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Abstract
Parkinson’s disease (PD) is a prime example of a complex and heterogeneous disorder, characterized by multifaceted and varied
motor- and non-motor symptoms and different possible interplays of genetic and environmental risk factors.While investigations
of individual PD-causing mutations and risk factors in isolation are providing important insights to improve our understanding of
the molecular mechanisms behind PD, there is a growing consensus that a more complete understanding of these mechanisms
will require an integrative modeling of multifactorial disease-associated perturbations in molecular networks. Identifying and
interpreting the combinatorial effects of multiple PD-associated molecular changes may pave the way towards an earlier and
reliable diagnosis and more effective therapeutic interventions. This review provides an overview of computational systems
biology approaches developed in recent years to study multifactorial molecular alterations in complex disorders, with a focus on
PD research applications. Strengths and weaknesses of different cellular pathway and network analyses, and multivariate
machine learning techniques for investigating PD-related omics data are discussed, and strategies proposed to exploit the
synergies of multiple biological knowledge and data sources. A final outlook provides an overview of specific challenges and
possible next steps for translating systems biology findings in PD to new omics-based diagnostic tools and targeted, drug-based
therapeutic approaches.
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Introduction

Parkinson’s disease (PD) is one of the most common age-
related, neurodegenerative disorders. In spite of 200 years
of research on PD since its first published description by
James Parkinson (Parkinson 1817), the disease etiology is
still not fully understood. No disease-modifying therapy is
available and no reliable diagnostic and progression bio-
markers have so far been identified. The lack of a detailed
molecular understanding and comprehensive mechanistic
models for disease initiation and progression may at least
in part be explained by the striking heterogeneity and com-
plexity of the disease, which is manifested by a wide variety
of motor and non-motor symptoms (Jankovic 2008; Solla
et al. 2012; Müller et al. 2013; Kalia and Lang 2015).
Recent genetic and epidemiological findings suggest that

this high clinical heterogeneity is also reflected by a multi-
tude of diverse PD risk factors and complex interplays be-
tween them (Gorell et al. 2004; Dardiotis et al. 2013;
Kieburtz and Wunderle 2013). Known genetic influences
include more than 20 loci associated with familial forms
of PD and several risk factor variants identified for idiopath-
ic PD (Kalinderi et al. 2016). Since about 15% of patients
have a first-degree relative with PD (Samii et al. 2004) and
only about 6–7% of an estimated total heritability of around
27% can be explained by the currently known PD-
associated genetic variants (Do et al. 2011), several further
genetic or epigenetic alterations may be involved in PD.
This heritable component of the disease is complemented
by multiple environmental risk factors implicated in PD
etiology by epidemiological or Mendelian randomization
studies, including exposure to toxic environmental agents,
head injuries, and various drugs and dietary factors (Bellou
et al. 2016). In analogy to the ‘dual-hit’ hypothesis previ-
ously proposed for other complex disorders (Knudson
1971), interplays of different factors may cause the disease
and modulate the onset and severity of symptoms.

While studies on the influences of individual causal and
risk-associated factors still represent an important information
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source, there is widespread agreement in the field that, in order
to account for the ‘missing heritability’ in PD as well as the
large proportion of idiopathic patients without a family history
of PD, potential combinatorial effects of multiple genetic var-
iations and/or environmental factors should be modeled and
validated. Due to the large number of possible relevant mo-
lecular factors, an integrative modeling is not feasible using
targeted experimental measurements and classical statistical
methods alone, but additionally requires dedicated systems
biology approaches, using high-throughput omics profiling
techniques and bioinformatics approaches that exploit prior
biological knowledge for data analysis.

This review presents a structured overview of current com-
putational systems biology methods available for PD research,
discusses their specific limitations and benefits, and highlights
some of their recent applications in PD-related studies. First,
methods for the analysis of PD-associated cellular pathway and
molecular process alterations are compared, then related net-
work analysis and causal reasoning approaches for identifying
key regulatory factors are introduced. Next, machine learning
approaches to build models for diagnostic sample classification
and patient sub-group stratification are presented, including
bioinformatics methods that exploit prior biological domain
knowledge for integrative analyses. Because these approaches
and their previous applications still suffer from several limita-
tions, which have so far prevented the design of biomarker
models for PD with sufficient accuracy, robustness and repro-
ducibility, specific restrictions of prior work in this field are
highlighted. As a final outlook, a discussion of PD-specific
challenges and potential next steps for systems biology-based
biomarker development and drug target identification is
provided.

