
Algorithmica (2019) 81:519–540
https://doi.org/10.1007/s00453-018-0404-y

Randomised Enumeration of Small Witnesses Using
a Decision Oracle

Kitty Meeks1

Received: 19 May 2017 / Accepted: 4 January 2018 / Published online: 16 January 2018
© The Author(s) 2018. This article is an open access publication

Abstract Many combinatorial problems involve determining whether a universe of
n elements contains a witness consisting of k elements which have some specified
property. In this paper we investigate the relationship between the decision and enu-
meration versions of such problems: efficient methods are known for transforming a
decision algorithm into a search procedure that finds a single witness, but even finding
a second witness is not so straightforward in general. We show that, if the decision
version of the problem can be solved in time f (k) · poly(n), there is a randomised
algorithm which enumerates all witnesses in time ek+o(k) · f (k) · poly(n) · N , where
N is the total number of witnesses. If the decision version of the problem is solved
by a randomised algorithm which may return false negatives, then the same method
allows us to output a list of witnesses in which any given witness will be included with
high probability. The enumeration algorithm also gives rise to an efficient algorithm
to count the total number of witnesses when this number is small.

Keywords Enumeration algorithms · Parameterized complexity ·
Randomized algorithms · Approximate enumeration · Color coding

1 Introduction

Many well-known combinatorial decision problems involve determining whether a
universe U of n elements contains a witness W consisting of exactly k elements
which have some specified property; we refer to such problems as k-witness problems.

B Kitty Meeks
kitty.meeks@glasgow.ac.uk

1 School of Computing Science, University of Glasgow, Sir Alwyn Williams Building,
Glasgow G12 8RZ, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-018-0404-y&domain=pdf
http://orcid.org/0000-0001-5299-3073

520 Algorithmica (2019) 81:519–540

Although the decision problems themselves are of interest, it is often not sufficient for
applications to output simply “yes” or “no”:we need to find one ormorewitnesses. The
issue of finding a singlewitness using an oracle for the decision problemhas previously
been investigated by Björklund et al. [6], motivated by the fact that the fastest known
parameterised algorithms for a number of widely studied problems (such as graph
motif [5] and k-path [4]) are non-constructive in nature. Moreover, for some problems
(such as k-Clique or Independent Set [3] and k-Even Subgraph [17]) the only
known FPT decision algorithm relies on a Ramsey theoretic argument which says the
answer must be “yes” provided that the input graph avoids certain easily recognisable
structures.

Following the first approach used in [6], we begin by assuming the existence of a
deterministic inclusion oracle (a black-box decision procedure), as follows.

INC-ORA(X , U , k)
Input: X ⊆ U and k ∈ N

Output: 1 if some witness of size k in U is entirely contained in X ; 0 otherwise.

Such an inclusion oracle can easily be obtained froman algorithm for the basic decision
problem in the case of self-contained k-witness problems, where we only have to
examine the elements of a k-element subset (and the relationships between them)
to determine whether they form a witness: we simply call the decision procedure
on the substructure induced by X . Examples of k-witness problems that are self-
contained in this sense include those of determiningwhether a graph contains a k-vertex
subgraph with some property, such as the well-studied problems k-Path, k-Cycle
and k-Clique; algorithms to count the number of witnesses in problems of this form
have been designed for applications ranging from the analysis of biological networks
[23] to the design of network security tools [16,25,26].

Given access to an oracle of this kind, a naïve approach easily finds a single wit-
ness using �(n) calls to INC-ORA: we successively delete elements of the universe,
following each deletion with an oracle call, and if the oracle answers “no” we reinsert
the last deleted element and continue. Assuming we start with a yes-instance, this
process will terminate when only k elements remain, and these k elements must form
a witness. In [6], ideas from combinatorial group testing are used to make a substantial
improvement on this strategy for the extraction of a single witness: rather than delet-
ing a single element at a time, large subsets are discarded (if possible) at each stage.
This gives an algorithm that extracts a witness with only 2k

(
log2

(n
k

) + 2
)
oracle

queries.
However, neither of these approaches for finding a single witness can immediately

be extended to find all witnesses, a problem which is of interest even if an efficient
decision algorithm does output a single witness. Both approaches for finding a first
witness rely on the fact that we can safely delete some subset of elements from our
universe provided we know that what is left still contains at least one witness; if we
need to look for a second witness, the knowledge that at least one witness will remain
is no longer sufficient to guarantee we can delete a given subset. Of course, for any
k-witness problem we can check all possible subsets of size k, and hence enumerate
all witnesses, in time O(nk); indeed, if every set of k vertices is in fact a witness then
we will require this amount of time simply to list them all. However, we can seek to

123

Algorithmica (2019) 81:519–540 521

do much better than this when the number of witnesses is small by making use of a
decision oracle.

The enumeration problembecomes straightforward if we have an extension oracle,1

defined as follows.

EXT-ORA(X ,Y ,U ,k)
Input: X ⊆ U , Y ⊆ X , and k ∈ N

Output: 1 if there exists a witness W with Y ⊆ W ⊆ X ; 0 otherwise.

The existence of an efficient procedure EXT-ORA(X ,Y ,U ,k) for a given self-
contained k-witness problem allows us to use standard backtracking techniques to
devise an efficient enumeration algorithm. We explore a binary search tree of depth
O(n), branching at level i of the tree on whether the i th element of U belongs to the
solution. Each node in the search tree then corresponds to a specific pair (X,Y) with
Y ⊆ X ⊆ U ; we can call EXT-ORA(X ,Y ,U ,k) to determine whether any descendant
of a given node corresponds to a witness. Pruning the search tree in this way ensures
that no more than O(n · N) oracle calls are required, where N is the total number of
witnesses.

Note that, with only the inclusion oracle, we can determine whether there is a
witness that does not contain some element x (we simply call INC-ORA(U \ {x},
U , k)), but we cannot determine whether there is a witness which does contain x .
Moreover, as we will show in Sect. 3, there are natural (self-contained) k-witness
problems for which the inclusion problem can be solved efficiently but there is no
fpt-algorithm for the extension decision problem unless FPT=W[1]. This motivates
the development of enumeration algorithms that do not rely on such an oracle.

The main result of this paper is just such an algorithm; specifically, we prove the
following theorem.

Theorem 1.1 There is a randomised algorithm to enumerate all witnesses of size k in
a k-witness problem exactly once, whose expected number of calls to a deterministic
inclusion oracle is at most ek+o(k) log2 n ·N, where N is the total number of witnesses.
If an oracle call can be executed in time g(k) · nO(1) for some computable function g,
then the expected total running time of the algorithm is

ek+o(k) · g(k) · nO(1) · N .

Moreover, the total space required by the algorithm is at most ek+o(k) · nO(1).

The key tool we use to obtain this algorithm is a colour coding method, using a
family of k-perfect hash functions. This technique was introduced by Alon et al. in
[1] and has been widely used in the design of parameterised algorithms for decision
and approximate counting (see for example [15, Chapters 13 and 14] and [12, Chapter
8]), but to the best of the author’s knowledge has not yet been applied to enumeration
problems.

