

Proof The first number in BS(x) is B(x). Let us construct BS(x + 1). Let [a, b] be
the first segment in BS(x). If a > 2, then BS(x + 1) = [0,0] U BS(x). Ifa = 1,
then BS(x + 1) = [0, b]U (BS(x)\[1, b]). Now let a = 0. If BS(x) = {[0, b]} then
BS(x + 1) = {[b+1, b+1]}. Otherwise let the second segment in BS(x) be [c, d]. If
¢ > b+2,then BS(x + 1) = [b+1,b+1]1U (BS(x)\[O, b]). Finally, if c = b + 2,
then BS(x + 1) = [b+1,d] U (BS(x)\{[0, b], [c, d1}). O

Thus, if we support one list BSS which is equal to B.S(i) at the end of the ith iteration,
we have B(i). If 1(a) should be deleted from S P at this iteration, then i = a + #fl(a)
and hence B(a) = B(i) (see Lemma 11). The following lemma is trivial.

Lemma 13 Ifa < b and ttl(a) = ttl(b), then I (a) is deleted from S P before I (b).

By Lemma 13, the information about the positions with the same #¢/ (in other words,
with the same) is added to and deleted from S P in the same order. Hence it is possible
to keep a queue QU (x) of the pointers to all elements of SP corresponding to the
positions j with 8(j) = x. Such queues for each x € {0, ..., [logn]|} constitute the
last ingredient of the real-time Algorithm M presented below.

Proof of Theorem 6 After every iteration, Algorithm M has the same list S P (see Fig. 2)
as Algorithm MBasic, because these algorithms add and delete the same elements. Due
to Lemma 10, Algorithm M returns the same answer as Algorithm MBasic. Hence by
Proposition 4 Algorithm M finds a palindrome of required length. Further, Algorithm
M supports the list BS of size O(log n) and the array QU containing O(log n) queues
of total size equal to the size of S P. Hence, it uses O(@) space in total by Lemma 8.
The cycle in lines 13—14 performs at most three iterations. Indeed, let z be the value
of sp after the previous iteration. Then this cycle starts with sp = previous(z) (or
with sp = z if z is the first element of S P) and ends with sp = next(next(z)) at the
latest. By Lemma 12, both BS(i) and (i) can be computed in O(1) time. Therefore,
each iteration takes O(1) time. m]

Remark Since for n7 0% < ¢ < 1 the classes O(l():;(’%) and O(%) coincide,
Algorithm M uses space within a logn factor from the lower bound of Theorem 4.
Furthermore, for an arbitrarily slowly growing function ¢ Algorithm M uses o(n)

pn)
Rt

Space whenever ¢ =

@ Springer

Algorithmica (2019) 81:3630-3654 3647

Algorithm 4 : Algorithm M, ith iteration
: add I to the beginning of SP
:if i = 1 then
sp < first(SP)
: compute BS[i] from BS; BS <— BS[i]; compute (i) from BS
1 if QU (B(i)) is not empty then

v < element of SP pointed by first(QU(B(i)))

if v = sp then

sp < next(sp)

delete v; delete first(QU(B(i)))
: add pointer to first(SP) to QU (B(i))
: read S[i]; compute I(i + 1) from I; 1 <— I(i + 1)
1 §p < previous(sp) > if exists
: whilei — sp.i + 1 < answer.len and sp # last(SP) do
sp < next(sp)

PRI RE D

— = e
Eopmo ®

—
W

: for all existing v in {sp, next(sp), next(next(sp))} do
if S[v.i...i]is a palindrome and answer.len < i—v.i+1 then
answer < (v.i,i—v.i+1)

_ =
2D

3.3 Multiplicative Error for £ > 1

Theorem 7 There is a real-time Monte Carlo algorithm solving each instance LPS(S)

with multiplicative error ¢ = ¢(n) € (1, n] using O(lolg(gl(il)

) space, where n = |S|.

Our aim is to transform Algorithm M into real-time Algorithm M’ which solves
LPS(S) with the multiplicative error ¢ > 1 using (9(10:;()%8)) space. The basic idea of
transformation is to replace all binary representations with those in base proportional
to 1 + &, and thus shrink the size of the lists SP and BS. To implement this idea, we
define below the analogs of the functions 8 (i) and 7¢1(i), the lists S P and BS, and the
queue QU. To distinguish analogs from their originals, we add ’ to all notation.

