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Abstract
The interaction of plants and their herbivorous opponents has shaped the evolution of an intricate network of defences and 
counter-defences for millions of years. The result is an astounding diversity of phytochemicals and plant strategies to fight 
and survive. Trees are specifically challenged to resist the plethora of abiotic and biotic stresses due to their dimension and 
longevity. Here, we review the recent literature on the consequences of phytochemical variation in trees on insect–tree–her-
bivore interactions. We discuss the importance of genotypic and phenotypic variation in tree defence against insects and 
suggest some molecular mechanisms that might bring about phytochemical diversity in crowns of individual trees.

Keywords Chromatin-based mechanisms · Genotypic variation · Insect herbivore · Phenotypic plasticity · Tree defence

Introduction

Plants and insects coevolved since more than 350 million 
years (Whitney and Glover 2013) and during this time 
plants have developed an enormous diversity of chemical 
defence compounds. An arms race between insects and 
plants is thought to be the main driver of diversification in 
plant defence chemistry (Ehrlich and Raven 1964). Trees, as 
long-lived woody perennials, are dominant components of 
terrestrial ecosystems and they host an enormous diversity of 
insects (Basset et al. 2012). Their longevity, their size, their 
architecture and the formation of wood make the appear-
ance of trees very different from herbaceous plant species. 
A survey of leaf herbivory across all major plant lineages 
revealed that compared to herbaceous plants, woody species 
experience 60% more herbivory (Turcotte et al. 2014). How 
can individual trees withstand these loads of herbivores and 

the amount of concomitant damage throughout their life-
time of sometimes hundreds of years? They have evolved 
physical barriers such as spines and thorns as well as tough, 
lignified leaves and on top of this they produce a large diver-
sity of carbon-based phytochemicals such as phenolics and 
terpenoids as defences against their attackers. Additionally, 
there are vertical and horizontal gradients in abiotic condi-
tions in treetops that can promote variation in tree defence 
chemistry which in turn can affect insect herbivore perfor-
mance. In the eye of a tiny herbivorous insect, the treetop 
of a single tree is not just a homogenous predictable habitat 
but rather a heterogeneous and often inhospitable environ-
ment. Phytochemical diversity in treetops has the potential 
to shape insect community diversity and population structure 
as recent studies in woody species within the tropical genus 
Piper convincingly showed (Glassmire et al. 2016; Richards 
et al. 2015). In the light of this, it seems surprising that both 
the differences in the phytochemical composition within a 
tree crown, as well as the elucidation of potential mecha-
nism maintaining phytochemical variation, has received lit-
tle attention (Table 1).

Here, we review the recent literature of the last 15 years 
on causes and consequences of intra-specific variation in 
tree defence chemistry against insect herbivores above-
ground. Recent findings on the role of abiotic conditions, 
tree genotype, spatial and temporal patterns, ontogeny and 
herbivore feeding for tree phytochemical variation are sum-
marized (Fig. 1). In this manuscript, we want to specifically 
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emphasize the phytochemical variation within treetops of 
old-growth trees, and the consequences for insect herbivores, 
as the vertical dimension of trees has so far almost been 
neglected in studies on tree defence chemistry (Table 1). In 
the second part of this review, we outline different molecular 
mechanisms that contribute to the maintenance of phyto-
chemical variation in plants (Fig. 1). The recent literature 
from mostly herbaceous species is used to suggest molecu-
lar mechanisms responsible for the variation in tree defence 
chemistry against insect herbivores. In a final chapter, we 
point out the lack of knowledge in the mechanistic under-
standing of tree defence against insect herbivores under 
natural conditions and suggest an interdisciplinary research 
approach to study the ecology of tree-insect interactions in 
the future.

The tree genotype determines intra‑specific 
variation in phytochemistry

Intra-specific genotypic variation in trees is known to 
be a major driver of phenotypic plasticity that can also 
shape arthropod community structures via genotypic 
effects on variation in tree defence chemistry (Donald-
son and Lindroth 2007; Whitham et al. 2006, Bernhards-
son et al. 2013). Studies in poplar trees have shown that 
intra-specific genotypic variation has strong effects on the 