1 Such an oracle is sometimes called an interval oracle, as in the enumeration procedure described by
Björklund et al. [7] which builds on earlier work by Lawler [21].

123

522 Algorithmica (2019) 81:519–540

The main limitation of Theorem 1.1 is that it requires access to a deterministic
inclusion oracle INC-ORA which always returns the correct answer. However, in a
number of cases (including k-Path [4] and Graph Motif [5]) the fastest known
decision algorithm for a self-contained k-witness problem (and hence for the cor-
responding inclusion problem) is in fact randomised and has a small probability of
returning an incorrect answer. We will also show that the same algorithm can be used
in this case, at the expense of a small increase in the expected running time (if the
oracle can return false positives) and the loss of the guarantee that we will output every
witness exactly once: for each witness in the instance, there is a small probability that
we will omit it from the list due to the oracle returning false negatives. Specifically,
we prove the following theorem.

Theorem 1.2 Given a randomised inclusion oracle for the k-witness problem �,
whose probability of returning an incorrect answer is at most c < 1

2 , there is a
randomised algorithm which takes as input an instance of � and a constant ε > 0,
and outputs a list of witnesses of size k in the instance such that no witness appears
more than once and, for any witness W, the probability that W is included in the
list is at least 1 − ε. In expectation, the algorithm makes at most ek+o(k) · log(ε−1) ·
log3 n (log log n) · N oracle calls, where N is the total number of witnesses in the
instance, and if an oracle call can be executed in time g(k)·nO(1) for some computable
function g, then the expected running time of the algorithm is

ek+o(k) · log(ε−1 · g(k) · nO(1) · N .

Moreover, the total space required by the algorithm is ek+o(k) · nO(1).

This result initiates the study of approximate algorithms for enumeration problems:
in contrast with the well-established field of approximate counting, this relaxation of
the requirements for enumeration does not seem to have been addressed in the literature
to date.

In the study of counting complexity it is standard practice, when faced with a #P-
hard problem, to investigate whether there is an efficient method to solve the counting
problem approximately. The answer to this question is considered to be “yes” if and
only if the problem admits a fully polynomial randomised approximation scheme
(FPRAS), defined as follows.

Definition An FPRAS for a counting problem � is a randomised approximation
scheme that takes an instance I of � (with |I | = n), and real numbers ε > 0 and
0 < δ < 1, and in time poly(n, 1/ε, log(1/δ)) outputs a rational number z such that

P[(1 − ε)�(I) ≤ z ≤ (1 + ε)�(I)] ≥ 1 − δ.

In the parameterised setting, the analogue of this is a fixed parameter tractable ran-
domised approximation scheme (FPTRAS), in which the running time is additionally
allowed to depend arbitrarily on the parameter.

Perhaps themost obviousway to translate this notion in to the setting of enumeration
would be to look for an algorithmwhich, with probability at least (1−δ), would output

123

Algorithmica (2019) 81:519–540 523

at least (1 − ε)-proportion of all witnesses. In the setting of counting, all witnesses
are essentially interchangeable, so it makes sense to consider only the total number of
objects counted in relation to the true answer. However, this definition perhaps allows
too much freedom in the setting of enumeration: we could design an algorithm which
satisfies these requirements and yet will never output some collection of hard-to-find
witnesses, so long as this collection is not too large compared with the total number
of witnesses.

Instead, we propose here a more demanding notion of approximate enumeration:
given ε > 0, we want a (randomised) algorithm such that, for any witness W , the
probabilitywe outputW is at least 1−ε. This implies thatwewill, with high probability
(depending on ε) output a large proportion of all possible witnesses, but also ensures
that we cannot choose to ignore certain potential witnesses altogether. It may also be
desirable to permit a witness to be repeated in the output with small probability: we
can allow this flexibility by requiring only that, for eachwitnessW , the probability that
W is included in the output exactly once is at least 1− ε. We give a formal definition
of efficient approximate enumeration in Sect. 2.

Theorem 1.1 is proved in Sect. 4, and Theorem 1.2 in Sect. 5. We then discuss some
implications of our enumeration algorithms for the complexity of related counting
problems in Sect. 6.We begin in Sect. 2 with some background on relevant complexity
theoretic notions, before discussing the hardness of the extension version of some self-
contained k-witness problems in Sect. 3.

2 Parameterised Enumeration

There are two natural measures of the size of a self-contained k-witness problem,
namely the number of elements n in the universe and the number of elements k in each
witness, so the running time of algorithms is most naturally discussed in the setting
of parameterised complexity. There are two main complexity issues to consider in the
present setting: first of all, as usual, the running time, and secondly the number of
oracle calls required.

For general background on the theory of parameterised complexity, we refer the
reader to [12,15]. The theory of parameterised enumeration has been developed rela-
tively recently [8,9,13], and we refer the reader to [9] for the formal definitions of the
different classes of parameterised enumeration algorithms. To the best of the author’s
knowledge, this is the first occurrence of a randomised parameterised enumeration
algorithm in the literature, and so we introduce randomised analogues of the four
types of parameterised enumeration algorithms introduced in [9] (for a problem with
total input size n and parameter k, and with f : N → N assumed to be a computable
function throughout):

– an expected-total-fpt algorithmenumerates all solutions and terminates in expected
time f (k) · nO(1);

– an expected-delay-fpt algorithm enumerates all solutions with expected delay at
most f (k) · nO(1) between the times at which one solution and the next are output
(and the same bound applies to the time before outputting the first solution, and
between outputting the final solution and terminating);

123

524 Algorithmica (2019) 81:519–540

– an expected-incremental-fpt algorithm enumerates all solutions with expected
delay at most f (k) · (n + i)O(1) between outputting the i th and (i + 1)th solution;

– an expected-output-fpt algorithm enumerates all solutions and terminates in
expected time f (k) · (n + N)O(1), where N is the total number of solutions enu-
merated.

Under these definitions, Theorem 1.1 says that, if there is an FPT decision algorithm
for the inclusion version of a k-witness problem, then there is an expected-output-fpt
algorithm for the corresponding enumeration problem.

In the setting of approximate enumeration, we define a fully output polynomial ran-
domised enumeration scheme (FOPRES) to be an algorithm which, given an instance
I of an enumeration problem (with total input size n) and a rational ε ∈ (0, 1), out-
puts, in time bounded by a polynomial function of n, N and ε−1 (where N is the
total number of solutions to I), a list of solutions to I with the property that, for any
solution W , the probability that W appears exactly once in the list is at least 1− ε. In
the parameterised setting, we analogously define a fully output fpt randomised enu-
meration scheme (FOFPTRES) to be an algorithm which, given an instance I of a
parameterised enumeration problem (with total input size n and parameter k) and a
rational ε ∈ (0, 1), outputs, in time bounded by f (k) · p(n, N , ε−1), where p is a
polynomial, f is any computable function, and N is the total number of solutions to I ,
a list of solutions to I with the property that, for any solution W , the probability that
W appears exactly once in the list is at least 1−ε. An expected-FOPRES (respectively
expected-FOFPTRES) is a randomised algorithm which satisfies the definition of a
FOPRES (resp. FOFPTRES) if we replace the condition on the running time by the
same condition on the expected running time. We can make analogous definitions for
total-polynomial, total-fpt, delay-polynomial etc.