Analyzing disease-associated activity changes
in cellular pathways

A common first step towards understanding systems-level
changes in omics datasets for complex diseases like PD is
the investigation of molecular activity alterations in the con-
text of known cellular pathways and molecular processes.
For this purpose, a multitude of manually curated pathway
and process definitions are available in public databases, in-
cluding the Kyoto Encyclopedia of Genes and Genomes
(KEGG; Ogata et al. 1999), the Gene Ontology database
(GeneOntologyConsortium 2004), BioCarta (Nishimura
2001), WikiPathways (Pico et al. 2008), Reactome (Joshi-
Tope et al. 2005) and the Pathway Interaction Database
(Schaefer et al. 2009). Moreover, in addition to these generic
pathway repositories, disease-specific resources have been
established in recent years, providing dedicated pathwaymaps
for the neurodegenerative disorders PD (see the PDMap;
Fujita et al. 2014) and Alzheimer’s disease (see AlzPath-
way; Mizuno et al. 2012). When using a large and generic

pathway database rather than a smaller selection of putatively
relevant pathways for identifying disease-associated cellular
process changes in an omics dataset, one has to consider that
the final significance scores for an analysis will need to be
adjusted for the number of tested hypotheses (equal to the
number of pathways) to prevent excessive false positive dis-
coveries (Benjamini and Hochberg 1995). Accordingly, using
prior biological knowledge to pre-filter the considered path-
ways can be an effective strategy to increase the statistical
power for showing significant associations.

Apart from selecting a pathway collection, researchers also
need to choose between a wide range of statistical analysis
approaches. In general, these omics-based pathway and
geneset enrichment analysis methods can be grouped into four
main categories (combining classifications previously
proposed by Huang et al. 2009 and Di Lena et al. 2015):

1. Over-representation analysis (ORA): These approaches
quantify the statistical over-representation of a list of
genes, proteins or metabolites among the members of a
pathway using a statistical test (e.g., Fisher’s exact test).
The input list usually corresponds to the biomolecules
which displayed a differential abundance in an omics
dataset between a condition of interest (e.g., a disease
state) as compared to a control condition, according to a
chosen test statistic and significance threshold.

2. Geneset enrichment analysis (GSEA): GSEA methods
avoid the need for defining a significance threshold and
instead assign ranking scores to all biomolecules in the
analyzed omics data to test whether the members of a
pathway are ranked unexpectedly high or low among
them (e.g., using modified versions of the Kolmogorov–
Smirnov test).

3. Network module-based pathway analysis (NMPA): These
algorithms exploit prior knowledge from molecular inter-
action networks to improve the scoring of pathway asso-
ciations for omics profiling data. Typical NMPA methods
first identify dense sub-network regions enriched in bio-
molecules undergoing activity changes (called
Bmodules^), and, in a second step, quantify associations
of these network modules with known pathways.

4. Network topology-based pathway analysis (NTPA):
Similar to NMPA approaches, NTPA methods exploit
molecular network information to obtain more robust
and sensitive pathway association scores, but they avoid
the initial module identification step and directly quantify
pathway associations using graph-based statistics to as-
sess the network distances and multiplicity of intercon-
nections between the biomolecules of interest and path-
way members mapped onto the network.

Table 1 shows an overview of representative, publicly
available software tools for each of these four pathway
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analysis categories, including information on whether the
tools are available as platform-independent web applications
and whether they enable a visualization of the results.

When selecting a particular method among these choices,
the following common limitations and benefits specific to
different types of approaches should be considered: While
the results of ORAmethods are easy to calculate and interpret,
they depend on the definition of a significance threshold and

may not detect pathways enriched in many small molecular
changes. By contrast, GSEA approaches do not require the
specification of a significance cut-off and can identify path-
ways affected by strong cumulative effects of many small
alterations. However, GSEA results are often difficult to inter-
pret, and, as in ORA methods, the molecular network topolo-
gy interconnecting the biomolecules of interest is not taken
into consideration, since the statistics rely exclusively on

Table 1 Publicly available software tools and web-applications for analyzing cellular pathway activity changes in omics datasets; some of the methods
can be applied directly in the web browser (see column 4), and some of the tools provide advanced visualization features to facilitate the interpretation of
the results (see column 5)

Method type Software name Availability Web
application

Visualization
features

Reference

Over-representation analysis
(ORA) tools

DAVID https://david.ncifcrf.gov Yes No Dennis et al. 2003

GOstat http://gostat.wehi.edu.au Yes Yes Beißbarth and
Speed 2004

OntoExpress http://vortex.cs.wayne.edu/ontoexpress Yes No Draghici et al. 2003

GoMiner https://discover.nci.nih.gov/gominer Yes Yes Zeeberg et al. 2003

GOToolBox http://genome.crg.es/GOToolBox Yes No Martin et al. 2004

Geneset enrichment analysis
(GSEA) tools

GSEA http://software.broadinstitute.org/gsea No Yes Subramanian et al.
2005

GAGE http://bioconductor.
org/packages/release/bioc/html/gage.html

No No Luo et al. 2009

GSA http://statweb.stanford.edu/~tibs/GSA No No Efron and
Tibshirani 2007

PAGE / PGSEA https://www.bioconductor.
org/packages/release/bioc/html/PGSEA.
html

