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Abstract

Studies about the pathogenesis of mood disorders have consistently shown that multiple factors, including genetic and environ-
mental, play a crucial role on their development and neurobiology. Multiple pathological theories have been proposed, of which
several ultimately affects or is a consequence of dysfunction in brain neuroplasticity and homeostatic mechanisms. However,
current clinical available pharmacological intervention, which is predominantly monoamine-based, suffers from a partial and
lacking response even after weeks of continuous treatment. These issues raise the need for better understanding of aetiologies and
brain abnormalities in depression, as well as developing novel treatment strategies. Nitric oxide (NO) is a gaseous unconventional
neurotransmitter, which regulates and governs several important physiological functions in the central nervous system, including
processes, which can be associated with the development of mood disorders. This review will present general aspects of the NO
system in depression, highlighting potential targets that may be utilized and further explored as novel therapeutic targets in the
future pharmacotherapy of depression. In particular, the review will link the importance of neuroplasticity mechanisms governed

by NO to a possible molecular basis for the antidepressant effects.
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Introduction

Depression is a severe psychiatric condition with a lifetime
prevalence of ca. 20% worldwide (Hasin et al. 2018; Kessler
and Bromet 2013). Depression is associated to increased risk
of all-cause mortality (Lasserre et al. 2016) and a reduced life
expectancy of 7—14 years has been reported (Chang et al.
2011; Laursen et al. 2016). Depression is the leading cause
of disability worldwide, responsible for 7.5% of years lived
with disability and it contributes to 2.5% of the global burden
of disease, corresponding to more than 70 million disability-
adjusted life years (DALYs) (Vos et al. 2017). Similarly, in a
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European material, affective disorders are among the most
costly diseases (110 billion Euro) and anxiety disorders
among the most prevalent (Olesen and Leonardi 2003;
Olesen et al. 2008; Wittchen et al. 2011). It has been estimated
that the global economy loses about $1 trillion every year in
productivity due to depression and anxiety and that the appro-
priate treatment of depression would result in a large econom-
ic productivity gain of $230 billion (Chisholm et al. 2016).
Although research indicates that antidepressants are overall
effective for treatment of depression (Cipriani et al. 2018),
several weeks of treatment are required to achieve a signifi-
cant mood-improving effect and a significant proportion of
patients are partial or non-responders, which limit the success
of the therapy for many patients. Since the introduction of the
currently marketed antidepressant drugs in the 1950s to the
1980s, which all are based on monoaminergic pharmacologi-
cal effects, there has been no major breakthrough in finding
novel effective drug targets, despite considerable effort
(Wegener and Rujescu 2013). Unfortunately, the pathogenesis
and neurobiology of affective disorders is not well under-
stood. Based on genetic and environmental factors, multiple
hypotheses are proposed involving distinct pathways, for ex-
ample neurotransmission (Caspi et al. 2003) and neurotrophic
factors (Zhao et al. 2018). The present review will focus on the
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role of the atypical neurotransmitter nitric oxide (NO) in de-
pression and (i) address general aspects of the NO system in
depression, (ii) focus on drugs affecting NO production as
putative therapeutic molecules and finally, (iii) highlight pos-
sible molecular mechanisms related to brain neuroplasticity.

Basic principles of nitric oxide signalling
in the brain

Initial evidence indicating NO as a possible signalling mole-
cule in the brain came from the seminal work by Garthwaite
and colleagues (Garthwaite 2008; Garthwaite et al. 1988),
showing that activation of N-methyl-D-aspartate (NMDA) re-
ceptors by glutamate increased the release in a Ca®*- depen-
dent manner of a diffusible messenger, which was later shown
to be NO. Today, it is well known that NO is formed on
demand during its enzymatic conversion from L-arginine by
the enzymes NO synthase (NOS), as reviewed by Guix and
co-workers (Guix et al. 2005). Briefly, the three major iso-
forms of NOS are neuronal NOS (nNOS), endothelial NOS
(eNOS) and inducible NOS (iNOS). nNOS and eNOS are
Ca’~calmodulin—dependent enzymes constitutively expressed
primarily in neurons and endothelial cells. However, iNOS
has a high affinity for Ca**~calmodulin, thus being usually
active when expressed in the cell. Under basal conditions,
iNOS levels are usually very low, requiring de novo synthesis
triggered by immunological or inflammatory stimulation in
macrophages, astrocytes, microglia and other cells, to produce
significant amounts of NO (Amitai 2010).

Abundant evidence points to the fact that all three NOS
isoforms are able to affect cell signalling in the brain, with
nNOS representing the major source for NO synthesis, an-
chored in close proximity to NMDA receptors through post-
synaptic proteins (Garthwaite 2008). However, additional
stimuli can trigger or inhibit nNOS activation in response to
increased intracellular calcium concentration, such as the ac-
tivation of muscarinic (M1 or M3) (Borda et al. 1998),
purinergic (P2R) receptors (Florenzano et al. 2008) and sev-
eral receptors/transport proteins relevant for serotonergic neu-
rotransmission (Chanrion et al. 2007; Hiroaki-Sato et al. 2014;
Marcoli et al. 1997; Raiteri et al. 1991) (Fig. 1).