Under these definitions, Theorem1.2 says that, if there is a randomisedFPTdecision
algorithm for the inclusion version of a k-witness problem with error probability less
than a half, then the corresponding enumeration problem admits a FOFPTRES.

3 Hardness of the Extension Problem

Many combinatorial problems have a very useful property, often referred to as self-
reducibility, which allows a search or enumeration problem to be reduced to (smaller
instances of) the corresponding decision problem in a very natural way (see [9,20,
27]). A problem is self-reducible in this sense if the existence of an efficient decision
procedure (answering the question: “Does the universe contain at least one witness
of size k?”) implies that there is an efficient algorithm to solve the extension decision
problem (equivalent to EXT-ORA). While many self-contained k-witness problems
do have this property, we will demonstrate that there exist self-contained k-witness
problems that do not (unless FPT=W[1]), and so an enumeration procedure that makes
use only of INC-ORA and not EXT-ORA is desirable.

In order to demonstrate this, we show that there exist self-contained k-witness
problems whose decision versions belong to FPT, but for which the corresponding
extension decision problem is W[1]-hard. We will consider the following problem,
which is clearly a self-contained k-witness problem.

123

Algorithmica (2019) 81:519–540 525

k-Clique or Independent Set
Input: A graph G = (V, E) and k ∈ N.
Parameter: k.
Question: Is there a k-vertex subset of V that induces either a clique or an indepen-
dent set?

This problem is known to belong to FPT [3]: any graph with at least 22k vertices must
be a yes-instance by Ramsey’s Theorem. We now turn our attention to the extension
version of the problem, defined as follows.

k-Extension Clique or Independent Set
Input: A graph G = (V, E), a subset U ⊆ V and k ∈ N.
Parameter: k.
Question: Is there a k-vertex subset S of V , withU ⊆ S, that induces either a clique
or an independent set?

It is straightforward to adapt the hardness proof for k-Multicolour Clique or
Independent Set [22, Proposition 3.7] to show that k-Extension Clique or
Independent Set is W[1]-hard.

Proposition 3.1 k-Extension Clique or Independent Set is W[1]-hard.

Proof We prove this result by means of a reduction from the W[1]-complete problem
k-Clique. Let (G, k) be the input to an instance of k-Clique. We now define a new
graph G ′, obtained from G by adding one new vertex v, and an edge from v to every
vertex u ∈ V (G). It is then straightforward to verify that (G ′, {v}, k + 1) is a yes-
instance for k-Extension Clique or Independent Set if and only if G contains
a clique of size k. �	

This demonstrates that k-Extension Clique or Independent Set is a problem
for which there exists an efficient decision procedure but no efficient algorithm for the
extension version of the decision problem (unless FPT=W[1]).Both of these arguments
(inclusion of the decision problem in FPT, and hardness of the extension version)
can easily be adapted to demonstrate that the following problem exhibits the same
behaviour.

k-Induced Regular Subgraph
Input: A graph G = (V, E) and k ∈ N.
Parameter: k.
Question: Is there a k-vertex subset of V that induces a subgraph in which every
vertex has the same degree?

Indeed, the same method can be applied to any problem in which putting a restriction
on the degree of one of the vertices in the witness guarantees that the witness induces
a clique (or some other induced subgraph for which it isW[1]-hard to decide inclusion
in an arbitrary input graph).

123

526 Algorithmica (2019) 81:519–540

4 The Randomised Enumeration Algorithm

In this sectionwe describe our randomisedwitness enumeration algorithm and analyse
its performance when used with a deterministic oracle, thus proving Theorem 1.1.

As mentioned above, our algorithm relies on a colour coding technique. A family
F of hash functions from [n] to [k] is said to be k-perfect if, for every subset A ⊂ [n]
of size k, there exists f ∈ F such that the restriction of f to A is injective. We will
use the following bound on the size of such a family of hash functions.

Theorem 4.1 [24] For all n, k ∈ N there is a k-perfect family Fn,k of hash functions
from [n] to [k] of cardinality ek+o(k) · log n. Furthermore, given n and k, a represen-
tation of the family Fn,k can be computed in time ek+o(k) · n log n.

Our strategy is to solve a collection of ek+o(k) · log n colourful enumeration prob-
lems, one corresponding to each element of a family F of k-perfect hash functions.
In each of these problems, our goal is to enumerate all witnesses that are colourful
with respect to the relevant element f of F (those in which each element is assigned
a distinct colour by f). Of course, we may discover the same witness more than once
if it is colourful with respect to two distinct elements in F , but it is straightforward
to check for repeats of this kind and omit duplicate witnesses from the output. It is
essential in the algorithm that we use a deterministic construction of a k-perfect family
of hash functions rather than the randomised construction also described in [1], as the
latter method would allow the possibility of witnesses being omitted (with some small
probability).

The advantage of solving a number of colourful enumeration problems is that we
can split the problem into a number of sub-problems with the only requirement being
that we preservewitnesses inwhich every element has a different colour (rather than all
witnesses). This makes it possible to construct a number of instances, each (roughly)
half the size of the original instance, such that every colourful witness survives in at
least one of the smaller instances. More specifically, for each k-perfect hash function
we explore a search tree: at each node, we split every colour-class randomly into
(almost) equal-sized parts, and then branch to consider each of the 2k combinations
that includes one (nonempty) subset of each colour, provided that the union of these
subsets still contains at least one witness (as determined by the decision oracle). This
simple pruning of the search tree will not prevent us exploring “dead-ends” (where we
pursue a particular branch due to the presence of a non-colourful witness), but turns
out to be sufficient to make it unlikely that we explore very many branches that do not
lead to colourful witnesses.

We describe the algorithm in pseudocode (Algorithm 1), making use of two sub-
routines. In addition to our oracle INC-ORA(X ,U ,k), we also define a procedure
RANDPART(X) which we use, while exploring the search tree, to obtain a random
partition of a subset of the universe.

RANDPART(X)
Input: X ⊆ U
Output: A partition (X1, X2) of X with ||X1| − |X2|| ≤ 1, chosen uniformly at
random from all such partitions of X .

123

Algorithmica (2019) 81:519–540 527

Algorithm 1: Randomised algorithm to enumerate all k-element witnesses in the
universe U , using a decision oracle.
1 if INC − ORA(U,U, k) = 1 then
2 Construct a family F = { f1, f2, . . . , f|F |} of k-perfect hash functions from U to [k];
3 for 1 ≤ r ≤ |F | do
4 Initialise an empty FIFO queue Q;
5 Insert U into Q;
6 while Q is not empty do
7 Remove the first element A from Q;
8 if |A| = k then
9 if A is not colourful with respect to fs for any s ∈ {1, . . . , r − 1} then

10 Output A;
11 end if
12 else
13 for 1 ≤ i ≤ k do
14 Set Ai to be the set of elements in A coloured i by fr ;

15 Set (A(1)
i , A(2)

i) = RANDPART(Ai);
16 end for
17 for each j = (j1, . . . , jk) ∈ {1, 2}k do

18 if |A(j�)
i | > 0 for each 1 ≤ � ≤ k then

19 Set Aj = A
(j1)
i ∪ · · · ∪ A

(jk)
i ;

20 if INC − ORA(Aj,U, k) = 1 then
21 Add Aj to Q;
22 end if
23 end if
24 end for
25 end if
26 end while
27 end for
28 end if

We prove the correctness of the algorithm and discuss the space used in Sect. 4.1, and
bound the expected running time in Sect. 4.2.

