
SICS Software-Intensive Cyber-Physical Systems (2019) 34:163–172
https://doi.org/10.1007/s00450-019-00404-x

SPEC IAL ISSUE PAPER

TOSCA-based Intent modelling: goal-modelling for
infrastructure-as-code

Damian A. Tamburri1 ·Willem-Jan Van den Heuvel1 · Chris Lauwers2 · Paul Lipton3 · Derek Palma4 ·
Matt Rutkowski5

Published online: 13 February 2019
© The Author(s) 2019

Abstract
DevOps entails a set of practices that speed up the time needed to rollout software product changes. One such practice
is automating deployment and delivery with infrastructure-as-code, i.e., automated scripts that ideally carry out 1-click
deployment. Providing effective infrastructure-as-code poses the tricky issue in determining the modelling and information
representation paradigm (e.g., Imperative, Declarative, etc.) most compatible with specifying infrastructural code. The OASIS
TOSCA standard (“Topology and Orchestration Specification for Cloud Applications”) is the de-facto and de-iure standard
language for infrastructure-as-code, and adopts an innovative take called “intent modelling”. This paper articulates the
foundations of this modelling approach incorporating the most related modelling paradigm, that is, goal-modelling. We
elaborate on it with a real but simple industrial sample featuring the TOSCA language.

Keywords DevOps · Infrastructure-as-code · Orchestration · Microservices · TOSCA · Goal-modelling

1 Introduction

According to Len Bass’ seminal book [1], DevOps means
meshing software development and operations processes
together by augmenting them with any set of practices that

B Damian A. Tamburri
d.a.tamburri@uvt.nl ; damianandrew.tamburri@polimi.it

Willem-Jan Van den Heuvel
wjheuvel@uvt.nl

Chris Lauwers
lauwers@ubicity.com

Paul Lipton
Paul.Lipton@ca.com

Derek Palma
dpalma@vnomic.com

Matt Rutkowski
mrutkows@us.ibm.com

1 Jheronimus Academy of Data Science-TU/e, Eindhoven,
The Netherlands

2 Ubicity Corp., Santa Clara, USA

3 CA Technologies, New York, USA

4 Vnomic Corp., New York, USA

5 IBM Corp., Mountain View, USA

accelerate software product changes rollout—infrastructure-
as-code being one such practice. This paper elaborates on
intent modelling, a way to design infrastructure-as-code
which is both more generalisable and effective for orches-
tration, that is, the process of integrating two or more
applications and/or services together in an automated fash-
ion, or synchronize data and application management in
real-time [2]. We illustrate intent modelling elaborating on
its foundational aspects and characteristics, as distilled while
designing and experimenting with TOSCA, the “Topology
and Orchestration Specification for Cloud Applications”, the
de-facto and de-iure industrial standard for infrastructure-as-
code (IasC).

In our standardization endeavour, we noticed that, on
the one hand, IasC promises to deliver fast and pain-
less continuous deployment using appropriate continuous
deployment scripts and similar automation mechanisms—
think of Docker1 or Chef.2

On the other hand, IasC and its effective orchestration
require models and descriptions which are capable of pro-
viding abstract, structural, and behavioral aspects being
generic enough to encompass not only how the infrastruc-

1 https://www.docker.com/.
2 https://www.chef.io/chef/.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00450-019-00404-x&domain=pdf
https://www.docker.com/
https://www.chef.io/chef/


164 D. A. Tamburri et al.

ture should behave, but also service property specifications
that allow the orchestrator to “substitute” services while
maintaining service properties—such specifications closely
relate to what is known as goal-modelling [3], a revo-
lutionary paradigm for requirements engineering focusing
on logically-related abstractions that gradually reduce the
abstraction-level among software requirements of any kind,
and with respect to any constraint. In the context of TOSCA,
the same concept applies. For example, imagine a run-
ning infrastructure relying on external service providers
for critical services. An imperative programming of infra-
structure-as-code would force infrastructure designers to
elaborate all possible state-changes in the projected behav-
ior for that infrastructure while a declarative approach would
describe the logic of the structure rather than state-changes
or control-flow.

The research question we are exploring in this article
is defined as follows: “what kind of infrastructure-as-code
(IasC) description (e.g., either declarative or imperative) fits
with the specification power achieved by the TOSCA stan-
dard?”. For example, what available descriptive frameworks
can successfully abstract property statements such as: “when
Service S1 goes down it needs to be substituted within 10s
no matter what the underlying provisioning is”. From the
TOSCA industrial perspective [4], we compared the series
of statements as above that TOSCA grammar covers with
state of the art requirements and specifications engineering
frameworks and found that TOSCA is indeed close to Goal-
Modelling, namely, the decompositional and incremental
subdivision of higher-level goals into more concrete sub-
goals [3]. Conversely, TOSCA adds an intent connotation,
namely, a specific goal whose *sub-goals* need to be satis-
fied whatever the costs or consequences over the sub-goals.
While on one hand, goal-modelling aims at “keeping all goals
satisfied” [5], intent-modelling aims at keeping the highest-
level goal (i.e., the intent) satisfied by consistently changing,
tuning, substituting, or adapting any sub-level goal.

The above contribution is beyond the current state of
the art which has currently focused on synthesizing the
TOSCAView over IasC for cloud applications [6], or explor-
ing specific instances of TOSCA in multiple domains (e.g.,
software-defined everything [7] or service discovery [8]) and
comparing between different TOSCA implementations [9].