The main cellular target for NO is the enzyme soluble
guanylyl cyclase (sGC), which upon activation catalyses the
conversion of cyclic guanosine monophosphate (GTP) into
cyclic guanosine monophosphate (cGMP). cGMP activates
protein kinase G (PKG)-dependent signalling (Feil and
Kleppisch 2008; Kleppisch and Feil 2009). Both nNOS and
sGC are co-localized in several limbic brain regions,
supporting the idea of an integrated NO-cGMP signalling sys-
tem (Ding et al. 2004). In addition, NO can also nitrosylate
many different proteins affecting their activity, with important
consequences for neuronal signalling and neuroplasticity
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(Jaffrey et al. 2001). A comprehensive overview of NO-
mediated mechanisms in the brain is beyond the scope of the
present review and can be found elsewhere (Garthwaite 2008).

Nitric oxide and depression

Evidence from humans has not been consistent regarding
nNOS expression and/or activity in post-mortem material
from patients with major depression. In some studies, a re-
duced number of nNOS containing neurons in the
paraventricular hypothalamic nucleus was observed
(Bernstein et al. 2002; Bernstein et al. 1998) and a strong trend
(p<0.06) in decreased activity of the constitutive NOS was
found in the prefrontal cortex (Xing et al. 2002) and locus
coeruleus (Karolewicz et al. 2004) of patients with depression.
In the brains from the Stanley Consortium, an increase in the
CA1 hippocampal area nNOS immunoreactivity in depression
and bipolar disorder has been reported (Oliveira et al. 2008).
This highlights the complexity of NO neurochemistry in de-
pression neurobiology, indicating that an imbalance rather
than an overall increase or decrease in NOS activity seems
to be related to the neurobiology of depression.

To understand the involvement of NO in depression, a
number of studies have examined peripheral NO metabolism
in major depression, however with rather mixed results. In a
study of suicide attempters, increased NO metabolites (NO,
and NOj3) were observed (Kim et al. 2006; Lee et al. 2006),
suggesting a dysfunctional peripheral nitrergic system. A sim-
ilar finding was reported in drug-naive depressive patients
diagnosed according to DSM-IV (Suzuki et al. 2001) and in
the same study, treatment with an antidepressant normalized
the nitrite levels, in correlation with the clinical response
(Suzuki et al. 2001). In another study of DSM-IV diagnosed
depressed patients, there was no correlation between depres-
sive symptoms and levels of nitrate but a significant effect of
antidepressant treatment, lowering the nitrate levels was ob-
served (Herken et al. 2007). In addition, there are some studies
demonstrating involvement of NO in some but not all forms of
IFN-alpha-induced depression (Suzuki et al. 2003).
Importantly, measurement of nitrate in serum will only detect
the overall nitrate pool and not potential clinically relevant
subcompartments. This is exemplified in a study of depressed
individuals showing a 73% decrease in nitrite content in the
polymorphonuclear leukocytes (Srivastava et al. 2002). Since
human polymorphonuclear leukocytes express neuron-like
nNOS (Wallerath et al. 1997), this measure may be hypothe-
sized to be more relevant than serum values.

Examinations on polymorphisms of NOS have contributed
with mixed findings, although some evidence for a role of NO
in depressive disorders seems to be present. In a population-
based association study investigating nNOS in unipolar de-
pression, it was tested whether the nNOS C276T
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Fig. 1 Role of nNOS-derived NO in synaptic homeostasis. nNOS-
derived NO is released following glutamate activation of AMPA and
NMDA receptors, with an influx of Ca?* leading to the activation of
nNOS. NO exerts various neuromodulatory effects as well as promotes
the cellular processes of plasticity and memory either by itself through
nitrations and nitrosylations or by the synthesis of its second messenger,
cGMP, through soluble Guanylyl Cyclase (sGC), which in turn acts
through protein kinase G (PKG) to phosphorylate synaptic proteins. NO
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can freely cross cellular membranes and act on other cells in a volume-
dependent manner, e.g., the presynaptic release machinery. Synthesis of
NO can also be stimulated following processes leading to increase in
intracellular Ca* for example through activation of muscarinic M3 or
purinergic P2Y1 receptors. During conditions of stress, the synthesis of
nNOS may be altered with consequences on synaptic functioning. For
further details, please see main text.

