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Abstract
DevOps entails a set of practices that speed up the time needed to rollout software product changes. One such practice
is automating deployment and delivery with infrastructure-as-code, i.e., automated scripts that ideally carry out 1-click
deployment. Providing effective infrastructure-as-code poses the tricky issue in determining the modelling and information
representation paradigm (e.g., Imperative, Declarative, etc.) most compatible with specifying infrastructural code. The OASIS
TOSCA standard (“Topology and Orchestration Specification for Cloud Applications”) is the de-facto and de-iure standard
language for infrastructure-as-code, and adopts an innovative take called “intent modelling”. This paper articulates the
foundations of this modelling approach incorporating the most related modelling paradigm, that is, goal-modelling. We
elaborate on it with a real but simple industrial sample featuring the TOSCA language.

Keywords DevOps · Infrastructure-as-code · Orchestration · Microservices · TOSCA · Goal-modelling

1 Introduction

According to Len Bass’ seminal book [1], DevOps means
meshing software development and operations processes
together by augmenting them with any set of practices that
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accelerate software product changes rollout—infrastructure-
as-code being one such practice. This paper elaborates on
intent modelling, a way to design infrastructure-as-code
which is both more generalisable and effective for orches-
tration, that is, the process of integrating two or more
applications and/or services together in an automated fash-
ion, or synchronize data and application management in
real-time [2]. We illustrate intent modelling elaborating on
its foundational aspects and characteristics, as distilled while
designing and experimenting with TOSCA, the “Topology
and Orchestration Specification for Cloud Applications”, the
de-facto and de-iure industrial standard for infrastructure-as-
code (IasC).

In our standardization endeavour, we noticed that, on
the one hand, IasC promises to deliver fast and pain-
less continuous deployment using appropriate continuous
deployment scripts and similar automation mechanisms—
think of Docker1 or Chef.2

On the other hand, IasC and its effective orchestration
require models and descriptions which are capable of pro-
viding abstract, structural, and behavioral aspects being
generic enough to encompass not only how the infrastruc-

1 https://www.docker.com/.
2 https://www.chef.io/chef/.
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ture should behave, but also service property specifications
that allow the orchestrator to “substitute” services while
maintaining service properties—such specifications closely
relate to what is known as goal-modelling [3], a revo-
lutionary paradigm for requirements engineering focusing
on logically-related abstractions that gradually reduce the
abstraction-level among software requirements of any kind,
and with respect to any constraint. In the context of TOSCA,
the same concept applies. For example, imagine a run-
ning infrastructure relying on external service providers
for critical services. An imperative programming of infra-
structure-as-code would force infrastructure designers to
elaborate all possible state-changes in the projected behav-
ior for that infrastructure while a declarative approach would
describe the logic of the structure rather than state-changes
or control-flow.

The research question we are exploring in this article
is defined as follows: “what kind of infrastructure-as-code
(IasC) description (e.g., either declarative or imperative) fits
with the specification power achieved by the TOSCA stan-
dard?”. For example, what available descriptive frameworks
can successfully abstract property statements such as: “when
Service S1 goes down it needs to be substituted within 10s
no matter what the underlying provisioning is”. From the
TOSCA industrial perspective [4], we compared the series
of statements as above that TOSCA grammar covers with
state of the art requirements and specifications engineering
frameworks and found that TOSCA is indeed close to Goal-
Modelling, namely, the decompositional and incremental
subdivision of higher-level goals into more concrete sub-
goals [3]. Conversely, TOSCA adds an intent connotation,
namely, a specific goal whose *sub-goals* need to be satis-
fied whatever the costs or consequences over the sub-goals.
While on one hand, goal-modelling aims at “keeping all goals
satisfied” [5], intent-modelling aims at keeping the highest-
level goal (i.e., the intent) satisfied by consistently changing,
tuning, substituting, or adapting any sub-level goal.

The above contribution is beyond the current state of
the art which has currently focused on synthesizing the
TOSCAView over IasC for cloud applications [6], or explor-
ing specific instances of TOSCA in multiple domains (e.g.,
software-defined everything [7] or service discovery [8]) and
comparing between different TOSCA implementations [9].

We conclude that IasC specifications reflecting the above
intentional semantics are critical for resilient and long-lived
orchestrations. Stemming from these premises, we elabo-
rate on intent-modelling focusing on how the concept came
about, its key properties, and limitations, illustrating with an
industrial example.