We conclude that IasC specifications reflecting the above
intentional semantics are critical for resilient and long-lived
orchestrations. Stemming from these premises, we elabo-
rate on intent-modelling focusing on how the concept came
about, its key properties, and limitations, illustrating with an
industrial example.

1.1 Structure of the paper.

The rest of this paper is structured as follows. Section 2 elab-
orates on common modelling paradigms such as declarative
[10] or imperative modelling [11], and elaborates on their
relationwith respect to intentmodelling. Section 3 elaborates
on intent modelling key characteristics and design principles
while Sect. 5 illustrates those characteristics and principles
using real-life scenario examples. Finally, Sects. 6 and 7 dis-
cuss our results and conclude the paper elaborating on future
work.

2 Why intent modelling?

In code-centric software development, attention is commonly
laid on onemain artefact: code. Functional correctness, extra-
functional guarantees, even the quality of the development
process is assessed on the produced code. The focus is sim-
ply on the “how” the software achieves its goals. Although
crucial, focusing on the “how” implies specificity and bias
towards specific solutions. In the era of cloud-based systems
of systems, IoT (Internet-of-Things) and in general loosely
coupled heterogeneous and flexible configurations of sys-
tems where XaaS (Everything as a Service) represents the
common denominator, the “how” is only a small piece (not
as crucial as one would believe) of the information needed
for enabling intra- and inter-system communication and col-
laboration.

2.1 Intent- versus goal-modelling

The previously introduced conjecture around the necessity
of intentional or intent modelling shares foothold in many
software-related disciplines, such as requirements engineer-
ing [12]. Goal modelling, for instance, aims at representing,
besides “what” the system shall do, even “why” a certain
functionality is needed, and “how” it could be implemented
[13].

On the one hand, software development is still lagging
behind in this respect, probably also due to the strained hunt
for ever slimmer and more agile development processes.

On the other hand, several specific software development
paradigms, such as model-driven service- and agent-oriented
software development in their agile variants, and espe-
cially paradigms stressing collaboration among cross-role
stakeholders, such as DevOps, have what it takes and can
tremendously benefit from embracing the “what” and “why”
to complement the “how” in software development.

More specifically, in the context of cloud applications, we
observed that an augmented version of goal-modelling, the
so-called intent modelling [14], is pivotal for enforcing qual-

123



TOSCA-based Intent modelling: goal-modelling for infrastructure-as-code 165

ity of description in cloud software development in general,
in particular in the context of DevOps lifecycle scenarios.

2.2 Intent defined

We refer to intent(ion)s and intentionality in this context as
the characteristic which is commonly ascribed to humans in
social sciences and social networks research, namely, Inten-
tion is a mental state (hence, an abstract representation of
a situation and its interpretation) that represents a commit-
ment to carrying out an action or actions in the future [15].
Intention involves abstractmental activities such as planning,
forethought, and situational awareness [16].

TOSCA gives the above notion of intent an engineering
applicability connotation [17].

Inmore formal terms, aTOSCA topology template defines
a single intent I in the scope of the template. Intent I is, in
turn, obtained by the coordinated intents of single nodes in
the template. Therefore:

I (T ) = ∪ I (Node 1...n); (1)

Where I(T) is the intent hardcoded in the blueprint for service
template T, while I(Nodex ) is the intent defined in the scope
of the node type definition for node Nodex and, finally, X is
the range of nodes in blueprint T.

As previously defined in Sect. 2.1, the notion of intent does
not aim at “Keeping All Objectives Satisfied” (as originally
defined for goal modelling). Rather, the key goal of TOSCA-
based intent modelling is that of satisfying the highest-level
goal I(T) in Eq. 1. This corollary also means that, while sat-
isfying I(T) is vital, keeping sub-intents for nodes Nodex is
*not*.

[Definition] Intent modelling Intent modelling
entails modelling infrastructure blueprints by specify-
ing a highest-level goal to be satisfied, regardless of how
sub-level intents or goals are satisfied.

3 Towards intent modelling: design
paradigms compared

3.1 Imperative design

The first evolution step in modelling and implementing
software systems essentially consisted in moving from
imperative to declarative programming where a number of
abstraction devices (e.g., models) hide away implementation
details and allow more creative software design reasoning.
With the onset of complex cloud applications and the need

for their long-lived infrastructure management, this evolu-
tion process is augmented with requirements and operational
dynamics connected to complex distributed services orches-
tration, i.e., the automated arrangement, coordination, and
management of computer systems, middleware, and services
[18]. Also, complex cloud applications forced the adoption
of DevOps [1,19] and infrastructure-as-code, i.e., specifying
infrastructure blueprints as if they were software code to be
versioned, structured according to specific design-patterns,
etc. This is where intent modelling comes in. The inception
of intent modelling refers to the inability of imperative and
declarative approaches to fully express not only the struc-
ture and behavior of complex cloud applications but their
intended steady-state, i.e., the general behavior and structure
of the application, its related middleware and their internal
status. To grasp themotivation behind intentmodelling, let us
walk through the evolutionary steps that led to intent models
in the first place.

For example, imagine imperatively addressing the mod-
elling and execution of a highly-distributed modern service-
based solution. An imperative approach would essentially
makehighly-distributedorchestrationunfeasible: therewould
beway toomanyvariables to control or possible states to fore-
see, not to mention concurrency or similar issues. Figure 1
shows a simple imperative model expressed in BPMN [20]:
whatever behavior is expressed in the model is licit, given
certain pre- and post-conditions.