patients (Yu et al. 2003) but due to the restricted design of the
study, it is concluded that other variants of the nNOS gene
may play a role. Also, in another genetic association analysis
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of case—control samples (325 MDD patients, 154 BP patients
and 807 controls) in a Japanese population, using single nu-
cleotide polymorphism (SNP; rs41279104, also called ex1c),
no associations between one marker (rs41279104) in nNOS
and mood disorder were detected, although the sample sizes
were probably too small to allow a meaningful test (Okumura
et al. 2010). Moreover, the paper did not perform an associa-
tion analysis based on linkage disequilibrium and a mutation
scan of nNOS (Okumura et al. 2010). In a large genome-wide
association study of 435,291 SNPs genotyped in 1738 MDD
cases and 1802 controls selected to be at low liability for
MDD, it was reported that an association of nNOS with the
disease was present, although the size of the NOS-I gene made
the authors cautious about the finding (Sullivan et al. 2009).
Finally, in a study carried out in a group of 181 depressed
patients and 149 control subjects of Polish origin, it was ex-
amined whether a single nucleotide polymorphism (SNP)
present in the genes encoding iNOS and nNOS could contrib-
ute to the risk of developing recurrent depressive disorder
(Galecki et al. 2011). It was shown that both investigated
polymorphisms could be associated with depression and that
the NOS2A and nNOS genes may confer an increased risk of
recurrent depressive disorder (Galecki et al. 2011). Recently, a
whole-exome sequencing of individuals from an isolated pop-
ulation has identified a significant association in bipolar dis-
order with NOS1 (missense variant rs79487279) (Lescai et al.
2017). Whether this association could also be relevant for
unipolar depressive disorder remains to be established.

Since stressful life events have been considered a crucial
environmental triggering factor for depressive episodes
(Kendler et al. 2000), a majority of the basic characterization
of'the involvement of NO in depression has been carried out in
animal models involving exposure to stressful situations.
Interestingly, nNOS is found expressed in different brain re-
gions related to stress (Arevalo et al. 1992; Bhat et al. 1996;
Ceccatelli et al. 1996; Nylén et al. 2001), suggesting NO to be
an important modulator of the behavioural and physiological
stress response. In addition, the expression of nNOS, along
with NO levels, is significantly increased in the brain of ani-
mals that have been exposed to stressful stimuli (Harvey et al.
2005; Harvey et al. 2004; Madrigal et al. 2001; Madrigal et al.
2002; Wegener et al. 2010; Zhou et al. 2011). Basal levels of
functional iNOS, although in lower levels than nNOS, are also
present in the brains of normal healthy adult animals (Amitai
2010), showing significantly higher expression upon stress
exposure in different limbic brain regions (Bollinger et al.
2017; Gadek-Michalska et al. 2016; Harvey et al. 2004;
Tang et al. 2018). Consistent with the elevated nNOS and/or
iNOS expression, increased NO levels can be observed in the
hypothalamus, hippocampus and prefrontal cortex of animals
exposed to stress in models of depression, such as forced
swimming and the chronic mild stress (Gilhotra and Dhingra
2009; Harvey et al. 2005; Harvey et al. 2004; Krass et al.
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2010). Simultaneously, neuroendocrine responses to stress,
including increased hypothalamus—pituitary adrenal (HPA)
axis activity, which is often disrupted in mood disorders
(Badenhorst et al. 2017; Brand and Harvey 2017a; Brand
and Harvey 2017b; Swaab et al. 2005), can be observed. In
fact, a direct relationship between HPA axis activity and NO
has been observed, in that endogenously NO inhibits the re-
lease of corticotrophin-releasing hormone (CRH), adrenocor-
ticotrophic hormone (ACTH) and corticosterone (Costa et al.
1993; Rivier and Shen 1994a). Studies using systemic injec-
tion of different NOS inhibitors suggest that NO may exert a
tonic negative influence on the HPA axis activity in the pres-
ence or absence of circulating glucocorticoids (Givalois et al.
2002; Rivier and Shen 1994b; Tsuchiya et al. 1997). In con-
trast, microinjection of an NO donor in the brain ventricles or
into brain regions controlling the HPA activity show that NO
may increase HPA axis activity (Okada et al. 2002; Seo and
Rivier 2001). Such discrepancies can be explained based on
the brain region studied, the type and intensity of stimuli trig-
gering HPA axis activation and on the species under investi-
gation (Bugajski et al. 2004; Mancuso et al. 2010; Rivier
2001; Rivier 2003). Nevertheless, there is profound evidence
suggesting that NO might be an important messenger in reg-
ulating neuroendocrine responses to stress.