4.1 Correctness of the Algorithm

In order to prove that our algorithm does indeed output every witness exactly once, we
begin by showing that we will identify a given k-element subset X during the iteration
corresponding to the hash-function f ∈ F if and only if X is a colourful witness with
respect to f .

Lemma 4.1 Let X be a set of k vertices in the universe U. In the iteration of Algo-
rithm 1 corresponding to f ∈ F , we will execute 9 to 11 with A = X if and only
if:

1. X is a witness, and
2. X is colourful with respect to f .

123

528 Algorithmica (2019) 81:519–540

Proof We first argue that we only execute lines 9–11 with A = X if X is a witness and
is colourful with respect to f . We claim that, throughout the execution of the iteration
corresponding to f , every subset B in the queue Q has the following properties:

1. there is some witness W such that W ⊆ B, and
2. B contains at least one vertex receiving each colour under f .

Notice that we check the first condition before adding any subset A to Q (lines 1
and 20), and we check the second condition for any A �= U in line 18 (U necessarily
satisfies condition 2 by construction ofF), so these two conditions are always satisfied.
Thus, if we execute lines 9–11 with A = X , these conditions hold for X ; note also
that we only execute these lines with A = X if |X | = k. Hence, as there is a witness
W ⊆ X where |W | = |X | = k, we must have X = W and hence X is a witness.
Moreover, as X must contain at least one vertex of each colour, and contains exactly
k elements, it must be colourful.

Conversely, suppose that W = {w1, . . . , wk} is a witness such that f (wi) = i for
each 1 ≤ i ≤ k; we need to show that we will at some stage execute lines 9–11 with
A = W . We argue that at the start of each execution of the while loop, if W has not
yet been output, there must be some subset B in the queue such that W ⊆ B. This
invariant clearly holds before the first execution of the loop (U will have been inserted
into Q, as U contains at least one witness W). Now suppose that the invariant holds
before starting some execution of the while loop. Either we execute lines 9–11 with
A = W on this iteration (in which case we are done), or else we proceed to line 13.
Now, for 1 ≤ i ≤ k, set ji to be either 1 or 2 in such a way that wi ∈ A(ji)

i . The
subset Aj, where j = (j1, . . . , jk) will then pass both tests for insertion into Q, and
W ⊆ Aj by construction, so the invariant holds when we exit the while loop. Since
the algorithm only terminates when Q is empty, it follows that we must eventually
execute lines 9–11 with A = W . �	

The key property of k-perfect families of hash functions then implies that the
algorithmwill identify everywitness; it remains only to ensure thatwe avoid outputting
any witness more than once. This is the purpose of lines 9–11 in the pseudocode. We
know from Lemma 4.1 that we find a given witness W while considering the hash-
function f if and only if W is colourful with respect to f : thus, in order to determine
whether we have found the witness in question before, it suffices to verify whether it
is colourful with respect to any of the colourings previously considered. Hence we see
that every witness is output exactly once, as required.

Note that the most obvious strategy for avoiding repeats would be to maintain a
list of all the witnesses we have output so far, and check for membership of this
list; however, in general there might be as many as

(n
k

)
witnesses, so both stor-

ing this list and searching it would be costly. The approach used here means that
we only have to store the family F of k-perfect hash functions (requiring space
ek+o(k)n log n). Since each execution of the outer for loop clearly requires only poly-
nomial space, the total space complexity of the algorithm is at most ek+o(k)nO(1), as
required.

123

Algorithmica (2019) 81:519–540 529

4.2 Expected Running Time

We know from Theorem 4.1 that a familyF of k-perfect hash functions fromU to [k],
with |F | = ek+o(k) log n, can be computed in time ek+o(k)n log n; thus line 2 can be
executed in time ek+o(k)n log n and the total number of iterations of the outer for-loop
(lines 2–34) is at most ek+o(k) log n.

Moreover, it is clear that each iteration of the while loop (lines 6–26) makes at
most 2k oracle calls. If an oracle call can be executed in time g(k) · nO(1) for some
computable function g, then the total time required to perform each iteration of the
while loop is at most max{|F |, kn + 2k · g(k) · nO(1)} = ek+o(k) · g(k) · nO(1).

Thus it remains to bound the expected number of iterations of the while loop in any
iteration of the outer for-loop; we do this in the next lemma.

Lemma 4.2 The expected number of iterations of the while-loop in any given iteration
of the outer for-loop is at most N (1 +
log n�), where N is the total number of
witnesses in the instance.

Proof We fix an arbitrary f ∈ F , and for the remainder of the proof restrict our
attention to the iteration of the outer for-loop corresponding to f .

We can regard this iteration of the outer for-loop as the exploration of a search tree,
with each node of the search tree indexed by some subset ofU . The root is indexed by
U itself, and every node has up to 2k children, each child corresponding to a different
way of selecting one of the two randomly constructed subsets for each colour. A node
may have strictly fewer than 2k children, as we use the oracle to prune the search tree
(line 20), omitting the exploration of branches indexed by a subset of U that does
not contain any witness (colourful or otherwise). Note that the search tree defined in
this way has depth at most
log n�: at each level, the size of each colour-class in the
indexing subset is halved (up to integer rounding).

In this search tree model of the algorithm, each node of the search tree corresponds
to an iteration of the while-loop, and vice versa. Thus, in order to bound the expected
number of iterations of the while-loop, it suffices to bound the expected number of
nodes in the search tree.

Our oracle-based pruning method means that we can associate with every node v

of the search tree some representative witness Wv (not necessarily colourful), such
thatWv is entirely contained in the subset ofU which indexes v. (Note that the choice
of representative witness for a given node need not be unique.) We know that in total
there are N witnesses; our strategy is to bound the expected number of nodes, at each
level of the search tree, for which any given witness can be the representative.

For a given witness W , we define a random variable XW,d to be the number of
nodes at depth d (where the root has depth 0, and children of the root have depth 1,
etc.) for which W could be the representative witness. Since every node has some
representative witness, it follows that the total number of nodes in the search tree is at
most

∑

W a witness

log n�∑

d=0

XW,d .

123

530 Algorithmica (2019) 81:519–540

Hence, by linearity of expectation, the expected number of nodes in the search tree is
at most

∑

W a witness

log n�∑

d=0

E
[
XW,d

] ≤ N

log n�∑

d=0

max
W a witness

E
[
XW,d

]
.

In the remainder of the proof, we argue that E[XW,d] ≤ 1 for all W and d, which
will give the required result.

Observefirst that, ifW is in fact a colourfulwitnesswith respect to f , then XW,d = 1
for every d: given a node whose indexing set contains W , exactly one of its children
will be indexed by a set that contains W . So we will assume from now on that W
intersects precisely � colour classes, where � < k.

