Distributed Computing (2020) 33:1-40
https://doi.org/10.1007/500446-019-00360-4

®

Check for
updates

Some lower bounds in dynamic networks with oblivious adversaries
Irvan Jahja' - Haifeng Yu' - Yuda Zhao?

Published online: 7 August 2019
© The Author(s) 2019

Abstract

This paper considers several closely-related problems in synchronous dynamic networks with oblivious adversaries, and
proves novel £2(d + poly(m)) lower bounds on their time complexity (in rounds). Here d is the dynamic diameter of the
dynamic network and m is the total number of nodes. Before this work, the only known lower bounds on these problems
under oblivious adversaries were the trivial §2 (d) lower bounds. Our novel lower bounds are hence the first non-trivial lower
bounds and also the first lower bounds with a poly(m) term. Our proof relies on a novel reduction from a certain two-party
communication complexity problem. Our central proof technique is unique in the sense that we consider that communication
complexity problem with a special leaker. The leaker helps Alice and Bob in the two-party problem, by disclosing to Alice

and Bob certain “non-critical” information about the problem instance that they are solving.

Keywords Dynamic networks - Oblivious adversary - Adaptive adversary - Lower bounds - Communication complexity

1 Introduction

Dynamic networks [24] is a flourishing topic in recent years.
We consider a synchronous setting where the m (fixed) nodes
in the network proceed in synchronous rounds. Each node has
a unique id of size O(logm), and the messages are of size
O (logm) as well. The nodes never fail. The topology of the
dynamic network can change from round to round, as deter-
mined by an adversary, subject to the only constraint that
the topology in each round must be a connected and undi-
rected graph. The time complexity of a protocol is the number
of rounds needed for all nodes to generate the final output,
over the worst-case adversary, worst-case initial values, and
average coin flips of the protocol. We consider a number of

The authors of this paper are alphabetically ordered. This work is partly
supported by the research Grant MOE2014-T2-2-030 from Singapore
Ministry of Education Academic Research Fund Tier-2. This work was
done while Y. Zhao was in National University of Singapore.

A preliminary conference version [18] of this paper is published in
the 31st International Symposium on Distributed Computing, October
2017.

B Haifeng Yu
haifeng @comp.nus.edu.sg

National University of Singapore, 15 Computing Drive,
Singapore 117418, Republic of Singapore

Grab, Singapore, Republic of Singapore

fundamental distributed computing problems within such a
context:

— CONSENSUS Each node has a binary input. The nodes
aim to achieve a consensus (with the standard agreement,
validity, and termination requirements) and output the
final decision.

— LEADERELECT Each node should output the leader’s id.

— CONFIRMEDFLOOD A certain node v aims to propagate a
token of size O(logm) to all other nodes, and wants to
further confirm that all nodes have received the token.!
Formally, node v’s output is correct only if by the time
that v outputs, the token has already been received by all
the nodes. (The value of the output is not important.) The
remaining nodes can output any time.

— AGGREGATION Each node has a value of O (logm) bits,
and the nodes aim to compute a certain aggregation
function over all these values. We consider two specific
aggregation functions, SUM and MAX.

Let d be the (dynamic) diameter (see definition later)
of the dynamic network. (Note that since the topology is
controlled by an adversary, the protocol never knows d
beforehand.) Given an optimal protocol for solving any

1" Such confirmation does not have to come from explicit acknowledge-
ments, and can be via implicit means, such as counting the number of
rounds.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00446-019-00360-4&domain=pdf

I. Jahja et al.

of the above problems, let tc(d, m) denote the protocol’s
time complexity, when it runs over networks with d diam-
eter and m nodes. It is easy to see that tc(d, m) crucially
depends on d, since we trivially have tc(d,m) = £2(d).
Given such, this paper focus on the following central
question:

Ignoring polylog(m) terms, is tc(d, m) independent of
the network size m?

Answering this fundamental question will reveal whether
the complexity of all these basic problems is due to the diam-
eter or due to both the diameter and the network size.

Existing results. If the network were static, then building
a spanning tree would solve all these problems in either
O(d) or O(dlogm) rounds, implying a yes answer to the
above question. In dynamic networks, the picture is more
complex. In a dynamic network model without congestion
(i.e., message size unlimited), Kuhn et al. [22] have pro-
posed elegant upper bound protocols with O(d) complexity
for all these problems. Hence the answer is yes as well. For
dynamic networks with congestion (i.e., message size lim-
ited to O(logm)), Yu et al. [29] recently have proved that
tc(d, m) = O(d logm) for CONSENSUS and LEADERELECT,
if the nodes know a good estimate on m.2 Hence the answer
is yes in such cases. On the other hand, if nodes’ estimate
on m is poor,3 then Yu et al. [29] prove a lower bound of
£2(d + poly(m)) for CONSENSUS and LEADERELECT, imply-
ing a no answer. For CONFIRMEDFLOOD and AGGREGATION,
they have also proved tc(d, m) = §2(d + poly(m)), even if
the nodes know m. This implies a no answer for those two
problems.

All the lower bound proofs in [29], however, critically
rely on a powerful adaptive adversary: In each round, the
adaptive adversary sees all the coin flip outcomes so far of
the protocol & and manipulates the topology based on those.
In particular, in each round the adversary sees whether each
node will be sending (and can then manipulate the topology
accordingly), before the nodes actually send their messages.
Their proof breaks under oblivious adversaries, which do not
see &’s coin flip outcomes and have to decide the topologies
in all the rounds before & starts.*

In summary, our central question of whether tc(d, m) is
largely independent of the network size m has been answered
in: (i) static networks, (ii) dynamic networks without con-
gestion under both adaptive and oblivious adversaries, and

. . /_
2 More precisely, if the nodes know m’ such that |“>"| < 1 — ¢

for some positive constant c. Obviously, this covers the case where the

nodes know m itself.

m'—m
m

% or above. Obviously, this covers the case where the nodes do not have

any knowledge about m.

3 More precisely, if the nodes only knows m’ such that | | reaches

4 Note however that all upper bounds, from [22,29], will directly carry
over to oblivious adversaries.

@ Springer

(ii1) dynamic networks with congestion under adaptive adver-
saries.

Our results. This work gives the last piece of the puz-
zle for answering our central question. Specifically, we
show that in dynamic networks with congestion and under
oblivious adversaries, for CONSENSUS and LEADERELECT,
the answer to the question is no when the nodes’ esti-
mate on m is poor. (If the nodes’ estimate on m is good,
results from [29] already implied a yes answer.) Specifi-
cally, we prove a novel £2(d + poly(m)) lower bound on
CONSENSUS under oblivious adversaries, when the nodes’
estimate on m is poor. This is the first non-trivial lower
bound and also the first lower bound with a poly(m)
term, for CONSENSUS under oblivious adversaries. The best
lower bound before this work was the trivial £2(d) lower
bound. Our CONSENSUS lower bound directly carries over to
LEADERELECT since CONSENSUS reduces to LEADERELECT
[29].

Our approach may also be extended to CONFIRMEDFLOOD,
which in turn reduces to SUM and MAX [29]. But since the
lower bound proof for CONFIRMEDFLOOD is similar to and
in fact easier than our CONSENSUS proof, for clarity, we will
not separately discuss it in this paper.

Different adversaries. In dynamic networks, different kinds
of adversaries often require different algorithmic techniques
and also yield different results. Hence it is common for
researchers to study them separately. For example, lower
bounds for information dissemination were proved sepa-
rately, under adaptive adversaries [14] and then later under
oblivious adversaries [1]. Dynamic MIS was investigated
separately under adaptive adversaries [19] and later under
oblivious adversaries [9]. Broadcasting was first studied
under adaptive adversaries [20], and later under oblivious
adversaries [15].

Our approach. Our novel CONSENSUS lower bound under
oblivious adversaries is obtained via a reduction from a
two-party communication complexity (CC) problem called
Gap Disjointness with Cycle Promise or GDC. Our reduction
essentially follows the existing proof framework under adap-
tive adversaries [29], but has two major differences. In fact,
these two novel aspects also make our central proof tech-
nique rather unique, when compared with other works that
use reductions from CC problems [10,13,23].

The first novel aspect is that we reduce from GDC with a
special leaker that we design. The leaker is an oracle in the
GDC problem, and is separate from the two parties Alice and
Bob . It helps Alice and Bob, by disclosing to them certain
“non-critical” information in the following way. For a CC
problem I7, let IT,(X, Y) be the answer to [T for length-n
inputs X and Y. Let x; and y; denote the ith character of X

Some lower bounds in dynamic networks with oblivious adversaries

and Y, respectively. We define (a, b) to be a leakable pattern
if forall n, X, ¥, and i € [0, n]>:

Iy (X1X2 .. X, Y1Y2 - - V)

=TTy 1(X1X2 . XjAX; 41 Xi42 - Xy YIY2 -+ - YibYit1Yig2 - Yn)

Intuitively, for all (X, Y), the answer to IT does not change
when an occurrence of a leakable pattern is either inserted
into or removed from (X, Y). Note that since the property
needs to hold for all n and for all (X, Y), the answer to IT
will not change either when multiple occurrences of a leak-
able pattern (or multiple occurrences of multiple leakable
patterns) are inserted or removed. For each index i where
x; = a and y; = b for some leakable pattern (a, b), indepen-
dently with probability %, our leaker leaks the index i. Here
leaking the index i means that the leaker lets both Alice and
Bob know for free the values of i, x;, and y;, before Alice
and Bob start running their protocol.

We will mainly be concerned with the GDC problem with
our leaker. Note that there are many possible ways of defining
a leaker, and our specific definition above is not necessar-
ily suitable in all other contexts. (For example, we require
a leakable pattern to be “leakable” under all n, X, and Y.
Alternatively, one could define this notion with respective to
given X and Y.) Our goal is simply to facilitate the reduction
from GDC to CONSENSUS under oblivious adversaries, rather
than aiming for the best generality.

Even with our leaker, the reduction from GDC to CON-
SENSUS still does not allow us to directly use an oblivious
adversary. Instead, as the second novel aspect, we will use a
special kind of adaptive adversaries which we call sanitized
adaptive adversaries. These adversaries are still adaptive,
but their “adaptivity” has been “sanitized” by taking XOR
with independent coin flips. We then show that a sanitized
adaptive adversary is no more powerful than an oblivious
adversary, in terms of incurring the cost of a protocol.

Roadmap. At the technical level, this paper will eventually
present two separate and completely independent reductions.
The first reduction (elaborated in Sect. 8) is from the GDC
problem without our leaker to the GDC problem with our
leaker. In this reduction, we start with 2 entities: Alice and
Bob. They aim to solve the GDC problem without our leaker
(i.e., the standard GDC problem). They do so by simulating
our leaker, and then invoking some black-box protocol that
solves the GDC problem with our leaker.

The second reduction (elaborated in Sect. 9) is from the
GDC problem with our leaker to the CONSENSUS problem.
In this reduction, we start with three entities: Alice, Bob,
and the leaker. The three entities together try to solve the
GDC problem, by simulating some black-box CONSENSUS

5 Ifi = 0, then (a, b) is prepended to (X, Y). Similarly if i = n, then
(a, b) is appended to (X, Y).

protocol. In this reduction, the leaker is given, and is not
simulated by Alice and Bob.

2 Related work

This section discusses related works beyond those already
covered in the previous section.

Related work on CONSENSUS and LEADERELECT. Given the
importance of CONSENSUS and LEADERELECT in dynamic
networks, there is a large body of related efforts and we can
only cover the most relevant ones. In dynamic networks with-
out congestion, Kuhn et al. [22] show that the simultaneous
consensus problem has a lower bound of §2(d + poly(m))
round. In this problem, the nodes need to output their consen-
sus decisions simultaneously. Their knowledge-based proof
exploits the need for simultaneous actions, and does not apply
to our setting. Some other researchers (e.g., [3,4]) have stud-
ied CONSENSUS and LEADERELECT in a dynamic network
model where the set of nodes can change and where the
topology is an expander. Their techniques (e.g., using ran-
dom walks) critically rely on the expander property of the
topology, and hence do not apply to our setting. Augustine et
al. [2] have proved an upper bound of O (d log m) for LEAD-

ERELECT in dynamic networks while assuming d is known
to all nodes. This does not contradict with our lower bound,
since we do not assume the knowledge of d. Certain CON-

SENSUS and LEADERELECT protocols (e.g., [17]) assume that
the network’s topology eventually stops changing, which is
different from our setting where the change does not stop.
CONSENSUS and LEADERELECT have also been studied in
directed dynamic networks (e.g., [12,26]), which are quite
different from our undirected version. In particular, lower
bounds there are mostly obtained by exploiting the lack of
guaranteed bidirectional communication in directed graphs.
Our AGGREGATION problem considers the two aggregation
functions SUM and MAX. Cornejo et al. [11] considers a
different aggregation problem where the goal is to collect dis-
tributed tokens (without combining them) to a small number
of nodes. Some other research (e.g., [7]) on AGGREGATION
assumes that the topology in each round is a (perfect) match-
ing, which is different from our setting where the topology
must be connected.

Related work on reductions from CC. Reducing from two-
party CC problems to obtain lower bounds for distributed
computing problem has been a popular approach in recent
years. For example, Kuhn and Oshman [23] and Das Sarma
etal. [13] have obtained lower bounds on the hear-from prob-
lem and the spanning tree verification problem, respectively,
by reducing from DISJIOINTNESS. In particular, Kuhn et al.’s
results suggest that the hear-from problem has a lower bound
of 2(d + «/m/logm) in directed static networks. Chen et

@ Springer

I. Jahja et al.

Table 1 Key notations

I A two-party communication complexity problem

X Alice’s input string for I7

Y Bob’s input string for I7

n Number of characters in X and Y

q Each character in X and Y is an integer between 0 and ¢ — 1, inclusively
k The number of leakable patterns

g The minimum number of occurrences of the (0, 0) pattern in (X, Y) if GDCf:’q (X,Y)=0
P, 2 Protocols

o, B Adversaries

C, G Coin flip outcomes of the protocol &2, 2

C/ .G Coin flip outcomes of the adversary «7, 2

Cy Coin flip outcomes of the leaker

cc(Z, n) The communication complexity of &

err(2) The error of &2

Rs(IT) The §-error communication complexity of problem I7

£s(IT) The §-error communication complexity of problem I7T with our leaker
[5(X,Y) The number of occurrences of the (a, b) pattern in (X, Y)

m Number of nodes in the dynamic network

d (Dynamic) diameter of the dynamic network

a, By, A Special nodes in the dynamic network constructed by the reference adversary
T,U,V,® Generic nodes in a dynamic network

al.’s work [10] on computing SUM in static networks with
node failures has used a reduction from the GDC,ll’q problem.
Our reduction in this paper is unique, in the sense that none of
these previous reductions use the two key novel techniques
in this work, namely the GDC problem with our leaker and
sanitized adaptive adversaries.

Related work on CC. To the best of our knowledge, we are the
first to exploit the CC with a leaker in reductions to distributed
computing problems such as CONSENSUS. Our leaker for the
GDC problem serves to allow oblivious adversaries. Quite
interestingly, for completely different purposes, the notions
of leakable patterns and a leaker have been extensively (but
implicitly) used in proofs for obtaining direct sum results on
the information complexity (IC) (e.g., [5,8,28]) of various
communication problems: First, leakable patterns have been
used to construct a collapsing input, for the purpose of ensur-
ing that the answer to the problem 7 is entirely determined
by (x;, y;) at some index i. Second, an (implicit) leaker has
often been used (e.g., in [8,28]) to enable Alice and Bob to
draw (X, Y) from a non-product distribution.

Because of the fundamentally different purposes of leak-
ing, our leaker differs from those (implicit) leakers used in
works on IC, in various specific aspects. For example in our
work, all leakable pairs are subject to leaking, while in the
works on IC, there is some index i thatis never subject to leak-
ing. Also, when our leaker leaks index j, it discloses both x;
and y; to both Alice and Bob. In comparison, in works on IC,
the (implicit) leaking is usually done differently: For exam-

@ Springer

ple, Alice and Bob may use public coins to draw x; and Bob
may use his private coins to draw y;. Doing so (implicitly)
discloses x; to both Alice and Bob and (implicitly) discloses
y; only to Bob.

A key technical step in our work is to prove a lower bound
on the CC of GDCS'? with our leaker. For simpler prob-
lems such as DISJOINTNESS (which is effectively GDC,IL’Z),
we believe that such a lower bound could alternatively be
obtained by studying its IC with our leaker. But the gap
promise and the cycle promise in GDC; ¥ make IC arguments
tricky. Hence we will (in Sect. 8) obtain our intended lower
bound by doing a direct reduction from the CC of GDCfl;q
without the leaker to the CC of GDCj? with the leaker.

3 Model and definitions

Table 1 summarizes the key notations in this paper.

Conventions. All protocols in this paper refer to Monte Carlo
randomized algorithms. We always consider public coin pro-
tocols, which makes our lower bounds stronger. All log is
base 2, while In is base e. Upper case fonts (e.g., X) denote
strings, vectors, sets, etc. Lower case fonts (e.g., x) denote
scalar values. In particular, if X is a string, then x; means the
ith element in X. Bold fonts (e.g., X and x) refer to random
variables. Blackboard bold fonts (e.g., D) denote distribu-
tions. We write x ~ I if x follows the distribution ID. Script
fonts (e.g., & and 2) denote either protocols or adversaries.

Some lower bounds in dynamic networks with oblivious adversaries

Dynamic networks. We consider a synchronous dynamic net-
work with m fixed nodes, each with a unique id of ® (logm)
bits. A protocol in such a network proceeds in synchronous
rounds, and starts executing on all nodes in round 1. (Clearly
such simultaneous start makes our lower bound stronger.) In
each round, each node v first does some local computation,
and then chooses to either send a single message of O (log m)
size or receive. (In particular, we follow the standard conven-
tion in dynamic networks [24] that if v sends in a round, it
will send the same message to all its neighbors.) All nodes
who are v’s neighbors in that round and are receiving in that
round will receive v’s message at the end of the round. A node
with multiple neighbors may receive multiple messages. We
emphasize that a node does not know its neighbors in each
round beforehand—it can only infer such information based
on the messages that it receives.

The topology of the network may change arbitrarily from
round to round, as determined by some adversary, except
that the topology in each round must be a connected undi-
rected graph. (This is the same as the 1-interval model [21].)
A node does not know the topology in a round. It does not
know its neighbors either, unless it receives messages from
them in that round. Section 1 already defined oblivious adver-
saries and adaptive adversaries. In particular in each round,
an adaptive adversary sees all #’s coin flip outcomes up to
and including the current round, and manipulates the topol-
ogy accordingly, before & uses the current round’s coin flip
outcomes.

We use the standard definition for the (dynamic) diameter
[24] of a dynamic network: Intuitively, the diameter of a
dynamic network is the minimum number of rounds needed
for every node to influence all other nodes. Formally, we
say that (w,r) — (v, r + 1) if either w is v’s neighbor in
round 7 or @ = v. The diameter d of a dynamic network
is the smallest d such that (w,r) ~ (v, r + d) for all w,
v, and r, where “~+" is the transitive closure of “—”. Since
the topology is controlled by an adversary, a protocol never
knows d beforehand.

Communication complexity. In a two-party communication
complexity (CC) problem I7,,, Alice and Bob each hold input
strings X and Y respectively, where each string has n charac-
ters. A character here is g-ary (i.e., an integer in [0, g — 1])
for some given integer ¢ > 2. For any given i, we sometimes
call (x;, y;) as a pair. For any given integers a € [0, g — 1]
and b € [0,q — 1], we will call (a, b) as a pattern. Alice
and Bob aim to compute the value of the binary function
IT, (X, Y). Given a protocol & for solving [T, for all n
(without aleaker), we definecc(Z2, X, Y, C») to be the com-
munication incurred (in terms of number of bits) by &2, under
the input (X, Y) and £?’s coin flip outcomes Cz. Note that
C» is arandom variable while cc() is a deterministic function.
We similarly defineerr(Z, X, Y, C»), whichis 1 if &’s out-

putis wrong, and O otherwise. In the following, max x (maxy)
is taken over all input strings X (Y) with n characters. We
define the communication complexity of & to be cc(, n)
= maxy maxy Eg, [cc(Z, X, Y, Cp)], and the error of &
tobe err(#?) = max, maxy maxy Eg, [err(Z, X, Y, Cz)].
We define the §-error (0 < § < %) communication com-
plexity of IT, to be Rs(I1,) = ming cc(L2, n), with the
minimum taken over all & where err(<?) < §. For conve-
nience, we define Rs (I1p) = 0 and Rs([1,) = Rs(I14)) for
non-integer a.

We define similar concepts for CC with our leaker. Sec-
tion 1 already defined leakable patterns and how our leaker
works. We sometimes call a pair (x;, y;) as a leakable
pair if x; = a and y; = b for some leakable pat-
tern (a, b). Given & for solving IT for all n with our
leaker, we define cc(Z2, X, Y, C», Cy) be the communi-
cation incurred by 2, under the input (X, Y), &’s coin
flip outcomes Cyp, and the leaker’s coin flip outcomes Cyp.
Here (X, Y) and Cy uniquely determine which indices get
leaked. In the following, maxy (maxy) is taken over all
input strings X (Y) with n characters. We define cc(£, n) =
maxy maxy Ec, Eg, [cc(Z, X, Y, Cp, Cp)]. We similarly
define err(Z, X, Y, Cp, Cy), and define err(&?) = max,
maxy maxy Eg, Ec, [err(Z, X, Y, Cp, Cp)]. Finally, we
define the é-error (0 < § < %) communication com-
plexity of IT, with our leaker, denoted as £5(I1,), to be
L£s(IT,) = min g cc(Z, n), with the minimum taken over all
2 such that &2 solves I1,, with our leaker and err(£?) < §.
Note that we always have £5(11,,) < Rs(I1,).

4 Preliminaries on Gap Disjointness with
Cycle Promise

The section defines the two-party GDC problem and describes
some basic properties of GDC.