3.2 Declarative design

Conversely, from a declarative perspective, specification
approaches have at least two possible foci: (a) focus on the
structure of what needs to be (re-)deployed; (b) focus on
the behavior (or functionality) that needs to be maintained
no matter what, assuming that an orchestrator can create an
appropriate service structure that guarantees that behavior.

On one hand, in (a) a classical declarative model could
be extended to take into account that it may not be possi-
ble to “create” entities that reflect the proposed orchestration
model, but an orchestrator may require additional services
to go through a set of state changes in order to achieve what
the model specifies. In terms of service orchestration, this
is called “desired state model” or “steady-state model”, an
extension of “declarative models” that focus exactly on the
service state that an infrastructure shall maintain regard-
less of the how that desired state is actually maintained.
For example, the model can contain annotations that allow
generalisable substitution and adaptation based on semantic-
similarity principles [21].

On the other hand, (b) is a policy-based approach, where
desired behavior is expressed in terms of parameters that
need to fit within a set rules and constraints. A classical
declarative model for this policy-based approach could be

123



166 D. A. Tamburri et al.

Fig. 1 Imperative modelling example, BPMN; data-flows and services involved are modelled and executed exactly as modelled

extended to a point where requested behavior and function-
ality can be expressed in a flexible manner using natural
language constructs rather than complex policy languages.
This approach also presumes some type of mapping service
inside the orchestrator that translates “intent”3 expressions
into software-consumable constructs. For example, the Cisco
APIC policy infrastructure controllers approach follows this
general orchestration approach.

3.3 Intent design

As defined in Sect. 2.2, TOSCA and intent models posit
a third, more generic, and hence standardisable, option –
intent design.

Under the assumptions and definitions previously intro-
duced in Sect. 2.2, a single modelling notation can combine
the power of expression of (1) policy-based approaches with
the modelling power of (2) desired steady-state approach.

In turn, the steady-state of an intent design (e.g., a Topol-
ogy template in the TOSCA parlance) is defined as the length
of operational time inwhich the samedesirable intent ismain-
tained, that is, in TOSCA terms, the time that the topology
template is maintained operational.

3 http://tinyurl.com/j5vkxee.

The above combination of (1) and (2) is realised within
TOSCA by keeping the template blueprint description topo-
logical, that is, concernedwith the properties of space (topol-
ogy nodes and edges) that are preserved under continuous
deformations (external forces such as scale, backpressure,
and more). At the same time, the template blueprint descrip-
tion is kept abstract enough to allow isolation of steady-state
model parts, i.e., functional areas of the topology that may
be substituted as long as required relations are maintained.

Finally, the notation stemming from this combined app-
roach uses support policies that predicate on the above
substitutable elements, as well as the substitution process
itself.

3.4 TOSCA-based intent design

As part of our 5+ years’ experience in chiselling and refin-
ing TOSCA and experimenting with it in our own industrial
scenarios, we now begin to understand that the right bal-
ance between the above combined elements (1) policy-based
and (2) desired steady-state modelling was achieved. The
TOSCA Yaml 1.1 specification4 intermixes both almost
equally, essentially by providing basic constructs and means

4 http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/.

123

http://tinyurl.com/j5vkxee
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/


TOSCA-based Intent modelling: goal-modelling for infrastructure-as-code 167

Fig. 2 TOSCA-based substitutability, i.e., topology intent and steady state is maintained as long as capabilities and requirements matching are
upheld

to specify entire cloud application infrastructure-as-code
using topology templates, i.e., sets of strongly-typed nodes
related with strongly-typed relationships [22,23].

In relation to the intent modelling concepts defined
previously, the TOSCA standard underlies the following
modelling conjecture:

The intent hard-coded in a TOSCA specification is
maintained as long as types of nodes are consistent, and
relationship-to-capability matchings are maintained.

In other words, as long as there is strong type-consistency
and there is a capability that matches each relationship
requirement in the TOSCA topology template, then the intent
or steady-state encoded in the TOSCA blueprint can be
maintained by the orchestrator consuming that blueprint,
indefinitely.

Figure 2 outlines a simple example of the above intent
modelling conjecture and its substitutability property (marked
as P1 in the figure, and recurring twice in the illustra-
tion). Subsequently, Fig. 3 features an illustrative case
featuring the monitoring tier known as ELK (Elastic-
Search5/Logstash6/Kibana7). In a TOSCA topology, the
ELK can be part of an intent model that includes three tiers,
two application tiers and a monitoring tier. Whether or not an
ELK tier is available, the intent of the model hard-coded into
the blueprint can be maintained as long as the “collectd” and
“rsyslog” requirements (lower-left part of Fig. 3, highlighted
in red) are met.

TOSCA-based intent modelling features six distinctive
characteristics thatwedistilled bydirect experience (reported

5 https://www.elastic.co/products/elasticsearch.
6 https://www.elastic.co/products/logstash.
7 https://www.elastic.co/products/kibana.

on Table 1) reflecting: (a) intent models as hierarchies of
highly composable and policy-based (micro-)services (see
P1 and P6 on Table 1); (b) intent design and implementa-
tion as a top-down specification processes (see P3 and P4 on
Table 1); (c) microservice symmetry and idempotence as a
paramount best practices for good-quality IasC specifications
(see P2 and P5 on Table 1).