If a given node is indexed by a set that contains W , we claim that the probability

that W is contained in the set indexing at least one of its children is at most 1
2
k−�

. For
this to happen, it must be that for each colour i , all elements of W having colour i are
assigned to the same set in the random partition. If ci elements inW have colour i , the

probability of this happening for colour i is at most
(1
2

)ci−1
(the first vertex of colour

i can be assigned to either set, and each subsequent vertex has probability at most 1
2

of being assigned to this same set). Since the random partitions for each colour class
are independent, the probability that the witness W survives is at most

∏

W∩ f −1(i) �=∅

(
1

2

)ci−1

=
(
1

2

)k−|{i :W∩ f −1(i) �=∅}|
=

(
1

2

)k−�

.

Moreover, if W is contained in the set indexing at least one of the child nodes, it will
be contained in the indexing sets for exactly 2k−� child nodes: we must select the
correct subset for each colour-class that intersects W , and can choose arbitrarily for
the remaining k−� colour classes. Hence, for each node indexed by a set that contains
W , the expected number of children which are also indexed by sets containing W is

at most
(1
2

)k−� · 2k−� = 1.
We now prove by induction on d that E

[
XW,d

] ≤ 1 (in the case that W is not
colourful). The base case for d = 0 is trivial (as there can only be one node at
depth 0), so suppose that d > 0 and that the result holds for smaller values. Then, if
E[Y |Z = s] is the conditional expectation of Y given that Z = s,

E[XW,d] =
∑

t≥0

E[XW,d |XW,d−1 = t] P[XW,d−1 = t]

≤
∑

t≥0

t P[XW,d−1 = t]

= E[XW,d−1]
≤ 1,

123

Algorithmica (2019) 81:519–540 531

by the inductive hypothesis, as required. Hence E[XW,d] ≤ 1 for any witness W ,
which completes the proof. �	

By linearity of expectation, it then follows that the expected total number of exe-
cutions of the while loop will be at most |F | · N (1 +
log n�), and hence that the
expected number of oracle calls made during the execution of the algorithm is at most
ek+o(k) log2 n · N . Moreover, if an oracle call can be executed in time g(k) · nO(1) for
some computable function g, then the expected total running time of the algorithm is

ek+o(k) · g(k) · nO(1) · N ,

as required.

5 Using a Randomised Oracle

In this section we show that the method described in Sect. 4 will in fact work almost
as well if we only have access to a randomised decision oracle, thus proving Theorem
1.2. The randomised decision procedures in [4,5] only have one-sided errors, but for
the sake of generality we consider the effect of both false positives and false negatives
on our algorithm.

False positives and false negatives will affect the behaviour of the algorithm in
different ways. If the decision procedure gives false positives then, provided we add
a check immediately before outputting a supposed witness that it really is a witness,
the algorithm is still sure to output every witness exactly once; however, we will
potentially waste time exploring unfruitful branches of the search tree due to false
positives, so the expected running time of the algorithm will increase. If, on the other
hand, our algorithm outputs false negatives, then this will not increase the expected
running time; however, in this case, we can no longer be sure that we will find every
witness as false negatives might cause us to prune the search tree prematurely. We will
show, however, that we can still enumerate approximately in this case.

Before turning our attention to the specific effects of false positives and false neg-
atives on the algorithm, we observe that, provided our randomised oracle returns the
correct answer with probability greater than a half, we can obtain a decision procedure
with a much smaller failure probability by making repeated oracle calls. We make the
standard assumption that the events corresponding to each oracle call returning an
error are independent.

Lemma 5.1 Let c > 1
2 be a fixed constant, and let ε > 0. Suppose that we

have access to a randomised oracle for the decision version of a self-contained k-
witness problem which, on each call, returns the correct answer independently with
probability at least c. Then there is a decision procedure for the problem, making
O

(
k + log log n + log ε−1

)
calls to this oracle, such that:

1. the probability of obtaining a false positive is at most 2−k , and
2. the probability of obtaining a false negative is at most ε

log n�+1

123

532 Algorithmica (2019) 81:519–540

Proof Our procedure is as follows: we make t oracle calls (where t is a value to be
determined later) and output whatever is the majority answer from these calls. We
need to choose t large enough to ensure that the probability that the majority answer

is incorrect is at most δ := min
{
2−k, ε

log n�+1

}
.

The probability that we obtain the correct answer from a given oracle call is at least
c, so the number of correct answers we obtain out of t trials is bounded below by
the random variable X , where X has distribution Bin(t, c). Thus E[X] = tc. We will
return the correct answer so long as X > t

2 .
Using a Chernoff bound, we can see that

P

[
X ≤ t

2

]
= P

[
X ≤ tc · 1

2c

]

= P

[
X ≤ tc

(
1 − 2c − 1

2c

)]

≤ exp

(

−1

2

(
2c − 1

2c

)2

tc

)

= exp

(
− (2c − 1)2t

8c

)
.

It is enough to ensure that this is at most δ, which we achieve if

− (2c − 1)2t

8c
< ln δ

⇐⇒ t >
−8c ln δ

(2c − 1)2
,

so we can take t = O(log δ−1). Thus the number of oracle calls required is

O

(

max

{

log
(
2−k

)−1
, log

(
ε

log n� + 1

)−1
})

= O
(
k + log log n + log ε−1

)
,

as required. �	
We now show that, if the probability that our oracle gives a false positive is

sufficiently small, then such errors do not increase the expected running time of
Algorithm 1 too much. Just as when bounding the expected running time in Sect. 4.2,
it suffices to bound the expected number of iterations of the while loop corresponding
to a specific colouring f in our family F of hash functions.

Lemma 5.2 Suppose that the probability that the oracle returns a false positive is at

most min
{
2−k, 1

log n�+1

}
. Then the expected number of iterations of the while-loop

in any given iteration of the outer for-loop is at most O(N · log2 n), where N is the
total number of witnesses in the instance.

123

Algorithmica (2019) 81:519–540 533

Proof We fix an arbitrary f ∈ F , and for the remainder of the proof we restrict our
attention or the iteration of the outer for-loop corresponding to f . As in the proof of
Lemma 4.2, we can regard this iteration of the outer for-loop as the exploration of a
search tree, and it suffices to bound the expected number of nodes in the search tree.

We can associate with each node of the search tree some subset of the universe,
and we prune the search tree in such a way that we only have a node corresponding
to a subset A of the universe if a call to the oracle with input A has returned yes. This
means that for the node corresponding to the set A, either there is some representative
witness W ⊆ X , or the oracle gave a false positive. We call a node good if it has
some representative witness, and bad if it is the result of a false positive. We already
bounded the expected number of good nodes in the proof of Lemma 4.2, so it remains
to show that the expected number of bad nodes is not too large.