concentration of compounds in the two major groups of 
phenolic defences, condensed tannins and salicinoids (e.g., 
Donaldson and Lindroth 2007). Genotypic effects on tree 
phytochemistry were, e.g., also shown in studies on willow 
(Barbour et al. 2015), Eucalyptus (Barbour et al. 2009; 
Gosney et al. 2017) and birch (Haviola et al. 2012). The 
phytochemistry of trees has been suggested to be the inter-
mediate link between tree genes and the arthropods associ-
ated with trees by the genetic similarity rule (Bangert et al. 
2006). However, empirical studies have shown that the 
tree genotype is not always the best predictor for arthro-
pod community composition and insect herbivore feeding 
patterns. In a study by Maldonado-Lopez et al. (2015) on 
the relationship between red oak genetics, phytochemistry 
and damage patterns by two herbivorous feeding guilds, 
leaf chewers and leaf miners, only damage by the latter 
was explained by genetics and tree chemistry. In Norway 
spruce galling aphid communities were not related to tree 
phytochemical profiles and tree genetics only affected the 
abundance of galls within one taxonomic group but not the 
other (Axelsson et al. 2015). A recent study comparing 100 
naturally growing adult oak trees (Quercus robur, Q. pet-
raea) found no evidence for genotype effects on arthropod 
communities but chemical traits as potential links between 
tree genetics and arthropod community structure were not 
explicitly investigates in this study (Gossner et al. 2015).

GENOTYPE 

SOURCES OF PHYTOCHEMICAL VARIATION

MECHANISMS MAINTAINING 
PHYTOCHEMICAL VARATION 

ONTOGENY 

ABIOTIC CONDITIONS 

INSECT HERBIVORY

DNA METHYLATION

HISTONE MODIFICATIONS SEASON

DIURNAL RHYTHM

INACTIVE SIGNALING MOLECULES

METABOLITE ACCUMULATION

Fig. 1  Topics covered in this review article. The diagram depicts sources of phytochemical variation in trees and possible molecular mechanisms 
maintaining this variation in treetops
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Abiotic conditions affect the tree defence 
chemistry

Certainly a main driver of phytochemical variation in trees 
is the abiotic environment which in itself can vary dramati-
cally throughout the lifetime of a tree and even through 
the course of 1 day. A number of recent common garden 
and laboratory studies investigated the impact of abiotic 
conditions such as rainfall, humidity, nutrient availability 
and temperature on tree defence chemistry (e.g., Jamie-
son et al. 2015; Vallat et al. 2005). Together with studies 
looking at phytochemical variation in trees in response 
to climate change scenarios with, e.g., increases in tem-
perature,  O3,  CO2, as well as more frequent drought and 
frost periods [recently reviewed by Lindroth (2010) and 
Jamieson et al. (2012)], a picture emerges where the phy-
tochemical composition is heavily influenced not only by 
the genetic make-up of a given species, but also by these 
non-intrinsic abiotic factors (Blande et al. 2007; Copolo-
vici et al. 2014; Couture et al. 2017; Gutbrodt et al. 2012; 
Hale et al. 2005). The phytochemistry of young Populus 
tremuloides trees substantially changed in response to 
experimental vernal freezing (Rubert-Nason et al. 2017) 
with decreased concentrations of condensed tannins and 
slightly increased levels of phenolic glycosides in the foli-
age of frost-stressed trees as compared to control trees. In 
naturally growing mature P. tremuloides trees, however, 
vernal freezing induced only changes in phenolic glyco-
side levels (St Clair et al. 2009). A recent study by Abdala-
Roberts et  al. (2016) suggests that temperature is the 
most important factor explaining variation in the defence 
chemistry of mature pedunculated oak (Q. robur) trees 
occurring at different altitudes in Northern Spain. In this 
study, the foliar concentrations of phenolic compounds 
(rutin, gallic acid and catechin) significantly increased 
with decreasing mean annual temperatures of 4 °C across 
an elevation gradient of around 800 m.

There are strong temporal and ontogenetic 
patterns in tree defence chemistry

The phytochemical composition in trees can also strongly 
vary over time (Yamasaki and Kikuzawa 2003) and diurnal 
rhythms of, e.g., tree volatile emission (Clavijo McCor-
mick et al. 2014a; Giacomuzzi et al. 2017; Trowbridge 
et al. 2014) as well as seasonal changes in carbon-based 
defence compounds were documented (Gripenberg et al. 
2007; Holeski et  al. 2012). The chronologically old-
est branches in a tree, i.e., closest to the root crown will 
exhibit the youngest phenotype whereas the most distant 

shoots at the outer rim of the tree crown display the more 
mature phenotype. Kearsley and Whitham (1998) termed 
this counterintuitive phenomenon of within-tree pheno-
typic plasticity the “developmental stream”. Ramets within 
the crown of one tree genotype can, thus, vary significantly 
in their phytochemical profiles (Rehill et al. 2006; Smith 
et al. 2011) and even within these ramets an ontogenetic 
gradient in phytochemistry can occur (Boeckler et  al. 
2013).