First, we assume without loss of generality that ¢ > 7, as otherwise we can set
¢ = 1 and apply Algorithm M. Fix k£ < %(l + ¢) as the largest such even integer (in
particular, k > 4). Let /(i) be the position of the rightmost non-zero digit in the k-ary
representation of i. We define

3-kFOif G > 0,

il (i) =)
4 otherwise.

Y

We define SP’ as the list containing, after ith iteration, the frames I(j) for all
positions j < i such that j + ¢£I’(j) > i. Similar to (10), we partition the range (0; i]
into intervals and then count the indices of frames from S P’ in these intervals. The
intervals are, right to left,

(i —4,il, (i — 3k,i—4], (i — 3k%, i — 3k]. ...,
(i = 3K", 0 = 3k, (0.7 = 3k, (12)

where m = (logk %1 — 1. We enumerate them from 0 to m+-1.

@ Springer

3648 Algorithmica (2019) 81:3630-3654

Lemma 14 Each interval in (12) contains at most 5 numbers of frames stored in SP'.
Each of the intervals 0, . . ., m contains at least 3 such numbers.

Proof All 4 frames with the numbers from the Oth interval are in S P’ by (11). For any
Jj =1,...,m+1, a frame with the number in the jth interval is in SP’ if and only
if its position is divisible by k7; see (11). The length of this interval is less than %kj s
giving us upper bound of [2] = 5 elements. Similarly, if j # m+1, the jth interval
has the length %kj — %kj and thus contains at least Lg k- 1J numbers of frames in
SP’. Since k > 4, the claim follows. O

Next we take Algorithm MBasic (see p. 14) and replace ¢¢/ and S P by their primed
analogs. We refer to the resulting algorithm as Algorithm M’Basic.

L(S)
1+e

Proposition 5 Algorithm M’Basic finds a palindrome of length £(S) >

logn
O(log(l +¢€)) space.

using

Proof LetS[i ... j]beapalindrome of length L(S). Letd = | log, £ |. Without loss
of generality we assume d > 0, as otherwise L(S) < 4 < #/'(i) and the palindrome
S[i ... j] will be detected exactly. Since L(S) > 4k, let ay < ay <az < aq < as
be consecutive positions which are multiples of k? (e, B'(a1), ..., B (as) = d)
such that ap < % < a3. Then in particular i < aj, and there is a palindrome
Slay ...+ j—aj)]suchthatas < (i + j —ay) < as. Since a; + tt'(ay) > as, this
particular palindrome will be detected by Algorlthm M’Basic; thus £(S) > a3 —a; =
2k . However, we have L(S) < 4kt hence LS ok < (1+e).

/Z(S)
Space complexity follows from bound on size of the list SP’, which is at most
2 _ logn
5|71ng ?n"l +1= O(log(l+£))' o

We follow the framework of Sect. 3.2, providing an analogous speedup for Algo-
rithm M’Basic. Consider the checks for palindromes. We adopt the same notion of a
valuable frame as in Sect. 3.2: recall that a frame /(@) is valuable at i th iteration if a is
neither too big (making the substring S[a . . .] too short to update the maximum) nor
too small (such that S[a ...i] cannot be a palindrome). First we need the following
property, which is a more general analog of Lemma 9; an analog of Lemma 10 is then
proved with its help.

Lemma 15 Suppose that at some iteration the list SP’ contains consecutive elements
1(d), I(c), and d < i — answer .len, where i is the number of the current iteration.
Further, let I(a) be another element of S P’ at this iteration and a < c. If ¢, d belong
to the same interval of (12), then I (a) is not valuable.

Proof Let c, d belong to the jth interval. Thus they are divisible by k/ andd —c = k/.

Since a < c, a is divisible by k/ as well. One of the numbers 3¢, <44 is divisible by
k/;takeitasb.Lets =b—a.If S[a...i]isa palindrome, then S[b ...I — 48] isalso
a palindrome. Since at the ith iteration the left border of the jth interval was smaller
than c, then at the (i — §)th iteration this border was smaller than ¢ — § < b; hence,
I(b) was in SP’ at that iteration, and the palindrome S[b...i — §] was considered
there. Its length is

i—6—b+1=i4+14a—-2b>i+14a—(d+a)>i—d+1>answer.len,

@ Springer

Algorithmica (2019) 81:3630-3654 3649

which is impossible by the definition of answer.len. So S[a . . . i] is not a palindrome,
and the claim follows. O

Lemma 16 At each iteration, S P’ contains at most three valuable elements. Moreover,
if I(d"), I(d) are consecutive elements of SP’ such that i — d' < answer.len <
i —d, where i is the number of the current iteration, then the valuable elements are
consecutive in SP’, starting with 1(d).