Assuming that the above modelling properties hold, it
follows that any TOSCA-enabled node template (i.e., the
instance of a node that can be deployed as part of a topol-
ogy) can also be substituted with a “compatible” topology,
i.e., a TOSCA topology that provides the necessary relation-
ship requirements of the node it is supposed to substitute.
Figure 2 provides an example for this feature: a cloud applica-
tion is essentially a set of node typeswith corresponding node
relationships; nodes can be substituted asmany times as tech-
nologically possible, as long as capabilities and requirements
matching are maintained, that is, as long as topology intent
is maintained. Subsequently, TOSCA policies are Event-
>Condition->Action statements used to control or factor out
undesirable behaviors, e.g., based on specific desired QoS
characteristics.

4 TOSCA in pills

TOSCA is designed to express the kinds of entities, rela-
tionships, constraints and semantics encountered across the
diverse IT domains [4]. TOSCA Service Templates are
reusable and composable models that can increase return on
investments bymaking it easy to deploy, configure, and oper-
ationally manage more valuable and complex applications
throughout their lifecycle from TOSCA models of existing
applications and services.

123

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/products/logstash
https://www.elastic.co/products/kibana


168 D. A. Tamburri et al.

Fig. 3 TOSCA-based intent modelling, i.e., modelling abstract node templates connected with typed relations that refer to relationship types

TOSCA Service Templates describe the overall appli-
cation/service topology, and consist of a graph of Node
Templates that model the application/service components
and Relationship Templates that model the relationships
and cardinalities between those components, e.g., various
kinds of cloud consumer-provider dependencies such as
containment and connection. Policy Templates specify the
necessary operational constraints on specific parts of the
application/service topology.

Furthermore, TOSCA provides a type system to concisely
express the schema of the template entities, e.g., node types,
relationship types, requirement types, capability types, arti-
fact types and policy types). TOSCA orchestrators and tools
process and validate Service Templates by referring to the
respective type for each template entity. Naturally, essential
types expressing fundamental concepts such as storage, net-
work, and compute are defined and extended to higher-level
abstractions, e.g., BlockStorage, Webserver, application and
infrastructure components, and much more.

5 Illustrative example

In Figs. 2 and 3 we can see how intent modelling concepts of
substructural hierarchy (P1), symmetric idempotence (P2),
top-down intentionality (P3) and higher-order scope (P4) are
provided in TOSCA.

5.1 Substructural hierarchy

Let us consider P1 in Fig. 2. In the topology defining the
sample Cloud Application (Service Template 1), we can find
an abstract Monitoring Service in a descriptive form; that is

to say at that hierarchical level there is no prescribed way on
the “how” that service shall be materialised, but rather a pre-
scribed definition of the capabilities and requirements such a
materialisation shall match to maintain the modelled intents.
Service Template 2 provides one of the possible valid mate-
rialisations of the Monitoring Service. Also in this topology,
substructural hierarchy is reveals itself whenmodelling Ana-
lytics Service. Similarly, in Fig. 3 we can see a sub-structure
of hierarchies defined at design time to specify a purpose.

5.2 Symmetric idempotence

in the case of idempotence, more specifically the case of
interchangeability (Corollary 1), is implied by the reason-
ing above. In fact, any of the topologies is meant to be
replaced by one materialisation at runtime, but many materi-
alisations are viable for each of them. Take the case of ELK
in Fig. 3; Kibana is the designated materialisation plugin for
data visualisation, but, in principle Grafana8 could serve the
purpose equally well being Kibana and Grafana essentially
interchangeable.

5.3 Top-down intentionality

is shown in Fig. 3 where the infrastructure designer is
driven into specifying intentions from the top-most generic
TOSCA service template (Application Tier) to the most spe-
cific ones (ELK) – runtime intent models address realisation
which becomes then the responsibility of the orchestrator.
In turn, requirements shown in Fig. 3 specify functional-
ity to be addressed by whatever means. Requirements are

8 http://grafana.org/.