We will assume initially that there is at least one witness, and so the root of the
search tree is a good node. Now consider a bad node v in the search tree; v must have
some ancestor u in the search tree such that u is good (note that the root will always
be such an ancestor in this case). Since the subset of the universe associated with
any node is a subset of that associated with its parent, no bad vertex can have a good
descendant. Thus, any path from the root to the bad node v must consist of a segment
of good nodes followed by a segment of bad nodes; we can therefore associate with
every bad node v a unique good node good(v) such that good(v) is the last good node
on the path from the root to v. In order to bound the expected number of bad nodes
in the tree, our strategy is to bound, for each good node u, the number of bad nodes v

such that good(v) = u.
As in the proof of Lemma 4.2, we will write XW,d for the number of nodes at depth

d for whichW is the representative witness. For c > d, we further define YW,d,c to be
the number of bad nodes v such that v is at depth c, good(v) is at depth d, and W is
the representative witness for good(v).

Since every node can have at most 2k children, and the probability that the oracle
gives a false positive is at most 2−k , the expected number of bad children of any node
is at most one. Thus we see that

E
[
YW,d,d+1

] =
∑

t≥0

E
[
YW,d,d+1|XW,d = t

]
P

[
XW,d = t

]

≤
∑

t≥0

tP
[
WW,d = t

]

= E
[
XW,d

]
.

Observe also that if u andw are bad nodes such that u is the child ofw, then good(u) =
good(w) (and so good(u) and good(w) are at the same depth and have the same
representative witness). For c > d + 1 we can then argue inductively:

E
[
YW,d,c

] =
∑

t≥0

E
[
YW,d,c|YW,d,c−1 = t

]
P

[
YW,d,c−1 = t

]

=
∑

t≥0

tP
[
YW,d,c−1 = t

]

123

534 Algorithmica (2019) 81:519–540

= E
[
YW,d,c−1

]

= E
[
XW,d

]
.

We can therefore bound the expected number of nodes in the search tree by

E

⎡

⎣
∑

W a witness

log n�∑

d=0

⎛

⎝XW,d +

log n�∑

c=d+1

YW,d,c

⎞

⎠

⎤

⎦

=
∑

W a witness

log n�∑

d=0

⎛

⎝E
[
XW,d

] +

log n�∑

c=d+1

E
[
YW,d,c

]
⎞

⎠

=
∑

W a witness

log n�∑

d=0

⎛

⎝E
[
XW,d

] +

log n�∑

c=d+1

E
[
XW,d

]
⎞

⎠

=
∑

W a witness

log n�∑

d=0

(
log n� − d + 1)E
[
XW,d

]
.

Aswe know from the proof of Lemma 4.2 thatE
[
XW,d

] ≤ 1, we can therefore deduce
that the expected number of nodes is at most

∑

W a witness

log n�∑

d=0

(
log n� − d + 1) = N

log n�+1∑

i=1

i

= N

2
(
log n� + 1) (
log n� + 2)

= O(N log2 n),

as required. This completes the proof in the case that the instance contains at least one
witness.

If there is in fact no witness in the instance, we know that there are no good
nodes in the tree. Moreover, the expected number of bad nodes at depth 0 is at
most 1/ (
log n� + 1) (the probability that the oracle returns a false positive). Since
we have already argued that the expected number of bad children of any node is
at most 1, it follows that the expected number of bad nodes at each level is at
most 1/ (
log n� + 1), and so the total expected number of bad nodes is at most
1/ (
log n� + 1) (1 +
log n�) = 1. �	

To complete the proof of Theorem 1.2, it remains to show that, so long as the
probability that the oracle returns a false negative is sufficiently small, our algorithm
will output any given witness with high probability.

Lemma 5.3 Fix ε ∈ (0, 1), and suppose that the probability that the oracle returns
a false negative is at most ε

log n�+1 . Then, for any witness W, the probability that the
algorithm does not output W is at most ε.

123

Algorithmica (2019) 81:519–540 535

Proof By construction of F , we know that there is some f ∈ F such that W is
colourful with respect to f . We wil now restrict our attention to the iteration of the
outer for-loop corresponding to f ; it suffices to demonstrate that we will output W
during this iteration with probability at least 1 − ε.

If we obtain the correct answer from each oracle call, we are sure to outputW . The
only way we will fail to output W is if our oracle gives us an incorrect answer on at
least one occasion when it is called with input V ⊇ W . This can either happen in line 1
whenwemake the initial check that we have a yes-instance, or whenwe checkwhether
a subset is still a yes-instance in line 20. Note that we execute line 20 with A j = W
at most
log n� times, so the total number of times we call INC-ORA(V ,U ,k) with
some V ⊇ W during the iteration of the outer for-loop corresponding to f is at most

log n� + 1. By the union bound, the probability that we obtain a false negative on at
least one of these calls is at most

(
log n� + 1) · ε

log n� + 1
= ε,

as required. �	

6 Application to Counting

There is a close relationship between the problems of counting and enumerating all
witnesses in a k-witness problem, since any enumeration algorithm can very easily be
adapted into an algorithm that counts thewitnesses instead of listing them.However, in
the case that the number N of witnesses is large, an enumeration algorithm necessarily
takes time at least �(N), whereas we might hope for much better if our goal is simply
to determine the total number of witnesses.

The family of self-contained k-witness problems studied here includes subgraph
problems, whose parameterised complexity from the point of view of counting has
been a rich topic for research in recent years [10,11,14,17–19,22].Many such counting
problems, including those whose decision problem belongs to FPT, are known to be
#W[1]-complete (see [15] for background on the theory of parameterised counting
complexity). Positive results in this setting typically exploit structural properties of
the graphs involved (e.g. small treewidth) to design (approximate) counting algorithms
for inputs with these properties, avoiding any dependence on N [2,3,18].

In this section we demonstrate how our enumeration algorithms can be adapted to
give efficient (randomised) algorithms to solve the counting version of a self-contained
k-witness problemwhenever the total number of witnesses is small. This complements
the fact that a simple random sampling algorithm can be used for approximate counting
when the number of witnesses is very large [22, Lemma 3.4], although there remain
many situations which are not covered by either result.

We begin with the case in which we assume access to a deterministic oracle for the
decision problem.

123

536 Algorithmica (2019) 81:519–540

Theorem 6.1 Let � be a self-contained k-witness problem, and suppose that 0 <

δ ≤ 1
2 and M ∈ N. Then there exists a randomised algorithm which makes at most

ek+o(k) log2 n M log(δ−1) calls to a deterministic decision oracle for �, and

1. if the number ofwitnesses in the instance of� is atmost M, outputswith probability
at least 1 − δ the exact number of witnesses in the instance;

2. if the number of witnesses in the instance of � is strictly greater than M, always
outputs “More than M.”

Moreover, if there is an algorithm solving the decision version of� in time g(k) ·nO(1)

for some computable function g, then the expected running time of the randomised
algorithm is bounded by ek+o(k) · g(k) · nO(1) · M · log(δ−1).

Proof Note that Algorithm 1 can very easily be adapted to give a randomised counting
algorithm which runs in the same time as the enumeration algorithm but, instead of
listing all witnesses, simply outputs the total number of witnesses when it terminates.
Wemay compute explicitly the expected running time of our randomised enumeration
algorithm (and hence its adaptation to a counting algorithm) for a given self-contained
k-witness problem � in terms of n, k and the total number of witnesses, N . We will
write T (�, n, k, N) for this expected running time.