1.1 Structure of the paper.

The rest of this paper is structured as follows. Section 2 elab-
orates on common modelling paradigms such as declarative
[10] or imperative modelling [11], and elaborates on their
relationwith respect to intentmodelling. Section 3 elaborates
on intent modelling key characteristics and design principles
while Sect. 5 illustrates those characteristics and principles
using real-life scenario examples. Finally, Sects. 6 and 7 dis-
cuss our results and conclude the paper elaborating on future
work.

2 Why intent modelling?

In code-centric software development, attention is commonly
laid on onemain artefact: code. Functional correctness, extra-
functional guarantees, even the quality of the development
process is assessed on the produced code. The focus is sim-
ply on the “how” the software achieves its goals. Although
crucial, focusing on the “how” implies specificity and bias
towards specific solutions. In the era of cloud-based systems
of systems, IoT (Internet-of-Things) and in general loosely
coupled heterogeneous and flexible configurations of sys-
tems where XaaS (Everything as a Service) represents the
common denominator, the “how” is only a small piece (not
as crucial as one would believe) of the information needed
for enabling intra- and inter-system communication and col-
laboration.

2.1 Intent- versus goal-modelling

The previously introduced conjecture around the necessity
of intentional or intent modelling shares foothold in many
software-related disciplines, such as requirements engineer-
ing [12]. Goal modelling, for instance, aims at representing,
besides “what” the system shall do, even “why” a certain
functionality is needed, and “how” it could be implemented
[13].

On the one hand, software development is still lagging
behind in this respect, probably also due to the strained hunt
for ever slimmer and more agile development processes.

On the other hand, several specific software development
paradigms, such as model-driven service- and agent-oriented
software development in their agile variants, and espe-
cially paradigms stressing collaboration among cross-role
stakeholders, such as DevOps, have what it takes and can
tremendously benefit from embracing the “what” and “why”
to complement the “how” in software development.

More specifically, in the context of cloud applications, we
observed that an augmented version of goal-modelling, the
so-called intent modelling [14], is pivotal for enforcing qual-
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ity of description in cloud software development in general,
in particular in the context of DevOps lifecycle scenarios.

2.2 Intent defined

We refer to intent(ion)s and intentionality in this context as
the characteristic which is commonly ascribed to humans in
social sciences and social networks research, namely, Inten-
tion is a mental state (hence, an abstract representation of
a situation and its interpretation) that represents a commit-
ment to carrying out an action or actions in the future [15].
Intention involves abstractmental activities such as planning,
forethought, and situational awareness [16].

TOSCA gives the above notion of intent an engineering
applicability connotation [17].

Inmore formal terms, aTOSCA topology template defines
a single intent I in the scope of the template. Intent I is, in
turn, obtained by the coordinated intents of single nodes in
the template. Therefore:

I (T ) = ∪ I (Node 1...n); (1)

Where I(T) is the intent hardcoded in the blueprint for service
template T, while I(Nodex ) is the intent defined in the scope
of the node type definition for node Nodex and, finally, X is
the range of nodes in blueprint T.

As previously defined in Sect. 2.1, the notion of intent does
not aim at “Keeping All Objectives Satisfied” (as originally
defined for goal modelling). Rather, the key goal of TOSCA-
based intent modelling is that of satisfying the highest-level
goal I(T) in Eq. 1. This corollary also means that, while sat-
isfying I(T) is vital, keeping sub-intents for nodes Nodex is
*not*.

[Definition] Intent modelling Intent modelling
entails modelling infrastructure blueprints by specify-
ing a highest-level goal to be satisfied, regardless of how
sub-level intents or goals are satisfied.

3 Towards intent modelling: design
paradigms compared

3.1 Imperative design

The first evolution step in modelling and implementing
software systems essentially consisted in moving from
imperative to declarative programming where a number of
abstraction devices (e.g., models) hide away implementation
details and allow more creative software design reasoning.
With the onset of complex cloud applications and the need

for their long-lived infrastructure management, this evolu-
tion process is augmented with requirements and operational
dynamics connected to complex distributed services orches-
tration, i.e., the automated arrangement, coordination, and
management of computer systems, middleware, and services
[18]. Also, complex cloud applications forced the adoption
of DevOps [1,19] and infrastructure-as-code, i.e., specifying
infrastructure blueprints as if they were software code to be
versioned, structured according to specific design-patterns,
etc. This is where intent modelling comes in. The inception
of intent modelling refers to the inability of imperative and
declarative approaches to fully express not only the struc-
ture and behavior of complex cloud applications but their
intended steady-state, i.e., the general behavior and structure
of the application, its related middleware and their internal
status. To grasp themotivation behind intentmodelling, let us
walk through the evolutionary steps that led to intent models
in the first place.