123

http://grafana.org/


TOSCA-based Intent modelling: goal-modelling for infrastructure-as-code 169

Ta
bl
e
1

T
O
SC

A
-b
as
ed

in
te
nt

m
od
el
lin

g
co
nc
ep
ts
,a
n
ov
er
vi
ew

N
am

e
D
es
cr
ip
tio

n

P1
:S

ub
st
ru
ct
ur
al
hi
er
ar
ch
y

R
un
tim

e
in
te
nt

m
od
el
s
de
fin

e
a
m
od
el
hi
er
ar
ch
y
w
he
re

ab
st
ra
ct
an
d
fu
nc
tio

na
la
sp
ec
ts
of

Ia
sC

bl
ue
pr
in
ts
ca
n
be

de
co
m
po
se
d
(b
as
ed

on
de
fin

ed
po
lic
ie
s)
to

on
e
of

a
nu
m
be
r
of

po
ss
ib
le
su
bs
tr
uc
tu
re
s,
al
lt
he

w
ay

do
w
n
to

th
e
po
in
tt
ha
tw

ha
ty

ou
ar
e
de
fin

in
g
is
th
e

de
pl
oy
m
en
to

f
an

ac
tu
al
ap
pl
ic
at
io
n.
C
on
ve
rs
el
y,
de
si
gn

tim
e
in
te
nt

m
od

el
s
co
nv
ey

th
e
pu

rp
os
e
or

in
te
nt

th
at
Ia
sC

bl
ue
pr
in
ts
en
ta
il,

re
ga
rd
le
ss

of
th
ei
r
ru
nt
im

e
co
un
te
rp
ar
t

P2
:S

ym
m
et
ri
c
id
em

po
te
nc
e

Tw
o
di
ff
er
en
ti
nt
en
tm

od
el
s
ar
e
no
ti
nt
er
ch
an
ge
ab
le
un
le
ss

th
ey

w
er
e
bu
ilt

fr
om

th
e
sa
m
e
te
m
pl
at
e
an
d
do

no
te
xt
en
d
th
at
te
m
pl
at
e

C
or
ol
la
ry

1,
in
te
rc
ha
ng

ea
bi
lit
y

A
n
in
te
nt

m
od

el
is
us
ed

ba
se
d
on

its
ex
po

se
d
pr
op

er
tie

s,
an
yt
hi
ng

th
at

ex
po

se
s
ex
ac
tly

th
e
sa
m
e
pr
op

er
tie

s
is
(n
or
m
al
ly
)
in
te
rc
ha
ng

ea
bl
e.

T
hi
s
m
ea
ns

th
at
if
yo
u
de
fin

e
a
te
m
pl
at
e
fo
r
th
e
fu
nc
tio

na
lc
la
ss

“fi
re
w
al
l”
an
d
if
ev
er
yt
hi
ng

th
at
im

pl
em

en
ts
fir
ew

al
lc
on

fo
rm

s
to

th
at

in
te
nt

m
od

el
te
m
pl
at
e,
yo

u
co
ul
d
pr
es
um

e
th
em

al
lt
o
be

in
te
rc
ha
ng
ea
bl
e
an
d
yo
ur

ap
pr
oa
ch

to
be

op
en

C
or
ol
la
ry

2,
su
pe
r-
st
ru
ct
ur
al
Su

bs
tit
ut
ab
ili
ty

If
yo
u
de
fin

e
tw
o
in
te
nt

m
od
el
s
fo
r
“fi

re
w
al
l”
th
at
do

no
te
xp
os
e
th
e

sa
m
e
pr
op
er
tie
s,
th
en

ob
vi
ou
sl
y
yo
u
ca
nn
ot

su
bs
tit
ut
e
on
e
fo
r
th
e

ot
he
r,
th
ou
gh

yo
u
m
ig
ht

be
ab
le
to

cr
ea
te
a
su
pe
r-
m
od
el
ab
ov
e
an
d

ha
rm

on
iz
e
th
e
tw
o
di
ff
er
en
ti
m
pl
em

en
ta
tio

ns

P3
:T

op
-d
ow

n
in
te
nt
io
na
lit
y

A
pp

lic
at
io
n
an
d
in
fr
as
tr
uc
tu
re

se
rv
ic
es

de
si
gn

st
ar
ts
fr
om

fe
at
ur
es

co
de
d
in
to

in
te
nt

m
od

el
s
th
at
de
sc
ri
be

th
es
e
fe
at
ur
es
,t
he
n
lo
ok

do
w
n
a
la
ye
r
at
a
tim

e
to

de
fin

e
ne
w
st
ru
ct
ur
es

th
at
ev
en
tu
al
ly

im
pl
em

en
tt
he
m

on
su
ita
bl
e
re
so
ur
ce
s.
If
yo
u
fo
llo

w
th
is
ap
pr
oa
ch
,

th
en

yo
u
ar
e
ab
le
to

m
ap

w
ha
ty

ou
ar
e
do
in
g
to

th
e
T
O
SC

A
st
an
da
rd

P4
:H

ig
he
r-
or
de
r
sc
op
e

A
n
in
te
nt

m
od
el
ch
an
ne
ls
a
hi
gh
er
-o
rd
er

pu
rp
os
e,
e.
g.
,a
ch
ie
vi
ng

an
ul
tim

at
e
Q
oS

re
su
lt
or

el
as
tic
al
ly

pe
rf
or
m
in
g
a
se
rv
ic
e.
In
te
nt

m
od

el
s
al
lo
w
to

sp
ec
if
y
se
rv
ic
es

as
ge
ne
ri
c
co
m
pu

ta
tio

ns
w
ith

a
la
rg
er

sc
op

e
co
m
pa
re
d
w
ith

ty
pi
ca
lp

ol
ic
y-
de
fin

iti
on

se
rv
ic
es
.F

or
ex
am

pl
e,
a
T
O
SC

A
in
te
nt

m
od
el
(i
.e
.,
a
T
O
SC

A
bl
ue
pr
in
t)
ca
n
ex
pr
es
s
bo
th

re
su
lt
an
d
op
er
at
io
n
of

co
m
pu
ta
tio

n:
if
a
re
su
lt
is

de
sc
ri
be
d
by

an
in
te
nt

m
od

el
,s
pe
ci
fic

ac
tio

ns
th
at
sh
ow

ho
w
to

ac
hi
ev
e
th
at
in
te
nt

m
ay

be
om

itt
ed

in
th
e
bl
ue
pr
in
t.
Si
m
ila

rl
y,
if
an

op
er
at
io
n
is
de
sc
ri
be
d
by

an
in
te
nt

m
od
el
,c
on
di
tio

ns
of

op
er
at
io
n
m
ay

be
le
ft
op
tio

na
l

P5
:M

et
a-
ce
nt
ri
c
de
si
gn

T
he

ke
y
ap
pr
oa
ch

be
hi
nd

in
te
nt

m
od

el
lin

g
is
G
oi
ng

“M
et
a-
”.
Sp

ec
if
yi
ng

th
e
“w

ha
t”
m
et
ad
at
a
is
th
e
in
te
nt

m
od

el
lin

g
ac
tiv

ity
its
el
f.