Insect herbivory is a major source 
of phytochemical variation in trees

One of the main reasons for the observed phytochemical 
variation within tree species might very well be explained by 
differences in individual biotic interactions with pathogens 
and herbivores (vertebrates and invertebrates). Unlike sim-
plified single species interactions studied in the greenhouse 
and in the lab, naturally growing trees of all age classes are 
simultaneously attacked by numerous insects and patho-
gens. This induces variable levels of damage, ranging from 
losses of a few leaves to complete defoliation. Attack by an 
insect herbivore induces rapid local and systemic responses 
by de novo synthesis and relocation of defence compounds 
such as phenolics or terpenoids. Phenolics in tree leaves can 
make up to a quarter of the leaf dry weight as in the case of 
condensed tannins and salicinoids in aspen (Donaldson and 
Lindroth 2008; Donaldson et al. 2006). These compounds are 
constantly present in tree tissues and thus termed constitutive 
defences just like terpenoids in coniferous resins are. Insect 
feeding, however, can induce an increase in the concentration 
of these phytochemicals. The induction of phenolics in trees 
is dependent on the tree species, the genotype and the attack-
ing insect herbivore species. In poplar for instance, only a few 
studies have shown the induction of salicinoids (phenolic gly-
cosides), a major group of phenolic defences (Rubert-Nason 
et al. 2015), whereas other studies did not see induction after 
herbivore attack at all (Boeckler et al. 2013). Insect herbivory 
also induces a change in the composition of volatile organic 
compounds (VOCs) released from trees. Upon gypsy moth 
(Lymantria dispar) caterpillar feeding young black poplar 
(Populus nigra) trees increase their emission of VOCs by 
more than 20-fold and the herbivore-induced blend qualita-
tively differs from the volatiles released from non-damaged 
control trees. Minor nitrogenous compounds (aldoximes and 
nitriles) are only emitted by the trees when they are attacked by 
herbivores (Clavijo McCormick et al. 2014b) and the compo-
sition of herbivore-induced black poplar VOCs also varies in 
response to different herbivore species (Unsicker et al. 2015). 
Variation in tree VOC emission due to insect herbivore feed-
ing has been reported in a number of tree species such as pine 
(Heijari et al. 2011; Trowbridge et al. 2014), oak (Copolovici 
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et al. 2017; Staudt and Lhoutellier 2007), alder (Copolovici 
et al. 2014), beech (Gossner et al. 2014), apple (Suckling et al. 
2012) and willow (Yoneya et al. 2010). Changes in VOC emis-
sion upon insect herbivore damage are not restricted to the 
locally damaged sites but also occur in non-damaged adjacent 
foliage in apical direction (Clavijo McCormick et al. 2014b). 
Under field conditions in old-growth black poplar trees, how-
ever, this systemic induction of herbivore-induced VOCs was 
not significant (Unsicker unpublished data). Besides producing 
defence chemicals immediately upon insect herbivore damage, 
trees are also able to respond to severe defoliation by increas-
ing their defence in the next growing season. This phenom-
enon termed “delayed-inducible resistance” has been shown 
for a number of mainly deciduous tree species (e.g., Haukioja 
1991; Kaitaniemi et al. 1998; Martemyanov et al. 2012) but 
also conifers with inconsistent results (Lombardero et al. 2016; 
Roitto et al. 2009).

Phytochemical variation in treetops: 
the overlooked vertical dimension

It may seem trivial to specifically point out here that all abi-
otic and biotic variables influencing intra-specific variation in 
tree phytochemistry can also cause phytochemical variation 
within the treetop of a single tree. Under natural conditions, 
the abiotic conditions in treetops can vary drastically along the 
vertical and horizontal axis. The outer part of the tree crowns 
experiences very different levels or irradiation, wind speed, 
temperature and humidity than the innermost crown areas. 
As a consequence, microclimatic conditions within trees can 
be highly variable. Additionally, spatial variation in arthro-
pod abundance and insect herbivore feeding in tree crowns 
have been observed (Robinson et al. 2012, Basset et al. 2003; 
Rowe and Potter 1996; Unsicker and Mody 2005; Yamasaki 
and Kikuzawa 2003) and thus it seems intuitively logical, that 
there must also be a large spatial component in the variation 
of tree defence chemistry within the treetop of a single tree. 
Unfortunately, most studies on tree defence chemistry, specifi-
cally the ones with experimental approaches, have been per-
formed in small, immature trees likely due to the difficulties in 
accessing large old-growth trees (Barker and Pinard 2001). To 
our knowledge, there is hardly any study that focused specifi-
cally on phytochemical variation in different layers of large, 
mature trees (Table 1).