Now consider an algorithm A, in which we run our randomised counting algorithm
for at most 2T (�, n, k, M) steps; if the algorithm has terminated within this many
steps, A outputs the value returned, otherwise A outputs “FAIL”. Since our randomised
counting algorithm is always correct (but may take much longer than the expected
time), we know that if A outputs a numerical value then this is precisely the number
of witnesses in our problem instance. If the number of witnesses is in fact at most
M , then the expected running time of the randomised counting algorithm is bounded
by T (�, n, k, M), so by Markov’s inequality the probability that it terminates within
2T (�, n, k, M) steps is at least 1/2. Thus, if we run A on an instance in which the
number of witnesses is at most M , it will output the exact number of witnesses with
probability at least 1/2.

To obtain the desired probability of outputting the correct answer, we repeat A a
total of
log(δ−1)� times. If any of these executions of A terminates with a numerical
answer that is at most M , we output this answer (which must be the exact number of
witnesses by the argument above); otherwise we output “More than M .”

If the total number of witnesses is in fact less than or equal to M , we will output the
exact number of witnesses unless A outputs “FAIL” every time it is run. Since in this
case A outputs “FAIL” independently with probability at most 1/2 each time we run
it, the probability that we output “FAIL” on every one of the
log(δ−1)� repetitions is
at most (1/2)
log(δ−1)� ≤ 2log δ = δ. Finally, note that if the number of witnesses is
strictly greater than M , we will always output “More than M” since every execution
of A must in this case return either “FAIL” or a numerical answer greater than M .

The total running time is at most O
(
log(δ−1) · T (�, n, k, M)

)
and hence, using

the bound on the running time of our enumeration algorithm from Theorem 1.1, is
bounded by ek+o(k) · g(k) · nO(1) · M · log(δ−1), as required. �	

Finally, we prove an analogous result in the case that we only have access to a
randomised oracle.

123

Algorithmica (2019) 81:519–540 537

Theorem 6.2 Let � be a self-contained k-witness problem, suppose that 0 < ε < 1,
0 < δ ≤ 1

2 and M ∈ N, and that we have access to a randomised oracle for the
decision problem whose error probability is at most some constant c < 1

2 . Then there
exists a randomised algorithm which makes at most ek+o(k) log3 n M log(δ−1) calls
to this oracle and, with probability at least 1 − δ, if the total number of witnesses in
the instance is exactly N, does the following:

1. if N ≤ M, outputs a number N ′ such that (1 − ε)N ≤ N ′ ≤ N;
2. if N ≥ M, outputs either a number N ′ such that (1 − ε)N ≤ N ′ ≤ M or “More

than M.”

Moreover, if there is a randomised algorithm solving the decision version of � (with
error probability at most c < 1

2) in time g(k) · nO(1) for some computable function g,
then the expected running time of the randomised counting algorithm is bounded by
ek+o(k) · g(k) · nO(1) · M · log(δ−1).

Proof We claim that it suffices to demonstrate that there is a procedure which makes
at most ek+o(k) · log3 n · M oracle calls and, with probability greater than 1

2 , outputs

(a) a number N ′ such that (1 − ε)N ≤ N ′ ≤ N if N ≤ M , and
(b) either a number N ′ such that (1 − ε)N ≤ N ′ ≤ N or “FAIL” if N > M .

Given such a procedure, we run it log(δ−1) times; if the largest numerical value
returned on any run (if any) is at mostM thenwe return thismaximumvalue, otherwise
we return “More than M .” Conditions (a) and (b) ensuer that the procedure never
returns a value strictly greater than N , so the largest numerical value returned (if any)
is sure to be the best estimate. Therefore we only return an answer that does not meet
the conditions of the theorem if all of the executions of the procedure fail to return
an answer that meets conditions (a) and (b), which happens with probability at most
2− log(δ−1) = δ.

To obtain the required procedure, we modify the enumeration algorithm used to
prove Theorem 1.2 so that it counts the total number of witnesses found rather than
listing them; we will run this randomised enumeration procedure with error prob-
ability ε2/4. We can compute explicitly the expected running time of this adapted
algorithm for a given k-witness problem � in terms of n, k, N and ε; we write
T (�, n, k, ε, N) for this expectation. We will allow the adapted algorithm to run for
time 4T (�, n, k, ε, M), outputting “FAIL” if we have not terminated within this time.

There are twoways in which the procedure could fail to meet conditions (a) and (b).
First of all, the adapted enumeration algorithmmight not terminate within the required
time. Secondly, it might terminate but with an answer N ′ where N ′ < (1 − ε)N
(recall that enumeration algorithm never repeats a witness, and that we can verify
each witness deterministically, ensuring that only ever output a subset of the witnesses
actually present in the instance). In the remainder of the proof, we will argue that the
probability of each of these two outcomes is strictly less than 1

4 , so the probability of
avoiding both is greater than 1

2 , as required.
First, we bound the probability that the algorithm does not terminate within the

required time. By Markov’s inequality, the probability that a random variable takes a
value greater than four times its expectation is less than 1

4 , so we see immediately that

123

538 Algorithmica (2019) 81:519–540

if the total number of witnesses is at most M then the probability that the algorithm
fails to terminate within the permitted time is less than 1

4 .
Next, we need to bound the probability that the procedure outputs a value N ′ <

(1 − ε)N . Let the random variable Z denote the number of witnesses omitted by the
procedure. Then E[Z] ≤ ε2N/4, so by Markov’s inequality we have

P[Z > εN] ≤ ε2N/4

εN
= ε

4
<

1

4
,

as required. This completes the argument that the procedure outputs the an answer
that meets conditions (a) and (b) with probability greater than 1

2 , and hence the
proof. �	

7 Conclusions and Open Problems

Many well-known combinatorial problems satisfy the definition of the k-witness
problems considered in this paper. We have shown that, given access to a determin-
istic decision oracle for the inclusion version of a k-witness problem (answering the
question “does this subset of the universe contain at least one witness?”), there is
a randomised algorithm which is guaranteed to enumerate all witnesses and whose
expected number of oracle calls is at most ek+o(k) log2 n · N , where N is the total
number of witnesses. Moreover, if the decision problem belongs to FPT (as is the
case for many self-contained k-witness problems), our enumeration algorithm is an
expected-output-fpt algorithm.

We have also shown that, in the presence of only a randomised decision oracle, we
can use the same strategy to produce a list of witnesses so that the probability of any
given witness appearing in the list is at least 1− ε, with only a factor log n increase in
the expected running time. This result initiates the study of algorithms for approximate
enumeration.

Our results also has implications for counting the number ofwitnesses. In particular,
if the total number ofwitnesses is small (atmost f (k)·nO(1) for some computable func-
tion f) then our enumeration algorithms can easily be adapted to give fpt-algorithms
that will, with high probability, calculate a good approximation to the number of wit-
nesses in an instance of a self-contained k-witness problem (in the setting where we
have a deterministic decision oracle, we in fact obtain the exact answer with high
probability). The resulting counting algorithms satisfy the conditions for a FPTRAS
(Fixed Parameter Tractable Randomised Approximation Scheme, as defined in [3]),
and in the setting with a deterministic oracle we do not even need the full flexibility
that this definition allows: with probability 1 − δ we will output the exact number of
witnesses, rather than just an answer that is within a factor of 1 ± ε of this quantity.