Definition 1 (Gap Disjointness with Cycle Promise) In Gap
Disjointness with Cycle Promise, denoted as GDC5 7, Alice
and Bob have input strings X and Y, respectively. X and Y
each have n characters, and each character is an integer in
[0, g — 1]. Alice and Bob aim to compute GDCS'? (X, Y),
defined to be 1 if (X,Y) contains no (0,0) pair, and
0 otherwise. The problem comes with the following two
promises:

— Gap promise (X, Y) contains either no (0, 0) pair or at
least g such pairs.

— Cycle promise [10] For each index i, x; and y; sat-
isfy exactly one of the following four conditions: (i) x;
=y =0,(G0)x; =y =q —1,(@{i) x; = y; + 1, oriv)
Xi =Y — 1.

@ Springer

I. Jahja et al.

One can easily verify that the cycle promise is trivially
satisfied when g = 2. Itisalsoeasy to see GDC,I;2 degenerates
to the classic DISJOINTNESS problem. The gap promise and
the cycle promise start to impose material restrictions when
g > 2 and g > 3, respectively. For example for g = 2 and
g = 4, X = 02103 and Y = 03003 satisfy both the two
promises, where (X, Y) contains 2 pairs of (0, 0), at indices
1 and 4. For GDC, all (0, 0) pairs are non-leakable, while all
other pairs are leakable. For example for X = 02103 and
Y = 03003, those 3 pairs at index 2, 3, and 5 are leakable.
The following result on the CC of GDC is an adaptation from
Theorem C.1 in [10]:

Theorem 1 For any constant § where 0 < § < 0.5, there
exist constants ¢y > 0 and co > 0 such that for all n, g, and
g, Rs(Gpes?y > ;‘T’; — ¢z log 'gl.

Proof First, we show R (GDCl

n’/[(’g) < Ms(GpCs?), viaasim-
ple reduction: Given any protocol & for solving GDC5 7, we
will construct a protocol 2 for solving GDC:l’/'i,. In 2, Alice
replicates her length-(n/g) input g times to get a length-n
input. Bob does the same. Alice and Bob then invoke &
and output &’s output. It is easy to verify the correctness
of this trivial reduction. Next, the theorem directly follows
from an existing result from Chen et al. [10] showing that
m(s(GDCl'/qg) > ;17’; —clog . o

n

The proof of Theorem 1 also showed that Rs(GpCS) >
R;(GDC) ‘/(1,). It is important to note that £5(GpCS?) >

n
Ea(GDC}l’/‘{S) does not hold in general. In particular, the
previous reduction fails for £5: After Alice replicates her
length-(n/g) input g times, the leaker (over the length-n
input) may leak different parts in each of the g segments,
and Alice cannot simulate such behavior. Hence when later
proving the lower bound on £5(GDCS'?), we will have to
work with the gap promise directly, instead of obtaining the

lower bound via £ (GDCi’/?g).

5 Review of existing proof under adaptive
adversaries

This section gives an overview of the recent CONSENSUS
lower bound proof [29] under adaptive adversaries. That
proof is quite lengthy and involved, hence we will stay at
the high-level, while focusing on aspects that are more rele-
vant to this paper.

Overview. Consider any CONSENSUS protocol & with %
error. Let tc(d, m) be &’s time complexity, when running
over dynamic networks controlled by adaptive adversaries
and with d diameter and m nodes. The proof in [29] is
mainly for proving tc(8, m) = £2(poly(m)). The proof triv-
ially extends to tc(d, m) for all d > 8. Combining with the

@ Springer

trivial £2(d) lower bound will lead to the final lower bound
of £2(d + poly(m)).

To prove tc(8, m) = §2(poly(m)), [29] uses a reduction
from GDCS'? to CONSENSUS. To solve GDCy (X, Y), Alice
knowing X and Bob knowing Y simulate the CONSENSUS pro-
tocol & in the following way: In the simulation, the input
(X,Y) is mapped to a dynamic network. Roughly speak-
ing, if GDCS'?(X,Y) = 1, the resulting dynamic network
will have a diameter of 8. Hence & should decide within
r1 = tc(8, m) rounds on expectation. If Gbcs (X, Y) = 0,
then the resulting dynamic network will have a diameter of
roughly % It is then shown [29] that &2 must take r, = £2(q)
rounds to decide in dynamic networks with such a diameter.
The value of g is chosen, as a function of tc(8, m), such
that r, > 10r;. Alice and Bob determine the answer to GDC
based on when &2 decides: If &2 decides within 107 rounds,
they claim that GpCS'? (X, Y) = 1. Otherwise they claim
that Gpcs? (X, Y) = 0.

To solve GDC using the above simulation, Alice and
Bob need to simulate &2 for 10r; = 10tc(8, m) rounds.
In each round, to enable the simulation to continue, Alice
and Bob will need to incur O(logm) bits of communi-
cation. Hence altogether, they incur 10tc(8, m) - O (logm)
bits for solving GDC;'?. The lower bound on the CC of
GDCS? then immediately translates to a lower bound on
tc(8, m).

Crux of the proof. When solving GDC, Alice only knows X
and not Y. This means that Alice does not actually have the
full knowledge of the dynamic network, which is a function
of (X, Y). Hence the proof’s central difficulty is to design
the dynamic network in such a way that Alice can neverthe-
less still properly simulate &7 over that dynamic network.
The proof in [29] overcomes this key difficulty by (i) lever-
aging the cycle promise in GDC, and (ii) using an adaptive
adversary—in particularly, using an adaptive adversary is
highlighted [29] as a key technique. We give a concise review
below.

Given (X, Y), the dynamic network constructed in [29]
has one chain for each index i € [1, n]. Each chain has three
nodes in a line (Fig. 1). Consider as an example the ith chain
where x; = 0. Since x; = 0, y; must be either O or 1 (by
the cycle promise). The set of edges on this chain will be
different depending on whether y; is 0 or 1—this serves to
make the diameter of the dynamic network different when
GDC = 1 and when GDC = 0, as discussed earlier. The
difficulty for Alice, is that she does not know y;, and hence
does not know the exact set of edges on this chain. This
prevents her from properly simulating those nodes that she
need to simulate for this chain. Similar difficulty applies to
Bob.

To overcome this difficulty, if a pair (x;, y;) is not (0, 0),
the adversary in [29] will make an adaptive decision for

Some lower bounds in dynamic networks with oblivious adversaries

Fig.1 The adaptive decisions of round t; round t;+1
the adversary in [29] . l

v v ¥

(a) v is sending in round #; + 1

manipulating the edges on the ith chain,® to help enable Alice
(and also Bob) to simulate. The cycle promise already tells
us that for given x; (e.g., 0), there are two possibilities for y;
(e.g., 0 and 1). The adaptive decisions of the adversary will
have the following end effects: Under the topology resulted
from such adaptive decisions, the behavior of those nodes
that Alice needs to simulate will depend only on x; and no
longer depend on y;. A similar property holds for Bob.

The details on why those adaptive decisions can achieve
such end effects are complex, and are related to the fun-
damental fact that a node does not know its neighbors in
a round until it receives messages from them. At the same
time, those details are entirely orthogonal to this work. Hence
we refer interested readers to [29] for such details. Here we
will only describe the specifics of all the adaptive decisions
made by the adversary, which is needed for our later dis-
cussion: Consider any i where (x;, y;) is not (0, 0). At the
beginning of round # + 1 where ¢#; is some function of x;
and y;, the adversary examines the coin flip outcomes of &2
and determines whether the middle node v on the ith chain
is sending or receiving in round # + 1 (see Fig. 1). If v
is sending, the adversary removes a certain edge e that is
incidental to v, immediately in round #; 4+ 1. Otherwise the
adversary will remove the edge e in round #; + 2. Except
these adaptive decisions, the adversary does not make any
other adaptive decisions. In particular, the adversary does
not need to make adaptive decisions for chains corresponding
to (0, 0).

6 Roadmap for lower bound proof under
oblivious adversaries

This section provides the intuition behind our proof of the
CONSENSUS lower bound under oblivious adversaries. To
facilitate discussion, we define a few simple concepts. We
use <7’ to denote the adaptive adversary described in the pre-
vious section. Consider the ith chain in the previous section
where (x;, y;) is not (0, 0), and the middle node v on that
chain. Define binary random variable z,,» = 0 iff v is send-

6 In the actual proof, the adversary only needs to make adaptive deci-
sions for a subset (usually a constant fraction) of such chains. But it is
much easier to understand if we simply let the adversary make an adap-
tive decision on all of them. Doing so has no impact on the asymptotic
results.

round t;+2 round t; round t;+1 round t;+2

: o

P

(b) v is receiving in round #; + 1

ing in round 7; + 1 in the execution of & against </’. Recall
that .7’ removes the edge e on this chain inround #; + 1+ A
where A = Z .

Making guesses. The adversary <7’ is adaptive since A
= z, and zg in turn potentially depends on &?’s coin
flips. (7’ itself does not flip any coins.) Recall that we aim
to obtain a lower bound under oblivious adversaries. But an
oblivious adversary .27 cannot have its decision X, depend
on £’s coin flips. At the highest level, our idea of allowing
&/ in the reduction is simple: We let <7 make a blind guess
on whether v is sending. Specifically, imagine that </ by
itself sets either A, = 0 or A, = 1 with equal probability
by flipping a fair coin. Similar to .7/, the adversary &7 still
removes the edge e in round #; + 1 + A, except that now
A7 1s afair coin. Some quick clarifications will help to avoid
confusion here. Define binary random variable z,; = 0 iff
v is sending in round # + 1 in the execution of &7 against
</ . Note that z s potentially depends on £2’s coin flips. First,
such a guess made by .o/ canbe either correct (i.e., A o,y = 7..7)
or wrong (i.e., A o7 # Z.). The adversary o7 itself cannot tell
whether the guess is correct, since <7 (being oblivious) does
not know z,,. Alice and Bob together can tell if the guess
is correct, because they are simulating both the protocol &
and the adversary <7, and hence know z,,. But they cannot
interfere with the guess even if they know it is wrong.

Now if the guess is correct, then <7 will make the deci-
sion in the same way as ./, and everything will work out
as before. But if the guess is wrong, then ./ can no longer
enable Alice to simulate without knowing Y. More specifi-
cally, if the guess is wrong, then for the i th chain, the behavior
of those nodes that Alice needs to simulate will depend on
the value of y;, and Alice does not know y;. To overcome
this main obstacle, our key idea is to add a special leaker
entity in the two-party CC problem, which should be viewed
as an oracle that is separate from Alice and Bob. Now the
CC problem has 3 separate and independent entities: Alice,
Bob, and the leaker. Conceptually, when the guess is wrong
for the ith chain, the leaker discloses for free to Alice and
Bob the pair (x;, y;). (This is just intuition—in the actual
proof, such disclosure from the leaker actually occurs at the
very beginning of the simulation.) The knowledge of y; then
immediately enables Alice to infer the exact behavior of the
nodes that she needs to simulate. Similar arguments apply to
Bob.

@ Springer

I. Jahja et al.

Roadmap. There are two non-trivial technical issues remain-
ing in the above approach: (i) for which chains to make
guesses, and (ii) how the leaker impacts the CC of GDC.
Overcoming them will be the main tasks of Sects. 7 and 8,
respectively. Section 9 will present our final CONSENSUS
lower bound.

7 Sanitized adaptive adversaries

The difficulty. It turns out that it does not quite work for
Alice and Bob to approach the leaker for help when they
feel needed. Consider the following example GDCé’4 instance
with X = 000000 and ¥ = 111100. As explained in Sect. 5,
the dynamic network corresponding to this instance has six
chains. For all i, we say that the ith chain is an “| chain”
if x; = a and y; = b. The first four chains in the dynamic
network are thus all |? chains, while the remaining two are |8
chains. The adaptive adversary <7’ in [29] (see Sect. 5) will
make adaptive decisions for all |(1) chains, but does not need
to do so for |8 chains. Applying the idea from Sect. 6, the
oblivious adversary .« should thus make guesses for those
four |(1) chains. Note that ./ needs to be simulated by Alice
and Bob. The difficulty is that Alice does not know for which
chains a guess should be made, since she does not know
which chains are |(1) chains. In fact if she knew, she would
have already solved GDC in this instance. Similar arguments
apply to Bob.

A naive fix is to simply make a guess for each of the six
chains. Imagine now that the guess turns out to be wrong
for the last chain, which is a |8 chain. The leaker then needs
to disclose (xg, y¢). Such disclosure unfortunately directly
reveals the answer to the GDC instance. This in turn, reduces
the CC of GDC to 0, rendering the reduction meaningless.
(Notdisclosing (xg, ys) obviously does not work either, since
the non-disclosure itself reveals the answer.)

Our idea. To overcome this, we do not let Alice and Bob
decide for which chains the adversary </ should make a
guess. Instead, we directly let our leaker decide which indices
should be leaked: For every i where (x;, y;) # (0, 0), the
leaker leaks the pair (x;, y;) with half probability, to both
Alice and Bob. In the earlier example, the leaker will leak
each of the indices 1 through 4 independently with half prob-
ability.

We ultimately aim to design <7 such that A, =z, @ s,
where the random variable s = 1 iff the leaker leaks index
i. (Recall that z, indicates whether the middle node on the
chain is sending in round #; + 1.) To do so, if s = 1, then the
adversary .7 will intentionally use a wrong guess: Specif-
ically, it examines the coin flip outcomes of the protocol
& to determine z ./, and then set A, = Zg,. On the other
hand, if s = 0 (meaning that index i is not leaked), then

@ Springer

the adversary o7 will behave in the same way as the adap-
tive adversary ./’ in Sect. 5: Specifically, the adversary .o/
simply sets A =z (i.e., as if &7 guessed correctly).
Obviously o7 here is not oblivious (since A . now depends
on Z,), which seems to defeat the whole purpose. Fortu-
nately, this adaptive adversary <7 is special in the sense that
all the adaptivity has been “sanitized” by taking XOR with
the independent coin of s. Intuitively, this prevents .« from
effectively adapting. The following discussion will formalize
and prove that such an .7 is no more powerful than an obliv-
ious adversary, in terms of incurring the cost of a protocol.

Formal results. Without loss of generality, we model an
adversary as making a sequence of binary decisions. These
binary decisions determine how the topology of the dynamic
network changes. Consider any adaptive adversary <7, which
may flips its own coins when making decisions. Given a pro-
tocol &2 and any initial inputs to &, let {Z, Z>, ..., Z,}
be the set of all distinct sequences of decisions that <7 can
possibly make under some coin flip outcomes Cp of & and
some coin flip outcomes Gy of <7. Putting it another way,
under any given C» and G, the sequence of decisions made
by 7 will be Z; (for some i). This adaptive adversary <7 is
called a sanitized adaptive adversary if given the protocol
&, the initial inputs to &, and Cp, the probability (taken
over Gy) of the decision sequence of .o/ being Z; is % for
alli.

The following simple theorem confirms that a sanitized
adaptive adversary <7 is no more powerful than an oblivious
adversary.

Theorem 2 Consider any given CONSENSUS protocol & and
any given initial inputs to . Let fi(<, Cp, Cy) be the
number of rounds needed for all nodes to output in &
under the given input, the adversary <, the coin flip out-
comes Cp of &, and the coin flip outcomes Gy of <. Let
(A, Cp, Cy) = 0 if P’s outputs on all nodes are correct
under the same settings as above, and 1 otherwise. For any
sanitized adaptive adversary </ and any j € {1,2}, there
exists an oblivious adversary % such that:

1. AB; does not flip any coins itself.

2. Ec, [fj(#Bj,Cp,)] > Ec, ¢, [fi(,Cp, C)]

3. For every Cp, there exists Gy such that %;’s decisions
are exactly the same as the decisions made by </ under
Cp and Gy.

Proof We will prove the theorem for j = 1. The proof
can be trivially extended for j = 2. Recall the defini-
tion of {Z, Z», ..., Z;} from the earlier discussion. For all
i € [1,h], let Bz, be the oblivious adversary that always
make the sequence of decisions Z;. Note that %z, does not
flip any coins itself.

Some lower bounds in dynamic networks with oblivious adversaries

9

For given Cp, obviously some Z; will maximize f1(%z,,
C»p, —),and willinturnmake f1(%z,, C», —) = E¢, [f1(#,
C», Cy)]. However, this Z; may be different for different C»,
which prevents us from proving the theorem via this trivial
argument. But a slightly more careful analysis, as following,
will work.

By the definition of sanitized adaptive adversary, for any
given C» we have:

h
1
(;Evy[fl(%y @s (;d{)] = szl('%zlw(jys _)
K i=1

Since C» and C; are independent, there must exists some
ig € [1, h] such that:

1
(;&?Q/ [fl(fQ{, Cf}”v Q/)] :5 |:Z Efl(e%jz,-,(}y, _):|

i=1

—_—

h
E [fl(ggz,-’ (:/‘)_”s _)]
.:1(;9

1

h
< Elfi#z,. Cp. -]
(&7

A

We now let %, = ’%Zio' One can easily verify that %
indeed satisfies the three properties needed by the lemma:
The first and the second property directly follow from the
discussion above. The third property requires that for every
Cp, there exists Gy such that %;’s decisions are the same
as the decisions made by & under C» and C,. From the
definition of sanitized adaptive adversary, under the given
Cp, the adversary 7 will make the sequence of decisions
Z;, with probability % Hence under C» and some Gy, &7
will make the sequence of decisions Z;,. O

8 Communication complexity with the leaker

To get our final CONSENSUS lower bound , the next key step
is to prove a lower bound on the CC of GDC with the leaker.
At first thought, one may think that having the leaker will not
affect the CC of GDC much, since (i) the leakable pairs do
not impact the answer to GDC and hence are “dummy” parts,

and (ii) the leaker only leaks about half of such “dummy”

. . 6ynint2
parts. But as we will quickly see, the GDC,I, Vitln g problem

suggests otherwise. Specifically, Theorem 1 earlier shows

1
that the CC of GDCl,G\/Eln 52 has a £ (y/n) lower bound. On

the other hand, Lemma 1 below indicates that having a leaker

. 16/nln 12
allows Alice and Bob to deduce the answer to GDC,, Va3

with zero CC. (They can actually infer the answer just based
on the total number of leaked indices.) The proof of this
lemma is deferred to “Appendix A”.

Lemma 1 Forall constant § € (0, %) and alln > 1, we have
€5(Gpel™") — g,

Thus, having a leaker reduces the CC of GDCi,6\/Eln 32
from £2(4/n) to 0, implying that the impact of the leaker is
more subtle than expected. In particular, without a careful
investigation, it is not even clear whether the CC of GDC
with our leaker is large enough to translate to our intended
£2(d 4+ poly(m)) lower bound on CONSENSUS.

This section will thus do a careful investigation and even-
tually establish a formal connection between the CC of GDC
with the leaker (£s) and the CC of GDC without the leaker
(Rs):

Theorem 3 Forany constant § € (0, %), there exist constants
c1 > 0and ¢ > 0 such that for all n, g, q, and n' =
c23/n/(q" log q), we have £5(GpCs'?) > ¢1R5(GpC?).

Directly combining Theorem 3 with Theorem 1, we have:

Theorem 4 Forany constant § € (0, %), there exist constants
c1 > 0and ¢y > 0 such that for all n, g, and q, we have

£5(GDCSY) > Y _) jog Y
s (W) = 2q>5logq 2108 TS10a g

Later we will see that the above lower bound on GDC with
our leaker is sufficient for us to get a final £2(d + poly(m))
lower bound on CONSENSUS.

8.1 Our approach and key ideas

While we will only need to prove Theorem 3 for GDC, we
will consider general two-party problem I7, since the unique
specifics of GDC are not needed here. We will prove Theo-
rem 3 via a reduction: Using any given §-error protocol &
for solving IT,, with the leaker, we will construct a §-error
protocol 2 for solving [T, without the leaker, where n’ is
some value that is smaller than n. Such a reduction will then
lead to Rs(I1,/) = O(L5(11y)).

Recall that we use leakable pattern to denote each kind
of leakable pairs. For example, GDC,11’2 has leakable patterns
of (1, 1), (0, 1), and (1, 0). Note that leakable patterns are
determined by the problem I7 and not by an instance of the
problem. We use k € [0, qz] to denote the total number of
leakable patterns for IT whose inputs are g-ary strings. For
Gpc k =2q — 1.

7 Note that Lemma 1 does not contradict with Theorem 3. For g =
164/n1n % Lemma 1 shows that £; (GDC;E’Z) = 0, while Theorem 3

shows that £ (GDCﬁ’Z) > cl‘ﬁg(GDCi,’z) with n’ = %g Lemma 1
and Theorem 3 do not contradict because Rs (GDCﬁ;z) is actually 0.
Specifically, for o < 3242 1In % we have ¢ > n’ and therefore the
answer to the GDCiZ2 problem is always 1—otherwise we would violate

the gap promise. Hence s (GDCi}z) =0.

@ Springer

10 I. Jahja et al.

Fig.2 How padding and o

permutation enable Alice and these pfalrs c;(r!gmzt?;’i/ NI W\ this pair was appended how

Bob to simulate the leaker. In rom 2-an X=10 2 by Alice and Bob Alice

this example X' = 02, Y" =01, i Y=01 and

X =022,and Y = 011. Here to teaked pair N B.Obl ;
simulate

help understanding, we assume
that the leaker leaks exactly half

/ .
permute and then leak the padded pair
¥ N

\\ the

of all the leakable pairs

leaker
02 2(2\0 20
01 1 0 10

after leaking by the leaker
4

022
011

Simulating the leaker via padded pairs. The central difficulty
in the reduction is that Alice and Bob running 2 need to
simulate the leaker, in order to invoke the given protocol
. (Note that & here is the two-party protocol, and has
nothing to do with the CONSENSUS protocol.) This is difficult
because each party only knows her/his own input. Our first
step to overcome this difficulty is to pad known characters
to the inputs and then leak only those padded characters, as
explained next.