Experiments performed with mice with targeted disruption
of the nNOS or iNOS genes have suggested a clear involve-
ment of NO on depression neurobiology. Thus, transgenic
mice lacking nNOS show hyper locomotor activity in a novel
environment, increased social interaction in their home cage
and decreased depression-related behaviour, with impaired
spatial memory retention (Tanda et al. 2009). Mice lacking
nNOS (nNOS—/-) are also more aggressive than wild-type
(WT) mice in standard testing paradigms (Nelson et al.
2006). Moreover, nNOS null mutant mice are resistant to
stress effects and show a less depressive-like phenotype in
the forced swimming and tail suspension tests (Zhou et al.
2007). More importantly, nNOS deletion or intrahippocampal
nNOS inhibition blocked the corticosterone-induced behav-
ioural modifications in the chronic mild stress model, thus
indicating that hippocampal nNOS is necessary for the role
of glucocorticoids in mediating depressive behaviours (Zhou
et al. 2011). Since iNOS-mediated NO production is more
prominent in response to inflammation and disease, an iNOS
—/— phenotype is the increased susceptibility to some infec-
tions (Zaragoza et al. 1998; Zaragoza et al. 1999). In addition,
the sickness behaviour induced by LPS administration is de-
creased in iNOS null mice, supporting a prominent role of
iNOS in the development of behavioural changes associated
to neuroimmunoactivation. However, evidence also supports
that iNOS null mice express increased reactivity to stress, in
the absence of immunological stimuli, such as increased anx-
iety in response to predator scent (Abu et al. 2008). On the
other hand, iINOS—/— mice also evidenced normal locomotor
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activity and increased resilience in the forced swimming test
(Montezuma et al. 2012) and impaired extinction of fear mem-
ories (Lisboa et al. 2015). However, with these results, it may
be difficult to translate the involvement of iNOS-mediated NO
levels to a clinical situation, since the iNOS-deficient animals
present compensatory elevated cortical and decreased hippo-
campal NO levels in response to stress (Abu et al. 2008;
Buskila et al. 2007).

In conclusion, both nNOS- and iNOS-derived NO levels
are altered in depression and in limbic brain regions of
stressed animals. These alterations may contribute to the de-
velopment of behavioural and endocrine abnormalities that
compromise adaptation to stress and increase vulnerability to
depression.

No signalling and antidepressant
intervention

The effect of clinically used antidepressants on nitrergic sig-
nalling has been shown in a few studies, thus supporting NO
involvement in depression and antidepressant action. The first
clinical study reported results from a study with patients suf-
fering from ischemic heart disease and depression, 17 received
paroxetine and 14 patients nortriptyline and it was observed
that serum nitrite and nitrate levels were significantly de-
creased following paroxetine treatment but not nortriptyline
(Finkel et al. 1996). Paroxetine was also shown to be signifi-
cantly more a potent inhibitor of the NOS enzyme activity
than nortriptyline (Finkel et al. 1996). Similarly, several
established antidepressants of distinct chemical classes, in-
cluding imipramine, paroxetine, citalopram and tianeptine,
have all been shown to inhibit hippocampal NOS activity
in vivo when applied locally in the brain in therapeutically
relevant concentrations (Wegener et al. 2003). In another pre-
clinical study, pre-treatment with the main precursor of NO, L-
arginine, counteracted the antidepressant-like effect of imipra-
mine and venlafaxine but not the effects of bupropion or flu-
oxetine, effects being associated with decrease in brain NO
metabolism (Krass et al. 2011). Similarly, it has been shown L-
arginine antagonizes the effects of the classic tricyclic antide-
pressant, imipramine (Harkin et al. 1999). Supporting these
findings, a decrease in NMDA stimulated NO synthesis was
observed in cultured neurons incubated with antidepressants
of different classes (Li et al. 2006). However, a more recent
study reported that treatment with 7-nitroindazole (7-NI),
venlafaxine and fluoxetine attenuated stress-induced neuronal
activation in overlapping brain regions, suggesting that nNOS
inhibitors and monoaminergic antidepressants may share
common neurobiological substrates (Silva et al. 2012).
Supporting that hypothesis, it has been demonstrated that
low and ineffective doses of L-NAME were able to potentiate
the behavioural effects of imipramine and fluoxetine but not

reboxetine, a noradrenaline reuptake inhibitor, in the FST
(Harkin et al. 2004; Harkin et al. 2003). Altogether, this evi-
dence suggests that attenuation of NO levels might contribute
to the behavioural effect of conventional monoaminergic
antidepressants.

NO has also been implicated in the antidepressant role of
several other substances, like tramadol (Jesse et al. 2008),
bupropion (Dhir and Kulkarni 2007) and lithium (Ghasemi
et al. 2008). The effects of the fast-acting antidepressant keta-
mine also seem to involve modulation of NO levels, since L-
arginine pre-treatment can counteract its effects (Liebenberg
et al. 2015; Zhang et al. 2013). More recent evidence suggest
that the effects of ketamine could be related to NMDA recep-
tor blockade with subsequent reduced NO-mediated S-
nitrosylation of a downstream signalling cascade, which dis-
inhibits rapid protein synthesis (Harraz et al. 2016).