T
he

“h
ow

”
m
et
ad
at
a
is
th
e
co
rr
es
po
nd
in
g
fu
lfi
llm

en
ta
nd

pr
ov
is
io
ni
ng

be
ha
vi
or

du
ri
ng

se
rv
ic
e-
le
ve
la
ut
om

at
io
n
(i
.e
.,
th
e

or
ch
es
tr
at
or
’s
re
sp
on
si
bi
lit
y)
.G

oo
d
qu
al
ity

in
fr
as
tr
uc
tu
re
-a
s-
co
de

al
lo
w
s
th
e
“w

ha
t”
an
d
“h
ow

”
to

be
de
si
gn
ed

an
d
ex
pr
es
se
d
bo
th

in
m
od

ul
ar

pa
ck
ag
es
,w

hi
ch

ar
e
re
us
ab
le
by

as
se
m
bl
in
g
hi
gh

er
-l
ev
el
in
te
nt
s
ba
se
d
on

lo
w
er
-l
ev
el
co
m
po

ne
nt
s
-
th
is
ap
pr
oa
ch

fa
ci
lit
at
es

th
e
se
rv
ic
e
ag
ili
ty

w
hi
ch

ou
r
in
du
st
ri
es

ar
e
lo
ok
in
g
fo
r

P6
:R

es
ou
rc
e-
ce
nt
ri
c
in
te
nt

un
fo
ld
in
g

T
he

ch
al
le
ng
e
of

in
te
nt

m
od
el
s
is
th
at
yo
u
ev
en
tu
al
ly

ha
ve

to
de
liv

er
on

th
e
in
te
nt
,w

hi
ch

m
ea
ns

th
at
yo
u
ha
ve

to
be

ab
le
to

de
co
m
po
se

th
e
“i
nt
en
t”
in
to

re
al
iz
at
io
n
at
th
e
re
so
ur
ce

le
ve
l.
M
or
e
in

pa
rt
ic
ul
ar
,a

“s
er
vi
ce
”
ca
n
se
tp

ol
ic
ie
s
w
ith

in
its

in
te
nt

m
od

el
th
at
w
ou

ld
gu
id
e
th
e
or
ch
es
tr
at
or

in
to

pr
op
er

re
so
ur
ce

se
le
ct
io
n,
m
ea
ni
ng

th
at
a
se
rv
ic
e
co
ul
d
re
qu
ir
e
ot
he
r
se
rv
ic
es

pr
ef
er
ri
ng

on
e

im
pl
em

en
ta
tio

n
or

te
ch
no

lo
gy

ov
er

an
ot
he
r,
re
ga
rd
le
ss

of
te
ch
ni
ca
lq

ua
lit
ie
s

123



170 D. A. Tamburri et al.

themselves consistent with TOSCA Policies which spec-
ify a higher-order scope (P4). A final remark concerns the
overall assumption by which, in TOSCA, intent means that
relationship-to-capability mapping must remain constant:
whatever the assumptions behind Fig. 3, the capabilities on
the left-hand and middle side in the same example need to
be fulfilled, e.g., by instrumenting the substitutability and
substructural hierarchy outlined in Fig. 2.

6 Discussions and challenges

In our effort of eliciting the vision conveyed in this paper, we
made two key observations.

First, depending on what constructs and abstractions are
needed in TOSCA specifications, it would be interesting to
look into possible extendibility and refinement among dif-
ferent intent models in their dual nature, i.e., either design
or runtime. Users might for instance have several levels of
“intent” specification, e.g., partial intents, sub-intents and so
on. However, this feature to potentially provide partial spec-
ifications is reminiscent of goal modelling [24,25]. Research
should be invested in defining intent models more formally
such that a more specific mapping of their features, e.g., with
respect to goal models can be inferred.

Second, there seems to be an obvious pervasiveness char-
acteristic to be tracked and acted upon for intent models.
More specifically, intents have to be mapped with actionable
operations at some point in the orchestration workflow. At
that point, different options can be taken into account. The
two obvious extremes are: (1) intents are the top level entity
and are mapped to services, then how services are mapped
to resources does not affect nor concern intents; (2) intents
become thefirst-class citizen,meaning that they appear at any
level and therefore their intent can be a queryable character-
istic. The first option is indeed what applies to the TOSCA
standard and is currently covering the industrial scenarios we
encountered in our practice. Nevertheless, option (1) does not
preclude option (2).

In the future iterations of the TOSCA technical com-
mittee specification work, we plan to look further into the
above options to tentatively extend the standard in supporting
runtime intent models; these models would allow orchestra-
tors to maintain a steady-state “version” of the intent-model
such that operators can query and/or manipulate that version
for a variety of purposes, e.g., elasticity, QoS guarantees or
privacy-by-design, to name a few.

7 Conclusions and future work

This paper outlines and discusses intent modelling, an
infrastructure-as-code modelling and specification approach
that mixes several tenets from the declarative modelling

school and elaborates on the “implementation” of intentmod-
elling by means of the OASIS TOSCA standard.

Using simple and yet illustrative examples with connected
tool-support, we outlined how the intent modelling approach
offers quality of description and, as a consequence, quality
universal orchestrations for modern cloud service applica-
tions.