Let (X', Y’) be the given input to 2. Assume for simplicity
that (2, 1) is the only leakable pattern in I7, and consider the
problem instance in Fig. 2 where X’ = 02 and ¥’ = 01. Alice
and Bob will append/pad a certain number of occurrences
of each leakable pattern to (X', Y’). Let (X, Y) denote the
resulting strings after the padding. In the example in Fig. 2,
Alice and Bob append 1 occurrence of (2, 1) to (X', Y")—or
more specifically, Alice appends 2 to X’ and Bob appends 1
to Y’. Doing so gives X = 022 and Y = 011. Note that doing
so does not involve any communication, since the leakable
patterns are publicly known. Imagine that Alice and Bob
now invoke & using (X, Y), where X = 022 and Y = 011.
Note that the two-party protocol &2 assumes the help from
our leaker. Alice and Bob can easily simulate the leaking
of (x3, ¥3), since (x3, y3) is the padded pair and they both
know that the pair is exactly (2, 1). However, (x2, y7) isalsoa
leakable pair. Alice and Bob still cannot simulate the leaking
of this pair, since this pair originated from (X’, ¥’) and they
do not know the value of this pair.

To overcome this, Alice and Bob use public coins to gen-
erate a random permutation, and then use the permutation to
permute X and Y, respectively (Fig. 2). This step does not
involve communication. For certain problems I7 (e.g., for
GDC), one can easily verify that such permutation will not
affect the answer to I7. Such permutation produces an inter-
esting effect, as illustrated in Fig. 2. The upper part of Fig. 2
plots the 6 possible outcomes after the permutation, for our
earlier example of X = 022 and Y = 011. Before the permu-

@ Springer

after Ieaki\ng/by the leaker after Ieak{ry by the leake Iheoavltetﬁe
behaves over
202 220 a distribution
101 110 of 3 inputs

tation, the last pair in (X, Y) is a padded pair. Imagine that
Alice and Bob leak this pair. Now after the permutation, this
leaked pair will occupy different indices in the 6 outcomes
of the permutation.

The bottom part of Fig. 2 illustrates the (real) leaker’s
behavior over certain inputs. To help understanding, assume
here for simplicity that the leaker leaks exactly half of all the
leakable pairs. Now consider 3 different inputs (022, 011),
(202, 101), and (220, 110). One can see that the behavior of
the leaker over these 3 inputs (see Fig. 2) exactly matches
the result of permutation as done by Alice and Bob. Hence
when Alice and Bob feed the result of the permutation into
& while leaking the padded pair, it is as if &2 were invoked
over the previous 3 inputs (each chosen with 1/3 probability)
together with the real leaker. This means that &?’s correctness
and CC guarantees should continue to hold, when Alice and
Bob invoke & while leaking only the padded pair.

How many pairs to leak. Imagine that (X', Y’) contain o pairs
of (2, 1), and Alice and Bob pad p pairs of (2, 1) to (X', Y’).
The result of the padding, (X, Y), will contain o + p pairs of
(2, 1). Letf be the number of (2, 1) pairsin (X, Y) that should
be leaked, which obviously follows a binomial distribution
with a mean of 0;” . Ideally, Alice and Bob should draw
f from the above binomial distribution, and then simulate
the leaking of f pairs of (2, 1). (They can do so as long as
f < p—with proper p, we easily throw Pr[f > p] into the
error.) The difficulty, however, is that Alice and Bob do not

know o, and hence cannot draw f with the correct mean of
o+p
-

To overcome this, Alice and Bob will estimate the value

of o by sampling: For each sample, they use public coin to
choose a uniformly random i € [1, n’], and then send each
other the values of x/ and y!. They will spend total w
bits for doing this, so that such sampling is effectively “free”
and does not impact the asymptotic quality of the reduction.
Alice and Bob will nevertheless still not obtain the exact value

of 0. This means that the distribution they use to draw f will

Some lower bounds in dynamic networks with oblivious adversaries

1"

Input: X', n,n’, 8,8, where § < &’
Ry (1,1) .

4logg °
repeat s times
draw a uniformly random integer i € [1, n’] using public
coins;
send x; to Bob and receive y; from Bob ;
foreach j =1,...,kdo

if (x/, y!) equals the j-th leakable pattern then
Vj < Vj+ n?/;

15 <

foreach j =1,...,kdo v; < 0;

W

end

end

/*** Here h; is the number of times that the j-th leakable pattern

is padded to (X', Y'). ##%/

0 20 20 (2 K I 2,

1 foreach j =1,....,k—1do h; < h;

12 hy < n—n' — (k—1)h; if hy < h then generate an arbitrary
output and exit;

13 foreach j = 1,...,k do

e ® 9 e

==

14 draw an integer b; from the binomial distribution IB%(]”%)
using public coins ;

// B(w) is the distribution for the number of heads obtained
when flipping 2 fair coins.

15 | ifb; > hjthenb; < hj;

16 let (a, b) be the j-th leakable pattern ;

17 append h ; copies of a to X’, and flag the first b; indices of
these & indices as “to be leaked”;

18 end

19 generate a uniformly random permutation M using public coins;
20 X < M(X’) /* the flags in X’ will be treated as part of X’ and be
permuted as well. */;

invoke & (together with the other party) using X as input, while
leaking all those indices that are flagged, until either &2 outputs
or & has incurred (5,(1 5)cc(Z, n) bits of communication ;

/* when leaking index i, both x/ and y/ will be given to &7 — this
can be done since a leaked index here must correspond to a
padded pair at Line 17 */;

22 if & has incurred (%)cc(?ﬂ, n) bits of communication then

2

[

exit with an arbitrary output ;
23 else output 22’s output and exit ;

Protocol 1: Our §-error protocol £ for solving [T,
without our leaker. 2 invokes the §-error two-party pro-
tocol & that solves [T, with our leaker. The above only
shows Alice’s part of 2. Bob’s part of 2 can be obtained
similarly.

be different from the distribution that the (real) leaker uses.
Our proof will carefully take into account such discrepancy.

8.2 Complete reduction and final guarantees

Pseudo-code. Protocol 1 presents the protocol 2 for solving
IT,, without our leaker, as run by Alice. 2 internally invokes
the given two-party protocol &, where & solves IT, with our
leaker. At Line 1-9, Alice and Bob first exchange sampled
indices to estimate the occurrences of each leakable pattern.
Next Line 10-12 calculate the amount of padding needed.

Line 13-18 do the actual padding, and then for each leak-
able pattern, flag a certain number of padded pairs as “to be
leaked”. At Line 19-23, Alice and Bob do a random permu-
tation to obtain (X, Y), and then invoke ZZ on (X, Y) while
leaking all those flagged pairs.

We will prove various properties of Protocol 1, which will
ultimately lead to the proof for Theorem 3. These proper-
ties include Lemmas 2—6 and Theorems 5-6. In particular,
we aim to prove that Protocol 1 is correct for all two-party
permutation-invariant problem I7. For length-n string X,
define M (X) = X, Xm, - . . Xm, , where M is any given per-
mutation of 1 through n, and m; is the ith integer in M. A
two-party problem [T is permutation-invariant iff for all X,
Y,and M, I1(X,Y) = [T(M(X), M(Y)). Throughout this
subsection, we assume that I7 is permutation invariant, and
when we mention a line number (e.g., Line 5), we refer to
the corresponding line of Protocol 1.

We first quantify the estimation quality on the occurrence
counts of each leakable pattern as done by the protocol. For
1 < j <k, let w; denote the occurrence count of the jth
leakable pattern in (X', Y’). The v j’s in Protocol 1 are essen-
tially estimates for w;. We say that Protocol 1’s estimates
are good if immediately after Line 9, max|<;<x(v; —w;)2 <

n? | 26k
2s §—68""

Lemma 2 Protocol 1’s estimates are good with probability

8 =8
at least 1 — 55

_ w24k
Proof Let e = 71 5"

By the definition of good, it suffices to prove:

§ =6
Prl max |v; —w;|<e|>1-
1<j<k 12

For any j € [1,k], let s; be the number of times v; is
incremented by "T/ in Line 7 of Protocol 1. Each time Line 3
through 7 is executed, v; is incremented only when (x/, y!)
is the jth leakable pattern. Since i is drawn uniformly at
random from [1, '] and since there exists exactly w; indices
i € [1,n] such that (x/, y/) is the jth leakable pattern, each
time Line 3 through 7 is executed v; is incremented with
probability exactly % Since Line 3 through 7 is executed s
times, s; is the sum of s independent and identical Bernoulli
random variables, with each Bernoulli trial having a success
probability of ~f.

We will apply the Chernoff-Hoeffding bound [16] for
absolute error, which states for any 0 < % <landa >0,

S w; 2
Pr(—Jz—J—i—a) < 2

) n’

Si w; 2
Pr(—jf—]—a> <

s n'

@ Springer

12

I. Jahja et al.

v; is modified only in Line 1, where it is initially set to zero,

!
. . Sin
and then in Line 7. Thus, v; = JT Hence we have:

Finally, taking a union bound for j from 1 through k, we
have:

b | | Y8y
T max |v; — | > € X
g Vi W = 2k = 12

]

Protocol 1 has (X', Y’) as its inputs to Alice and Bob,
respectively. It internally converts (X', Y’) to a random-
ized input (X, Y). For any given (X, Y), conditioned upon
X,Y) = (X,7Y), we define 'ﬁ‘(X, Y) to be the distribution
of the leaked sets, as induced by Protocol 1 at Line 21. Here
a leaked set is the set {(i, x;, y;) |index i is leaked}. Define
T(X, Y) to be the distribution of the leaked sets that would
have resulted, if (X, Y) were subjected to the (real) leaker.
Alice is using TAI‘(X ,Y) to approximate T(X, Y). We thus
want to quantify the distance between these two distribu-
tions.

Consider any two distributions D and D over the same
sample space Z. We define their L; distance (denoted
as ||[D —]fD|| and also called variation distance) to be
Jreq 1 /o) = f(x)|dx if Z is continuous, and)" . | fD
(x) — f(x)| if Z is discrete. Here fip and f; are the density
functions of the two distributions, respectively. The follow-
ing lemma (whose proof is in “Appendix B”) quantifies the
L distance between 1A1’(X, Y)and T(X, Y).

Lemma 3 If Protocol 1’s estimates are good and if it does
not exit at Line 12, then for all (X, Y), we have ||T(X,Y) —
T(X. V)| < 2652

Lemma 4 If Protocol 1’s estimates are good and if it does not

exit at Line 12, then for all (X, Y) in the support of (X,Y),
we have:

Eg [err(2, XY, C)|(X,Y) = (X, V)]

<5+E(3/—3) (D)
- 12

Eg, [cc(2, X", Y, &)X, Y) = (X,Y)]
< M +5.5¢cc(P, n) (2)

@ Springer

Proof Recall that given input (X', Y’), Protocol 1 invokes
& internally. When (X,Y) = (X, Y), Protocol 1 invokes
& with input (X, Y). The input (X, Y) is obtained by (i)
padding some extra leakable patterns to (X', Y’) at Line 17,
and (ii) doing a permutation at Line 20.

— Proof for Inequality 1. Consider any (X, Y) in the sup-
port of (X,Y). By the definition of leakable patterns
and permutation-invariant functions, I7((X’,Y")) =
IT((X,Y)). Hence Protocol 1’s result must be correct
if (i) Protocol 1 does not exit at Line 12, (ii) Proto-
col 1 does not exit in Line 23 due to & incurring more
than %cc(,@, n) bits of communication, and (iii) &
gives the correct result for (X, Y). Recall that 'ﬁ‘(X ,Y)
is defined to be the distribution of the leaked set fed into
Z by Protocol 1, while T(X, Y) is defined to be the
distribution of the leaked set that would have been gener-
ated by the leaker for (X, Y). For clarity, we write them
as T and T. Define C 9 and Cg to be the distribution
of coin flips made by 2 and &, respectively. Define
cc(2,X,Y,Cp,T) to be the communication incurred
(in terms of number of bits) by &, under the input (X, Y),
protocol’s coin flip outcomes C», and leaked set T. Note
that T captures all coins flipped by the leaker. We simi-
larly define err(Z2, X, Y, C», T), which is 1 if the £2’s
output is wrong, and 0 otherwise. From the condition of
the lemma, we already know that Protocol 1 does not exit
at Line 12. We have:

P{C [err(2, X, Y, Cy) = 11X, Y) = (X, Y)]
2

= Pr .

|:(€1T(9, X,Y,Cp, T)=1)or
Cy» ~C» ,T~T

(cc(X,X,Y,Cp,T) >

= (Scc(y, n))]

<nt-r p P, X,Y,C,T) =1
=l "*cﬂcj,m[(m(. T) = 1) or

6
(cc(L,X,Y,Cp,T) > ﬁcc(ﬁ, n))]
T—T P P,X,Y,Cp,T) =1
<l I+ o ~<C,;,T~1r[err(7, T)]

+ Pr

cc(P,X,Y,Cp, T
P ,T~’]I‘|: (2, T)

6
> mce(ﬁ, n)]

A 8 -3
<||IT-"TI|+6+

11
<6+ 5(8’ —8) (by Lemma 3)

— Proof for Inequality 2. Protocol 1’s communication
only involves two parts. The first part is for tak-
ing Ry (T,1)

4logg
Ry (T,1)
4logg

samples in Step 1, which incurs at most
Ry (1,)
2

x2logg = bits. The second part is for

Some lower bounds in dynamic networks with oblivious adversaries

invoking &2, incurring no more than %CC(@, n) bits.
‘We have:

Eg, [cc(2, XY,)X, Y) =
< ERﬁ/(ljn’)
- 2

(X, Y)]

+Ecy ~C.p T~ [min(cc(@, X,Y,Cp,T),

)

ER/H/
i ACL/D AT Y T

<) CC(SZ n)
+EG/ '\'(Cy) ,T’VT[CC(?@7 X’ Y! CQ P T)]

_ Ry (ITy) n 9(8" —9)

- 2 12
X 5 Scc(@, n) +cc(Z, n)

. E)Q(?’(Ijn’)
2

TBCC(@, n))i|

/

+ 5.5¢cc(Z, n)

We invoked Lemma 3 to obtain the last inequality. O

Theorem 5 For all permutation-invariant problem II, all
constants § and 8’ such that 0 < § < § < 0.5
and all n and n' such that n > n' + 2kn’ + 2%

@—o? *
K3 220" lo 1 h o (T S

+5t,ur (ogq)(In 525)), we have £5(IT,) >
SR(S’(ITn/)-

Proof For any given protocol & for solving IT, with the
leaker and with error 8, we construct a protocol 2 for solving
IT,, without our leaker and with error §" as in Protocol 1. It
is easy to verify that n is large enough such that Protocol 1
does not exit at Line 12:

n > n' + 2kn’

LS00 (s 2k’ toge) (1n 2%
o —5) Ry () 2P\ 55

500 2kn? 24k
k(2 + —— (kK> + ———1 In ——
’ (i (5’—6)2(+my<nn/)(°gq)<“a/—8)>>

=n' +kh

Denote z as the event that Protocol 1’s estimates are good.
By Lemma 2, Pr[z] > 1 — ==. Consider any given input
(X', Y") to our reduction protocol in Protocol 1 and the cor-
responding random variables (X, Y) obtained at Line 20 of
Protocol 1. By Lemma 4, we have:

Prlerr(2, X', Y/, Cy) = 1]z]
= Z Prlerr(2, X', Y, Cp) = 1|(X,Y) =

(X,Y)

(X,Y),z]

xPr[(X,Y) = (X, Y)|z]

< Z <8+%(8'—8)> x Pr[(X,Y) = (X, Y)|z]

X.Y)

P
12

= Y Eglec(2. XY,)X, Y) =

(X.Y)
x Pr[(X,Y) = (X, Y)lz]

< M +5.5¢cc(P, n)
x Pr[(X,Y) =

. gRz?’(ljn’)

2

—8)Eg, [cc(2, X, Y, C)lz]

(X, Y),z]

(X, Y)lz]
+ 5.5¢cc(2, n)

Now we consider the case where z does not hold, i.e.,
the protocol’s estimates are not good. Although most our
previous technical lemmas no longer hold, we still know that
the error probability is at most 1, and the communication
cost, by our protocol design, is at most M 2logg +

mco(@, n) bits. Hence we have:

Prlerr(2, X', Y, Cy) = 1]
< Prlerr(2, X', Y, C) = 1|z] + (1 — Pr[z])
11, [P Y
S5+E(5 _8)+E(8 —8)=9§
Eg, [cc(2, X', Y/,)]

< Eglcc(2,X,Y, Cy)lz]

+(1—Pr[z])< 4‘31(g") 210gq+8,6_

Rs ()
2

800(32, n))

< 5.5¢cc(P,n) +

8 =8 Ry (I[Ty)
12

4logq 56 ")>

-2logq + 5
25
< 6cc(Z,n) + Em&(nn’)

Since 2 solves IT,, with at most 8’ error, we have 6¢c(2, n)+
BRy (ITy) > cc(2, 1) > Ry (ITy). Let 2 be the optimal
protocol for solving I7T, with the leaker and with error §, we
have £5(I1,) = cc(Z, n) > 149%5/(17 . O

Lemma5 For any given two-party problem II, any given
constants 8 and &' such that 0 < § < &8 < 0.5, we have

1
Rs () < 555555 R (IT).

Proof Given a protocol &2 for IT with error §’, we will con-
struct a protocol with error at most § as follows: we invoke
& for % times, and take the majority of these outputs
as the final output. Let random variable z denote the fraction
of correct outputs. Since E[z] > 1 — §’, by the Chernoff—

Hoeffding bound [16] for absolute error, we have:

@ Springer

14

I. Jahja et al.

Pr(z < 0.5] < Pr[z < (E[z] — (1 — 8’ — 0.5))]

o A0 gy g5 =
§exp< 30552 0.5))_5

O

Theorem 6 For all permutation-invariant problem II, all
constants § € (0, %), all n and n' such that n > n’ +

2.2
2kn” + (0.255—08.55)4 (In %) <k3 + 9%];(’117,1/) (logg) (h1 0%5855»’

a2
we have £s(I1,) > %mS(nn’)-

Proof Obviously, 0 < § < 0.5§ + 0.25 < 0.5. Apply
Lemma 5 (with the values of § and 8’ in Lemma 5 being
set to § and 0.56 + 0.25, respectively) and we have:

500
(0.25 — 0.58)4

I 2n'? 48k
In-) (&3 1 1
§ (“ 8) (Ry, 0 (“ 05 —8))
500
(0.25 — 0.58)2

k2% In § 48k
x (K3 + . - (log) <1n)
(0.25 — 0.58)2%R5 (11,,/) 0520

500
(0.25 — 0.58)2
§ (k3 s 2620 n L (og g) (m 48k))
2(0.5 — (0.56 + 0.25))2R5(IT,) 05-6
500
((0.58 +0.25) — 8)2

2%2n"? 24k
x [k + —————(lo <1n—>
(%o.saw.zs(ﬂnf)(24) (0.58 +0.25) — §
The above inequality shows that n satisfies the condi-
tion needed for Theorem 5. Invoke Theorem 5 and we have
Ls(IT,) > 11—49{0.5“0,25 (IT,). Applying Lemma 5 a second
time (again with the values of § and 8’ in Lemma 5 being

set to § and 0.56 + 0.25, respectively) yields £s5(/1,) >

0.25—0.58)2
1 R0551+025(ITw) > Wiﬁa (ITy). o

n>n +2kn +

>n' 4+ 2kn’ +

> n' +2kn’ +

>n' 4+ 2kn’ +

Lemma 6 For all g > 2 and all § where 0 < § < 0.5, we
2
have 2(In 512%) (log ¢) > In(pds).

0.5-§
Proof
4842
In
05—46
ln(%)
=1Ing? +1 =(lng?) |1+ ——~
nq+n(o.5—5> (mg?) | 1+ In g2

<2(ng) (141 (22
= (nq)(n(o.s—a))

@ Springer

2 (% Y aner =2 (10— doee)
=\ Mos—s)) M = \Mos =g) VOB

m}

Theorem 3 Forany constant § € (0, %), there exist constants
c1 > 0and co > 0 such that for all n, g, q, and n' =
ca/n/(q' > log q), we have £5(Gpcs?) > c1Rs(Gpcs)?).

(0.25—0.568)2

Proof Let ¢ = TIn(1/5)

stant such that:

1 4000 1 140
=34+ In-)(In——
2c72 (0.25 — 0.58)4 8 05-34

We will show that ¢; and ¢, satisfy the desired prop-
erties in the theorem. Consider any n, g, ¢, and n’ =
ca/n/(q' > logq). If n’ < 1, then trivially £5(Gpcs?) >
c1Rs(Gpcs)?) = 0.

Otherwise we aim to invoke Theorem 6 with 1, =
GDCS?. The GDC problem is obviously permutation-invariant.
From the cycle promise in GDC5?, we further know that
k < 2q. We thus have:

, and let ¢, be the positive con-

g 1022 g . a® + 2 log? g

c? 2¢,2
1 2% log?
> . q3+ q 2 q
2¢2 Rs ()

>n + 2q2n’

4000 1 140
+————(In- | In ———
(0.25 — 0.58)* 1) 05-56§
q3 N q2n/2 lngq
Rs (1)
> n' +2¢%n

500 1 140
2 (<) (m
025-058%\ "3 05—36
2
<8q3 N 8¢%n"* log? q)

Rs(I1,)
> n' + 2kn’

500 1
_ 2P (=) (&
T 025-050)¢ (“ 5) (+

140
X|{2In ——
05-6

> n' + 2kn’

500 1
— (- [&
T 025-050)7 (“ 5) (+

4847
x In
05-34

> n' + 2kn’

500 1
— (- (&
T 025-050)7 (“ 3) (+

K2 log? q
Rs ()

K2n"* log g
Rs (1)

K2n'* log g o (A8
n
Rs (M) 05-3

Some lower bounds in dynamic networks with oblivious adversaries

15

The second last inequality in the above is by Lemma 6.
The above shows that n satisfies the condition needed by
Theorem 6. Invoking Theorem 6 then immediately gives
£5(Gpes'?) > ¢1Rs5(Gpe). o

9 CONSENSUS lower bound under oblivious
adversaries

This section will ultimately prove our final theorem on CON-
SENSUS under oblivious adversaries, as follows:

Theorem 7 If the nodes only know a poor estimate m’ for

’
m where || is at least % then a ll—o-error CONSENSUS

protocol for dynamic networks with oblivious adversaries

must have a time complexity of 2(d + m %) rounds.