Proof Leta < b < ¢ < d be such that the elements 7(d), I(c), 1(b) are consecutive
in SP’ and I (a) belongs to SP’. Then either b, ¢ or ¢, d are in the same interval of
(12), and thus a is not valuable by Lemma 15. m|

Next we prove an analog of Lemma 11 to show that deletions from the list S P’ can
be performed in constant time.

Lemma 17 The function h(x) = x+ttl' (x) maps at most two different values of x to the
same value. Moreover, if h(x) = h(y) and B’ (x) > B'(y), then B'(x) = B'(h(x)) + 1
and B'(y) = 0.

Proof Let h(x) = h(y). If B/(x) = B'(y) then 1tl'(x) = ttl'(y) by (11), implying
x = y.Hence all preimages of i (x) have different values of 8. Assume 8'(x) > B'(y).
Then we have, for some integer j, x = j~k'3/(x) and h(x) = (j +4)kP) 4 % P -1
by (11). Since k is even, we get B/ (h(x)) = B'(x) — 1. If B/(y) > 0, we repeat the same
argument and obtain 8'(x) = B/(y), contradicting our assumption. Thus g'(y) = 0.
The claim now follows. O

We also define a list B.S’(x), which maintains an RLE encoding of the k-ary repre-
sentation of x. The list BS’(x) has length O(log, n), can be updated to BS’(x+1) in
O(1) time, and provides the value B’ (x) in O(1) time also (we omit the proof since it is
similar to Lemma 12). Further, Lemma 13 holds for the function ¢¢I’, so we introduce
the queues QU’(x) in the same way as the queues QU (x) in Sect. 3.2. Having all
these ingredients, we present Algorithm M’ which speeds up Algorithm M’Basic using
Lemmas 16, 17 and thus proves Theorem 7. The only significant difference between
Algorithm M and Algorithm M’ is in the deletion of tuples from the list (compare
lines 5-9 of Algorithm M against lines 5—15 of Algorithm M”).

3.4 The Case of Short Palindromes

A typical string contains only short palindromes, as Lemma 18 below shows (for more
on palindromes in random strings, see [17]). Knowing this, it is quite useful to have
a deterministic real-time algorithm which finds a longest palindrome exactly if it is
“short”, otherwise reporting that it is “long”. The aim of this section is to describe
such an algorithm (Theorem 8).

Lemma 18 If an input stream S € X* is picked up uniformly at random among all
strings of length n, where n > |X|, then for any positive constant c the probability
that S contains a palindrome of length greater than % is O(n™°).

@ Springer

3650 Algorithmica (2019) 81:3630-3654

Algorithm 5 : Algorithm M’, ith iteration

1: add [to the beginning of S P’

2:if i = 1 then

3: sp < first(SP’)

4: compute BS'[i] from BS’; BS’ < BS'[i]; compute 8’(i) from BS’
5:if QU'(B(i) + 1) is not empty then

6: v < element of SP’ pointed by first(QU'(B'(i) + 1))

7: if v.i +ttl'(v.i) =i then

8: if v = sp then

9: sp < next(sp)

10: delete v; delete first(QU’(B'(i) + 1))

11: v < element of SP’ pointed by first(QU’(0))

12: if v.i 4 ttl'(v.i) = i then

13: if v = sp then

14: sp < next(sp)

15: delete v; delete first(QU’(0))

16: add pointer to first(SP’) to QU'(B(i))

17: read S[i]; compute I(i + 1) from I; 1 <~ I(i + 1)

18: sp < previous(sp) > if exists
19: while i — sp.i + 1 < answer.len and sp # last(SP’) do

20: sp < next(sp)

21: for all existing v in {sp, next(sp), next(next(sp))} do

22: if S[v.i...i]is a palindrome and answer.len < i—v.i+1 then
23: answer < (v.i,i—v.i+1)