For example, imagine imperatively addressing the mod-
elling and execution of a highly-distributed modern service-
based solution. An imperative approach would essentially
makehighly-distributedorchestrationunfeasible: therewould
beway toomanyvariables to control or possible states to fore-
see, not to mention concurrency or similar issues. Figure 1
shows a simple imperative model expressed in BPMN [20]:
whatever behavior is expressed in the model is licit, given
certain pre- and post-conditions.

3.2 Declarative design

Conversely, from a declarative perspective, specification
approaches have at least two possible foci: (a) focus on the
structure of what needs to be (re-)deployed; (b) focus on
the behavior (or functionality) that needs to be maintained
no matter what, assuming that an orchestrator can create an
appropriate service structure that guarantees that behavior.

On one hand, in (a) a classical declarative model could
be extended to take into account that it may not be possi-
ble to “create” entities that reflect the proposed orchestration
model, but an orchestrator may require additional services
to go through a set of state changes in order to achieve what
the model specifies. In terms of service orchestration, this
is called “desired state model” or “steady-state model”, an
extension of “declarative models” that focus exactly on the
service state that an infrastructure shall maintain regard-
less of the how that desired state is actually maintained.
For example, the model can contain annotations that allow
generalisable substitution and adaptation based on semantic-
similarity principles [21].

On the other hand, (b) is a policy-based approach, where
desired behavior is expressed in terms of parameters that
need to fit within a set rules and constraints. A classical
declarative model for this policy-based approach could be
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Fig. 1 Imperative modelling example, BPMN; data-flows and services involved are modelled and executed exactly as modelled

extended to a point where requested behavior and function-
ality can be expressed in a flexible manner using natural
language constructs rather than complex policy languages.
This approach also presumes some type of mapping service
inside the orchestrator that translates “intent”3 expressions
into software-consumable constructs. For example, the Cisco
APIC policy infrastructure controllers approach follows this
general orchestration approach.

3.3 Intent design

As defined in Sect. 2.2, TOSCA and intent models posit
a third, more generic, and hence standardisable, option –
intent design.

Under the assumptions and definitions previously intro-
duced in Sect. 2.2, a single modelling notation can combine
the power of expression of (1) policy-based approaches with
the modelling power of (2) desired steady-state approach.

In turn, the steady-state of an intent design (e.g., a Topol-
ogy template in the TOSCA parlance) is defined as the length
of operational time inwhich the samedesirable intent ismain-
tained, that is, in TOSCA terms, the time that the topology
template is maintained operational.

3 http://tinyurl.com/j5vkxee.

The above combination of (1) and (2) is realised within
TOSCA by keeping the template blueprint description topo-
logical, that is, concernedwith the properties of space (topol-
ogy nodes and edges) that are preserved under continuous
deformations (external forces such as scale, backpressure,
and more). At the same time, the template blueprint descrip-
tion is kept abstract enough to allow isolation of steady-state
model parts, i.e., functional areas of the topology that may
be substituted as long as required relations are maintained.

Finally, the notation stemming from this combined app-
roach uses support policies that predicate on the above
substitutable elements, as well as the substitution process
itself.

3.4 TOSCA-based intent design

As part of our 5+ years’ experience in chiselling and refin-
ing TOSCA and experimenting with it in our own industrial
scenarios, we now begin to understand that the right bal-
ance between the above combined elements (1) policy-based
and (2) desired steady-state modelling was achieved. The
TOSCA Yaml 1.1 specification4 intermixes both almost
equally, essentially by providing basic constructs and means

4 http://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/.
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Fig. 2 TOSCA-based substitutability, i.e., topology intent and steady state is maintained as long as capabilities and requirements matching are
upheld

to specify entire cloud application infrastructure-as-code
using topology templates, i.e., sets of strongly-typed nodes
related with strongly-typed relationships [22,23].