We emphasize that the only interface between this section
and all previous sections is Theorems 2 and 4—we will only
apply those two theorems as black boxes. In particular, Pro-
tocol 1 and its analysis will no longer be relevant, and it will
be convenient for the reader to forget about those.

In the remainder of this section, we will sometimes refer
to round 0, where the CONSENSUS protocol does nothing and
where every node is in the receiving state.

9.1 Proof overview

Consider any CONSENSUS protocol & with % error. Let
tc(d, m) denote &’s time complexity when running over
dynamic networks controlled by oblivious adversaries and
with d diameter and m nodes. As explained in Sect. 5, the

. 1
crux will be to prove tc(8, m) > m1z. To do so, we con-
m—4

sider the GDC}'? problem with our leaker, and set n = 3%,
q = 20tc(8,m) + 21, and g = 15¢Ing. To solve the
Gpcy (X, Y) problem with the help from our leaker, Alice
and Bob simulate & in the following way: In the simula-
tion, the input (X, Y), together with the leaked information
(given by the leaker), is mapped to a sanitized adaptive
adversary 7 that determines the topology of the dynamic
network. Roughly speaking, if Gbcs 7 (X, Y) = 1, the result-
ing dynamic network will have a diameter of 8. Even though
&/ is an adaptive adversary, by Theorem 2 in Sect. 7, &’s
time complexity should remain tc(d, m) under /. Hence
& should decide within tc(8, m) rounds on expectation. If
Gpci (X, Y) = 0, then the resulting dynamic network will
have a diameter of @ (g). For £ to decide in this dynamic
network, we prove that it takes at least roughly % rounds.
Note that % > 10tc(8, m)—in other words, it takes longer
for 2 to decide if GpCS (X, Y) = 0. Alice and Bob do
not know the other party’s input, and hence do not have full
knowledge of the dynamic network. But the help from our
leaker enables them to still properly simulate &?’s execu-
tion. Finally, if & decides within 10tc(8, m) rounds, Alice

and Bob claim that GDCS 'Y (X, Y) = 1. Otherwise they claim
Gpcy (X, Y) = 0. Our proof will show that to solve GDC5 7
with our leaker, using the above simulation, Alice and Bob
incur @ (tc(8, m) - logn) bits of communication. We thus
have ©(tc(8,m)logn) > £5(GpCs?). Together with the
lower bound on £; (GDCﬁ "1 from Theorem 4 in Sect. 8, this
will lead to a lower bound on tc(8, m).

Roadmap for the remainder of this section. We will reduce
GpC$? with our leaker to CONSENSUS. Here we start with
three separate and independent parties: Alice, Bob, and the
leaker. Alice and Bob are trying to solve GDC5 7 (X, Y), with
the help from the leaker. Before Alice and Bob begin, for
each leakable pair (x;, y;), with half probability the leaker
leaks the index i. Recall that leaking the index i means that
the leaker lets both Alice and Bob know for free the values
of i, x;, and y;. Hence initially Alice knows X, as well as all
the leaked information. Similarly Bob will initially knows
Y, as well as all the leaked information. Once Alice and Bob
begin, the leaker does nothing anymore.

In the reduction, Alice and Bob will effectively simulate (i)
an adversary based on X, Y, and the leaked information, and
(ii) the execution of some black-box CONSENSUS protocol
& over a dynamic network determined by such an adversary.
The details of the simulation are rather technical, and we will
elaborate in the following steps:

— We first elaborate the adversary used in the simulation.

— We then describe the simulation done by Alice and Bob,
and prove several guarantees of the simulation.

— Finally, we put everything together to prove Theorem 7.

9.2 Reference adversary

This section describes how we map X, Y, and the leaked
information into the adversary used in the simulation, which
we call the reference adversary.

Overview. We start with an overview. First, Alice and Bob
convert the input (X, Y) into the processed input (X', Y'),
using public coin flips and without any communication. Note
that unlike (X, Y), the processed input (X', Y’) is a random
variable, since its value depends on the public coin flips.

Next, the processed input (X', Y’) is mapped into a ref-
erence adversary. The reference adversary determines the
dynamic network with the following properties:

— IfGpcd (X, Y) = 0, then the dynamic network depends
on the pairs (x1,y;) through (x,,y,)—namely, the
entirety of (X', Y’). The resulting dynamic network will
have 3n + 4 nodes and ©® (g) diameter.

— IfGpct ¥ (X, Y) = 1, then the dynamic network depends
only on the pairs (X1, y1) through (x% Yz)—namely, the

@ Springer

I. Jahja et al.

first half of (X', Y’). The resulting dynamic network will
have 37” + 2 nodes and diameter of 8.

9.2.1 Preprocessing

Alice and Bob will process the input (X, Y) to obtain
(X', Y') in the following way, without involving any com-
munication:

1. Alice and Bob use public coins to generate a uniformly
random permutation 7, and set X' = 7(X) and Y’ =
7 (Y), respectively.

2. Next for each i (1 < i < n), Alice and Bob use public
coins to draw an independent random integer o; as an
offset, such that® Prlo; = 0] = % and Prlo; = 2j] =
ﬁ forl < j < %. Alice and Bob then set X/; =

min(x’; + 0;,¢ — 1) and y; = min(y’; + 0;,¢ — 1),

respectively. (We will explain later in this section why

the offset is needed.)

Figure 3 gives two examples on how Alice and Bob process
(X,Y) to obtain (X', Y’).

Intuition behind preprocessing. Let us define left(X’, Y') =
(x] ...x/%,y/] ...y/%) and right(X',Y’) = (x/%+1
c X, y/% +1-+-¥n)- Our preprocessing aims to achieve the
following properties in (X', Y).

If Gpcs (X, Y) = 0, our dynamic network will have
two parts. The first part corresponds to left(X’, Y’), while the
second part corresponds to right(X’, Y’). To ensure that the
network has a diameter of ®(g), we want both left(X’, Y’)
and right(X’, Y’) to satisfy the following properties (for
brevity, the following will only discuss left(X’, Y')):

— We need left(X’, Y') to contain at least ¢ occurrences of
the (0, 0) pattern. By the gap promise, (X, Y) contains
at least g occurrences of the (0, 0) pattern. We will later
set g = 15¢ In g. However, such g occurrences may not
be spread evenly across the first half and the second half
of (X, 7).

As the first step in our preprocessing, Alice and Bob use
public coins to generate a random permutation 7, and
set X' = w(X) and Y = 7 (Y), respectively. We can
later easily show that with good probability, doing so will
make left(X’, Y’) contain at least 4¢ In ¢ occurrences of
the (0, 0) pattern, immediately after the permutation step.

— We further need left(X’, Y') to contain a (2, 2) pair, a
(4,4) pair, ..., and a (¢ — 1,g — 1) pair. (Note that
left(X’, Y’) does not need to satisfy the cycle promise,
and hence such pairs are possible.) These pairs are needed

8 Our reduction uses an odd value for g—hence "T_l is an integer.

@ Springer

to later ensure that the dynamic network constructed by
the adversary remains connected in each round. In order
to have such pairs in left(X’, Y’), the second step in our
preprocessing is for Alice and Bob to add some random
offsets to each character in left(X’, Y').

Recall that left(X’, Y’) is likely to contain at least 4¢ In g
occurrences of the (0, 0) pattern, immediately after the
permutation step. Our hope is to change at least one of
these pairs to become a (2, 2) pair, at least one of these
pairs to become a (4, 4) pair, and so on. At the same time,
we still want a sufficient number of (0, 0) pairs to remain
unchanged, so that at the end of the process, we still have
q pairs of (0, 0). To achieve this, the offset 0; is chosen
such that Prfo; = 0] = 5 and Pro; = 2j] = _L5 for
1<j< %. Alice and Bob then add o; to X and y.,
respectively. Note that since Alice and Bob do not know
which pairs are (0, 0) pairs, they will end up adding off-
sets to all other pairs as well. This will not cause any
problem in our simulation later.

Finally, for convenience in discussion (rather than cor-
rectness), we do not want the characters in (X', Y’) to
be larger than ¢ — 1. Hence if adding the offset makes
a character to be larger than g — 1, we simply set the
character to be ¢ — 1.

IfGpcs ¥ (X, Y) = 1, our dynamic network will only have
one part, which corresponds to left(X’, Y’). To ensure that the
dynamic network is connected, we will need left(X’, Y’) to
contain at least one (¢ — 1, g — 1) pair. This fortunately will
have already been achieved by adding the offsets. Namely,
regardless of (X, Y), some pair will likely become (g —1, g —
1) after adding the offset.

Formal properties of preprocessing. Define [;(X,Y),
12X, YY), [5deft(X’, Y")), and |§(right(X’, Y')) to be the
number of occurrences of the (a, b) pattern in (X,Y),
X', Y, left(X’, Y'), and right(X’, Y'), respectively. We say
that (X', Y’) is of rype-0 if it satisfies all the following:

- gUeft(X’, Y")) > g and [§(right(X', Y)) > g.
- Iij (left(X’, Y')) > 1 and |§§ (right(X’, Y')) > 1 forall j

from 1 through %.
We say that (X', Y') is of rype-1 if it satisfies all the following:
- |§jﬁ (left(X’, Y')) = |§jﬁ (right(X’, Y)) = 0 for all j from
1 through #.

- |‘qf:}(1eft(x/, Y’)) > 1 and |Z:}(right(x’, Y)) > 1.

Itis possible that (X', Y’) is neither rype-0 nor type-1.In such
a case, we say that (X', Y’) is of type- L.

Some lower bounds in dynamic networks with oblivious adversaries

.~ processed input

: _~input Jeaked

or
7z

2

stable nodes
(a) An example where n =16, g=12,¢ =75, and GDCZ?(X,Y) =
1. Here the processed input (X', Y’) happens to be of type-1. The
dynamic network is constructed based only on left(X',Y’) (i.e.,
the first half of the processed input). In this example, v; and v,
happen to be both sending in round 1

. processed input

t leaked
__~inpu r
ofiTolol2[o[olololoo@lo]0
olelolol1(o[ofolo]ololL]0 0

OO0« |0o|o
O|9=<«=*#- 0|0

stable nodes unstable nodes
(b) An example where n =16, g=12, ¢ =5, and GDC$?(X,Y) =
0. Here the processed input (X', Y’) happens to be of type-0. The
entire processed input is used to construct the dynamic network.
In this example, v3 happens to be receiving in round 1.

Fig. 3 Two examples of how the input (X, Y) is converted into the processed input (X, Y’), as well as the round 1 topologies of the resulting

dynamic networks

Intuitively, if GDCS'? (X, Y) = 0, we would hope (X', Y')
to be of rype-0. Similarly, if Gpcs? (X, Y) = 1, we would
hope (X', Y’) to be of type-1. But since the preprocessing is a
random process, there is no guarantee that this would happen.
Still, the following lemma (proof deferred to “Appendix D)
shows that we do get what we hope for, with at least 1 — (—i
probability:

Lemma 7 Consider any input (X,Y) of the GDCs? prob-
lem and its corresponding processed input (X', Y'). For z €
{0,1},ifqg =20, g > 15gIng,n > 4g,and GDC(X,Y) = 2,
then Pr((X', Y') is of type-z] > 1 — ..

9.2.2 The reference adversary based on processed input

We next define the reference adversary based on (X', Y').
Figure 3 illustrates the dynamic network determined by the

reference adversary. We separately consider 3 cases, depend-
ing on the type of (X', Y').

Fortype-1 (X', Y').If (X', Y') is of type-1, then the dynamic
network will depend only on left(X’, Y’) (i.e., the first half
of (X', Y")). The dynamic network will have 37” + 2 nodes,
which are all called stable nodes. There are two special nodes
a and B in the topology. For each index i (1 <i < %), there
is a vertical chain consisting of three nodes (see Fig. 3a).
During round 0, on each chain, there is an edge connecting
the top node and the middle node, and another edge connect-
ing the middle node and the bottom node. The top nodes of
all chains are connected to «, and the bottom nodes of all
chains are connected to § (see Fig. 3). A chain for index i is
called a |j chainif x; = a andy; = b.If a is even, we call the
top edge (i.e., the edge between the top node and the middle
node on the chain) as an even edge on this chain. Similarly,

@ Springer

18

I. Jahja et al.

if b is even, the bottom edge is an even edge. We say a chain
is leaked if the corresponding index is leaked by the leaker
in the two-party GDC problem.

Starting from round 1, the adversary changes the topology
in the following way:

2 2t—1 . —1
— Forevery |2§71 and |3, chain(l1 <r < qT), the adver-

sary removes the even edge on that chain at the beginning

of round ¢ + 1.
— Forevery |%§+1 and |§§+1 chain(l1 <t < %), the adver-
sary removes the even edge on that chain at the beginning
ofroundr + 1+ (z P s).
Here both z and s are random variables. We define z = 1
if the middle node on the chain is receiving in round
t + 1, and z = 0 otherwise. We define s = 1 if the
chain is leaked, and s = O otherwise. Note that this is the
only occasion where the reference adversary makes an
adaptive decision. Specifically, the decision depends on
z, which in turn may depend on the coin flip outcomes of
protocol.

It is easy to verify that this adaptive adversary is indeed
a sanitized adaptive adversary (recall the definition from
Sect. 7): Regardless of the coin flip outcomes Cp of &, for
the second type of chains above, the adversary removes the
even edge at the beginning of round ¢+ 1 with half probability
and at the beginning of round ¢ + 2 with the remaining half
probability. Furthermore, these decisions are independent for
different chains.

For type-0 (X', Y'). If (X', Y’) is of type-0, then the dynamic
network will have two parts. The first part depends on
left(X’, Y’), while the second part depends on right(X’, Y’).
Each part has 37" + 2 nodes, and the network has total 3n +4
nodes. All nodes in the first part are called stable nodes, while
all nodes in second part are unstable nodes. The first part has
two special nodes « and S, while the second part has two
special nodes y and A.

During round 0, the topology among the stable nodes are
exactly the same as in the case where (X', Y’) is of type-1.
The topology among the unstable nodes are constructed in
the same way as the stable nodes, except that we replace o
and B with y and A, and except that we use right(X’, Y’) to
construct the % chains (see Fig. 3b). Now y () is connected
to all the top (bottom) nodes in the second part. In the next,
a chain may refer to either a chain in the first part or a chain
in the second part. Hence the network has total n chains.

Starting from round 1, the adversary changes the topology
in the following way (the first two items below are the same
as the case when (X', Y’') is of type-1):

— For every |%§_1 and |§§_1 chain(l <t < %), the adver-
sary removes the even edge on that chain at the beginning
of round ¢ + 1.

@ Springer

2t 2t+1 . g—1
— Forevery |2l+1 and |5," chain(1 <7 < T), the adver-

sary removes the even edge on that chain at the beginning
ofround t + 14 (z®s). Here z and s have the same mean-
ing as earlier.

— At the beginning of round 1, the adversary removes all
the top edges and bottom edges on all the |8 chains. Next,
the adversary arbitrarily connects the middle nodes of all
|8 chains into a line such that all stable nodes are before
the unstable nodes on the line. It then connects the stable
node at one end of the line to the middle node of some
|§ chain of stable nodes, and the unstable node at the
other end of the line to the middle node of some |% chain
of unstable nodes (see Fig. 3b). This serves to keep the
topology connected. Since (X', Y’) is of type-0, such |§
chains must exist.

— At the beginning of round t +1 (1 < ¢ < %), for
every |§; chain, the adversary removes the top and bottom
edges on that chain. At the same time, if such a chain
consists of stable (unstable) nodes, then the adversary
connects the middle node of this chain to the middle node

of some arbitrary |%§i§ chain of stable (unstable) nodes.

Again, this serves to keep the topology connected. Same

as earlier, such |§;i§ chain must exist.

By same reasoning as for when (X', Y’) is of type-1, one
can easily verify that when (X', Y’) is of type-0, the reference
adversary is also a sanitized adaptive adversary.

For type-1 (X', Y'). Finally for completeness, we also need
to define the reference adversary when (X', Y’) is of type-_L.
The specifics of how the reference adversary works in this
case does not really matter, as long as the dynamic network
remains connected in each round. Hence for simplicity, if
(X', Y') is of type- L, then the reference adversary is the same
as for the case where (X', Y’) is of type-1, except that the
adversary does not remove any edges. Thus the dynamic net-
work is effectively a static network. Trivially, when (X', Y’)
is of type-_L, the reference adversary is a sanitized adaptive
adversary.

9.3 Alice’s and Bob’s simulation

Overview. This section describes Alice’s and Bob’s simu-
lation, and proves several properties of the simulation. We
begin with an overview, from Alice’s perspective. Alice’s
goal is to simulate &7’s execution against the reference adver-
sary. Based only on her local knowledge, Alice does not know
all the specifics of the reference adversary. Because of this, in
any given round, Alice will only simulate &”’s execution on
a subset of the nodes (which are called non-spoiled nodes).
The set of non-spoiled nodes for Alice will shrink from round
to round—namely, as the simulation goes on, Alice will give

Some lower bounds in dynamic networks with oblivious adversaries

Procedure Simulate_consensus_protocol ()

1
2 foreachr:l,...,"z;ldo

3 msg_pool < J; msg_to_other_party < 9 ;

4 foreach node t that was non-spoiled for me in round r — 1 do

5 ‘ determine whether 7 is sending or receiving in round r ;

6 end

7 foreach node t that was non-spoiled for me in round r — 1 and is sending in round r do

8 out_msg <« Advance_by_one_round (2, Cp, t, initial input to 1) ;

9 /* We assume a message always contains the id of the sender. */;

10 add out_msg to msg_pool;

11 if T = o or t = § then msg_to_other_party < out_msg ;

12 end

13 send msg_to_other_party to the other party ;

14 receive msg_to_other_party from the other party, and add to msg_pool ;

15 foreach node t that remains to be non-spoiled for me in round r and is receiving in round r do
16 in_msg <« {msg|msg € msg_pool and the sender of msg is ’s neighbor in round r according to my rule in Section 9.3.3} ;
17 if in_msgq is legal (/* see text in Section 9.3.2 for the definition of legal */) then

18 ‘ Advance_by_one_round (&, Cp, 1, initial input to T, in_msg) ;

19 else

20 ‘ abort;

21 end

22 end

23 end

24 end

Protocol 2: Simulation protocol executed by Alice and Bob to solve GDC. The Advance_by_one_round () procedure
continues the simulation of the protocol & by one round. If &7 is sending a message in that round, then the procedure
will have that message as its return value. Otherwise the procedure has no return value.

up simulating certain nodes due to the lack of sufficient infor-
mation to do so.

Consider any given round and any non-spoiled node 7
for Alice. To simulate the execution of & on 7 in that round,
among other things, Alice needs to be able to feed the incom-
ing message to 7, if T is receiving in that round. A unique
challenge in our simulation is that since Alice does not know
all the specifics of the reference adversary, Alice may not be
able to precisely determine which nodes are t’s neighbors
in the current round. Instead, Alice will use her own rule
(based only on her local knowledge) to decide the neighbors
of 7. We will later prove that such decisions are always good
enough for the simulation to be correct.

In the following, we first define the notion of spoiled and
non-spoiled nodes. Next we present the pseudo-code for the
simulation, and then describe the rules used by Alice and Bob
to decide the neighbors. Finally, we prove several properties
of the simulation.

9.3.1 Spoiled and non-spoiled nodes

In each round, each node is either spoiled or non-spoiled
for Alice. Roughly speaking, a node is non-spoiled for Alice
in round r if, based solely on Alice’s input X and all the
messages sent by the special node f in the dynamic network
so far, Alice can simulate the execution of &2 on this node
against the reference adversary in round r. Formally (see

Fig. 4 for an example), we define all unstable nodes as always
spoiled for Alice, in all rounds. Among the stable nodes, we
define « as always non-spoiled for Alice in all round, while 8
as always spoiled in all rounds. The remaining stable nodes
are all on the chains. Consider any given chain with stable
nodes, and let v, v, and w be the three nodes on the chain,
from the top to the bottom:

— A node on a chain that is leaked is always non-spoiled
for Alice in all rounds.

— A node on a chain that is not leaked is non-spoiled for
Alice until it becomes spoiled.

— If the chain is not leaked and is in the form of |2/, then v
and w become spoiled since the beginning of round 7 + 1.

— If the chain is not leaked and is in the form of |£’+1 , then
 becomes spoiled since the beginning of round ¢ + 1.

[Tk

In the above, “x” is a wildcard representing any integer.

We similarly define these concepts for Bob: All unstable
nodes and the stable node « are always spoiled for Bob. The
node B is never spoiled for Bob. For any chain with stable
nodes v, v, and w, from the top to the bottom:

— A node on a chain that is leaked is always non-spoiled
for Bob in all rounds.

— A node on a chain that is not leaked is non-spoiled for
Bob until it becomes spoiled.

@ Springer

20

I. Jahja et al.

processed input-.., :

non-spoiled nodes |
for Alice in round 1*.

non-spoiled nodes
for Bob in round 1

round 1
topology

non-spoiled nodes |
for Alice in round 2,

non-spoiled nodes
for Bob in round 2

round 2
> topology

stable nodes

Fig.4 An example illustrating which nodes are non-spoiled for Alice
(Bob), inround 1 and 2, respectively. The middle nodes of all the chains
happen to be sending in both rounds. Note that in any given round, some
nodes may be non-spoiled for both Alice and Bob, or for exactly one of

— If the chain is not leaked and is in the form of |’2‘l, then v
and v become spoiled since the beginning of round # + 1.

— If the chain is not leaked and is in the form of |3, 41 then
v becomes spoiled since the beginning of round ¢ + 1.