Proof A string S contains a palindrome of length greater than m if and only if S
contains a palindrome of length m+1 or m+2. The probability P of containing such
a palindrome is less than the expected number M of palindromes of length m+1 and
m+2 in S. A factor of S of length [is a palindrome with probability 1/| 2 |/2); by
linearity of expectation, we have

M- n—m n—m—1
o | X |Lon+1)/2] + | X |Lm+2)/2]

2(c+1)logn

Substituting m = Tog| %]

,we get M = O(n™°), as required. O

Theorem 8 Let m be a positive integer. There exists a deterministic real-time algorithm
working in O(m) space, which, for each instance LPS(S),

— solves LPS(S) exactly if L(S) < m;
— finds a palindrome of length m or m+1 as an approximated solution to LPS(S) if
L(S) = m.

To prove Theorem 8, we present an algorithm based on the Manacher algorithm
[15]. We add two features: work with a sliding window instead of the whole string to
satisfy the space requirements and lazy computation to achieve real time. (The fact
that the original Manacher algorithm admits a real-time version was shown by Galil
[71; we adjusted Galil’s approach to solve LPS.) The details follow. o

We say that a palindromic factor S[i ... j] has center # and radius % Thus,
odd-length (even-length) palindromes have integer (resp., half integer) centers and

@ Springer

Algorithmica (2019) 81:3630-3654 3651

radiuses. This looks a bit weird, but allows one to avoid separate processing of these
two types of palindromes. Manacher’s algorithm computes, in an online fashion, an
array of maximal radiuses of palindromes centered at every position of the input
string S. A variation, which reports the longest palindrome in a string S as the pair
answer = (len, pos), is presented as Algorithm EBasic below. This variation is
similar to the one of [14]. Here, n stays for the length of the input processed so far,
c is the center of the longest suffix-palindrome of the processed string. The array
of radiuses Rad has length 2n—1 and its elements are indexed by all integers and
half integers from the interval [1, n]. Initially, Rad is filled with zeroes. The left
endmarker is added to the string for convenience. After each iteration, the following
invariant holds: the element Rad[i] has got its true value if i < ¢ and equals zero
if i > c; the value Rad[c] = n — ¢ can increase at the next iteration. Note that the
longest palindrome in S coincides with the longest suffix-palindrome of S[1...i] for
some i. At the moment when the input stream ends, the algorithm has already found
all such suffix-palindromes, so it can stop without filling the rest of the array Rad.

Algorithm 6 : Algorithm EBasic

1: ¢ < l;answer < (1,0); n < 1; S[0] <#

2: while not (end of input) do > iteration
3: read(S[n + 1])

4: s<«c

5 while ¢ < n + 1 do > main cycle
6: Rad|c] < min(Rad[2*s —c],n —c¢)

7 if ¢ + Rad[c] = n and S[c — Rad|[c] — 1] = S[n + 1] then

8 Rad[c] < Rad[c] +1

9: break > longest suf-pal of S[1...n + 1] is found
10: c<«c+05 > next candidate for the center

11: n<«<n+1
12: if 2% Rad[c] + 1 > answer.len then
13: answer < (2% Rad[c]+ 1, c — Rad|c])

Remark During n iterations of Algorithm EBasic, the main cycle is executed at most
3n times. Indeed, each iteration executes the main cycle with the current value of ¢ and
increases ¢ by 0.5 before each additional execution, if any. Since ¢ never decreases, we
get the mentioned bound. Each execution takes constant time, so Algorithm EBasic
works in O(n) time but not in real time; for example, processing the last letter of the
string a" b requires n executions of the main cycle.

By conditions of the theorem, we are not interested in palindromes of length > m+-1.
Thus, processing a suffix-palindrome of length m or m+-1 we assume that the symbol
comparison in line 7 fails. So Algorithm EBasic needs no access to S[i] or Rad[i]
wheneveri < n —m. Hence we store only recent values of S and Rad and use circular
arrays CS and C Rad of size O (m) for this purpose. For example, the symbol S[n—i]
is stored in CS[(n—i) mod (m+1)] during m-+1 successive iterations and then is
replaced by S[n—i+m+1]; the same scheme applies to the array Rad. In this way, all
elements of S and Rad, needed by Algorithm EBasic, are accessible in constant time.

@ Springer

3652 Algorithmica (2019) 81:3630-3654

Further, we define a queue Q of size g for lazy computations; it contains symbols that
are read from the input and await processing.