No No Kim and Volsky
2005

GLOBALTEST https://bioconductor.
org/packages/release/bioc/html/globaltest.
html

No Yes Goeman et al. 2004

PADOG http://bioconductor.
org/packages/release/bioc/html/PADOG.
html

No No Tarca et al. 2012

Network module-based pathway
analysis (NMPA)

FunMOD https://sourceforge.
net/projects/funmodnetwork

No Yes Natale et al. 2014

PINA http://cbg.garvan.unsw.edu.au/pina Yes Yes Cowley et al. 2012

ReactomeFIViz http://wiki.reactome.org/index.
php/ReactomeFIViz

No Yes Wu et al. 2014

Network topology-based
pathway analysis (NMPA)

PWEA https://zlab.bu.edu/PWEA No Yes Hung et al. 2010

SPIA http://bioconductor.
org/packages/release/bioc/html/SPIA.html

No Yes Tarca et al. 2009

PathNet http://bioconductor.
org/packages/release/bioc/html/PathNet.
html

No No Dutta et al. 2012

DeGraph https://bioconductor.
org/packages/release/bioc/html/DEGraph.
html

No Yes Jacob et al. 2012

EnrichNet http://www.enrichnet.org Yes Yes Glaab et al. 2012

Ontologizer http://ontologizer.de Yes Yes Bauer et al. 2008

SANTA http://bioconductor.
org/packages/release/bioc/html/SANTA.
html

No Yes Cornish and
Markowetz 2014

ToPASeq https://bioconductor.
org/packages/release/bioc/html/ToPASeq.
html

No Yes Ihnatova and
Budinska 2015
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available pathway annotations. This limitation is addressed by
NMPA and NTPA approaches, which exploit information
from gene regulatory, protein–protein or protein–metabolite
interaction networks in order to increase the statistical power
and robustness for identifying pathway-associated, co-
ordinated network activity changes. Importantly, these soft-
ware tools can account for the regulatory influences of bio-
molecules that have not yet been annotated for any known
pathway. Moreover, they enable intuitive network visualiza-
tions, which can facilitate biological data interpretation.
However, in contrast to pure network analysis methods (see
the following section), NMPA and NTPA are hybrid ap-
proaches that combine aspects of both network and pathway
analysis methods, and provide pathway rankings as the main
output rather than altered sub-networks without known path-
way annotations. As an important limitation, this also means
that NMPA and NTPA approaches will not identify altered
network regions that cannot be linked to any known cellular
pathway. Moreover, a potential drawback in comparison to
classical pathway analysis methods is that NMPA and NTPA
statistics often rely heavily on the correctness and comprehen-
siveness of the underlying molecular interaction data. Similar
to classical enrichment analyses, biases, noise, errors and in-
completeness of the data used for network-based enrichment
analyses can result in false-negative and false-positive find-
ings. While sufficient high-quality molecular interaction data
is typically available for the human species and commonmod-
el organisms like mouse, rat, baker’s yeast and fruit fly, cor-
responding interaction data resources for other studied organ-
isms may still be too incomplete for an effective application of
these network analyses. Finally, similar to ORA approaches,
NMPA and NTPA methods rely on differential expression
thresholds, which need to be defined by the user.

The choice of a suitable pathway analysis approach is fur-
ther complicated by the fact that many methods additionally
require a prior computation of differential expression or abun-
dance scores for the individual biomolecules in the studied
omics data. This can be achieved using classical statistical
approaches (e.g., the parametric t test or the non-parametric
Mann–Whitney U test) or moderated statistical tests with im-
proved feature variance estimation (Smyth 2004; Demissie
et al. 2008), and by subsequently adjusting the P value signif-
icance scores for multiple hypothesis testing (Benjamini and
Hochberg 1995). Discussions of these statistics for assessing
changes in individual biomolecules and benchmark compari-
sons have been provided previously (Cui and Churchill 2003;
Rapaport et al. 2013). Additionally, for pathway analyses of
GWAS and sequencing datasets, specific technical issues have
to be addressed, e.g., biases related to linkage disequilibrium,
gene length and geneset size (see the discussion and
guidelines by Wang et al. 2011 and Rahmatallah et al. 2015).