9.3.2 The simulation

Pseudo-code for the simulation. Protocol 2 gives the pseudo-
code that Alice and Bob use to simulate &?’s execution on
the nodes that are non-spoiled for each of them. Alice and
Bob will feed public coin flips into & in the simulation. It
will be convenient to imagine that such public coin flips has
already been done beforehand, with the outcomes being C»,
so that &2 can be treated as deterministic given Cs.

@ Springer

unstah(e nodes

them, or for none of them. In the figure, the |8 chains are all in the middle
so that the figure does not become cluttered and messy. In general, the
|8 chains can be anywhere in the topology

Protocol 2 is executed by both Alice and Bob, separately.
We will explain Protocol 2 as it is executed by Alice. In Pro-
tocol 2, Alice simulates total % rounds of #’s execution.
For each node in the dynamic network, Alice maintains the
state for & running on that node. In each round r, Alice first
checks all nodes that were non-spoiled for her in round r — 1
and determines whether each of them is sending or receiving
in round r. Note that if a node t was non-spoiled in round
r — 1 but becomes spoiled in round r, we will later prove that
Alice can still (i) determine whether t is sending or receiving
in round r, and (ii) simulate £ on t in round r if 7 is send-
ing in round r (since such a t’s behavior is not influenced by
potential incoming messages in round r).

Next Alice processes all nodes that were non-spoiled for
her in round » — 1 and are sending in round r. For each such

Some lower bounds in dynamic networks with oblivious adversaries

21

node 7, Alice simulates and advances %2 running on that
node by one round. To do so, Alice will need to know the
initial input to 7, which may be used by the protocol. Note
that incoming messages to t in previous rounds have already
been captured in the current state of the protocol, and there is
no need for Alice to provide those again. Since t is sending,
Alice does not provide t with any incoming message. &
on 7 will then generate an outgoing message, which Alice
adds to the pool of messages to be delivered. Without loss
of generality, we assume a message always contains the id
of its sender. If T = «, then Alice will further forward this
message to Bob. Note that for Alice, 8 is always spoiled and
hence t # .

Finally Alice processes all nodes that remain non-spoiled
for her in round r and are receiving in round r. For each such
node 7, from the pool of messages to be delivered, Alice
chooses all those messages that were sent by 7’s neighbors
to construct a set in_msg. Alice decides which nodes are
T’s neighbors according to Alice’s rule (described later in
Sect. 9.3.3). If in_msg is legal (defined in the next para-
graph), then Alice feeds in_msg into & running on 7, and
advances & by one round at Line 18.

Checking whether incoming messages are legal. When
the processed input (X', Y’) is of type-L, the simulated
CONSENSUS protocol &2 on different nodes in Protocol 2
may be inconsistent, and may not correspond to the execu-
tion of &2 over any dynamic network. In such a case, the set
in_msg of incoming message as constructed at Line 16 of
Protocol 2 may be corrupted—namely, &2 never expects to
receiving such a set of incoming messages. While we will
not be concerned with the correctness of & when the pro-
cessed input is of type-_L, we do want to ensure that (i) Alice
can complete simulation of & on t at Line 18 within finite
amount of time, and (ii) ¢ will not send excessively large
messages in later rounds since Alice will need to forward 7’s
message to Bob when t = «.

To ensure this, at Line 17, Alice check whether in_msg
is legal in the following way: Alice exhaustively enumerate
all possible dynamic networks with no more than 3n + 4
nodes’ and no more than r rounds, and all possible initial
values of the nodes in the network. Alice next simulates the
execution of & with C» under each such setting. Note that
all such simulations are done unilaterally by Alice and are
completely independent of the simulation done by Alice and
Bob together. Alice then checks whether in_msg matches

9 The dynamic network should contain either 3n + 4 nodes or 3”—2*4

nodes. But Alice does not know the total number of nodes in the dynamic
network. Hence Alice simply tries all dynamic networks with no more
than 3n 4 4 nodes. If a message is determined to be legal in this way,
then it will already guarantee that (i) the local computation of P on t
takes finite amount of time, and (ii) any message sent by P on v will
not be too large.

any set of incoming messages to any node ¢ in any such
simulation in round r, where ¢ has the same state as t at the
end of round r — 1 and has the same initial input as t. Such
checking is possible since communication complexity lower
bounds hold irrespective of the computational power of Alice
and Bob. If there is no such node ¢, then Alice claims that
in_msg is not legal and will abort Protocol 2.

9.3.3 Alice’s rule and Bob's rule

Alice’s rule. Consider any given round and any node t that
is non-spoiled for Alice in that round. To simulate & on t,
if T is receiving, Alice needs to determine which nodes are
7’s neighbors in that round, under the reference adversary.
As mentioned earlier, Alice cannot determine this precisely
based only on her local knowledge. Instead, in her simula-
tion, Alice will decide t’s neighbors by following her own
rule based solely on her local knowledge (i.e., the leaked
information and X’) in the following way:

— For © = «: Under the reference adversary, node « has
a fixed set of neighbors in all rounds, independent of
the values of X’ and Y'. Hence Alice’s rule will directly
choose those nodes to be «’s neighbors in her simulation.

— For any non-spoiled node 7 on a leaked chain: Let i be
the index of this leaked chain. Since the chain is leaked,
Alice knows both x! and y;. Alice will then determine
the neighbors of T under the reference adversary, while
assuming (X', Y’) to be of type-0. Note that Alice has all
necessary information to do so. Alice’s rule will choose
those nodes to be t’s neighbors in Alice’s simulation.
Obviously, Alice’s assumption could be wrong. If (X', Y')
is of type-1, then given that 7 is on a leaked chain, one
can directly verify that under the reference adversary, the
neighbors of 7 will be the same as for the case where
(X', Y’) is of type-0. Hence in this case, the neighbors
chosen by Alice’s rule will be the same as those under the
reference adversary. If instead (X', Y') is of type-_L, then
the neighbors decided by Alice’s rule can be different
from the neighbors under the reference adversary. This
will however not cause any problem, since when (X', Y')
is of type-_L, we only need our simulation to have some
rather weak guarantees (e.g., terminating within finite
amount of time).

— For any non-spoiled node 7 on a non-leaked chain: Con-
sider any given non-leaked chain, and let i be the index
of this chain. Let the 3 nodes on the chain (from top to the
bottom) be v, v, and w. We will describe how Alice’s rule
decides the neighbors of these 3 nodes, which depends on
whether x; is even or odd. We separately consider these
two cases.

The first case is x; = 2¢ for some integer 7. Alice’s rule

@ Springer

22

I. Jahja et al.

will choose {o, v} as the neighbors of v, in rounds 1
through ¢. Starting from round ¢ + 1, Alice’s rule will
choose {or} as the neighbor of v. Intuitively, this corre-
sponds to the edge between v and v being removed at the
beginning of round 7 + 1. For nodes v and w, Alice’s rule
will always (in all rounds) choose {v, w} and {v, B} as
their neighbors, respectively. (Note however that v and w
both become spoiled for Alice starting from round ¢ + 1.
Hence Alice’s rule for v and w is only relevant for rounds
1 through ¢.)

The second case is x; = 2¢ — 1 for some integer 7. Alice’s
rule will choose {v, w} as the neighbors of v, in rounds
1 through ¢. Starting from round ¢ + 1, Alice’s rule will
choose {v} as the neighbor of v. For nodes v and w,
Alice’s rule will always (in all rounds) choose {«, v} and
{v, B} as their neighbors, respectively.

Some intuition behind Alice’s rule. As an example, consider
a |§ chain that is not leaked, and let T and v be the top node
and the middle node of this chain, respectively. Note that t
is always non-spoiled for Alice.

Assume that v is receiving in round 2. By Alice’s rule,
in round 2, v is not a neighbor of 7. But under the reference
adversary, the node v is a neighbor of t in round 2. Hence 7’s
neighbors as decided by Alice’s rule are different from t’s
neighbors under the reference adversary. One may suspect
that this could cause Alice’s simulation to be incorrect. But
note that v is receiving in round 2, and does not send any
message. Hence t will not receive any message from v, and
the simulation on t will be the same, regardless of whether
v is a neighbor of t. Intuitively, this is why despite Alice’s
rule not following the reference adversary precisely, Alice’s
simulation will still be correct.

On the other hand, if v is sending in round 2, then under
the reference adversary, the node v is not a neighbor of
in round 2. In this case, t’s neighbors as decided by Alice’s
rule will be the same as t’s neighbors under the reference
adversary.

Bob’s rule. Bob’s rule is entirely symmetric to Alice’s rule,
and there is no fundamental difference between Bob’s rule
and Alice’s rule. For completeness, the next fully describes
Bob’s rule. Consider any given round and any non-spoiled
node t for Bob in that round. In Bob’s simulation, Bob will
decide t’s neighbors by following his own rule based solely
on his local knowledge (i.e., the leaked information and Y’):

— For = B: Under the reference adversary, node 8 has
a fixed set of neighbors in all rounds, independent of
X’ and Y’. Bob’s rule will choose those nodes to be B’s
neighbors in his simulation.

@ Springer

— For any non-spoiled node 7 on a leaked chain: Let i be
the index of this leaked chain. Bob, knowing both Xl’ and
y;, will determine the neighbors of 7 under the reference
adversary, while assuming (X', Y’) to be of type-0. Bob’s
rule will choose those nodes to be 7’s neighbors in Bob’s
simulation.

— For any non-spoiled node t on a non-leaked chain: Let
i be the index of this chain, and let the 3 nodes on this
chain (from top to the bottom) be v, v, and w.

If y; = 2t for some integer ¢, Bob’s rule will choose
{v, B} as the neighbors of w, in rounds 1 through ¢. Start-
ing from round ¢ 4 1, Bob’s rule will choose {8} as the
neighbor of w. For nodes v and v, Bob’s rule will always
(in all rounds) choose {«, v} and {v, w} as their neigh-
bors, respectively.

If yl’. = 2t — 1 for some integer ¢, Bob’s rule will choose
{v, w} as the neighbors of v, in rounds 1 through ¢. Start-
ing from round ¢ + 1, Bob’s rule will choose {w} as the
neighbors of v. For nodes v and w, Bob’s rule will always
(in all rounds) choose {«, v} and {v, B} as their neighbors,
respectively.

9.3.4 Performance of the simulation

We first prove that Alice’s and Bob’s simulation (using Pro-
tocol 2) will always terminate and will not incur too much
communication, even when the processed input (X', Y’) is
of type-_L.

Lemma 8 For any CONSENSUS protocol &2, there exists pos-
itive constant ¢ such that for all n, q, and Cp, Protocol 2
always terminates within finite amount of time and incurs at
most cq log n bits of communication between Alice and Bob.

Proof For any node t and any round r, we say that the state
of & running on t (as maintained by Alice or Bob using
Protocol 2) is legal if there exists some dynamic network of
no more than 3z + 4 nodes, some initial values to the nodes
in this dynamic network, and some node ¢ in this dynamic
network whose initial value is the same as 7’s, such that when
running & on this dynamic network with Cp, the state of &
on ¢ in round r is exactly the same as the state of & on 7 as
maintained by Alice or Bob using Protocol 2.

We next prove via an induction that for all node t and all
round r, the state of & running on 7 in round r is legal. The
case for r = 0 is trivial. Assume the claim holds for round
r — 1, and consider any node 7. If 7 is sending in round r, it is
easy to see that the state of the CONSENSUS protocol running
on t will continue to be legal. If 7 is receiving in round r,
then Line 17 of Protocol 2 explicitly ensures that the state
will be legal, before continuing.

Some lower bounds in dynamic networks with oblivious adversaries

23

Next since the state of &2 on all node 7 are always legal'®

in all round r, it immediately means that simulated & run-
ning on t will complete its execution for round r within finite
amount of time at Line 8 and Line 18 of Protocol 2. Fur-
thermore at Line 11, the size of out_msg (and hence the
size of msg_to_other_party) must satisfy the maxi-
mum allowed message size (i.e., O(logn)) for a network
with @ (n) nodes. The lemma follows since in each round,
Alice and Bob only communicate once at Line 13 by sending
msg_to_other_party to the other party. O

9.3.5 Correctness of the simulation

Overview. We next aim to prove that by using Protocol 2,
Alice and Bob can indeed correctly simulate &’s execution
against the reference adversary on the non-spoiled nodes,
when (X', Y’) is either of type-0 or type-1. We do not care
about the case where (X', Y’) is of type-L, as this will only
happen with probability less than %.

To make our claims rigorous, we need to first define
the notion of reference execution. Consider any given
CONSENSUS protocol &, any given initial values for all the
nodes, any given public coin flip outcomes C» that Alice
and Bob generate to feed into & in their simulation, any
processed input (X', Y’) that is either type-0 or type-1, any
given set of indices that are leaked by the leaker, and the corre-
sponding reference adversary under such a setting. We define
the reference execution to be the execution of & under such
coin flips, such initial values of the nodes, and such adver-
sary. (Such a reference execution must be deterministic since
all coins have been flipped.)

We ultimately aim to prove that the behavior of each node
in Alice’s and Bob’s simulation is exactly the same as in
the reference execution. We do this via two steps, and the
following provides some intuitions.

For the first step, as an example, let us consider any given
round r and any given node t thatis receiving inround r in the
reference execution. Assume that 7 is non-spoiled for Alice,
and hence is being simulated by Alice. Recall that in her sim-
ulation, Alice uses her own rule to decide the neighbors of t
inround r, which are later used to determine which messages
should be fed into 7. These neighbors may be different from
7’s neighbors in the reference execution. However, Lemma 9
later will prove that all nodes in the symmetric difference
of these two sets of neighbors are all receiving in round r.

10 The states of 27 on all the individual nodes being legal does not
necessarily imply that the joint state across all the nodes corresponds
to some execution of & over some dynamic network. However, note
that the proof here does not rely on the properties on the joint state.
The proof here only needs that (i) each node completes its execution
for each round within finite amount of time, and (ii) messages sent are
not excessively large.

Hence the difference will not impact the set of messages that
7 receives in round r. Furthermore, Lemma 9 will also show
that all of 7’s sending neighbors (except potentially 8)!! must
also be non-spoiled for Alice in round r — 1, which allows
Alice to generate the messages that she needs to feed into t
in round r.

Our second step will build upon Lemma 9. We will show
(in Lemma 10) via an induction that in both Alice’s and
Bob’s simulation (i.e., Protocol 2), the outgoing message
of each node in each round of simulation is exactly the
same as the outgoing message of the corresponding node
in the corresponding round in the reference execution. With-
out loss of generality, assume that when a node decides in the
CONSENSUS protocol &, the node sends a special message.
Hence a node will send such a special message in a round in
the simulation if and only if it does so in the corresponding
round in the reference execution. This will be the ultimate
property that we later need.

Neighbors of nodes. The following lemma reasons about the
neighbors of a node as decided by Alice’s rule (Bob’s rule),
as compared to its neighbors under the reference execution:

Lemma 9 Considerany given reference execution, any round
1<r< %, and any node T in the reference execution that
is receiving in the reference execution in round r and is non-
spoiled for Alice (Bob) in round r. Let S be the set of nodes
that are t’s neighbors according to Alice’s (Bob’s) rule in
round r and that are sending in the reference execution in
round r. Let S’ be the set of nodes that are t’s neighbors
under the reference adversary in round r and are sending in
the reference execution in round r. Then,

-S=4g.
— Forall ¢ € S, either ¢ is non-spoiled in round r — 1 for
Alice (Bob) or ¢ = B (¢ = «).

Proof 1t suffices to prove the lemma for Alice. Throughout
our proof, we will extensively leverage the fact that since
we are considering a reference execution, the correspond-
ing processed input (X', Y") must be either type-0 or type-1.
Hence whenever we consider ¢’s neighbors under the refer-
ence adversary, we should keep in mind that (X', Y’) is not
of type-_L.

Define T to be the set of T’s neighbors according to Alice’s
rule in round r, and T’ to be the set of t’s neighbors under
the reference adversary in round r. Obviously, S € T and
S’ C T’. Note that S (S’) consists solely of the nodes in
T (T’) that are sending in the reference execution. Hence
T =T implies S = §'.

I Node g is an exception as it is always spoiled for Alice, but this does
not cause any problem since Bob will forward to Alice the message that
B sends in each round.

@ Springer

24

I. Jahja et al.

Since 7 is non-spoiled in round r, T must be a stable node.
Such 7 can either be the special node « or can be a node on
any of the chains consisting of stable nodes. If T = «, then
T’s neighbors according to Alice’s rule are always exactly
the same as 7’s neighbors under the reference adversary, and
all these neighbors are never spoiled for Alice. Hence the
lemma holds when t = «.

Next we consider the case where 7 is on some chain con-
sisting of stable nodes. If the chain is leaked, then regardless
where 7 is on the chain, we have T = T"’. Furthermore, since
nodes on a leaked chain are always non-spoiled, a node in T
must be either B or some non-spoiled node. Hence the lemma
holds.

The remainder of our proof covers the case where 7 is
on some non-leaked chain consisting of stable nodes. Let
v, v, and w be the three nodes, from top to the bottom, on
any such chain. We exhaustively enumerate all possibilities,
depending on what kind of chain it is. Let # be any integer
where 0 <t < %:

2t . 2t . . .
— Fora |5,_, chain or a |3; chain, v is always non-spoiled,
and v and w are non-spoiled iff r < ¢t + 1:

— For node v, we exhaustively enumerate all scenarios:
) Ifr <t+1,thenT = T’ = {«, v}. By definition,
both o and v are non-spoiled in round r — 1. (ii) If
r>t+1,then T = T' = {a}. By definition, « is
non-spoiled in round r — 1.

— Fornodevandr <t+1,wehave T =T’ = {v, w},
and both nodes are non-spoiled in round r — 1.

— Fornodewandr <t+1,wehave T =T’ = {v, 8},
where v is non-spoiled in round r — 1.

— For a |§;+1 chain, v is always non-spoiled, and v and w
are non-spoiled iff r < ¢ + 1:

— For node v, we exhaustively enumerate all scenarios:
)Ifr <t+1,thenT = T' = {«, v}. By definition,
both o and v are non-spoiled in round r — 1. (ii) If
r>t+1,then T = T’ = {a}. By definition, « is
non-spoiled in round » — 1. (iii)) If = ¢ + 1 and v
is sending in round r, then T = T’ = {a} and « is
non-spoiled inround r — 1.iv) If r = ¢t + 1 and v is
receiving in round r, then 7" = {a, v} and T = {a}.
If « is receiving in round r, we have § = §' = f.
Otherwise, S’ = {a} = S. By definition, « is non-
spoiled in round r — 1.

— Fornodevandr <t+1,wehave T =T’ = {v, w},
and both nodes are non-spoiled in round r — 1.

— Fornodewandr <t+1,wehave T = T' = {v, B8},
and v is non-spoiled in round » — 1.

— Fora Igfl chain, v and v are always non-spoiled, and @
is non-spoiled iff r < ¢:

@ Springer

— Fornode v, T = T’ = {a, v}. By definition, both «
and v are non-spoiled in round » — 1.

— For node v, we exhaustively enumerate all scenarios:
() Ifr <t,wehaveT =T’ = {v, w}, and both nodes
are non-spoiled in round r — 1. (ii) If > 7 + 1, then
T = T’ = {v}. By definition, v is non-spoiled in
round r — 1.

— Fornode w and r < t,wehave T = T’ = {v, 8},
where v is non-spoiled in round » — 1.

— Fora |§§+1 chain, v and v are always non-spoiled, and @

is non-spoiled iff r < ¢ + 1:

— Fornode v, T = T’ = {«, v}. By definition, both «
and v are non-spoiled in round r — 1.

— For node v, we exhaustively enumerate all scenarios:
O)Ifr <t+1,wehave T = T’ = {v, »}, and both
nodes are non-spoiled inround r — 1. (ii) If r > 741,
then T = T’ = {v}. By definition, v is non-spoiled
in round » — 1. (iii) If » = ¢ 4+ 1, recall that we
only need to consider the case where v is receiving
inround r. Thus, T = T’ = {v, w}, and both v and
w are non-spoiled in round r — 1.

— Fornodewandr < t+1,wehave T =T’ = {v, 8},
where v is non-spoiled in round r — 1.

Hence the lemma holds in all above cases. O

Outgoing messages of nodes. We next aim to prove that the
outgoing message of each node in each round of simulation
is exactly the same as the corresponding outgoing message
in the reference execution.

Consider any round » and any node 7. If 7 is sending in
round r, we say that the outgoing message from t as deter-
mined in round r of Protocol 2 at Line 8 is consistent with the
reference execution (or consistent in short), if it is exactly the
same as the t’s outgoing message in the reference execution
in round r. Similarly, if 7 is receiving in round r, we say that
the set of incoming messages fed into t in round r of Proto-
col 2 at Line 16 is consistent (with the reference execution)
if it is exactly the same as t’s set of incoming message in the
reference execution in round r.

The lemma below actually proves more properties than
we need in the end—however, we need those properties for
the inductive proof to go through.

Lemma 10 Consider any given reference execution, any

node t in the reference execution, and any r where 1 <
1

r<i—.
— If T was non-spoiled for Alice (Bob) in round r — 1 and is
sending in the reference execution in round r, then (i) T
will be determined as sending in round r by Alice (Bob)

at Line 5 of Protocol 2, and (ii) t’s outgoing message as

Some lower bounds in dynamic networks with oblivious adversaries

25

determined by round r of Alice’s (Bob’s) Protocol 2 at
Line 8 is consistent with the reference execution.

— If T was non-spoiled for Alice (Bob) in round r — 1 and is
receiving in the reference execution in roundr, then t will
be determined as receiving in round r by Alice (Bob) at
Line 5 of Protocol 2. Furthermore if such a t continues
to be non-spoiled in round r, the set of tT’s incoming
messages as determined by round r of Alice’s (Bob’s)
Protocol 2 at Line 16 is consistent with the reference
execution.

Furthermore, Line 20 in Protocol 2 will not be executed in
round r.

Proof The last claim that Line 20 will not be executed does
not need to be proved separately—as long as we can prove
the other claims in the lemma, the last claim will directly
follow. The reason is that Line 20 can only be executed when
in_msg is not legal at Line 17. However, if the previous
claims in the lemma hold, then in_msg must be legal. Thus
we will not separately prove the last claim.