In addition to the clinical used antidepressants, specific
drugs affecting NO synthesis have been tested for antidepres-
sant efficacy, further corroborating NO involvement in depres-
sion neurobiology. A comprehensive review of these com-
pounds lies beyond the scope of this text and can be found
elsewhere (Wegener and Volke 2010). Briefly, acute systemic
administration of both iNOS and nNOS inhibitors, such as 7-
NI, 1-(2-trifluoromethylphenyl)-imidazole (TRIM) or 1400W,
has antidepressant-like effects but does not affect locomotion
(Harkin et al. 2003; Heiberg et al. 2002; Montezuma et al.
2012; Spiacci Jr et al. 2008; Volke et al. 2003; Yildiz et al.
2000). Both 7-NI and TRIM have proven to be effective in
other animal models with better face validity, such as the
chronic mild stress model of depression (Mutlu et al. 2009;
Yazir et al. 2012) and the learned helplessness paradigm
(Stanquini et al. 2018). The behavioural effect is centrally
based, since inhibition of nNOS into the hippocampus or in
the medial prefrontal cortex causes a dose-dependent antide-
pressant-like effect in the FST (Diniz et al. 2016; Joca and
Guimaraes 2006; Pereira et al. 2015; Sales et al. 2017).
These findings further support the association of increased
stress-induced NO signalling in relevant brain regions with
the development of depressive psychopathology.

Interestingly, the importance of intact serotonin signalling
has been shown, in that serotonergic depletion abolished the
antidepressant-like effect of some NOS inhibitors in the FST
(Harkin et al. 2003). This effect seems to have important cen-
trally based neurobiology, since the antidepressant-like effect
induced by intrahippocampal administration of a selective
nNOS inhibitor could be prevented by co-administering a se-
rotonin 1A receptor (5-HT,,) antagonist (Hiroaki-Sato et al.
2014). However, not all inhibitors seem to possess this profile,
as it was also demonstrated that the effect of agmatine, which
is decarboxylated L-arginine, was independent of the seroto-
nin 5-HT depletion (Krass et al. 2008).

Methylene blue (MB), although not exclusively selective
for the NOS, is potentially of special relevance since it is so far
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the only compound proven to be effective in patients (Bodini
1899; Naylor et al. 1986; Naylor et al. 1987; Naylor et al.
1988). Unfortunately, these pioneer studies were not fully ran-
domized but a recent randomized crossover study confirmed
efficacy of MB for treatment for residual symptoms of bipolar
disorder (Alda et al. 2017). MB does not only inhibit NOS in
the brain in vivo (Volke et al. 1999) but also several other
haeme-containing enzymes, like monoamine oxidase (MAQO)
(Ehringer et al. 1961; Gillman 2008; Jakubovic and Necina
1963) and various cytochromes, which may partly account for
the clinical efficacy and for the case reports suggesting a hyper
serotonergic state following use of MB (Gillman 2008;
Stanford et al. 2009). New analogues of MB are being devel-
oped (Petzer et al. 2012), which preclinically maintain the
antidepressant efficacy without a major effect on MAO
(Delport et al. 2017; Delport et al. 2018).

Besides the well-established interaction between NMDA
and NO synthesis, alternative pathways, which have also been
suggested to be involved in the psychopathology of depres-
sion, display convergent mechanisms to NO formation (Fig.
1). Among those, purinergic and muscarinic mechanisms are
the most studied. Under stressful conditions, ATP release is
increased, leading to the activation of the purinergic P2X7
receptors (P2X7R), which is highly expressed on neuronal
and non-neuronal cells (microglia and astrocytes) (Volonte
et al. 2012). Following activation, the P2X7 receptors allow
the influx of Ca**, formation of the Ca—calmodulin complex
and production of NO (Vorherr et al. 1993). This mechanism
seems to be involved in some antidepressant-like effect of
P2XR antagonists, since the systemic administration of a
P2X antagonist displays antidepressant properties, which
were associated with a decrease in the nitrite/nitrate levels in
the prefrontal cortex (Pereira et al. 2013). In the same study, a
co-localization of nNOS and P2R in the frontal cortex was
present and the coupling of these two proteins could be hy-
pothesized to modulate behavioural consequences of stress
exposure and the observed antidepressant-like effects follow-
ing P2XR antagonism (Pereira et al. 2013). Similarly, activa-
tion of muscarinic cholinergic receptor (mAchR) subtypes 1, 2
and 3 increases the intracellular Ca”* following their activa-
tion by acetylcholine. In fact, studies have shown that stimu-
lation of muscarinic receptors induces NO synthesis and
c¢GMP formation in vitro (Bauer et al. 1994) and in vivo
(Fassini et al. 2015). Additionally, it was shown that the acti-
vation of mAchR by carbachol has a dose-dependent relation-
ship on nNOS activity, with low doses leading to activation of
nNOS, while higher doses inhibited the enzymatic activity
(Borda et al. 1998). Surprisingly, it has not yet been investi-
gated if the antidepressant-like effect induced by scopolamine
(Dulawa and Janowsky 2018), a muscarinic antagonist, in-
volves modulation of NO levels in the brain.