As a general recommendation for omics-based pathway
analyses, it may often be helpful to compare at least a few of

the above-mentioned alternative types of approaches, in order
to identify different forms of biologically relevant alterations
(e.g., pathways affected by few changes with large effect size/
high significance, by many changes with small effect size/low
significance, or by co-ordinated alterations in a specific sub-
network of a pathway).

One of the first prominent examples for the application of
pathway analysis approaches for PD research was a GSEA-
based case-control study of post-mortem transcriptomics data
from the midbrain (substantia nigra), using a weighted meta-
analysis to combine effect size estimates for pathway-
representing genesets across multiple independent datasets
(Zheng et al. 2010). This analysis identified significant PD-
associated alterations in 28 pathways, including 10 pathways
subsequently validated in early subclinical cases of PD and in
other PD-affected brain regions. Since the underexpression of
a geneset of PGC-1α–responsive genes was significantly as-
sociated with PD pathology in this meta-analysis, the authors
investigated PGC-1α over-expression as a new therapeutic
strategy and reported that it suppressed dopaminergic neuron
loss in two cell culture models of PD (Zheng et al. 2010).

A similar integrative pathway analysis study combined
ORA statistics for PD-related GWAS and brain transcripto-
mics data to identify consensus pathway alterations across
these two data modalities (Edwards et al. 2011). The authors
used an unweighted meta-analysis approach (Fisher’s com-
bined probability test) to integrate the significance scores for
the genetic and gene expression data, and reported shared
significant changes in multiple pathways, including the top
three processes axonal guidance, focal adhesion and calcium
signaling.

Apart from these studies focusing on human datasets, the
integrated pathway-based analysis of data from PD-related
animal models and human biospecimens has also been ex-
plored. By applying GSEA to 33 microarray datasets from
human and animal model studies on PD, Oerton and Bender
could show that the concordance across studies between sum-
marized activity changes at the pathway-level was significant-
ly higher than for individual differentially expressed genes
(see fig. 2 in Oerton and Bender 2017). While only some
animal model datasets revealed comparable changes to those
in human studies, this study highlights that pathway analyses
can help to address discrepancies between related omics stud-
ies at the level of single biomolecules due to technical and
biological variance, and identify higher-level shared signifi-
cant alteration signatures.

Finally, pathway analyses may also provide an effective
means for cross-disease comparisons and for studying the mo-
lecular influences of factors associated with disease risk (e.g.,
aging, diet and toxin exposure). For example, an NTPA meth-
od revealed shared transcriptomics pathway alterations in the
brain in PD and during adult aging (Glaab and Schneider
2015), and common inflammatory process changes in PD
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and Huntington’s disease were recently identified in a com-
parative pathway analysis of mRNA-seq data using a GSEA
approach (Labadorf et al. 2017).

In summary, a wide choice of pathway analysis tools is
available to study systems-level alterations in complex dis-
eases, and their previous applications to PD-related omics data
have already led to new insights on the processes affected by
disease-related changes.

Analyzing disease-associated molecular network
alterations

While pathway-centric analyses can greatly facilitate the bio-
logical interpretation of omics data, the available public path-
way definitions are often incomplete, may contain errors due
to false-positive experimental discoveries, and inconsistencies
can occur between subjectively defined boundaries for the
same pathway across different databases (e.g., the Bp53 sig-
naling pathway^ in KEGG differs significantly from the iden-
tically named pathway in the BioCarta database). As an alter-
native or extension to investigations based on pre-defined
pathways, molecular network analyses have the potential to
provide more detailed, comprehensive and novel findings for
systems-level omics investigations. Network analyses do not
require a time-consuming prior curation of cellular process
annotations and avoid subjective judgments on the relevance
of specific genes/proteins for a particular molecular function.
They can exploit an extensive resource of interaction data
from public databases, including STRING (Szklarczyk et al.
2015), BioGrid (Chatr-Aryamontri et al. 2015), IntAct
(Kerrien et al. 2012), MINT (Licata et al. 2012), HPRD
(Keshava Prasad et al. 2009) and HIPPIE (Schaefer et al.
2012), which cover significantly more biomolecular interac-
tions than existing pathway databases.

However, a drawback of network analysis methods is that
the results are often difficult to interpret; in particular, when
the molecular changes of interest occur in a sub-network with
few functionally annotated genes and no links to any known
pathway. For this reason, hybrid approaches have been devel-
oped to combine the benefits of pathway and network analy-
ses, e.g., algorithms to automatically extend existing pathway
definitions via a graph-theoretic analysis of a surrounding
genome-scale interaction network (Li et al. 2017). For net-
work analyses in general, care must be taken to avoid biases:
if data from small-scale protein interaction profiling studies is
included in the network assembly, then frequently studied
disease-related proteins may be biased to have larger numbers
of identified interactors than other proteins. Therefore, either
only data from genome-scale interaction profiling studies
should be used or dedicated methods to reduce bias influences
during the statistical sub-network analysis should be applied
(e.g., see Ung et al. 2016).