It suffices to prove the lemma for Alice. We prove via
an induction on r. The induction base for r = 0 is trivial
since 7 by definition is receiving in that round, and the set of
incoming messages is empty. For the inductive step, suppose
that the lemma holds for all rounds before round r, and we
prove the lemma for round r.

First, consider the case where t is non-spoiled for Alice
in round r — 1 and is sending in the reference execution in
round r. By definition, T must be non-spoiled in round O
through round r — 1. By the inductive hypothesis, in Proto-
col 2 for every previous round where t was receiving, the
set of incoming messages fed into T by Alice was consistent
with the reference execution. Since everything is determin-
istic, at Line 5 Alice can determine that T must be sending
in round r, and the outgoing message from t in round r as
generated by Protocol 2 must be consistent as well.

Next consider the case where t is non-spoiled for Alice
in round r — 1 and is receiving in the reference execution in
round r. By same argument as earlier, at Line 5 Alice must
be able to determine that 7 is in a receiving state in round 7.

If 7 continues to be non-spoiled in round r, let S be the
set of nodes that are 7’s neighbors as decided by Alice’s rule
in round r and that are sending in the reference execution in
round r. Consider the set in_msg of messages that Alice
constructs as t’s incoming messages at Line 16. We claim
that in_msg is the same as the set of the messages sent by
all the nodes in S in the reference execution. It is easy to see
that for any node ¢ ¢ S, the outgoing message from ¢ will
not be added to in_msg at Line 16 since by definition of
S, ¢ is not 7’s neighbor according to Alice’s rule in round
r. Hence to prove the claim, we only need to show that for
any node ¢ € S, the outgoing message from ¢ that Alice

adds tomsg_pool (ateither Line 8 or Line 14) is consistent
with the reference execution. As long as this message is in
msg_pool, it will be later added to in_msg at Line 16
since ¢ is t’s neighbor according to Alice’s rule.

If p € S and ¢ = B, then ¢ is sending in round r in the
reference execution and ¢ is non-spoiled for Bob in round
r — 1. By our earlier argument, at Line 8, the outgoing mes-
sage from ¢ generated by Bob in round r is consistent with
reference execution. Such a message will then be forwarded
to Alice at Line 13, and then added tomsg_poo1l at Line 14.
If o € Sand ¢ # B, by Lemma 9, ¢ must be non-spoiled
in round r — 1. Again by our earlier arguments, at Line &,
Alice will generate the consistent outgoing message from ¢
in round r, and add such a message to msg_pool at Line 8.

So far we have proved that in_msg is the same as the set
of the messages sent by all the nodes in S in the reference
execution. Let §” be the set of nodes that are 7’s neighbors
in the reference adversary in round r and are sending in the
reference execution in round r. Lemma 9 tells us that § = §’,
which immediately implies that in_msg is consistent with
the reference execution and hence completes the proof. O

9.4 Proving Theorem 7 from the simulation

Two simulations. Before giving the proof for Theorem 7, we
first highlight a tricky part in the proof, and provide intu-
ition for that part. We will reduce GDC(X, Y) with leaker to
CONSENSUS by first converting (X, Y) to the processed input
(X', Y'). The processed input (X', Y’), together with the the
leaked information, will determine the reference adversary.
Alice and Bob will effectively simulate the CONSENSUS pro-
tocol £’s execution against the reference adversary, and infer
the answer to GDC(X, Y) by monitoring &’s execution on
the special node «. (Of course, other nodes still need to be
simulated to enable the simulation of £?’s execution on «.)
Roughly speaking, if GDC(X, Y) = 1 (and hence (X', Y’) is
likely to be of type-1), then the dynamic network will have a
small diameter, implying that &2 will output quickly on node
a. When GDC(X, Y) = 0 (and hence (X', Y’) is likely to be
of type-0), we instead want & to output in §2(g) rounds on
a.

The tricky part is that even though the dynamic network
has §2(q) diameter when (X', Y’) is of type-0, &7 may still
output fast on the node « and take £2(g) rounds to out-
put on some other nodes. To overcome this challenge, we
will actually do rwo simulations of &2, which are separate
and independent. Having such two simulations is a tricky
aspect of our proof for Theorem 7. The first simulation is
based on the processed input (X', Y’) and the corresponding
reference adversary. Next, let X” be the string obtained by
swapping 1left(X’) and right(X’). Similarly define Y”.
With a slight abuse of notation, we also call (X”,Y”) as a

@ Springer

26

I. Jahja et al.

non-spoiled nodes
for Alice in round 1
(a) The round 1 topology of the dynamic network in the first sim-
ulation. This dynamic network is based on (X', Y’). Since (X', Y’)
is of type-1, the reference adversary determines the dynamic net-
work based only on left(X’, Y’) (i.e., the first half of (X', Y’)). The
middle nodes of all the chains happen to be sending (as determined
by the CONSENSUS protocol) in this round.

non-spoiled nodes
for Alice in round 1
(b) The round 1 topology of the dynamic network in the second
simulation. This dynamic network is based on (X”,Y”). Since
(X",Y") is of type-1, the reference adversary determines the dy-
namic network based only on left(X”,Y") (i.e., the first half of
(X”,Y")) The middle nodes of all the chains happen to be send-
ing (as determined by the CONSENSUS protocol) in this round.

Fig.5 The two dynamic networks used in the two simulations, respectively. Here (X', Y’) and (X, Y”) are of type-1

processed input. To avoid notation collision, in this second
reference adversary, we rename the nodes «, B, y (if exists),
and A (if exists) to be &', B’, y’/, and 1/, respectively.

Now if (X', Y’) is of type-1, then (X”, Y”) must also be
of type-1. The two dynamic networks in the two simulations
will both have a small diameter (see Fig. 5). This means
that & will output fast on both « in the first simulation and
a’ in the second simulation. If (X’,Y’) is instead of type-
0, then (X”,Y”) must also be of type-0. In such case, the
two dynamic networks in the two simulations will both have
£2(q) diameter (see Fig. 6). Via a coupling argument, if &
does not err, we can show that at least one of the following
two cases must hold: (i) in the first simulation &7 takes £2(q)
rounds to output on «, or (ii) in the second simulation &
takes £2(g) rounds to output on o’.

Putting everything together, if Alice observes that & out-
puts fast on both « in the first simulation and «’ in the second
simulation, then Alice will claim that GDC(X, Y) = 0. Oth-
erwise Alice claims that GDC(X, Y) = 1. We now present
the complete proof for Theorem 7:

Theorem 7 If the nodes only know a poor estimate m’ for
’
m where || is at least % then a ll—o—error CONSENSUS

protocol for dynamic networks with oblivious adversaries

must have a time complexity of 2(d + m 117) rounds.

@ Springer

Proof Consider any given %-error CONSENSUS protocol &

with time complexity of tc(d, m) rounds over average coin
flips, when running over dynamic networks controlled by
oblivious adversaries and with d diamelter and m nodes. We
aim to prove that tc(d, m) = §2(d +m12). To do so, we will
prove that tc(8, m) > m117 for all sufficiently large m. This
proof will trivially extend to tc(d, m) for all d > 8. Combin-
ing with the fact that tc(d, m) = $2(d) then completes the
proof.

Consider the constants ¢ and ¢ in Theorem 4 (for § = %),
the constant ¢ in Lemma 8, and the following inequalities:

m—4

> 60 (20m1‘7 + 21) In (20m']7 +21) 3)

) m3—4 .

> 2¢ (2om B4 21) Yo @)

4.5
15 (20m% + 21) log3 m

It is easy to see that there must exist constant c3 > 0 such
that for all m > c3, both inequalities hold. We will prove that
tc(8, m) > m12 forallm > cs.

Assume by contradiction that there exists some m > ¢3
such that tc(8, m) < mle We will proceed with the reduc-
tion from GDC and eventually obtain a contradiction. Let
n =" g =20tc@®m +21, and g = 15¢Ing. We

Some lower bounds in dynamic networks with oblivious adversaries

27

non-spoiled nodes

for Alice in round 1
(a) The round 1 topology of the dynamic network in the first sim-
ulation. This dynamic network is based on (X', Y’). Since (X', Y’)
is of type-0, the reference adversary determines the dynamic net-
work based on the entirety of (X', Y’). The middle nodes of all the
chains happen to be receiving (as determined by the CONSENSUS
protocol) in this round.

leaked

non-spoiled nodes
for Alice in round 1
(b) The round 1 topology of the dynamic network in the second
simulation. This dynamic network is based on (X", Y"). Since
(X",Y") is of type-0, the reference adversary determines the dy-
namic network based on the entirety of (X”,Y”). The middle
nodes of all the chains happen to be receiving (as determined by
the CONSENSUS protocol) in this round.

Fig.6 The two dynamic networks used in the two simulations, respectively. Here (X', Y') and (X”, Y”) are of type-0

later will need to invoke Lemma 7. Note that these param-
eters do satisfy the requirements in Lemma 7, since by
Inequality 3:

m—4

> 60(20m /12 4+ 21) In(20m /"2 4 21)

n =

> 60gIng =4g

Also note that since n > 4g, we have n > ¢, and hence the
GDC$ Y problem is well-defined.

To solve the GDC5 (X, Y) problem with our leaker, Alice
and Bob will simulate the execution of Z2. Alice and Bob will
first generate public coin flip outcomes (denoted as C») to
feed into Z. This effectively makes & deterministic. Alice
and Bob set m = %m = %(Sn + 4), and feeds m into & as
an estimate of the total number of nodes, if &2 needs such an
estimate. As we will quickly see, the number of nodes in the
dynamic network will be either m or m /2. Hence obviously,
such 1 satisfies both |’;%| = % and |r;’r;;"2/2

Alice and Bob will simulate & twice on two different
dynamic networks, using the same Cy. The ids of the nodes
in the dynamic network will be determined by the adversary
and then given to & as inputs.

1
| =3

— First simulation The first simulation is based on the pro-
cessed input (X', Y'). We first assign initial values and
ids to the nodes under the corresponding reference adver-
sary. All stable nodes has initial values 0. Order all the
stable nodes into a total order by some arbitrary crite-
rion, and then assign them ids from 1 to %n + 2. Note
that Alice and Bob can determine the initial values and
the ids of all the stable nodes without the need of commu-
nication, since these initial values and ids do not depend
on (X', Y.

If there are unstable nodes (i.e., when (X', Y) is of type-
0), then they will all have initial values 1. The unstable
nodes will have ids from %n + 3 to 3n + 4, by the total
ordering as described later for the stable nodes in the sec-
ond simulation.

Note that by our definition, if a node is non-spoiled in any
round, then that node must be a stable node. Hence for
any non-spoiled node in any round, by our above reason-
ing, Alice and Bob must know the initial values and id of
that node. Alice and Bob then proceed with the first sim-
ulation using Protocol 2. By Lemma 8, such simulation
must complete within finite time.

— Second simulation For the second simulation, we con-
struct a second processed input (X”, Y”) by swapping

@ Springer

28

I. Jahja et al.

left(X’, Y’) and right(X', Y’). Specifically, we set X" =
X;+% and Y/ = Y;+% forl <i < 7,and X! = X;_%
and Y/ =Y;7% for5 +1<i<n.

It is trivial to see that (X”,Y”) and (X', Y") must be of
the same type. The second simulation is based on the
processed input (X”, Y”). In particular, if (X", Y”) is of
type-1, then the reference adversary will use left(X”, Y”)
to construct the topology. Recall that for clarity, we
rename the nodes «, B8, v, and A to be «’, B/, ¥/, and
A’ in the second simulation.

We still need to assign initial values and ids to the nodes
under the corresponding reference adversary. All stable
nodes have initial values of 1, and all unstable nodes (if
any) have initial values of 0. Order all the stable nodes
into a total order by some arbitrary criterion. These nodes
are then assigned ids from %n +3to3n+4. Note that the
initial topology among these stable nodes will be exactly
the same as the initial topology among the unstable nodes
in the first simulation. As mentioned earlier, we used the
same total ordering used here to order the unstable nodes
in the first simulation, if there were unstable nodes there.
If there are unstable nodes (i.e., when (X", Y”) is of type-
0), then again, the initial topology among these unstable
nodes will be exactly the same as the initial topology
among the stable nodes in the first simulation. We will
use the same total ordering used in the first simulation to
order these unstable nodes, and assign them ids from 1
to %n + 2.

Again, in the second simulation, Alice and Bob know the
initial values and ids of all their respective non-spoiled
nodes. Alice and Bob then proceed with the second sim-
ulation using Protocol 2. By Lemma 8, such simulation
must complete within finite time.

— Generating an output Alice monitors when « decides
in the first simulation and when o’ decides in the second
simulation. If they both decide by round 10tc(8, m), Alice
outputs 1 for the original GDC problem. Otherwise Alice
outputs 0. Note that if either of the simulation aborts at
Line 20 of Protocol 2, Alice will output 0 as well.

— Correctness of Alice’s output If GDC(X, Y) = 1, then
Lemma 7 tells us that (X', Y’) is of type-1 with proba-
bility at least 1 — 3 Since (X”,Y”) and (X', Y’) must
be of the same type, with at least such probability, both
of them are of type-1. When both of them are of type-
1, Lemma 11 later proves that with probability at least
1-— %, « in the first simulation and «’ in the second sim-
ulation both decide within 10tc(8, m) rounds. This will
make Alice generate the correct output 1. Hence Alice
generates the correct output 1 with probability at least
I-D0-9=0-pUl-5>1-3
If Gbc(X,Y) = 0, then by Lemma 7 and similar
argument as before, we know that with at least 1 — %

@ Springer

probability, both (X', Y’) and (X", Y”) are of type-0.
When both of them are of type-0, Lemma 12 later proves
that with probability at most 13—0 « in the first simula-
tion and «’ in the second simulation both decide within
10tc(8, m) rounds. Hence Alice’s output is correct with
probability at least (1 — 5)(1 —3) = (1—p)(1—3) >
1-2

— From communication complexity to time complexity
We have proved so far that Alice and Bob can solve
Gpcy? with % error, by simulating & twice. Lemma 8
tells us that in each simulation, Alice and Bob never incur
more than cq logn bits of communication. Hence Alice
and Bob can solve GDC5'? with no more than 2cq log n
bits of communication. By the lower bound in Theorem 4,
we know that there exist constants ¢ and ¢, such that all
%-error protocols for solving GDCS? have a communi-

Clﬁ
—calo
*Slogg 2198 g

cation complexity of at least SRV
p y 2 TSTogq

bits, over average coin flips. This implies:

2cqlogn > 631157\/’7 - czloglsi
89~ logg 8q > logg
= 2c¢q > %
gq3logglogn
) 1
- <* logn —log(gq'” logq)>
logn \ 2
61«/1’7
> I~vE
gq3logglogn
Clﬁ
=2
gt 15g*3Inglogqlogn
> 617«/;!3 (sinceq <n < m)
15g*3log’ m
= 2¢(20tc(8, m) + 21) + ¢

>
15(20tc(8, m) 4+ 21)*51og> m
— 2c(20m™ +21) + ¢

m—4
T3 . 1
>] (since m 12 > tc(8, m))
15(20m ™12 + 21)*5log? m

The last inequality contradicts with Inequality 4, which
completes our proof by contradiction. O

Lemma 11 Consider the processed inputs (X', Y') and
(X", Y") in the proof of Theorem 7, and the correspond-
ing first simulation and second simulation. If both processed
inputs are of type-1, then o in the first simulation and o' in the
second simulation will both decide within 10tc(8, m) rounds
with probability at least 1 — L Where the probability is taken

Some lower bounds in dynamic networks with oblivious adversaries

29

over the coin flips of both the protocol and the adversary.'>
Furthermore, neither the first simulation nor the second sim-
ulation will abort at Line 20 of Protocol 2.

Proof Consider the first simulation where the reference
adversary <7 is based on (X', Y’). Since (X', Y') is of type-
1, it is easy to verify that the dynamic network as generated
by &7 has a diameter of no more than 8, under all possible
coin flips of the CONSENSUS protocol & and of the ref-
erence adversary «7/. We want to increase the diameter of
the dynamic network to exactly 8, so that it corresponds to
tc(8, m). Recall from Protocol 2 that &2 is only simulated for
round 1 through %. Given this, increasing the diameter to

exactly 8 is trivial: Starting from round % + 1, we let the
dynamic network’s topology to be some fixed topology such
that the resulting (dynamic) diameter of the dynamic net-
work is exactly 8. Since the simulation has already stopped
by round %, whatever we do after that will not impact the
simulation in any way. (If we want to reason about tc(d, m)
ford > 8, then we should increase the diameter to exactly d,
which is also trivial to achieve using the above approach.) In
the next, when we refer to .7 (which was originally defined
only for the first % rounds), we will include the above

topology starting from round % + 1 as well.

Section 9.2.2 already explained that the reference adver-
sary <7 is a sanitized adaptive adversary. Let the cost of &2 be
the number of rounds before termination. By Theorem 2, we
know that there exists some deterministic oblivious adversary
A such that &2’s expected cost under 4 is no smaller than
its expected cost under .o Furthermore also by Theorem 2,
we know that for any coin flip outcomes of &, there exist
coin flip outcomes of o7, such that the decisions made by %
are the same as the decisions made by .« under those coin
flip outcomes. Thus since the dynamic network constructed
by <7 always has a diameter of 8, we know that the dynamic
network constructed by % has a diameter of 8 as well.

When running against any given oblivious adversary
where the corresponding dynamic network has a diameter of
8 and has m nodes, &2 promises to terminate within tc(8, m)
rounds over average coin flips. Hence & must terminate
within tc(8, m) rounds over average coin flips when run-
ning against 4. In turn, & must terminate within tc(8, m)
rounds over average coin flips (of both & and .</') when run-
ning against 7. By Markov inequality, & terminates within
10tc(8, m) rounds with probability at least % when running
against .<7.

Since 10tc(8, m) < % and since « is always non-spoiled
for Alice, Lemma 10 tells us that at Line 8 of Protocol 2,
the outgoing message of « as determined by Alice must

12 The adversary here is the reference adversary. The coin flips of the
reference adversary are the same as the coin flips of the leaker. Specit-
ically, these coin flips are all the random variables s in Sect. 9.2.2.

be consistent (i.e., the same as the corresponding outgoing
message in the reference execution). Without loss of gener-
ality, assume that when « decides, it sends a special message.
Hence if @ decides within 10tc(8, m) rounds in the reference
execution, Alice must be able to observe that.

By same argument, since (X”,Y”) is of type-1, & must
terminate within 10tc(8, m) rounds with probability at least
% when running against our reference adversary in the sec-
ond simulation. Again by Lemma 10, Alice can observe when
a’ decides. A simple union bound shows that with probabil-
ity at least 1 — %, Alice will be able to observe that both «
and o’ decide within 10tc(8, m) rounds.

Finally, Lemma 10 also confirms that neither the first sim-
ulation nor the second simulation will abort at Line 20 of
Protocol 2. O

Lemma 12 Consider the processed inputs (X', Y') and
(X”,Y") in the proof of Theorem 71, and the correspond-
ing first simulation and second simulation. If both processed
inputs are of type-0, then o in the first simulation and o' in the
second simulation will both decide within 10tc(8, m) rounds
with probability at most %, where the probability is taken
over the coin flips of both the protocol and the adversary.'3
Furthermore, neither the first simulation nor the second sim-
ulation will abort at Line 20 of Protocol 2.

Proof We first prove that when the CONSENSUS protocol &
runs against our reference adversary in the first simulation, «
and y both decide within 10tc(8, m) rounds with probability
at most 5.

Let o7 be our reference adversary in the first simulation,
and Sect. 9.2.2 already explained that <7 is a sanitized adap-
tive adversary. We will need to construct another sanitized
adaptive adversary 4, in the following way. Intuitively, %
generates the same dynamic network (regardless of the ini-
tial values to the nodes) as the dynamic network generated
by .o/ when the initial values to the nodes are the initial val-
ues assigned in the first simulation. More precisely, under
all possible initial values to the nodes, when Z?’s coin flip
outcomes are Cp, and when £’s coin flip outcomes are Cz,
the adversary A generates the dynamic network ¢. Here ¢
is the (unique) dynamic network generated by </ when the
initial values to the nodes are the same as the initial values
assigned in the first simulation, when £?°s coin flip outcomes
are Cp, and when the coin flip outcomes C, of 7 satisfies
Cy = Cx.Itiseasy to verify that since .¢7 is a sanitized adap-
tive adversary, 8 must be a sanitized adaptive adversary as
well.

Consider any given initial inputs to 2. For coin flip out-
comes Cp of & and coin flip outcomes G, of <7, define
cost(Z, o, Cp, Cy) to be 0 if the &’s output is cor-
rect when running against </ under Cp, G, and the given

13 See footnote 12.

@ Springer

30

I. Jahja et al.

initial inputs, and 1 otherwise. Since &7 is a sanitized adap-
tive adversary, Theorem 2 tells us that there exists some
deterministic oblivious adversary such that the protocol’s
expected cost (over average Cz) under this deterministic
oblivious adversary is no smaller than its expected cost
under 7. On the other hand, when executing against any
given oblivious adversary and with any initial values, &
promises to have at most % error over average coin flips.
Hence when running against .2/ and with any initial values,
& must have at most % error over average coin flips (of
both & and «7). By same argument, when running against
2 and with any initial values, & must have at most 1]—0
error.

Let .# denote the CONSENSUS instance in the first simula-
tion. We will construct two additional CONSENSUS instances,
in the following way. The CONSENSUS instance .# is the
same as .¥ except that (i) all nodes in ., have initial values
of 0, and (ii) .y is under adversary & instead of 7. We
similarly construct .#; under adversary % where all nodes
have initial values of 1. Now consider any given coin flip
outcomes Cp of & and coin flip outcomes G, of the adver-
sary (which is either o7 or). Note that under given C5 and
Cy, the dynamic networks in the three instances as deter-
mined by their respective adversaries are exactly the same.
We claim that if « and y both decide within 10tc(8, m)
rounds, then under C» and G/, & must err in either .# or %
or 4.