While the enumeration problem can be solved in a more straightforward fashion for
self-contained k-witness problems that have certain additional properties, we demon-
strated that several self-contained k-witness problems do not have these properties,
unless FPT=W[1]. A natural line of enquiry arising from this work would be the
characterisation of those self-contained k-witness problems that do have the addi-

123

Algorithmica (2019) 81:519–540 539

tional properties, namely those for which an fpt-algorithm for the decision version
gives rise to an fpt-algorithm for the extension version of the decision problem.

Our approach assumed the existence of an oracle to determine whether a given
subset of the universe contains a witness of size exactly k. An interesting direction for
future work would be to explore the extent to which the same techniques can be used
if we only have access to a decision procedure that tells us whether some subset of the
universe contains a witness of size at most k.

Another key question that remains open after thiswork iswhether the existence of an
fpt-algorithm for the inclusion version of a k-witness problem is sufficient to guarantee
the existence of an (expected-)delay-fpt or (expected-)incremental-fpt algorithm for
the enumeration problem. Finally, it would be interesting to investigate whether the
randomised algorithm given here can be derandomised.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
2. Alon, N., Dao, P., Hajirasouliha, I., Hormozdiari, F., Sahinalp, S.C.: Biomolecular network motif

counting and discovery by color coding. Bioinformatics 24(13), 241–249 (2008)
3. Arvind, V., Raman, V.: Approximation algorithms for some parameterized counting problems, ISAAC

2002, LNCS, vol. 2518, pp. 453–464. Springer, Berlin (2002)
4. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Narrow sieves for parameterized paths and pack-

ings. arXiv:1007.1161 (2010)
5. Björklund,A., Kaski, P., Kowalik, L.: Probably optimal graphmotifs. In: 30th International Symposium

on Theoretical Aspects of Computer Science (STACS 2013), LIPIcs, vol. 20, pp. 20–31, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2013)

6. Björklund, A., Kaski, P., Kowalik, Ł.: Fast witness extraction using a Decision Oracle. In: Schulz,
A.S., Wagner, D. (eds.) Algorithms–ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol.
8737. Springer, Berlin, Heidelberg (2014)

7. Björklund, A., Kaski, P., Kowalik, L., Lauri, J.: Engineering motif search for large graphs. In: Pro-
ceedings of the Seventeenth Workshop on Algorithm Engineering and Experiments (ALENEX 2015),
SIAM, 2015, pp. 104–118 (2015)

8. Creignou, N., Ktari, R., Meier, A., Müller, J.S., Olive, F., Vollmer, H.: Parameterized enumeration for
modification problems. In: Dediu, A.H., Formenti, E., Martín-Vide, C., Truthe, B. (eds.) Language
and Automata Theory and Applications, LATA 2015. Lecture Notes in Computer Science, vol. 8977.
Springer, Cham (2015)

9. Creignou, N., Meier, A., Müller, J.S., Schmidt, J., Vollmer, H.: Paradigms for parameterized enumer-
ation. In: Chatterjee, K., Sgall, J. (eds.) Mathematical Foundations of Computer Science 2013, MFCS
2013. Lecture Notes in Computer Science, vol. 8087. Springer, Berlin, Heidelberg (2013)

10. Curticapean, R.: Counting Matchings of Size k is #W[1]-hard. In: Fomin, F.V., Freivalds, R.,
Kwiatkowska, M., Peleg, D. (eds.) Automata, Languages, and Programming. ICALP 2013. Lecture
Notes in Computer Science, vol. 7965. Springer, Berlin, Heidelberg (2013)

11. Curticapean, R., Marx, D.: Complexity of counting subgraphs: only the boundedness of the vertex-
cover number counts. In: 55th Annual IEEE Symposium on Foundations of Computer Science (FOCS
2014)

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013)

123

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1007.1161

540 Algorithmica (2019) 81:519–540

13. Fernau, H.: On parameterized enumeration. In: Ibarra, O.H., Zhang, L. (eds.) Computing and combi-
natorics. COCOON 2002. Lecture Notes in Computer Science, vol. 2387. Springer, Berlin, Heidelberg
(2002)

14. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33(4),
892–922 (2004)

15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
16. Gelbord, B.: Graphical techniques in intrusion detection systems. In: Proceedings of 15th International

Conference on Information Networking, pp. 253–258 (2001)
17. Jerrum, M., Meeks, K.: The parameterised complexity of counting even and odd induced subgraphs.

Combinatorica (2016). https://doi.org/10.1007/s00493-016-3338-5
18. Jerrum, M., Meeks, K.: The parameterised complexity of counting connected subgraphs and graph

motifs. J. Comput. Syst. Sci. 81(4), 702–716 (2015)
19. Jerrum,M., Meeks, K.: Some hard families of parameterised counting problems. ACMTrans. Comput.

Theory 7(3), 11 (2015)
20. Khuller, S., Vazirani, V.V.: Planar graph coloring is not self-reducible, assuming P �= NP. Theor.

Comput. Sci. 88(1), 183–189 (1991)
21. Lawler, E.L.: A procedure for computing the k best solutions to discrete optimization problems and

its application to the shortest path problem. Manag. Sci. 18(7), 401–405 (1972)
22. Meeks, K.: The challenges of unbounded treewidth in parameterised subgraph counting problems.

Discrete Appl. Math. 198, 170–194 (2016)
23. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple

building blocks of complex networks. Science 298(5594), 824–827 (2002)
24. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proceedings

of IEEE 36th Annual Foundations of Computer Science (FOCS 1995), Milwaukee, WI, 1995, pp.
182-191. https://doi.org/10.1109/SFCS.1995.492475

25. Sekar, V., Xie, Y., Maltz, D.A., Reiter, M.K., Zhang, H.: Toward a framework for internet forensic
analysis. In: Third Workshop on Hot Topics in Networking (HotNets-III) (2004)

26. Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J., Hoagland, J., Levitt, K., Wee,
C., Yip, R., Zerkle, D.: GrIDS—a graph based intrusion detection system for large networks. In:
Proceedings of the 19th National Information Systems Security Conference, pp. 361–370 (1996)

27. Schnorr, C.P.: Optimal algorithms for self-reducible problems. In: Proceedings of the 3rd ICALP,
Edinburgh University Press, pp. 322 – 337 (1976)

123

https://doi.org/10.1007/s00493-016-3338-5
https://doi.org/10.1109/SFCS.1995.492475

	Randomised Enumeration of Small Witnesses Using a Decision Oracle
	Abstract
	1 Introduction
	2 Parameterised Enumeration
	3 Hardness of the Extension Problem
	4 The Randomised Enumeration Algorithm
	4.1 Correctness of the Algorithm
	4.2 Expected Running Time

	5 Using a Randomised Oracle
	6 Application to Counting
	7 Conclusions and Open Problems
	References