Since a comprehensive discussion of biological network
analysis approaches would extend beyond the scope of this
review, only two of the most common method types are intro-
duced here:

1. Network perturbation analyses (NPA): These methods
aim to identify sub-networks within a genome-scale mo-
lecular or regulatory network that undergo co-ordinated
activity changes in a biological condition of interest. Such
co-ordinated network changes are characteristic for com-
plex diseases, which tend to involve perturbations in the
activity of entire molecular network regions rather than
only in a few genes or proteins (Ideker and Sharan 2008;
del Sol et al. 2010). NPA approaches typically consist of a
search algorithm that heuristically explores the space of
possible disease-affected sub-networks, and a scoring
function that quantifies the overall significance and effect
size of molecular changes in omics data mapped onto a
sub-network. The final outcome of an NPA procedure is a
ranking of the sub-networks with the most pronounced
and robust alterations in the condition of interest as com-
pared to a control condition.

2. Causal reasoning analyses (CRA): Causal reasoning (or
causal network analysis) approaches use manually curat-
ed directional relationships, e.g., gene regulatory relation-
ships or protein signaling cascades, to infer the root mo-
lecular causes for a set of observed condition-specific
downstream changes in an omics dataset. While these
directional relationships are often referred to as Bcausal
relationships^, the underlying data are mostly correlation-
al rather than causal and have to be interpreted with cau-
tion. By constructing a signed, directed interaction graph
(often referred to as Bcausal graph^ in the literature) from
a list of known directional relationships between
interacting molecules, a CRA method can track back
through the graph from the molecules that underwent
measured activity alterations in the omics data to their
known or putative upstream regulators. These regulators
are then scored as potential drivers of the observed down-
stream changes by evaluating the overall consistency of
the activating and inhibitory regulation patterns in the
graph with the measured data (see Chindelevitch et al.
2012). CRA studies enable the discovery of key regulato-
ry molecules controlling specific biological processes of
interest, e.g., a disease-related process.

NPA and CRAmethods are complementary methodologies
with related purposes. NPA approaches help researchers to
identify disease-associated co-ordinated activity changes
across multiple biomolecules in a specific molecular network
region, which may provide robust biomarker signatures for
diagnostic applications. By contrast, CRAmethods are mainly
useful for identifying single upstream regulators with altered

Cell Tissue Res (2018) 373:91–109 95



activity, which are responsible for a large fraction of observed
downstream pathological changes and therefore of interest
as potential drug targets for preclinical intervention stud-
ies. As a limitation, CRA software can only be applied to
regulatory networks (represented by graphs with directed
edges), whereas NPA tools are applicable to both regulato-
ry and molecular interaction networks (represented by di-
rected and undirected graphs). However, as illustrated in
Fig. 1, for regulatory networks, the first steps of NPA and
CRA approaches—consisting of the statistical omics data
analysis, the network assembly and data mapping—are of-
ten identical or similar, so that NPA and CRA algorithms
can be combined effectively within a single analysis pipe-
line. An overview of publicly available software tools for
NPA and CRA is provided in Table 2, highlighting which
of the tools provide network visualization features as op-
posed to a pure ranking functionality. Due to the high com-
putational cost of most genome-scale network analyses,
none of these tools are currently available as installation-
free web applications; however, most of them can be
installed on common desktop operating systems.

For network analyses in general, the result quality largely
depends on how complete and correct the underlying net-
work is, and corresponding methods may therefore not be
applicable to model organisms with limited publicly available
regulatory and interaction data. However, certain network
analysis approaches, like the CRE method (see Table 2 and

Chindelevitch et al. 2012), have been shown to be robust
against considerable levels of noise in the input data.