To see why, we consider two cases. If & errin .#, we are
done. If & does noterrin ., without loss of generality, let the
decision value be 1. This means that both « and y decide on
1 within 10tc(8, m) rounds in .# . Next consider «’s behavior
in .. Note that Cp and G, have all been fixed, and also
that .7 and .#) have exactly the same dynamic network. The
only difference between .# and .¢ is the initial values. Since
g > 10tc(8, m), by the way we construct ./ and 4, it is easy
to verify that for all nodes t where (t, 0) ~> («, 10tc(8, m)),
7 has the same initial value of 0 in both .# and .#. Only a
node t such that (z, 0) ~» («, 10tc(8, m)) may influence o’s
behavior by round 10tc(8, m). Thus for every node t that can
influence «’s behavior by round 10tc(8, m), T has the same
initial value in . and .#,. Hence «’s behavior in .# and .%,
must be the same. Since « decides on 1 by round 10tc(8, m)
in .#, it must also decide on 1 by round 10tc(8, m) in .%.
But such a decision value is wrong in .%.

We have proved that for every Cp and Gy, if « and y in
the first simulation both decide within 80tc(m) rounds, then
& must err in one of the 3 instances. On the other hand, as
shown earlier, in each of the instances, &2 must have at most
11—0 error, over average C» and G,. Hence o and y in the
first simulation both decide within 10tc(8, m) rounds with
probability at most %.

So far we have proved that when & runs against our ref-
erence adversary in the first simulation, & and y both decide

@ Springer

within 10tc(8, m) rounds with probability at most 1—30 We
call this as the first reference execution. Next we consider
running & against our reference adversary in the second
simulation (which we call the second reference execution),
and consider the node o’ there. One can verify that when both
(X', Y') and (X", Y") are of type-0, then under the same C»
and Gy, the first reference execution and the second refer-
ence execution are “isomorphic”: A node with a certain id
in the first reference execution must have exactly the same
behavior as the node with that id in the second reference
execution. This means that the behavior of node ¢’ in the
second reference execution must be exactly the same as the
behavior of node y in the first reference execution. Together
with our earlier arguments, this means that with probability
at most %, « in the first reference execution and o’ in the
second reference execution both decide within 10tc(8, m)
rounds.

Finally, since 10tc(8, m) < % and since o and o’ are
always non-spoiled for Alice, Lemma 10 tells us that at
Line 8 of Protocol 2, the outgoing messages of a and o’
as determined by Alice must be consistent (i.e., the same as
the corresponding outgoing messages in the reference exe-
cution). Hence if o and o’ decide within 10tc(8, m) rounds
in the respective reference executions, Alice will observe
that. Lemma 10 also confirms that neither the first simu-
lation nor the second simulation will abort at Line 20 of
Protocol 2. O

Acknowledgements We would like to thank the Distributed Computing
anonymous reviewers and the DISC’ 17 anonymous reviewers for their
helpful feedbacks on this paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix A: Proof for Lemma 1

Lemma 1 Forall constant § € (0, %) and alln > 1, we have
1
£ (GDC,116ﬁln 5 ’2) =0.

Proof Define g =
£5(Gpcs?) = 0.

If g < (16In %)2 and n = g2/(161n %)2, thenn < g and
hence the only possible answer for GDCS 2 is 1. Thus Alice
and Bob can trivially solve the problem without any commu-
nication. Next if g > (161n %)2 andn = g?/(161n %)2, we
construct the following protocol for solving GDCf’:’2 with our
leaker: Alice and Bob output 1 if the total number of leaked
indices is at least % —2/nln %, and O otherwise. We next
show that this protocol has at most § error.

164/n1n % and we will prove

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Some lower bounds in dynamic networks with oblivious adversaries

31

Letrandom variable z denote the number of leaked indices.
If the answer to the GDCf;’2 problem is 1, then z is the number
of heads obtained when flipping n independent fair coins.
Using Chernoff bound, the protocol’s error probability is
bounded as follows:

1 41n 1
Pr|:z<%—2ﬁlngi| =Pr|:z< <1— ﬁ8>%:|

If the answer to the GDCfl -2 problem is 0, then z is the num-
ber of heads obtained when flipping n — b independent fair
coins where b > g = 16/nln % Let z’ be the number of
heads obtained when flipping n — 14/n In % independent fair
coins. Using Chernoff bound, the protocol’s error probability
is bounded as follows:

1
Pr[zz%—Z\/ﬁlng}

v

i 1
<Pr|7 E—2\/ﬁln§i|

<Pr

1
N\
1V
NS
|
[\)
S
5
|
|
~
(=)
5
(3o}
|
| I

I
)
-
1
N\
|
S
—
(@)
e
=
O
S—
VR
[NSRIN]
|
~
S
5
[STRIE
N~
| I

(:
1 (100In§ 7001n* }
=exp|—In—- -
8 6 3/n
100In+ 7001n
6 4

The second to the last inequality holds since n =
¢2/(161n H2 > (161n 1. O

1 1\ 100In?}
< exp -3 <E —7ﬁln—> . —5>

Appendix B: Proof for Lemma 3

The proof of Lemma 3 will need to use the following theorem.
Let B(w) denote the binomial distribution corresponding to
the number of heads in 2 fair coin flips.

Theorem 8 Consider any positive integer k, any w; and |,
where 2ju; and 2 are all integers (1 < i < k). Let p =
ming<;<x(min(w;, u})). Let 8 and 8’ be any given constants

where 0 < 8 < 8 < 0.5. Let product distribution D =
B(ui) x B(uo) x ... x B(ug) and D" = B(u}) x B(uj) x

X B I = G K kmax << (ui — 1)),
then ||D — || < 26550

The proof of Theorem 8 is long and complex—we will
present its proof separately in “Appendix C”.

Lemma 3 If Protocol 1’s estimates are good and if it does
not exit at Line 12, then for all (X, Y), we have ||T(X,Y) —
T(X. V)| < 2032

Proof Consider any (X, Y) in the support of (X, Y). For clar-
ity, we write T(X, Y) as T and T(X,Y) as T. Let random
variables T ~ T and T ~ T. Given a leaked set (e.g., T),
define its corresponding leaked vector as a vector of k inte-
gers, where the jth entry is the number of indices i such that
(i, xi, y;) is in the leaked set and (x;, y;) is the jth leakable
pattern. Define many-to-one mapping p(-), which maps each
leaked set to its corresponding leaked vector. Define random
variables S = ,o('i‘) and S = p(T). Let the distributions of S
and Sbe S and S, respectively. By the behavior of the leaker,
itis obvious that S = IT leB(W). On the other hand, due

to Line 15 in Protocol 1, S is different from IT ;'(:1]B(w)~

Define ,o_l(S) = {T|p(T) = S}. Let supp(:) denote the
support of a distribution, and let fp(-) denote the proba-
bility density function of a distribution D. It is easy to see
that supp('f[‘) = {T|T € p~(S)and § € supp(S)} and
supp(T) = {T|T € p~'(S) and S € supp(S)}.

We will first prove that ||'ﬁ‘ —T|| = ||§ — S||. To do
so, we observe that conditioned on S = S, the distribu-
tions of T and T are the same, which implies that for all
T € supp(fl’) U supp(T) and all S € supp(S) N supp(S),
Pr[T = T|S = S] = Pr[T = T|S = S]. To see why such an
observation holds, let § ; (1 < j < k) denote the jth entry
in S. By the construction of Protocol 1, T can be viewed
as choosing §; uniformly random indices among all indices
that corresponds to the jth leakable pattern, and then leak
those indices. This holds because all the indices were per-
muted using a uniformly random permutation at Line 20 in
Protocol 1. Similarly, by the behavior of the leaker, T can be
viewed as being generated via such a process as well.

Thus we have:

T —]

>

T esupp ('ﬁ') Usupp(T)

> > S

Sesupp(S)\supp(S) T€p~(S)

+) >

Sesupp(S)\supp(S) T€p~1(S)

| /(1) — fr(T)]

@ Springer

32

I. Jahja et al.

+ > Y 1Pt =718 = 5]
Sesupp@)Nsupp(S) Tep™ ()
—fs(S)Pr[T =TS = S]]

A

Leveraging the earlier claim that Pr[T = T|S = S] =
Pr[T = T|S = S], we can simplify the third term:

2 S 1AOPIT =TS = 8]
SesuppS)Nsupp(S) Tep~!(S)
— S PT=T|S=S]|
= X > (£ = (S
SesuppS)Nsupp(S) Tep™'(S)
xPr[T=TI|S = S]|)

= Yo U8 = f5(9)

Sesupp(g)ﬁsupp(S)
x Z Pr[T =TIS = S])
Tep~l(8)
= > | £5(S) — f5(S)

S esupp(g)ﬂsupp(S)

Combining this result with the earlier equation, we have:

1T —]

= X > i@

SesuppS)\supp(S) T€p~1(S)

+) > frD)

SesuppS)\suppS) Tep™1(S)

+ > | £5(S) = fs(S)]

SEsupp(g) Nsupp(S)

= R Y E o Y 1)
Sesupp(§)\supp(S) Sesupp(S)\supp(S)
+ > 1 £5(8) = f5(S)]
Sesupp(g)ﬂsupp(S)

=[S -S|

We have proved that | |']AT —T|| =] |§ —S]|. Let distribution
D=1II fZIIB(hj A). We will next prove that:

2
8(8' —98)

S-D|| £ ————= 5

Il Il = 2 (5)
/ [—

S—D| < 6
Il Il = 2 (6)
If these two inequalities do hold, then we will have | |’]AI‘—'IF| | =
IS —SIl < IS =Dl + IS — || < 2472

We first prove ||S — D|| < w, by using Theorem 8.
Recall that S = HleB(hj;wj). Letpuj = h’;w" and 1; =

@ Springer

MY for 1 < j < k. Let u o= minj<j<p(min(ej,) =

. hj . . .
minj<;j<x(5) = mm(%, %). Since Protocol 1 does not exit

atLine 12, we have iy > h.Hence u© > % Since Protocol 1’s

estimates are good, by the definition of estimates being good,
we have:

Ly Y ()?

- P eEE— max (v; — wj

B=s =T 5)2 Ty A
Ay (k + 4k lrélj'c,l;k(uj —) >

> o7 (k +k11£f§k(uj —))

Applying Theorem 8 immediately tell us that |[S — D|| <
8(8'=3)
7

Next we prove | |§ —-D|| < ‘3/1—58 The difference between S
and D arises solely from Line 15 in Protocol 1. whenb; > h;
for some j. Hence:

IS — D|| < Pr[3j where 1 < j <k, such thatb; > k]

We trivially have h > 2n’ > 2v ;j for all j. Since Protocol 1

does not exit at Line 12, we have h < h; for all j. Hence

hj . .
v < % < +. The random variable b; is drawn from the

binomial distribution IB%(hj#) at Line 14 of Protocol 1, and

thus %h i < Elb;] < %hj. By Chernoff bound, for any given
J, we have:

4 1/1)\?
Prlb; > h;] < Pr [bj > 7E[bj]] <exp|—= <7> E[b;]
3 3\3
- 11 2lh~ 3 e
=P §<§) 2 _eXp< 54 f)

. (500k)
o —— 2
P52 =0y

54(8'—58) e .
S00K2 (since exp (—x) < 1/x forx > 0)
8 -8 . , 1
< since0) <8 <6 < —
12k 2

Finally, taking a union bound for j from 1 through k gives:
IS — DJ| < Pr[3j where 1 < j <k, such thatb; > h]

8 —8 8 -6
12k 12

Appendix C: Proof for Theorem 8

The section proves Theorem 8. Theorem 8 is not a surprising
result, and we do not claim it as a major contribution. We

Some lower bounds in dynamic networks with oblivious adversaries

33

include this proof here mainly for completeness—while the
overall approach is quite natural, the proof does involve some
tedious and complicated steps, in order to get a relatively
strong result. In particular, a weaker form Theorem 8 (i.e., by
requiring in the theorem to be much larger) can be proved
via a less complicated approach. But this weaker form would
negatively impact the final asymptotic results in this paper.

Notations. We introduce some additional notations to be used
in this section. For any pu where 2u is a positive integer,
recall that B(u) is defined to be the binomial distribution
describing the number of heads obtained when flipping 2
independent fair coins. Define continuous distribution @(,u)
to be the distribution whose density function is 221M (2“) for
0 <x <2p+1,and O for other x values. Itis easy to Verlfy
that IB%(M) is indeed a distribution. Intuitively,]B(u) is the
continuous version of B(w). Define N(u) to be the normal
distribution whose mean is © and whose variance is /2. For
any distribution D, fp is the distribution’s density function.

Recall that for any two given distributions D and I,
with 2 being the sample space of D and D', we use
[ID — D|| to denote their L| distance. The L distance
is defined as fxe@ [fp(x) — for(x)|dx if 2 is contin-
uous, and) .4 |fD(x) — for(x)| if Z is discrete. We
use Dgr (D||D") to denote their KL Distance, defined as

Jieq fo(x)In ;ﬂg(&)) dx if 2 is continuous, and > .5 fip(x)
fD(X)

1) if 9 is discrete.

Overview of the proof. Theorem 8 is concerned with ||D —
D'||, where D = B(u;) x B(uz) x --- x B(ug) and
D" = B(u)) x B(uh) x -+ x B(uy). The overall approach
in our proof is to first show that ||D — I|| is close to
[IN — N'||, where N = N(ut1) x N(u2) x --- x N(uy) and

= N(u)) x N(u5) x - - x N(u). Next we will use exist-
ing results to upper bound Dk (N||N’), which translates to
an upper bound on ||N — N’||, and in turn an upper bound on
[ID — D]

It is not surprising that ||D — D'|| is close to ||N — N||,
since normal distribution can be used to approximate bino-
mial distribution. For our proof, however, the complexity
arises from need to quantify the approximation error. Since
D and D' are not continuous distributions, we cannot directly
compare them with N and N. Hence we first consider D
and]D)/ where D = IB%(m) X B(Mz) X +o0 X IE%(,uk) and

]E%(,u]) X B(/Lz) X oo X]E%(uk) In other words, they are
the continuous versions of ID and V. It is easy to show that
|ID —D'|| = ||ﬁ) - ﬁ/||. We then show that the continuous
distributions D and I’ are close to N and N/, respectively. To
do s0, we will prove that f5(x) is close to fi(x), and in turn
that B(M) is close to N(u).

In

C.1 Basic technical lemmas

We first cite a strong form of Stirling’s formula, and then
prove a few basic technical lemmas. All these will be useful
later.

Lemma 13 [6] For all positive integer i,

Lo~ 2im <il <ile™'\V2in

l
i —0.149 i—1/6

Lemma 14 For all real number x € [0, 1), In(1 —x) > %

Proof Let f(x) = In(1 — x). From Taylor’s theorem, we
have f(x) = f(0)+ f'(§)x = = é , where £ is areal number

between 0 and x. The lemma follows since = E > _—x O

Lemma 15 For all real number x € (—1,1):
2, 1y
IT+x)yIn(l+x)+ (1 =x)In(1 —x) >x —i—gx

For all real number x € [—0.5,0.5]:

A4+xn0+x)+0—-x)In(1—x) <x>+ ;x

Proof For the first inequality, define f(x) = (1 4+ x) In(1 +
X+ =x)In(1 —x) —x2— %x“. We have:

1 4
1) =1n<1J_ri> —2x — 5x3

—Zx
-1

f”()—

Itis easy to verify thatlim,_, _| f'(x) — —o0,limy_1 f’(x)
— o0, f7(0) = 0, and f"(x) > 0 for x € (—1,0)
and for x € (0, —1). This means that f'(x) = 0 has a
unique root, which is f/(0) = 0. Next since f(0) = 0 and
limy—y f(x) = limyy f(x) =2In(2) — 1 — § > 0, we
know that f(x) > Oforx € (—1, 1).

For the second inequality, define f(x) = (1 + x) In(1 +
x) 4+ (1 —x)In(1 —x) —x2 — %x“. We have:

1 4
f'(x) =1n<1+x) —2x — §x3
—Xx
2x2 — 4x4
1 _
f (x)_ x2_1

It is easy to verify that f'(—0.5) > 0, f'(0.5) <0, f”(0) =
0, and f”(x) < 0 for x € (—1,0) and for x € (0, —1). This
means that f/(x) = 0 has a unique root, which is f/(0) = 0.
Next since f(0) = 0 and f(—0.5) = £(0.5) < 0, we know
that f(x) <0forx € [-0.5,0.5]. O

@ Springer

34

I. Jahja et al.

C.2 Proof for f (x) being close to fy (x)

Lemma 16 below proves that f(x) and fi(x) are close to
easy other, under certain conditions.

Lemma 16 Ler f5(x) and fn(x) be the probability density
function for B(i) and N(u), respectively.
For all integer i where 1 <i <2u —1:

£ LA
) (_ -

6#3 m) where § =i — 122

If w > 16, then for all integer i where u — 2,/ < i <
w2/

S50 (1 _ E)
@) w
Proof Let8 = i — pu, a = (ﬁ)w(ﬁ)ﬂ, and b =

1/,/1— l‘i—zz We first derive a simple equation:

1 Qu)*te . 27 21
221 jio—i f2i (2 — i) Cr—De=Qu=i) ST (2 — 1)

21\ 2 \@HD 21
- <2_1> (4M — 2i> 2miQu — i)

w 48 w n—23 m
a <M+8> (M—5> Vr(n+8)(u—95)

B m u+d w n—3a 1 1 B ab
o \u+s n—_= _8_22‘/71,1,L_‘/,U,T[
%

Next, we upper bound % for 1 <i < 2u — 1. Apply
Lemma 13, and we have:

Ly 1 e
f50) = 22M< i) T2 h2u =)

1 Qu)He 2 2x 2
22 jie=i /2mi(2u — i) CH—De=Cu=D /27 (2 — i)

o 21 i—0.149 2p—i—0.149
2u—1/6 i 2u —i

min(i, 2u — i) — 0.149
min(i, 2u — i)

ab y o
JIT 2u—1/6

o max(i,2pn — i) —0.149
max(i,2u — i)

min(i,2u — i) — 0.149
min(i, 2u — i)

ab 21
< X
JIT 2u—1/6

@ Springer

- ab o o n—0.149 ab
< . <
I 2n—1/6 M RT

Lemma 15 tells us that:

0 I
Ina=((@+4)In + (@ —35)In
(4 6) (5+M) (n—9) (M—S)
) 1)
=—u+8Hh{l+—)—(u—-8In[1l—-—
w I
- (5>2+1(5>4 52 st
=M - -\ — =——— - =
% 6 \ no 6u3
For b, applying Lemma 14 yields Inb = —% In(1— ;8722 <
82
%~ “252 . Therefore:

2

, ab 82 & e 1
f50) < i <exp (—E - 6TL‘> exp (2 (1 ~ 52)) T
84 82
= n@ex (_ﬁ T 82))

Finally, we lower bound }EZ; foru —2/m <i <u+
2,/m. Applying Lemma 13 again in a similar way as before,

we have:

12w\ 1 e
50 = o (i) T 22— i)
1 Qu)*e 2 /2w 2
-
22 jie—i 27ri 2 — i) e—Cu—i) S 2 — i)

5 2u L+8—1/6 u—8—1/6
2u—0.149 u+s n—23

nw+8—1/6 w—8—1/6
7) nw—2a

ab 21
X .
JIT 2n —0.149

ab o uw+8—-1/6 n—56—-1/6
> .
VLT J7) n—2a
b 1—-12
N T o
JIT 3612 — 3652
- ab y 1—12n
- /ur 362 — 144p
(since 8% < 4,4 and uz > 4u)
b 12
> a X o (since u > 8)
JIT 36u2 — 1812

ab 2 ab (2)
= X [1—— > x|(1——
N 3u Juw 3u

Nextbecause § < 2,/pwand u > 16, we have [§/u| < 0.5.
Lemma 15 tells us that:

Some lower bounds in dynamic networks with oblivious adversaries 35
% % o0 1.13
Ina = 81 -1 ~(x) — it
na = (u+)n(8+u>+(u)n<u—8> /_oo|fN(x) @) dx < i 7
5) 1
= —(u+dh <1+—>—(M—5)ln (1——) / f5(0) — fr(oldx < —— ®)
I H xjes ° N N
5* 1 (5)4 52 s / 2.13
Sou(2) 4o (2))= -2 f5() — fr@ldx < == ©)
((u) 3\n wo 3ud x]¢S N
Therefore: — Proof for Inequality 7.
2 o
HORS (1 - ;) / /5 = fu(oldx
K —o0
e 1 2 1 ®©
— - — 1-——) — = x])— x)|dx
m /ﬁ) — (m) - /_Oo|fN(L D= fi@)l
H o0
8 & 2 1 < (max x min x)
> exp E ?> <1 - @) 7#7'[- i;()o x€li,i+1) fN() xeli,i+1) fN()
84 2 :
>N (=55 |-+ =2x| max fy(x)— min fy(x)
3u’ 3u xX€(—00,00) X€(—00,00)
16142 2 since x) is first increasing and then decreasin
> @) - < 6M3) (1 — —) (since §° < 4u) ¢) fux) & g
3u 3u - LB
. 6 e w
> fn@) (1 - ;) VR
— Proof for Inequality 8. We first show that f5(|x]) is very
O close to fx(lx]). Let 8§ = [x| — u. For [x] € S, invoke
- the first inequality in Lemma 16 with & > 9 (implying
C.3 Upper bound ||B(x) — N(u)|| that [x] € S = 1 < [x] <2u — 1), and we have:

This section shows that]ﬁ%(u) and N(u) are close, by lever-
aging the lemma proved in the previous section.

Lemma 17 For u > 50 where 211 is an integer, ||I§(u) —

4.3
NIl < -

Proof Let fz(x) and fn(x) be the probability density func-
tion for @(M) and N(u), respectively.