Finally, since nNOS is anchored to the membrane by the
scaffolding protein PSD-95, enabling downstream signalling
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via the carboxy-terminal PDZ ligand of nNOS (Jaffrey et al.
1998; Jaffrey and Snyder 1996), disruption of this complex
specifically prevents NMDA-R signalling coupled to nNOS,
while leaving other functions of both the NMDA-R and nNOS
intact (Zhou et al. 2010). The antidepressant-like and effects
on NO levels of this approach have been demonstrated in a
number of studies (Doucet et al. 2013; Doucet et al. 2015),
although the results are not always consistent (Tillmann et al.
2017).

No signalling and neuroplasticity
in depression

Neuroplasticity is an important property of neuronal adapta-
tion, which may be disrupted in depression (Manji et al. 2001;
Manji et al. 2000). Neuroplasticity changes induced by exter-
nal environmental factors, such as stress and other negative
stimuli, have been demonstrated to play a significant role in
both the onset and precipitation of depression (Pittenger and
Duman 2008). Conversely, antidepressant intervention has
been suggested to exert an important part of the antidepressant
effects through regulation of neuroplasticity (Duman and
Aghajanian 2012; Duman et al. 2016). It is believed that var-
ious neurotrophins, a family of small peptide growth factors,
regulate neuroplasticity, which include proliferation, differen-
tiation, survival and death of neuronal cells and supporting
tissue (Levy et al. 2018). Brain-derived neurotrophic factor
(BDNF), the predominant neurotrophin in the brain, binds to
the tropomyosin receptor kinase B (TrkB) receptor and sub-
sequently activates intracellular signalling pathways
governing transcription and dendritic translation of proteins
necessary for cellular survival, differentiation and learning/
memory formation in the hippocampus (Leal et al. 2017).
Importantly, dysfunctional signalling through BDNF and
TrkB has been implicated in a number of psychiatric disor-
ders, including depression (Autry and Monteggia 2012). In
support of that, stress decreases whereas chronic treatment
with antidepressants increases BDNF levels in the prefrontal
cortex and in the hippocampus and intact BDNF signalling in
the brain is shown to be necessary for the behavioural effects
of conventional antidepressants (Adachi et al. 2008; Autry and
Monteggia 2012).

Interestingly, NO seems to be also able to modulate BDNF
levels, since it was demonstrated that NO donors (SNP,
NOR3) decrease BDNF release in hippocampal cell culture,
whereas the inhibition of NO production increases these levels
(Canossa et al. 2002). Accordingly, in vivo experiments
showed that chronic treatment with L-NAME increased
BDNF mRNA and protein levels in the hippocampus and in
the prefrontal cortex of rats (Pinnock and Herbert 2008;
Salehpour et al. 2017). In line with this observation, the
antidepressant-like effect induced by chronic treatment with
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the selective nNOS inhibitor 7-NI or with the sGC inhibitor
ODQ was associated with increased expression of hippocam-
pal BDNF protein levels (Stanquini et al. 2018). Similarly,
increased levels of BDNF have also been observed after treat-
ment with other NOS inhibitors, either in cultured or in vivo
neocortex (Xiong et al. 1999). However, in another study, the
antidepressant effect induced by aminoguanidine, a preferen-
tial iNOS inhibitor, was not correlated with increased BDNF
signalling in the prefrontal cortex of FSL rats (Silva Pereira
et al. 2017). Mice with deficient iNOS expression, however,
present increased BDNF levels in the PFC and hippocampus
associated to antidepressant-like phenotype (Joca et al. 2012).
It is, therefore, likely that both iNOS- and nNOS-derived NO
can modulate BDNF signalling in stress adaptation. Although
NO has usually been shown to downregulate BDNF levels,
peroxynitrite formation derived from NO and O  was ob-
served to trigger TrkB signalling (Yuen et al. 2000), suggest-
ing BDNF signalling to be affected. Evidence from cultured
hippocampal neurons indicates that inhibition of BDNF secre-
tions is more pronounced in response to exogenous NO levels
or under exacerbated NO concentrations, whereas endoge-
nous low levels of NO would facilitate BDNF-TrkB signal-
ling (Kolarow et al. 2014). A bioinformatic analysis predicted
a direct action of NO on the amino acid residues of BDNF or
TrkB, suggesting protein S-nitrosylation or tyrosine nitration
in both rodents and humans quoted molecules (Biojone et al.
2015). These direct actions of NO on BDNF or TrkB proteins
could trigger functional negative feedback to control protein
function, or it could drive a reinforcement of downstream
BDNF/trkB signalling.

Conversely, neurotrophins are also able to modulate NO or
NOS levels, since BDNF has been found to upregulate NO
signals, in either hippocampal or neocortical neurons
(Kolarow et al. 2014; Xiong et al. 1999). Similarly, the ratio
of nNOS-positive neural progenitor cells (NPCs) is increased
following treatment with BDNF (Cheng et al. 2003). On the
other hand, BDNF can suppress NO production in microglia,
thus counteracting inflammatory processes in the brain
(Mizoguchi et al. 2014).