In spite of the fact that many NPA and CRP algorithms
have only been developed recently, multiple studies have
already employed these approaches for PD molecular
research. For example, Hu et al. (2017) manually curated the
literature to define a set of 242 genes with previously reported
genetic associations with PD, and investigated this geneset on
a global human interactome using an NPA approach (the
Steiner minimal tree algorithm, which is also implemented
in the software BioNet; see Dittrich et al. 2008; Beisser
et al. 2010). This resulted in the inference of a sub-
network with PD-specific alterations, including new poten-
tial disease-related genes (Hu et al. 2017). In another study
focusing on predictive network modeling and using tran-
scriptomics data from the midbrain (substantia nigra) from
PD cases and controls, the machine learning-based NPA
approach, GenePEN, identified a connected sub-network
signature within a genome-scale protein–protein interac-
tion network with significant predictive power to distin-
guish between biospecimens from patients and unaffected
subjects (Vlassis and Glaab 2015). As a further interesting
application, PD-related brain transcriptomics data and an
NPA method have been used to propose new functional
links between microRNAs and PD, as well as new possible
regulatory mechanisms for disease initiation and neuropro-
tection (Chandrasekaran and Bonchev 2013). Moreover, a

Fig. 1 Overview of common
steps in molecular network
analyses of disease-related omics
data
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first exemplary causal reasoning study subdivided differ-
entially active pathways between brain transcriptomics
samples from PD patients and controls into upstream and
downstream processes, and ranked them hierarchically to
propose new hypotheses on important upstream patholog-
ical alterations (Fu and Fu 2015). This approach suggested
specifically that RNA metabolism pathology might be an
upstream causal driver of PD pathogenesis.

Recently, network analysis techniques have also been
employed as a means to compare PD to other complex dis-
eases. Hypothesizing a relationship between PD and diabetes,
Santiago and Potashkin (2013) mapped genes with known
genome-wide significance in PD- and diabetes-related
GWAS studies onto a human functional gene linkage
network and identified a cluster of 478 genes closely
associated with the seed genes for both diseases. Using a
similar approach, Calderone et al. (2016) discovered shared
and non-shared sub-networks associated with PD and
Alzheimer’s disease, based on starting lists of genes derived
from the public resources PDMap (Fujita et al. 2014) and
AlzPathway (Mizuno et al. 2012). They then used functional
and topological similarity measures to relate these sub-
networks to biological processes in the Gene Ontology data-
base, which pointed to associations with DNA repair, RNA

metabolism and glucose metabolism, that could not be detect-
ed by a classical pathway enrichment analysis.

In summary, network perturbation and causal reasoning
analyses are emerging as valuable complementary tools to
conventional pathway analyses for the study of molecular
changes in complex diseases. When significant pathological
or protective activity changes occur in molecular sub-
networks that still lack associated pathway annotations, only
network analysis approaches are able to detect these alter-
ations and predict new disease-associated processes and their
main upstream regulators for subsequent experimental
validation.

Generating predictive machine learning models
and visualizing high-dimensional data

One of the primary goals behind systems-level analyses of
omics data for complex diseases is to identify biomarker sig-
natures for differential diagnosis, patient sub-group stratifica-
tion or disease prognosis. Generic machine learning software
for diagnostic sample classification and clustering for patient
sub-group stratification can often be applied ‘out-of-the-box’,
without adaptations in the algorithms, to preprocessed omics
data. However, in recent years, machine learning approaches

Table 2 Publicly available software tools for identifying sub-network perturbations and key regulatory biomolecules in omics datasets; some of the
methods can be applied directly in the web-browser (see column 4), and some of the tools provide advanced visualization features to facilitate the
interpretation of the results (see column 5)

Method type Software name Availability Visualization
features

Reference

Network perturbation
analysis (NPA)

BioNet / HEINZ http://www.bioconductor.
org/packages/release/bioc/html/BioNet.html

Yes Dittrich et al. 2008; Beisser et al.
2010, Dennis et al. 2003

WMAXC http://combio.gist.ac.kr/WMAXC/WMAXC.html No Amgalan and Lee 2014, Beißbarth
and Speed 2004

jActiveModules http://apps.cytoscape.org/apps/jactivemodules Yes Ideker et al. 2002

PinnacleZ http://apps.cytoscape.org/apps/pinnaclez Yes Chuang et al. 2007

COSINE http://cran.r-project.org/web/packages/COSINE Yes Ma et al. 2011

GenePEN http://lcsb-portal.uni.lu/software/index.html No Vlassis and Glaab 2015

MCWalk https://bitbucket.org/akittas/biosubg Yes Kittas et al. 2016

ClustEx http://bioinfo.au.tsinghua.edu.
cn/member/jgu/clustex

Yes Gu et al. 2010

BMRF https://sourceforge.net/projects/bmrfcjava/ Yes Chen et al. 2013

Causal reasoning
analysis (CRA)

CRE R source code available upon request from the
author

Yes Chindelevitch et al. 2012

Whistle https://github.com/Selventa/whistle No Catlett et al. 2013

CausalR https://bioconductor.
org/packages/release/bioc/html/CausalR.html

Yes Bradley and Barrett 2017

QuaternaryProd https://www.bioconductor.
org/packages/release/bioc/html/QuaternaryProd.
html

No Fakhry et al. 2016

BayesCRE source code available upon request from the author Yes Zarringhalam et al. 2013

MCWalk https://bitbucket.org/akittas/biosubg Yes Kittas et al. 2016

SigNet https://cbdd.clarivate.com/cbdd Yes Jaeger et al. 2014
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that exploit prior biological domain knowledge as additional
information source have been developed, which tend to pro-
vide more accurate, robust and biologically interpretable
models than the classical generic methods (Fang et al. 2006;
Lottaz et al. 2007).