In relation to the intent modelling concepts defined
previously, the TOSCA standard underlies the following
modelling conjecture:

The intent hard-coded in a TOSCA specification is
maintained as long as types of nodes are consistent, and
relationship-to-capability matchings are maintained.

In other words, as long as there is strong type-consistency
and there is a capability that matches each relationship
requirement in the TOSCA topology template, then the intent
or steady-state encoded in the TOSCA blueprint can be
maintained by the orchestrator consuming that blueprint,
indefinitely.

Figure 2 outlines a simple example of the above intent
modelling conjecture and its substitutability property (marked
as P1 in the figure, and recurring twice in the illustra-
tion). Subsequently, Fig. 3 features an illustrative case
featuring the monitoring tier known as ELK (Elastic-
Search5/Logstash6/Kibana7). In a TOSCA topology, the
ELK can be part of an intent model that includes three tiers,
two application tiers and a monitoring tier. Whether or not an
ELK tier is available, the intent of the model hard-coded into
the blueprint can be maintained as long as the “collectd” and
“rsyslog” requirements (lower-left part of Fig. 3, highlighted
in red) are met.

TOSCA-based intent modelling features six distinctive
characteristics thatwedistilled bydirect experience (reported

5 https://www.elastic.co/products/elasticsearch.
6 https://www.elastic.co/products/logstash.
7 https://www.elastic.co/products/kibana.

on Table 1) reflecting: (a) intent models as hierarchies of
highly composable and policy-based (micro-)services (see
P1 and P6 on Table 1); (b) intent design and implementa-
tion as a top-down specification processes (see P3 and P4 on
Table 1); (c) microservice symmetry and idempotence as a
paramount best practices for good-quality IasC specifications
(see P2 and P5 on Table 1).

Assuming that the above modelling properties hold, it
follows that any TOSCA-enabled node template (i.e., the
instance of a node that can be deployed as part of a topol-
ogy) can also be substituted with a “compatible” topology,
i.e., a TOSCA topology that provides the necessary relation-
ship requirements of the node it is supposed to substitute.
Figure 2 provides an example for this feature: a cloud applica-
tion is essentially a set of node typeswith corresponding node
relationships; nodes can be substituted asmany times as tech-
nologically possible, as long as capabilities and requirements
matching are maintained, that is, as long as topology intent
is maintained. Subsequently, TOSCA policies are Event-
>Condition->Action statements used to control or factor out
undesirable behaviors, e.g., based on specific desired QoS
characteristics.

4 TOSCA in pills

TOSCA is designed to express the kinds of entities, rela-
tionships, constraints and semantics encountered across the
diverse IT domains [4]. TOSCA Service Templates are
reusable and composable models that can increase return on
investments bymaking it easy to deploy, configure, and oper-
ationally manage more valuable and complex applications
throughout their lifecycle from TOSCA models of existing
applications and services.
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Fig. 3 TOSCA-based intent modelling, i.e., modelling abstract node templates connected with typed relations that refer to relationship types

TOSCA Service Templates describe the overall appli-
cation/service topology, and consist of a graph of Node
Templates that model the application/service components
and Relationship Templates that model the relationships
and cardinalities between those components, e.g., various
kinds of cloud consumer-provider dependencies such as
containment and connection. Policy Templates specify the
necessary operational constraints on specific parts of the
application/service topology.

Furthermore, TOSCA provides a type system to concisely
express the schema of the template entities, e.g., node types,
relationship types, requirement types, capability types, arti-
fact types and policy types). TOSCA orchestrators and tools
process and validate Service Templates by referring to the
respective type for each template entity. Naturally, essential
types expressing fundamental concepts such as storage, net-
work, and compute are defined and extended to higher-level
abstractions, e.g., BlockStorage, Webserver, application and
infrastructure components, and much more.

5 Illustrative example

In Figs. 2 and 3 we can see how intent modelling concepts of
substructural hierarchy (P1), symmetric idempotence (P2),
top-down intentionality (P3) and higher-order scope (P4) are
provided in TOSCA.