We also define function f{(x) = fn(Lx]). Note that f
is not necessarily a probability density function. Define S =

{integeri | u — 2/ <i < pu+2,/u}. We have:
IB() — N(l|
- / 500 — fu(@)ldx

_ /) — f200) + () — fruCo)ldx

5/ |f§1(x)—fN(x)|dx+/ If5(x) — fy(o)ldx

_ / (0 — fu(o)ldx + / 500 — fr()ldx

—c0 lx|eS

+/ | f5(x) — fi(o)ldx
Lx]¢S

We will prove the following three inequalities, which will
complete the proof:

Ja(lxD

< fulx)) - exp 300 _52)>

6M* 2(u? —52))
SfN(l_xJ)eXp 2(’“2 82))

= fa(lx]) 'GXP<

4
< fr(lx)) -exp (mﬂiﬁéw)
(since |8] < 2. /p for |x] € S, u > 4, and p? > 4p)

2
= fa(lx)) - eXP(4>

< f{xD) (1 + %) (since u > 10)

Since u > 16, together with the second inequality in
Lemma 16, this means that for [x] € S:

6 5
< 1-— 5 N 1+ =
falxD (M) < fe(lxD < fa(lxD) (M)

6
= [fz(lx]) = fr(lx DI < ;fﬁ;([xJ)

6
— fa(lD)

@ Springer

36

I. Jahja et al.

This enables us to prove Inequality 8:

/ |f5(x) — fr(o)ldx
lx]eS

6
< '/ijes o — 6fB(LxJ)dx
6
— < —

(since . > 50)
w—6 J/u

— Proof for Inequality 9. We will later prove that fz(@i) <
Sn(@) for all i ¢ S. If such a claim does hold, then we
have:

[1550 = ftwias
x]¢S
=Y 1f50) — fa@dl =Y 150 — M@l

i¢S i¢S
= > (fnl) — f50))
i¢S
= (Y) - ZfN(i))
i=—00 ieS
- (> fali) - ng.g(i))
i=—00 ieS
=Y O =Y)
ieS ieS
= (Z HOEDS fﬁ(i)) + (Z IHOEDY fN(i))
ieS ieS ieS ieS
< [10 - frwids
lx]eS
[1o - ol
lx]es
1 1.13
< — 4+ —
NN
= % (by Inequality 7 and Inequality 8)

The only thing left now is to show that fz() < fn(i)
foralli ¢ S.Ifi ¢ Sandi <O (ori ¢ Sandi > 2u),
then f5(() =0 < fn@).Ifi ¢ Sandi =0 (ori ¢ S
and i = 2u), then:

. 1 1 1
f50) = pem = ym < ﬂexp(—u)
= fn(@) (since u = 50)

Ifi ¢ Sandi =1 (ori ¢ Sandi =2u — 1), then:

() = — 2w 1 (=17
fs0) = on= 5 < ew ()
/@) (since u > 50)

@ Springer

Finally,ifi ¢ Sand2 <i <2u —2,thenletd =i — u
and leverage the first inequality in Lemma 16:

s 82
f@(l) < fN(i) - €Xp (_6#3 + 2(/,L2—82))

= fu(i) - exp (3’ — 83 (u? — 52)))

2

8
6M3(M2 _ 52) (

We will prove that 8%(u? — 8%) > 3u® when u > 50.
Sincei ¢ Sand2 <i < 2u — 2, we know that 41 <
82 < (u — 2)2. Define f(8%) = 82(u?® — 82) where
82 € [4u, (n — 2)?], and it is easy to verify that since
4p < p?/2 and (u —2)* = p?/2 (for p > 8), the
minimum of f(82) is reached at f((u — 2)?). Hence we
have £(8%) > f(L—2)") = (0 —2)>(U*> —(n—2)») =
4w —2)%(uw — 1) > 3u3 for o > 50. Hence we have
f5() < fn(@) - exp(0) = fn(@).

C.4 Upper bound ||N — N'||

This section will prove an upper bound on ||N — N’||. We do
so by using some existing result to upper bound D 1 (N||N'),
and then using another existing result to convert this upper
bound to an upper bound on ||N — N'||.

Define N(u, X) to be the multi-variate normal distribution
whose mean vector is 4 and whose covariance matrix is X.
The following is a known result on the KL distance between
two multi-variate normal distributions:

Lemma 18 [25] Let N(u, X) and N' (i, X') be two arbi-
trary k-variate normal distributions. If X and X' are both
non-singular matrices, then:

Dgr (N||IN)

1 _ —
= (= E) W -w" T W -
det X’
_k+ln<det2>>

Applying this lemma to our setting yields:

Lemma 19 For any given positive integers |11 through i
and (', through Wy, define distributions N = N(up) x
N(u2) x- - - xN(ug) and N = N(u) x N(uh) x - - - x N(u},).
We have:

Dg (N||IN)

U i — 1 i - 1) &K W
—— 't Il S 1
(et ey e 5

/
iz M i=1 M - M

Some lower bounds in dynamic networks with oblivious adversaries

37

Proof Obviously, N is a multi-variate normal distribution.
Let © be its mean vector and X be its covariance matrix.
Similarly define ©’ and X’. We have:

©1 wy] pp 0 - 0
/ 1 0“2... O
n = s ,M/z /‘LZ ’EZ_ . . .)
Mk | 00 -y
wy 0 oo 0]
/
R N
20 e
0 0 - puf

Since ¥ and X’ are both diagonal matrices of size k x
k, we denote ¥ = diag(uy, m2,..., k) and X' =
diag(u, t, ..., ;). Obviously, both X and X' are non-
singular. Following are some useful properties of diagonal
matrices:

(diag(u), pwhs -,)" = diag(u) b Th
diag(ue), ph, . . . py) - diag(ur, pa, - . .,)
= diag(uipay, popts, ..\ (kiLy)
(W75 Wy o ooy) - diag(uer, po, ...
= (1), mally, - ki)

) k)

k

tr(diag(per, w2, .-, Hk)) = Z Ki
i=1

det(diag(ie1, 12, .-, i) = I} i

The last 2 equations are directly from the definition of the
trace and the determinant of a matrix. We therefore have:

-1
=1 _ 1 o /
tr(X X)=tr Edlag(,ul,,uz,...,,uk)

1.
-Edlag(m, M2, ~--,Mk)>

= tr(diag(u| ", w5 o g - diag(u, pa, - k)
= tr(diag(ui ;" papy o)
k
i T /-1
=Y (W -p) 2w -
i=1 "
= (U] = W1s Wy — [2s ooy [—)
diag(uy, uh, ...y 1y) -1
(! 22 E)ow -
Wy — 11

N gy e ey 7

_2<M’1—M1 Wy — 2 M;(_Mk> wh — w2
1 I3 I

Wy — Mk

k / 2
Z (i = wi)
i=1 i

1 . 1
det X' = det <Ed1ag(m, TS Mk)) = H,'k=1§,ui

det X' = det ldiag(u’ wh, . owl)) =k lu’.
2 1> 2 » Fk i=l5Hi

Plug in all the above equations into Lemma 18, and we
have:

Dgr (N||IN)

1 (& £ (i — m)? Lo
1 1 1 7
2(§ T +an)

i=1
k / k N2 k /
1 Wi — I (i — ;) i
= _ 42y — In —+
(Gt e e

O

Next, the following lemma is the well-known Pinsker’s
inequality:

Lemma 20 [27] For all distributions D and IV,

1 1
—|ID=D|| <,/=D D||D’
2|| ||_\/2 xL(D]|D")

From Lemmas 19 and 20, we trivially have:

Lemma 21 For any given positive integers |1 through i
and uy through wp, define distributions N = N(u1) x
N(u2) x- - - xN(ug) and N = N(u) x N(uh) x - - - x N(u},).
We have:

IN - N|

k

Wi — 4] - u)? &K
l [l [[
<D —/_‘+2§ —/‘+§ In =L x
iz M i=1 i io M

C.5 Putting everything together

In this section, we first show a simple connection between
the L distance between two product distributions and the L
distances between the respective component distributions in
the two product distributions. Next we will put everything
together to prove Theorem 8.

Lemma 22 Consider any positive integer k, and any two

product distributions D = Dy x Dy x -+ x Dy and

D' =D} x D) x --- x D, where Dy through Dy and D}

through D, are arbitrary continuous distributions. We have
k

ID =D < >y 1ID; — Dl

@ Springer

38 I. Jahja et al.
Proof First, for all real numbers a,b,c,d € [0,1], we and . Hence ID —D'|| = ||® —]ﬁ/||. Next, define prod-
always have: uct distribution N = N(u1) x N(u2) x -+ x N(ug) and

lab —cd| = [(a —)b + (b — d)c| < |a — c||b|
+1b —dllc| < |la —c[+|b—d|

Let fp and fpy be the probability density function for D and
DY, respectively. Similarly define fp, through fp, and f]D/I
through fD;(.

For all vector (x1, x2, . ..xx) in the domain of D and I/,

we have:
[foCxr, X2, .y x0) — fp(xn, x2, ..o X))l
= |f]D>1 (xl)f]D)Q(XZ) e ka ()Ck)
— S, (1) fy (x2) - -+ fipy, (x|

= [/ (x1) — fpy (1)
+|f, (x2) f3 (x3) - - - fo (xk)
— fioy, (¥2) fy, (x3) - -+ Sy (x0)|
< oy (1) = fog D)+ [y (x2) —
+1 /D5 (x3) foy (xX4) - -+ fy (xk)
— Sy, (x3) fy, (x4) - -+ iy, ()|

Sy, (x2)|

k
< D o) = foy ()

i=1
Thus we have:
/
[ID — ||
=/ | fo(x1, x2, ..., Xk)
X1,X2,.00s X

,xk)

ZHD Al

— (e, xa, oo x)ld(x, X2,

k
=2
i=1

|le) (xi) = fpy () ldx; =

m}

Theorem 8 Consider any positive integer k, any p; and |,
where 2uu; and 2,u; are all integers (1 < i < k). Let p =
ming<;<x(min(u;, u')). Let 8 and 8’ be any given constants
where 0 < 8 < 8 < 0.5. Let product distribution D =
B(u1) x B(uo) x ... x B(ug) and D" = B(u}) x B(uj) x

X B If = 20 (4 kmaxi<i < (u —),

then ||D — /|| < 28520,

Proof Deﬁne D = IB%(,ul) X IB%(,uz) X oo X IE(W{) and
D = B(ul) X B(/Lz) X +er X B(/,Lk) Note that for all
vector (x1, x2, ...x;) where x| through x; are integers, the
probability density under DD is exactly the same as the prob-
ability density under D. The same property holds for D

@ Springer

= N(u}) x N(uj) x -+ x N(up). We have:

IID—D'|| = D — /|| < [ID — N|| + ||/
—N'|| 4 |IN — V||

In the next, we upper bound each of the three terms.
Gy (2 kemaxy < < (i — p)?) > 50, by

Lemmas 17 and 22, we have:

Since pu >

k
4.3
IID — N||< ||B(M)—N(M)||< — —
250
2
4.3 6 — 8
25—
V250
. . N/ _ / _
Similarly we have ||[D" — N'|| < 5(8 8N.
Let a = maxi<;<x |[#; — i4;|. By Lemma 21, we have:
[IN — N'||
K- - &
- ZM: /M, +22 (Wi /M,) +Zlnﬂ—’_
\izt M i=I i i1 M
a : &
. —/+22—/+Zln<l+—.)
N i=1 i FE i Bl Hi
k k2 ko,
< D= 42) —+) — = [—@d>+20)
N i=1 s P e
< ¢ (2% +2a)
< |————a a
(52,559)2 (k2 + kal)
_8—08 [2a+2a - §—8 [2a%+2a
V250 ~ V250
It is easy to verify that 2221?11 is always smaller that 2.5 for
a € [0, 00). Hence ||N — N'|| < 255 — §).

:) V250
Finally, put everything together:

IID—D'|| = |ID — || < ||D — N|| + |’

N[l +IN = N|
43 43
<=8+ =)
250 V250
V255 2(5 - &'
PRCEPSVE TGl
250 3

Some lower bounds in dynamic networks with oblivious adversaries

39

Appendix D: Proof for Lemma 7

Lemma 7 Consider any input (X,Y) of the GDC;' prob-
lem and its corresponding processed input (X', Y'). For z €
{0, 1}, ifg = 20, g > 15¢Ing,n > 4g,and GDC(X, Y) = z,
then Pr[(X', Y')is of type-z] > 1 — 5

Proof To facilitate discussion, we first define a few concepts.
We say that:

— 1eft(X', Y') is of half-type-0 if [2(left(X', Y')) > g and
|§j (left(X’, Y")) > 1 for all j from 1 through %.

~ right(X', Y') is of half-type-0 if [2(right(X', Y')) > ¢
and |§j (right(X’, Y’)) > 1 for all j from 1 through ‘1771

— 1eft(X’, Y') is of half-type-1 if |g:} (left(X’, Y')) > 1and
|§j (left(X’, Y’)) = O for all j from 1 through #.

— right(X, Y') is of half-type-1 if |g:}(right(x/, Y) > 1
and |§j (right(X’, Y’)) = 0 for all j from 1 through #.

For z € {0, 1}, note that (X', Y’) is of type-z iff left(X’, Y')
and right(X’, Y’) both are of half-type-z.
To prove Lemma 7, we separately consider two cases:

— GDC(X, Y) = 1. By definition, |8(X, Y) = 0. In turn,
S Y) = X, Y) = ... = [I3(X, Y') = 0.Next,
1
q-1’
that there does not exist any index from 1 to 5 such that
o=¢q —lis:

| 1 2 1 n n
——) <expl—— =) <exp|—=—
g—1 L) P\724

48

exp| —==) <exp(—30Ingqg)
2q

1 1

— < —
q30 2q

since foreachindex Pr[o = g —1] = the probability

IA

As long as there exists some 0 = g — 1, left(X’, Y) will
be of half-type-1. The probability of right(X’, Y’) being
half-type-1 is the same. A simple union bound then shows
that with probability at least 1 — 37, both left(X’, Y’) and
right(X’, Y’) are half-type-1.

— GDC(X, Y) = 0. By definition, |8(X, Y) > g. We first
show that immediately after the permutation and before
adding the offsets in the preprocessing step, with proba-
bility at least 1 — qiz, |8(left(X/, Y’)) > 4g1ngq. To see
why, we view the permutation as obtained by assigning
each index between 1 and n in (X, Y), one by one, to a
new position between 1 and n after the permutation. Each
position can only accommodate one index. Hence when
we assign an index, we will choose a uniformly random

position among all remaining unoccupied positions. Fur-
thermore, we can imagine that we assign those indices
corresponding to the |8 patterns in (X, Y) first, before
assigning other indices. There are at least g indices cor-
responding to the |8 pattern, and let us consider the first g
of them. For each such index, regardless what happened
prior to our assigning this index, the probability of this
index being assigned to the first half of the positions (i.e.,
to some position between 1 and 5) must be no smaller
than % The reason is that there will always be at least
5 — & > 7 unoccupied positions in the first half of the
positions, and at most 5 unoccupied positions in the sec-
ond half. Consider the sum z of 15¢ In¢g independent
Bernoulli random variables each taking a value of 1 with
probability % We have, via a simple coupling argument
and Chernoff bound:

Pr[|9(left(X’, Y')) < 4¢ Ing]

1
<Pr [z < <1 - g) 5q1nqi|

1 1
< exp <—§ X % X 5q1nq>
1

=< 7
Next, conditioned upon the event that |8(left(X’, Y)) >
4q In g before adding the offsets in the preprocessing
step, we will show that after adding the offsets in the
preprocessing step, Pr[left(X’, Y') is half-type-0] > 1 —

1 1

PRl Consider any given j where 1 < j < %. For

each index corresponding to the |8 pattern in left(X’, Y’)
immediately after the permutation, Alice and Bob will
choose an offset 0 where Pr[o = 2j] = qlTl Hence the
probability that 0 = 2j for none of the 4¢ In ¢ indices is:

(=) e ()
l——— <exp|——
q—1 q-—1

1
<exp(—4Ing) = —
q

There are total qT_l such j’s. Hence by a union bound,
with probability at least 1 — ‘;—3, after adding the offsets,

|§j (left(X’, Y")) > 1 for all j. Next, after adding the
offsets, by a Chernoff bound, we also have:

Pr{|deftX’, Y')) < g1 < Pr[|9(left(X’, Y'))

1
< <1 — 5) 2g Inq]

1 1
< exp <—§ X 1 X 2q lnq)
1

<
6]5

@ Springer

40

I. Jahja et al.

Taking a union bound thus shows that conditioned
upon the event that |8(left(X’,Y’)) > 4qlIng before
adding the offsets, after adding the offsets, Pr[left(X’, Y’)

is half-type-0] > 1 — ql—g - q‘—s

Putting everything together, Pr(left(X’, Y')
is half-type-0] > (1 — qlz)(l - qis — qls) - 11— qiz- By

the same argument, we similarly have Pr[right(X’, Y’)
is half-type-0] > 1 — q3—2. By union bound we then have

Pr[(X’,Y’) is type-0] > 1 — q% >1— % O

References

10.

11.

. Augustine, J., Avin, C., Liaee, M., Pandurangan, G., Rajaraman,

R.: Information spreading in dynamic networks under oblivious
adversaries. In: DISC (2016)

Augustine, J., Kulkarni, T., Nakhe, P., Robinson, P.: Robust leader
election in a fast-changing world. In: Workshop on Foundations of
Mobile Computing (2013)

Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine agree-
ment in dynamic networks. In: PODC (2013)

Augustine, J., Pandurangan, G., Robinson, P.: Fast byzantine leader
election in dynamic networks. In: DISC (2015)

Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D.: An infor-
mation statistics approach to data stream and communication
complexity. J. Comput. Syst. Sci. 68(4), 702-732 (2004)

Batir, N.: Sharp inequalities for factorial n. Proyecciones 27(1),
97-102 (2008)

Bramas, Q., Masuzawa, T., Tixeuil, S.: Distributed online data
aggregation in dynamic graphs. In: ICDCS (2016)

Braverman, M.: Interactive information complexity. SIAM J. Com-
put. 44(6), 1698-1739 (2015)

Censor-Hillel, K., Haramaty, E., Karnin, Z.: Optimal dynamic dis-
tributed MIS. In: PODC (2016)

Chen, B., Yu, H., Zhao, Y., Gibbons, P.B.: The cost of fault tol-
erance in multi-party communication complexity. JACM 61(3),
19:1-19:64 (2014)

Cornejo, A., Gilbert, S., Newport, C.: Aggregation in dynamic net-
works. In: PODC (2012)

@ Springer

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Coulouma, E., Godard, E., Peters, J.: A characterization of obliv-
ious message adversaries for which consensus is solvable. Theor.
Comput. Sci. 584, 80-90 (2015)

Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D.,
Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verifica-
tion and hardness of distributed approximation. In: STOC (2011)
Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z., Viola, E.: On
the complexity of information spreading in dynamic networks. In:
SODA (2013)

Ghaffari, M., Lynch, N., Newport, C.: The cost of radio network
broadcast for different models of unreliable links. In: PODC (2013)
Hoeffding, W.: Probability inequalities for sums of bounded ran-
dom variables. J. Am. Stat. Assoc. 58(301), 13-30 (1963)
Ingram, R., Shields, P., Walter, J.: An asynchronous leader election
algorithm for dynamic networks. In: IPDPS (2009)

Jahja, 1., Yu, H., Zhao, Y.: Some lower bounds in dynamic networks
with oblivious adversaries. In: DISC (2017)

Konig, M., Wattenhofer, R.: On local fixing. In: OPODIS (2013)
Kuhn, F,, Lynch, N., Newport, C., Oshman, R., Richa, A.: Broad-
casting in unreliable radio networks. In: PODC (2010)

Kuhn, F, Lynch, N., Oshman, R.: Distributed computation in
dynamic networks. In: STOC (2010)

Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in
dynamic networks. In: PODC (2011)

Kuhn, F., Oshman, R.: The complexity of data aggregation in
directed networks. In: DISC (2011)

Kuhn, F.,, Oshman, R.: Dynamic networks: models and algorithms.
SIGACT News 42(1), 82-96 (2011)

Liese, F., Vajda, I.: Convex Statistical Distances. Teubner, Leipzig
(1987)

Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower
bounds for consensus under link failures. SIAM J. Comput. 38(5),
1912-1951 (2009)

Tsybakov, A.: Introduction to Nonparametric Estimation. Springer,
New York (2009)

Weinstein, O.: Information complexity and the quest for interactive
compression. SIGACT News 46(2), 41-64 (2015)

Yu, H.,Zhao, Y., Jahja, I.: The cost of unknown diameter in dynamic
networks. In: SPAA (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

	Some lower bounds in dynamic networks with oblivious adversaries
	Abstract
	1 Introduction
	2 Related work
	3 Model and definitions
	4 Preliminaries on Gap Disjointness with Cycle Promise
	5 Review of existing proof under adaptive adversaries
	6 Roadmap for lower bound proof under oblivious adversaries
	7 Sanitized adaptive adversaries
	8 Communication complexity with the leaker
	8.1 Our approach and key ideas
	8.2 Complete reduction and final guarantees

	9 Consensus lower bound under oblivious adversaries
	9.1 Proof overview
	9.2 Reference adversary
	9.2.1 Preprocessing
	9.2.2 The reference adversary based on processed input

	9.3 Alice's and Bob's simulation
	9.3.1 Spoiled and non-spoiled nodes
	9.3.2 The simulation
	9.3.3 Alice's rule and Bob's rule
	9.3.4 Performance of the simulation
	9.3.5 Correctness of the simulation

	9.4 Proving Theorem 7 from the simulation

	Acknowledgements
	Appendix A: Proof for Lemma 1
	Appendix B: Proof for Lemma 3
	Appendix C: Proof for Theorem 8
	C.1 Basic technical lemmas
	C.2 Proof for fwidetildemathbbB(x) being close to fmathbbN(x)
	C.3 Upper bound ||widetildemathbbB(µ) - mathbbN(µ)||
	C.4 Upper bound ||mathbbN - mathbbN'||
	C.5 Putting everything together

	Appendix D: Proof for Lemma 7
	References