Predictive model building typically starts with a feature
selection or feature transformation step, eliminating uninfor-
mative attributes from the input omics data (e.g., by removing
biomolecules with low activity variation across the samples)
or combining the original attributes into more robust derived
features (e.g., pathway-representing features, using weighted
sums of measurements for pathway member biomolecules).
These approaches are also called Bdimension reduction
methods^, because they reduce the number of dimensions of
the input data (equal to the number of features) in order to
address multiple common statistical issues during following
analyses, previously summarized under the notion Bcurse of
dimensionality^ (Bellman 1961; Köppen 2000). Moreover,
these methods enable the generation of low-dimensional visu-
alizations of the data, e.g., 2D and 3D perspective plots, facil-
itating outlier detection and biological data interpretation.

Table 3 provides an overview of dedicated software
tools for machine learning analyses of omics data, includ-
ing multi-purpose tool sets for sample clustering (unsuper-
vised analysis) and classification (supervised analysis),
software centered around the ranking and selection of in-
formative attributes, and data visualization approaches
(since a great variety of algorithms and implementations
are publicly available, the table only highlights a represen-
tative selection with a focus on tools designed for systems
biology data analysis). To illustrate how different types of
methods can be interlinked within one analysis pipeline,
Fig. 2 shows a common generic workflow.

Amajor benefit of machine learning and visualization tech-
niques for the analysis of omics data is their broad applicabil-
ity. While different functional omics data types require differ-
ent lower-level pre-processing methods, the higher-level ma-
chine learning and visualization tools discussed here are ap-
plicable across almost all types of pre-processed molecular
data and often also support the integrative analysis of diverse
omics types. Thus, given a pre-processed functional omics
dataset, e.g., normalizedmicroarray data, RNAseq read counts
or mass-spectrometry-derived protein or metabolite abun-
dance data, a wide variety of machine learning tools can be
applied directly to identify clustering patterns (using unsuper-
vised analyses) to build predictive models for the classifica-
tion of new data samples (using supervised analyses), or to
visually explore and interpret the data (using dimension re-
duction and visualization methods).

It is often recommendable to start the analysis of a normal-
ized omics dataset with a simple visualization before using
machine learning tools for automated pattern identification.
Inspecting a 2D or 3D projection of the data can often reveal

the presence of outliers, biases and other irregularities which are
not always detected by automated quality control pipelines. The
most commonly used approach for obtaining a low-
dimensional visual representation of high-dimensional omics
data is a principal component analysis (PCA). A benefit of
PCA visualizations is that by design they tend to capture most
of the variance in the data. However, in contrast to other dimen-
sion reduction methods like multidimensional scaling (MDS;
Torgerson 1952), PCA is not designed to preserve original
pairwise distances between data points when transforming the
data to a low-dimensional space. Moreover, both PCA and
MDS are linear approaches, which only tend to preserve dis-
tances between dissimilar data points in their low-dimensional
representations, but in a linear data mapping it may often be
impossible to keep highly similar data points close together
(Van Der Maaten and Hinton 2008). Researchers may therefore
want to consider some of the more recently developed non-
linear data visualization approaches that focus on preserving
local structure, e.g., locally linear embedding (Roweis and
Saul 2000), Laplacian Eigenmaps (Belkin and Niyogi 2003)
and t-SNE (Van Der Maaten and Hinton 2008).