5.1 Substructural hierarchy

Let us consider P1 in Fig. 2. In the topology defining the
sample Cloud Application (Service Template 1), we can find
an abstract Monitoring Service in a descriptive form; that is

to say at that hierarchical level there is no prescribed way on
the “how” that service shall be materialised, but rather a pre-
scribed definition of the capabilities and requirements such a
materialisation shall match to maintain the modelled intents.
Service Template 2 provides one of the possible valid mate-
rialisations of the Monitoring Service. Also in this topology,
substructural hierarchy is reveals itself whenmodelling Ana-
lytics Service. Similarly, in Fig. 3 we can see a sub-structure
of hierarchies defined at design time to specify a purpose.

5.2 Symmetric idempotence

in the case of idempotence, more specifically the case of
interchangeability (Corollary 1), is implied by the reason-
ing above. In fact, any of the topologies is meant to be
replaced by one materialisation at runtime, but many materi-
alisations are viable for each of them. Take the case of ELK
in Fig. 3; Kibana is the designated materialisation plugin for
data visualisation, but, in principle Grafana8 could serve the
purpose equally well being Kibana and Grafana essentially
interchangeable.

5.3 Top-down intentionality

is shown in Fig. 3 where the infrastructure designer is
driven into specifying intentions from the top-most generic
TOSCA service template (Application Tier) to the most spe-
cific ones (ELK) – runtime intent models address realisation
which becomes then the responsibility of the orchestrator.
In turn, requirements shown in Fig. 3 specify functional-
ity to be addressed by whatever means. Requirements are

8 http://grafana.org/.
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themselves consistent with TOSCA Policies which spec-
ify a higher-order scope (P4). A final remark concerns the
overall assumption by which, in TOSCA, intent means that
relationship-to-capability mapping must remain constant:
whatever the assumptions behind Fig. 3, the capabilities on
the left-hand and middle side in the same example need to
be fulfilled, e.g., by instrumenting the substitutability and
substructural hierarchy outlined in Fig. 2.

6 Discussions and challenges

In our effort of eliciting the vision conveyed in this paper, we
made two key observations.

First, depending on what constructs and abstractions are
needed in TOSCA specifications, it would be interesting to
look into possible extendibility and refinement among dif-
ferent intent models in their dual nature, i.e., either design
or runtime. Users might for instance have several levels of
“intent” specification, e.g., partial intents, sub-intents and so
on. However, this feature to potentially provide partial spec-
ifications is reminiscent of goal modelling [24,25]. Research
should be invested in defining intent models more formally
such that a more specific mapping of their features, e.g., with
respect to goal models can be inferred.

Second, there seems to be an obvious pervasiveness char-
acteristic to be tracked and acted upon for intent models.
More specifically, intents have to be mapped with actionable
operations at some point in the orchestration workflow. At
that point, different options can be taken into account. The
two obvious extremes are: (1) intents are the top level entity
and are mapped to services, then how services are mapped
to resources does not affect nor concern intents; (2) intents
become thefirst-class citizen,meaning that they appear at any
level and therefore their intent can be a queryable character-
istic. The first option is indeed what applies to the TOSCA
standard and is currently covering the industrial scenarios we
encountered in our practice. Nevertheless, option (1) does not
preclude option (2).

In the future iterations of the TOSCA technical com-
mittee specification work, we plan to look further into the
above options to tentatively extend the standard in supporting
runtime intent models; these models would allow orchestra-
tors to maintain a steady-state “version” of the intent-model
such that operators can query and/or manipulate that version
for a variety of purposes, e.g., elasticity, QoS guarantees or
privacy-by-design, to name a few.

7 Conclusions and future work

This paper outlines and discusses intent modelling, an
infrastructure-as-code modelling and specification approach
that mixes several tenets from the declarative modelling

school and elaborates on the “implementation” of intentmod-
elling by means of the OASIS TOSCA standard.

Using simple and yet illustrative examples with connected
tool-support, we outlined how the intent modelling approach
offers quality of description and, as a consequence, quality
universal orchestrations for modern cloud service applica-
tions.

In the future we plan to elaborate further on the foun-
dations of intent modelling from a more theoretical and
practical perspective, offering practitioners an overview and
discussion on how intent modelling and the take that the
TOSCA standard has on it can aid in the resolution of com-
plex orchestration tasks such as infrastructure management.
In so doing, we plan to semi-formalise our experiences in
a full account from the trenches where TOSCA is being
applied, to offer a practicalwar-report that orchestration prac-
titioners can use for future references in their own practice.
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