More recent evidence indicated that the interplay between
NO and BDNF-TrkB signalling is more complex and involves
more signalling cascades. Both NMDA and TrkB can be as-
sociated to PSD-95 and induce downstream signalling mech-
anisms that regulate synaptic plasticity (Cai et al. 2018). In this
scenario, PSD-95-nNOS interaction may downregulate
BDNF expression via inhibiting ERK activation. On the other
hand, NMDA-PSD-95 uncoupling would increase BDNF
levels and facilitate BDNF-TrkB—PSD-95 signalling mecha-
nisms related to neuroplasticity, which could contribute to the
behavioural effect of these drugs. These results could help
explain the effect of NOS inhibitors on BDNF expression.

In humans, a recent study conducted with patients present-
ing elevated depressive symptoms revealed decreased serum

BDNF levels associated to increase NO levels and impaired
antioxidant capacity (Eraldemir et al. 2015). Although it is not
possible to infer about brain NO and BDNF levels in these
patients, studies conducted with brain tissue from animal’s
have given further support for a putative role of NO in regu-
lating BDNF levels under stressful situations and depression.

Despite the aforementioned evidence that NO might regu-
late BDNF levels in stress and depression, evidence about the
effects of NOS inhibitors in promoting recovery of impaired
synaptogenesis and dendritic branching in stressed animals is
scarce. It is known, however, that NO is critically involved in
the establishment and activity-dependent refinement of axonal
projections during the later stages of development (Manucha
2017). Under physiological concentrations, NO signals down-
stream, either through sGC activation or through nitrosylation
to promote the growth of presynaptic filopodia, which rapidly
leads to the formation of new synaptic contacts in in vitro
experiments (Sunico et al. 2005). Conversely, high levels of
NO, as in nerve injuries, can produce the opposite effect, with
reduced synaptogenesis through cGMP-dependent and S-
nitrosylation-mediated mechanisms (Sunico et al. 2005).
Although this can be blocked by treatment with NOS inhibi-
tors (Sunico et al. 2005) and since inhibition of NO synthesis
in adult rats increases hippocampal expression of
synaptophysin (Joca et al. 2007), it is not known whether
blocking NO synthesis may prevent a stress-induced decrease
in synaptogenesis and dendritic arboring. However, this seems
likely, since PSD-95 promotes synaptogenesis and multi-
innervated spine formation through nitric oxide signalling
(Nikonenko et al. 2008). However, further research is needed
and the question is open for investigation. A proper answer
would contribute for a better understanding on the role of NO
on stress-induced neuroplasticity related to neuropsychiatric
disorders.