In the future we plan to elaborate further on the foun-
dations of intent modelling from a more theoretical and
practical perspective, offering practitioners an overview and
discussion on how intent modelling and the take that the
TOSCA standard has on it can aid in the resolution of com-
plex orchestration tasks such as infrastructure management.
In so doing, we plan to semi-formalise our experiences in
a full account from the trenches where TOSCA is being
applied, to offer a practicalwar-report that orchestration prac-
titioners can use for future references in their own practice.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Bass LJ, Weber IM (2015) DevOps - A Software Architect’s Per-
spective., ser. SEI series in software engineering. Addison-Wesley,
Boston

2. Peltz C (2003)Web services orchestration and choreography. Com-
puter 36(10):46–52

3. Kavakli E (1999) Goal-driven requirements engineering: mod-
elling and guidance. Ph.D. dissertation, Citeseer

4. LiptonP, PalmaD,RutkowskiM,TamburriDA (2018)Tosca solves
big problems in the cloud andbeyond! IEEECloudComput. https://
doi.org/10.1109/MCC.2018.111121612

5. Brunet J, Semmak F, Laleau R, Gnaho C (2008) Using variants
in kaos goal modelling. In: ICEIS (3-2), J. Cordeiro and J. Filipe,
Eds., pp. 339–344, 978-989-8111-38-8

6. Binz T, Breiter G, Leymann F, Spatzier T (2012) Portable cloud
services using tosca. IEEE Internet Comput 16(3):80–85. [Online].
Available: http://dblp.uni-trier.de/db/journals/internet/internet16.
html#BinzBLS12

7. Breiter G, Behrendt M, Gupta M, Moser S, Schulze R, Sippli I,
Spatzier T (2014) Software defined environments based on tosca
in IBM cloud implementations. IBM J Res Dev 58(2):1–10

8. Brogi A, Soldani J (2016) Finding available services in
tosca-compliant clouds. Sci Comput Program 115–116:177–
198. [Online]. Available: http://dblp.uni-trier.de/db/journals/scp/
scp115.html#BrogiS16

9. Martino BD, Cretella G, Esposito A (2017) A comparison between
tosca and openstack hot through cloud patterns composition.
IJGUC 8(4):299–311. [Online]. Available: http://dblp.uni-trier.de/
db/journals/ijguc/ijguc8.html#MartinoCE17

10. Goedertier S, Vanthienen J, Caron F (2015) Declarative business
process modelling: principles and modelling languages. Enterp IS
9(2):161–185

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/MCC.2018.111121612
https://doi.org/10.1109/MCC.2018.111121612
http://dblp.uni-trier.de/db/journals/internet/internet16.html#BinzBLS12
http://dblp.uni-trier.de/db/journals/internet/internet16.html#BinzBLS12
http://dblp.uni-trier.de/db/journals/scp/scp115.html#BrogiS16
http://dblp.uni-trier.de/db/journals/scp/scp115.html#BrogiS16
http://dblp.uni-trier.de/db/journals/ijguc/ijguc8.html#MartinoCE17
http://dblp.uni-trier.de/db/journals/ijguc/ijguc8.html#MartinoCE17


TOSCA-based Intent modelling: goal-modelling for infrastructure-as-code 171

11. Pichler P, Weber B, Zugal S, Pinggera J, Mendling J, Reijers H
(2012) In: Business process management workshops, ser. lecture
notes in business information processing. In: Daniel F, Barkaoui
K, Dustdar S (eds) Imperative versus declarative process modeling
languages: An empirical investigation. Springer, Berlin, pp 383–
394

12. Van Lamsweerde A (2009) Requirements engineering: from sys-
tem goals to UML models to software specifications. Wiley
Publishing, Hoboken

13. Ernst NA, Yu Y, Mylopoulos J (2006) Visualizing non-functional
requirements. In: 2006 first international workshop on require-
ments engineering visualization (REV’06-RE’06 Workshop).
IEEE, pp. 2–2

14. Santos E, Nguyen H (2009) Enabling a collaborative problem-
solving framework through user intent modeling of the analytic
process. DTIC Document, Technical Report

15. Bratman ME (1990) Intention, plans and practical reason. Harvard
University Press, Cambridge

16. Gall NR (2000) John d. greenwood, ed., the future of folk psychol-
ogy: Intentionality and cognitive science; scott m. christensen and
dale r. turner, eds., folk psychology and the philosophy of mind.
Minds Mach 10(3):416–423

17. Malle BF, Moses LJ, Baldwin DA (2001) Intentions and intention-
ality: foundations of social cognition. MIT press, Cambridge

18. Courbis C, Finkelstein A (2005) Weaving aspects into web service
orchestrations. In: ICWS ’05: Proceedings of the IEEE interna-
tional conference on web services (ICWS’05). Washington, DC,
USA: IEEE computer society, pp 219–226

19. Nitto ED, Jamshidi P, Guerriero M, Spais I, Tamburri DA (2016)
A software architecture framework for quality-aware devops. D.
Ardagna, G. Casale, A. van Hoorn, and F. Willnecker, Eds. ACM,
pp. 12–17

20. OMG (2011) Business Process Model and Notation (BPMN).
Object Management Group, formal/2011-01-03. www.omg.org

21. Kuang L, Wu J, Deng S, Li Y, Wu Z (2006) Service classifica-
tion using adaptive back-propagation neural network and semantic
similarity. In: CSCWD. IEEE, pp. 834–838