Now we describe real-time Algorithm E. It reads input symbols to Q and stops when
the end of the input is reached. Each iteration consists of one read and the subsequent
processing. For processing, Algorithm E runs Algorithm EBasic with Q as the input
stream; a symbol is popped from Q when it is read. The processing is paused after three
executions of the main cycle; the pause ends the iteration. If Algorithm EBasic stops
earlier (trying to read from an empty queue), this also ends the iteration. On the next
iteration, the processing resumes from the point it was stopped or paused. Note that
the suffix of the input which remains in Q after the last iteration is left unprocessed.
The high-level description of Algorithm E is as follows.

Algorithm 7 : Algorithm E, ith iteration
1: read S[i]to Q
2: resume EBasic with Q as the input stream

3: if EBasic stops or its main cycle has been executed 3 times then
4: break

Proof of Theorem 8 Algorithm E is obviously real-time, so we have to check its time
consumption and correctness. To analyze Algorithm E, consider the value X = g +
n — c after some iteration (clearly, this iteration has number g+n) and look at the
evolution of X over time. Let Af denote the variation of the quantity f at one iteration.
Note that A(g+n) = 1. Let us describe AX. First assume that the iteration contains
three executions of the main cycle. Then An = 0, 1, 2 or 3 and, respectively, Ac =
1.5, 1,0.5 or 0. Hence

AX=1—Ac=14+(An-3)2=1—(—Aq —3)/2 = —(Aq)/2.

If the number of executions is one or two, then g becomes zero (and was 0 or 1 before
this iteration); hence An = 1 — Ag > 1. Then Ac < 0.5 and finally AX > 0. From
these conditions on AX it follows that

() if the current value of g is positive, then the current value of X is less than the
value of X at the moment when g was zero for the last time.

Let X’ be the previous value of X mentioned in (x). Since the difference n — ¢ does
not exceed the radius of some palindrome, X’ < m/2. Since ¢ < X < X/, the queue
Q uses O(m) space. Therefore the same space bound applies to Algorithm E.

It remains to prove that Algorithm E returns the same pair (len, pos) as Algorithm
EBasic with a sliding window, in spite of the fact that Algorithm E stops earlier.
Suppose that Algorithm E stops with ¢ > 0 after n iterations. Then the longest
palindrome that could be found by processing the symbols in Q has the radius X =
n + g — c. Now consider the iteration mentioned in (*) and let n” and ¢’ be the values
of n and c after it; so X’ = n’ — ¢/. Since g was zero after that iteration, the processing
phase on this iteration included reading the symbol S[n'] from Q and subsequent
execution of the main cycle; during this execution Algorithm EBasic tried to extend

@ Springer

Algorithmica (2019) 81:3630-3654 3653

a suffix-palindrome of S[1...n'—1] with the center ¢ < ¢’. If this extension was
successful, then a palindrome of radius at least X’ was found. If it was unsuccessful,
then ¢’ > ¢” + 1/2 and hence S[1 ...n"—1] has a suffix-palindrome of length at least
X’ — 1/2. Thus, a palindrome of length X < X’ — 1/2 is not longer than a longest
palindrome seen before, and processing the queue cannot change the pair (len, pos).
Thus, Algorithm E is correct. The theorem is proved. O

Remark Lemma 18 and Theorem 8 show a practical way to solve LPS. Algorithm E is
fast and lightweight (2m machine words for the array Rad, m symbols in the sliding
window and at most m symbols in the queue; compare to 17 machine words per one
frame in the Monte Carlo algorithms). So it makes direct sense to run Algorithm M
and Algorithm E, both in O(logn) space, in parallel. Then either Algorithm E will
give an exact answer (which happens with high probability if the input stream is a
“typical” string) or both algorithms will produce approximations: one of fixed length
and one with an approximation guarantee (modulo the hash collision).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a string. Theor. Comput.
Sci. 141, 163-173 (1995)

2. Berenbrink, P., Ergiin, F., Mallmann-Trenn, E., Azer, E.S.: Palindrome recognition in the streaming
model. In: STACS 2014, LIPIcs, vol. 25, pp. 149-161. SchlossDagstuhl-Leibniz-Zentrum fuer Infor-
matik, Dagstuhl Publishing, Germany (2014)