Another important neuroplasticy factor affected by NOS
inhibitors is neurogenesis, which has been exhaustively
reviewed elsewhere (Chong et al. 2018; Gray and Cheung
2014). Only a brief overview is presented here.
Neurogenesis is the process of neural stem cells (NSCs) to
foster newborn neurons in replacement for damaged neurons
or maintaining the function. Neurogenesis has attracted sig-
nificant interest and although somewhat controversial in
humans, it has been suggested that neurogenesis may be
linked to recovery from clinical depression (Duman et al.
2001a; Duman et al. 2001b; Spalding et al. 2013) and even
in a controversial paper that it may be a prerequisite for an
antidepressant response (Santarelli et al. 2003). In the brain,
neurogenesis has been observed in the subventricular zone
(SVZ) and the subgranular zone of the dentate gyrus (DG)
(Ehninger and Kempermann 2008; Spalding et al. 2013).
Interestingly, it has also been demonstrated that the
subventricular zone is surrounded by nNOS positive neurons
(Romero-Grimaldi et al. 2008) and cells expressing nNOS
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have also been identified in neuronal precursors in DG (Islam
et al. 2003), suggesting that nNOS could participate in the
regulation of neurogenesis. Indeed, it has been demonstrated
that the nNOS-mediated suppressing on neurogenesis effect
may be caused by NO generated from neurons, not from
NSCs (Luo et al. 2010). In addition, evidence that the subcel-
lular localizations of nNOS in neurons and in NSCs seems to
be distinct, implying that the role of nNOS in neurons and
NSCs is different (Luo et al. 2010). It has also been demon-
strated that inhibition of NO synthesis with 7-NI increases
proliferation of neural precursors isolated from the postnatal
mouse subventricular zone (Matarredona et al. 2004).
However, another report has demonstrated that nNOS inhibi-
tion with 7-NI enhanced the proliferation of progenitor cells in
the dentate gyrus and that the antidepressant-like effect of this
drug was dependent on this neurogenic effect (Zhu et al.
2006). These results are in line with findings using a nNOS
knockout mouse line, where the number of new cells, gener-
ated in neurogenic areas of the adult brain, the olfactory
subependyma and the dentate gyrus, was strongly augmented,
indicating that division of neural stem cells in the adult brain
can be negatively controlled by NO (Packer et al. 2003). It has
also been reported that the nNOS inhibitor L-VNIO or deletion
of'the nNOS gene could affect the differentiation of NSCs into
neurons and astrocytes (Luo et al. 2010). Specifically, it was
found that nNOS could facilitate differentiation of hippocam-
pal neural progenitor cells (Park et al. 2017), suggesting that
nNOS in NSCs is essential for neurogenesis. In the DG of the
hippocampus, NSC forms granule neurons contributing to
neuroplasticity, learning and memory. Impairments in these
cognitive functions have been observed in nNOS transgenic
mice, suggesting that nNOS affects differentiation of NSCs in
the DG (Weitzdoerfer et al. 2004). High levels of the nNOS
are found in granule neurons in the DG (Islam et al. 2003) and
NO generated from nNOS in these neurons may therefore be
speculated to negatively govern granule neuronal precursor
proliferation and further reduces differentiation of granule
neuronal precursors. Given these observations, it is possible
to speculate that the behavioural effects of NOS inhibitors
observed in animals under exposure to chronic stress might
involve positive regulation of hippocampal neurogenesis.
One of the special physiological properties of NO is the
function as a retrograde messenger, influencing synaptic prop-
erties, such as LTP and LTD (Izumi and Zorumski 1993;
Zorumski and Izumi 1993). Such processes are crucial in syn-
aptic homeostasis and, conversely, affecting NO levels may
virtually affect the plasticity and homeostasis of all known
synapses (Hardingham et al. 2013; Holscher 1997). In dis-
eases where synaptic dysfunction, such as depression, is im-
portant, NO is likely to play a major role. In fact, NO has been
shown to mediate local activity-dependent excitatory synapse
development and spine dynamics (Nikonenko et al. 2013) and
a change in NO levels during development has been shown to
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promote axon pruning in a cGMP-independent mechanism
and to enable a switch between phases of neuronal degenera-
tion and regrowth (Rabinovich et al. 2016).

Changes in synaptic function are similarly reflected in the
observed levels of neurotransmitters. Several in vivo studies
have demonstrated that NO can modulate the extracellular
level of neurotransmitters in the central nervous system, e.g.,
5-HT, DA, GABA and glutamate (Kaehler et al. 1999; Lorrain
and Hull 1993; Segovia et al. 1997; Segovia et al. 1999;
Segovia et al. 1994; Strasser et al. 1994; Wegener et al.
2000). In addition, NO can inactivate the rate limiting enzyme
in the synthesis of 5-HT, tryptophan hydroxylase (Kuhn and
Arthur Jr. 1996, 1997) and it has been suggested to stimulate
synaptic vesicle release from hippocampal synaptosomes
(Meffert et al. 1996; Meffert et al. 1994). Furthermore, NO
regulates 5-HT reuptake (Pogun et al. 1994a; Pogun et al.
1994b; Pogun and Kuhar 1994), inhibits uptake of [3H] DA
by striatal synaptosomes (Lonart et al. 1993; Lonart and
Johnson 1994) and transforms 5-HT into an inactive form
(Fossier et al. 1999). It has also been demonstrated that a
physical interaction between the serotonin transporter and
neuronal nitric oxide synthase, via PDZ-PDZ interactions,
may underlie reciprocal modulation of their activity
(Chanrion et al. 2007). The connection between NO and 5-
HT is substantiated by observations showing that NO as well
as 5-HT are involved in the pathophysiology of migraine
(Lassen et al. 1998; Lassen et al. 1997; Thomsen 1997,
Thomsen and Olesen 1998), as well as the inverse relationship
between NO and 5-HT in peripheral tissue. These neurochem-
ical studies could provide evidence for the observation that the
antidepressant-like effect induced by NOS inhibitors is depen-
dent on brain serotonin levels.

Conclusion and perspectives

Evidence from preclinical models has consistently shown that
inhibiting NO synthesis can lead to antidepressant-like effects.
These effects can be achieved through different pharmacolog-
ical mechanisms, including direct nNOS and/or iNOS inhibi-
tion, blockade of P2 receptors or muscarinic receptors. As a
result, reduced NO levels could allow appropriate monoamin-
ergic signalling during stress to promote behavioural adapta-
tion. In this scenario, it is likely that upon chronic exposure to
stress, continuous inhibition of NO synthesis could facilitate
neuroplastic mechanisms related to the antidepressant effect,
such as increased BDNF-TrkB signalling and neurogenesis.

Despite significant advances in this field, challenges re-
main in developing compounds that may differentially inhibit
the ‘right’ NOS isoform at the right place. However, the NO
system continues to be an interesting approach in the future
development of antidepressants.
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