Molecular mechanisms of phytochemical 
variation in tree species and individual 
treetops

The diversification of defence compounds and defence 
strategies within tree species is largely based on genetic 
variation. The mechanisms creating the substrate for this 

evolutionary change are diverse and a detailed review of 
these is beyond the scope of this article (for a review, see, 
e.g., Chen et al. 2013). One prominent mechanism for cre-
ating genetic diversity is the duplication of genes or, more 
prominent in plants, whole genome duplications (Panchy 
et al. 2016). Most duplicated genes are lost in the course 
of evolution (Lynch and Conery 2003) but when they are 
retained, they can acquire new functions. One illustrative 
example for this is the massive diversification of compounds 
within the group of terpenoids. Currently, more than 30.000 
different terpenes are known (Keeling and Bohlmann 2006). 
Here, different terpene synthases (mono-, sesqui-, and diter-
pene synthases), which apparently evolved through repeated 
duplication followed by functional diversification, produce 
an amazingly diverse array of terpene backbones (Zapata 
and Fine 2013). Interestingly, the diversification in the group 
of terpenoids might be due to different mechanisms in mono- 
and dicot species (Boutanaev et al. 2015). Species hybridiza-
tion can furthermore increase the phytochemical diversity 
in trees (Caseys et al. 2015) in a local context as could be 
envisioned for the local accumulation of advantageous sin-
gle nucleotide polymorphisms (SNPs) (Bernhardsson and 
Ingvarsson, 2012). In trees, the above-mentioned mecha-
nisms do not only lead to a diversification of compounds, 
but also ultimately, and possibly more importantly from an 
ecological perspective, shape community compositions of a 
given habitat (Whitham et al. 2006) and additionally provide 
the basis for new species interactions at the ecosystem level 
(Benfey and Mitchell-Olds 2008).

The importance of the above-described mechanisms in 
creating species diversity on an evolutionary time scale 
cannot be overestimated. For a single tree, faced with the 
challenge of responding to myriads of attackers throughout 
its lifetime, however, the phytochemical diversity created 
in the past is a mere platform to act and survive in the pre-
sent, using the arsenal provided by its (lifetime-wise) largely 
invariant genome (Sarkar et al. 2017). However, somatic 
mutations (alterations in the genetic information that is not 
transmitted to the next generation) might, in specific cases, 
play a role for phenotypic diversity within an individual tree 
as in the case of mosaic trees within the genus Eucalyptus 
(Padovan et al. 2012, 2015).

Given the vertical and horizontal dimension of mature 
tree crowns, the challenges one crown area faces might be 
very different to what another crown area tackles at the same 
time. Consequently, the heterogeneity of influential variables 
may lead to local adaptations in different parts of the treetop.