3. Breslauer, D., Galil, Z.: Real-time streaming string-matching. In: Combinatorial Pattern Matching.
LNCS, vol. 6661, pp. 162—172. Springer, Berlin (2011)

4. Clifford, R., Fontaine, A., Porat, E., Sach, B., Starikovskaya, T.A.: Dictionary matching in a stream.
In: ESA 2015, LNCS, vol. 9294, pp. 361-372. Springer (2015)

5. Clifford, R., Fontaine, A., Porat, E., Sach, B., Starikovskaya, T.A.: The k-mismatch problem revisited.
In: SODA 2016, pp. 2039-2052. SIAM (2016)

6. Ergiin, F,, Jowhari, H., Saglam, M.: Periodicity in streams. In: RANDOM 2010, LNCS, vol. 6302, pp.
545-559. Springer (2010)

7. Galil, Z.: Real-time algorithms for string-matching and palindrome recognition. In: Proceedings of 8th
annual ACM symposium on theory of computing (STOC’76), pp. 161-173. ACM, New York (1976)

8. Galil, Z., Seiferas, J.: A linear-time on-line recognition algorithm for “Palstar”. J. ACM 25, 102-111
(1978)

9. Gawrychowski, P., Manea, F., Nowotka, D.: Testing generalised freeness of words. In: STACS 2014,
LIPIcs, vol. 25, pp. 337-349. Dagstuhl Publishing (2014)

10. Gawrychowski, P., Merkurev, O., Shur, A.M., Uznanski, P.: Tight tradeoffs for real-time approximation
of longest palindromes in streams. In: Proceedings CPM 2016, LIPIcs, vol. 54, pp. 18:1-18:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik (2016)

11. Jalsenius, M., Porat, B., Sach, B.: Parameterized matching in the streaming model. In: STACS 2013,
LIPIcs, vol. 20, pp. 400—411. Dagstuhl Publishing (2013)

12. Karp, R., Rabin, M.: Efficient randomized pattern matching algorithms. IBM J. Res. Dev. 31, 249-260
(1987)

13. Knuth, D.E., Morris, J., Pratt, V.: Fast pattern matching in strings. STAM J. Comput. 6, 323-350 (1977)

@ Springer

http://creativecommons.org/licenses/by/4.0/

3654 Algorithmica (2019) 81:3630-3654

14. Kosolobov, D., Rubinchik, M., Shur, A.M.: Finding distinct subpalindromes online. In: Proceedings
of Prague Stringology conference. PSC 2013, pp. 63-69. Czech Technical University in Prague (2013)
15. Manacher, G.: A new linear-time on-line algorithm finding the smallest initial palindrome of a string.

J. ACM 22(3), 346-351 (1975)

16. Porat, B., Porat, E.: Exact and approximate pattern matching in the streaming model. In: FOCS 2009,
pp. 315-323. IEEE Computer Society (2009)

17. Rubinchik, M., Shur, A.M.: The number of distinct subpalindromes in random words. Fundam. Inform.

145, 371-384 (2016)
18. Yao, A.C.C.: Probabilistic computations: toward a unified measure of complexity (extended abstract).
In: FOCS 1977, pp. 222-227. IEEE Computer Society (1977)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Pawet Gawrychowski' - Oleg Merkurev? . Arseny M. Shur? .
Przemystaw Uznanski3

Oleg Merkurev
o.merkuryev@gmail.com

Arseny M. Shur
arseny.shur@urfu.ru

Przemystaw Uznanski
przemyslaw.uznanski @inf.ethz.ch

I Institute of Computer Science, University of Wroctaw, ul. Joliot-Curie 15, 50-383 Wroctaw,
Poland

2 Department of Algebra and Fundamental Informatics, Ural Federal University, pr. Lenina 51,
Yekaterinburg, Russia 620000

3 Department of Computer Science, ETH Ziirich, Universitétstrasse 6, 8092 Ziirich, Switzerland

@ Springer

http://orcid.org/0000-0002-8652-0490

	Tight Tradeoffs for Real-Time Approximation of Longest Palindromes in Streams
	Abstract
	1 Introduction
	1.1 Notation and Definitions

	2 Lower Bounds
	3 Real-Time Algorithms
	3.1 Additive Error
	3.2 Multiplicative Error for εle1
	3.3 Multiplicative Error for ε> 1
	3.4 The Case of Short Palindromes

	References