22. TOSCA, “TOSCA Simple Profile in YAML Version 1.0,” OASIS
Standardization Board formal/2016-08-17, Tech. Rep., 2016.
[Online]. Available: http://docs.oasis-open.org/tosca/TOSCA-
Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.
0.pdf

23. Lipton P, Palma D, Rutkowski M, Tamburri DA (2018) TOSCA
solves big problems in the cloud and beyond! IEEE cloud comput-
ing 5:37–47

24. Lamsweerde AV (2001) Goal-oriented requirements engineering:
A guided tour. In: Proceedings of the 5th IEEE international sym-
posium on requirements engineering, vol. 249. Toronto, Canada,
p. 263

25. Regev G, Wegmann A (2005) Where do goals come from: the
underlying principles of goal-oriented requirements engineering.
In: RE ’05: Proceedings of the 13th IEEE international conference
on requirements engineering (RE’05). IEEE Computer Society,
Washington, DC, USA, pp 253–362

Damian A. Tamburri is an Assis-
tant Professor at the Technical
University of Eindhoven and the
Jheronimus Academy of Data Sci-
ence in s’Hertogenbosch, The
Netherlands. He serves as active
voting member of the TOSCA
Technical Committee. His current
research interests lie mainly in
advanced software architecture
styles (e.g., SOA, Big-Data, etc.),
advanced software architecting
methods (e.g., MDA, continuous
architecting and DevOps), and
social software engineering
(Socio-technical congruence,

Measuring Social Debt, etc.) and their investigation by means of
Empirical Software Engineering. Contact him at d.a.tamburri@tue.nl.

Willem-Jan Van Den Heuvel
is a full professor in Information
Systems and managing director of
the European Research Institute
of Services Science (ERISS). He
is currently the scientific director
of several NL and H2020 projects
including the recently funded
H2020 ANITA project focusing
on evolutionary and collaborative
software technology for digital and
cyber crime-fighting. His research
interests are at the cross-junction
of software service systems and
business process management with

an emphasis on (global) networked enterprises. In particular, his
expertise revolves around the following major research themes: busi-
ness process management, Big data analytics, software service engi-
neering (including service governance) and software legacy services
modernization. In RADON, he will act as Scientific coordinator.

Chris Lauwers is the Founder
and Chief Executive Officer of
Ubicity Corporation. Chris has 25
years of experience designing and
building networking and commu-
nications solutions for large enter-
prises and service providers. Prior
to Ubicity, Chris served as Chief
Technology Officer of Avistar
Communications Corp from 2001
to 2012. He was also Avistar’s
Vice President of Engineering
from 1996 to 2001 and Director of
Engineering from 1994 to 1996.
Before Avistar, he served as Prin-

cipal Software Architect at Vicor, Inc. from 1990 to 1994 and as a
Research Associate at Olivetti Research Center from 1987 to 1990.
Chris holds a B.S. in Electrical Engineering from the KU Leuven of
Belgium and M.S. and Ph.D. degrees in Electrical Engineering and
Computer Science from Stanford University. He holds 91 patents in
the areas of presence-based interactions, desktop video, recorded and
live media at the desktop, multimedia documents, and data sharing.

123

www.omg.org
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf
http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.0/TOSCA-Simple-Profile-YAML-v1.0.pdf


172 D. A. Tamburri et al.

Paul Lipton is VP of Indus-
try Standards and Open Source at
CA Technologies where he coor-
dinates strategy and participation
in these areas. He co-chairs the
TOSCA Technical Committee, and
also serves on the Board of Direc-
tors of OASIS, the Eclipse Foun-
dation, the OMG, and the DMTF.
He is an approved US delegate
to the SO/IEC JTC 1 initiatives
focused on cloud standards, Inter-
net of Things, and Smart Cities.
Contact him at Paul.Lipton@ca.

com.

Derek Palma is Founder and
CTO at Vnomic, a pioneer in
the declarative delivery and
governance of complex applica-
tions on software defined infras-
tructures. He is an expert in model
based systems and desired-state
automation, co-leader of the
TOSCA Instance Model group,
and OASIS TOSCA co-editor.
Contact him at dpalma@vnomic.
com.

Matt Rutkowski is Senior Engi-
neer and Master Inventor at IBM
and has worked to develop open
infrastructure and industry stan-
dards and open source for over
15 years in areas such as Govern-
ment, Banking and Digital Media
and Entertainment. Most recently,
he has been working on cloud,
serverless technology, and soft-
ware security standards. He was
lead editor for the OASIS IDCloud
TC, founder and Co-Chair of the
DMTF Cloud Auditing Work
Group and also is Co-Chair of the
OASIS TOSCA Interop Subcom-

mittee and a Technical Committee contributor/editor. Contact him at
mrutkows@us.ibm.com.

123


	TOSCA-based Intent modelling: goal-modelling for infrastructure-as-code
	Abstract
	1 Introduction
	1.1 Structure of the paper.

	2 Why intent modelling?
	2.1 Intent- versus goal-modelling
	2.2 Intent defined

	3 Towards intent modelling: design paradigms compared
	3.1 Imperative design
	3.2 Declarative design
	3.3 Intent design
	3.4 TOSCA-based intent design

	4 TOSCA in pills
	5 Illustrative example
	5.1 Substructural hierarchy
	5.2 Symmetric idempotence
	5.3 Top-down intentionality

	6 Discussions and challenges
	7 Conclusions and future work
	References