In the following, we will review potential mechanisms 
leading to intra-crown (treetop) diversity in phytochemistry. 
The sensing of a local challenge (e.g., insect herbivory) pro-
vides informational value for the tree that might be relevant 
for other parts of the tree as well. Transmission of this infor-
mation requires efficient and fast means of communication 
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between both the affected, as well as the (yet) unaffected 
tissues, which can be realized, e.g., by VOC emission (Heil 
and Karban 2010). As mentioned earlier, trees emit specific 
blends of VOCs upon herbivore attack but interestingly, 
this signal is only emitted as long as there is actual feed-
ing (Clavijo Mc Cormick et al. 2014a). Herbivore-induced 
VOCs, thus, signal a potential threat in the future and prime 
non-damaged tissues for a faster and stronger response, e.g., 
upon a second herbivory event (Frost et al. 2008). This raises 
the question how this perceived information is stored and 
then only transferred into a chemical defence response when, 
e.g., insect herbivore attack happens. Mechanistically, this 
requires several steps: the information needs to be spread 
to receivers and be decoded (e.g., VOCs emitted upon her-
bivory need to be sensed and linked to a response). After 
decoding the information, some kind of memory of this 
information needs to be established and this memory then 
alters the response when a specific stress (e.g., herbivory) 
recurs. Here, different (and certainly nonexclusive) mecha-
nisms to store information locally have been proposed. These 
range from an increase in inactive signalling compounds like 
signalling kinases (Beckers et al. 2009), which, once acti-
vated by a specific stimulus, lead to a massive amplification 
of signalling and hence a potentially quicker and stronger 
response. Another possibility is the accumulation of specific 
metabolites (Navarova et al. 2012), which are either directly 
involved in defence or which serve as signalling molecules 
that can be released once stress recurs. A widely observed 
pattern in primed plant responses are alterations in transcrip-
tional activity, where a primed transcriptional response is 
different from the transcriptional response when stress is 
encountered for the first time (Hilker et al. 2016). When 
altered transcriptional responses are observed, chromatin 
modifications offer a mechanistically intuitive way of modu-
lation. In the nucleus, DNA is organized in a structure called 
chromatin (all nuclear DNA and associated proteins like 
histones); modifications to histones or DNA either directly 
or indirectly regulate the accessibility of genomic loci and 
either facilitate or restrict transcriptional activity. Indeed, 
chromatin was long viewed as an interface between the envi-
ronment and the genome. In genetically identical ramets of 
poplar, for example, globally altered DNA-methylation pat-
terns depending on growth history were described (Raj et al. 
2011). In herbaceous plants, recurring stress lead to altered 
levels of histone modifications at stress relevant loci, which 
correlated with altered transcriptional responses when stress 
recurred (Ding et al. 2012; Jaskiewicz et al. 2011; Lämke 
et al. 2016). These works established histone 3, lysine 4 
hypermethylation as a potential memory mark that might 
be instructive for altered transcriptional activity when loci 
are re-activated upon a second stress. Of note, this chro-
matin modification persisted long after the initial transcrip-
tional activity ceased and hence might store the perceived 

information (Conrath et al. 2015; Lämke and Baurle 2017). 
In case of priming within the tree crown, this scenario sug-
gests that priming might lead to different chromatin states 
within the crown, which then allow for the modulation of 
(transcriptional) responses when a stress either spreads or 
recurs, leading to locally different phytochemical responses 
to the same challenge. Indeed, alterations in transcriptional 
responses are observed upon priming by volatiles and sub-
sequent challenge (Frost et al. 2008). It seems reasonable to 
assume that trees use chromatin-based mechanisms exten-
sively to store perceived information within the tree crown 
to allow for an adapted response. We are currently lacking 
a clear picture of both the extent as well as the duration 
of chromatin based memory in trees. Given the very long 
life span and sheer size of a tree, resulting both in the con-
stant need to adapt to the changing local environment and 
the highly informative value of previous stress exposure, it 
seems very plausible that trees use chromatin-based means 
extensively to constantly adapt and be prepared for future 
challenges (Bräutigam et al. 2013).

Critical remarks and future directions

In this article, we outlined different sources of phytochemi-
cal variation within tree species and individual treetops and 
suggested mechanisms at the molecular level to maintain 
this variation.

An obvious drawback in the studies on tree defence chem-
istry and the consequences for insect herbivores is that they 
are limited to a narrow range of tree species or genera (i.e., 
oak, poplar, willow, pine, eucalyptus, birch) and within 
those only a few or single tree genotypes. Furthermore, most 
experimental studies investigating tree defence mechanisms 
are performed under controlled greenhouse or laboratory 
conditions with immature trees, raising the question whether 
the results from these studies allow us to deduce generali-
ties and make predictions also for mature trees under natu-
ral conditions. Experimentally applied abiotic and biotic 
stresses are mostly inflicted singly and only rarely are trees 
under laboratory conditions exposed to real-world scenar-
ios with, e.g., simultaneously occurring biotic and abiotic 
stresses. Even under field conditions, the majority of stud-
ies on tree defences investigate younger trees of reasonable 
height, as it is certainly challenging, if not impossible, to 
obtain samples for phytochemical analysis representing the 
entire treetop of a large old-growth trees. Furthermore, field 
studies are mostly descriptive and rarely imply experimental 
approaches with modern molecular methods. Well-replicated 
experimental approaches within treetops of old-growth trees 
are very demanding and likely restricted to sites with canopy 
cranes, canopy walkways or trees accessible with, e.g., the 
single rope climbing technique. Despite these difficulties, 
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we urgently need the synthesis of field based experiments 
in old-growth trees with experimental approaches using 
modern molecular techniques to reveal the causes and con-
sequences of phytochemical variation in trees for tree-insect-
herbivore interactions. Here, “genome-enabled field biolo-
gists” (Baldwin 2012) with a fascination for climbing trees 
should step up to the plate.
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