After visual exploration of the omics data and the potential
removal of outlier samples, the next steps for a machine learn-
ing analysis depend on the researcher’s specific goals and the
availability of condition labels or outcome measures for the
samples: if only unlabeled data with no related outcome mea-
sures are available, or if the analysis goal is to find distinct
sub-groups among the samples (e.g., to stratify patients with
distinct molecular alteration patterns), then unsupervised clus-
tering approaches should be applied. These methods will iden-
tify sub-groups of samples that are similar to each other in
terms of their omics profiles but differ significantly from other
identified sub-groups. The relevant algorithms can be grouped
into hierarchical clustering methods (e.g., hybrid hierarchical
clustering, Chipman and Tibshirani 2006; Bayesian hierarchi-
cal clustering, Heller and Ghahramani 2005; and self-
organizing maps, Ritter and Kohonen 1989), partition-based
approaches (e.g., k-Means, Hartigan and Wong 1979; k-
Mediods, Kaufman and Rousseeuw 1987; partitioning around
mediods, Kaufman and Rousseeuw 1990) and density-based
techniques (e.g., DBSCAN, Ester et al. 1996; DENCLUE,
Hinneburg and Keim 1998; Chameleon, Karypis et al.
1999). While a detailed discussion of these methods and their
biomedical applications extends beyond the scope of this re-
view, a corresponding overview and guideline for algorithm
selection has been provided previously (Andreopoulos et al.
2009).

A significant limitation of these generic clustering analyses
of high-dimensional omics data is that, even after filtering the
attributes by variance, many uninformative clustering patterns
may still occur in the data. These are not necessarily spurious
patterns, but may reflect real biological differences of the
studied biospecimens (e.g., differences in gender, age, and
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dietary habits reflected by different biomolecular profiles) that
could overshadow unrelated biomedically relevant differences
between patient sub-groups of interest (e.g., disease sub-types
with different treatment responses). Therefore, more recent
approaches integrate prior biological knowledge into the clus-
ter analysis, e.g., using gene/protein functional annotations
and information from disease-related pathways, in order to
aggregate measurements for functionally related, disease-
associated biomolecules and determine more robust and rele-
vant clustering patterns (Fang et al. 2006; Lottaz et al. 2007).
For the subsequent evaluation of clustering results, no stan-
dard approach is available, but a variety of cluster validity
indices have been proposed and should ideally be considered
in combination (Kovács et al. 2005; Rendón et al. 2011;
Arbelaitz et al. 2013). In general, ideal clusterings of patient
biospecimens are characterized by low within-cluster dis-
tances and high between-cluster distances, are biologically
interpretable and biomedically relevant, and replicable across
different cohorts.

If class labels or quantitative outcome measures are avail-
able for the studied omics samples, reflecting biological con-
ditions of interest (e.g., patient vs. control, or known disease
sub-types) or measures of disease severity (e.g., scores from
the Unified Parkinson’s Disease Rating Scale; Goetz 2003),
then predictive models for diagnostic biospecimen classifica-
tion can be built from the data by applying supervised ma-
chine learning approaches (relevant software tools are listed in
Table 3 and highlighted by the code BP^ for Bprediction^ in
the third column). These algorithms use a set of omics data,
called the Btraining set^, with known values for a chosen
outcome variable, to identify patterns that enable a prediction
of the outcome for new, unlabeled omics samples. By first
applying a machine learning approach on the training set to
generate a predictive mathematical function that relates pat-
terns in the data to the outcome measure of interest, and then
testing this predictive model on an independent set of omics
samples with known outcomes (called the Btest set^), the ac-
curacy, sensitivity and specificity of the model can be

Table 3 Overview of public software tools for predictive model building, clustering analysis and dimension reduction and visualization of omics data

Method type Software
name

Availability Supported
featuresa

Web
application

Reference

Multi-purpose machine-learning
analysis tool sets

CARMAWeb https://carmaweb.genome.tugraz.at/carma/ N, P, C, D, V Yes Rainer et al. 2006

ArrayMining http://www.arraymining.net N, P, C, D, V Yes Glaab et al. 2009

mixOmics https://cran.r-project.
org/web/packages/mixOmics

P, D, V No Rohart et al. 2017

Weka http://www.cs.waikato.ac.nz/ml/weka P, C, D, V No Hall et al. 2009

Orange https://orange.biolab.si P, C, D, V No Demšar et al. 2013

CMA https://bioconductor.
org/packages/release/bioc/html/CMA.
html

P, D, V No Slawski et al. 2008

MLSeq https://bioconductor.
org/packages/release/bioc/html/MLSeq.
html

P, D No Zararsiz et al. 2014

Tools centered around feature
ranking/feature selection

Limma https://bioconductor.
org/packages/release/bioc/html/limma.
html

N, D, V No Smyth 2005

RankProd https://bioconductor.
org/packages/release/bioc/html/RankProd.
html

D, V No Hong et al. 2006

ArrayPipe http://www.pathogenomics.ca/arraypipe N, D, V, Yes Hokamp et al. 2004

RAP https://bioinformatics.cineca.it/rap N, D, V Yes D’Antonio et al.
2015

EzArray http://ezarray.com N, D, V Yes Natale et al. 2014

Tools for low-dimensional data
visualization

GGobi http://www.ggobi.org D, V No Temple Lang and
Swayne 2001

PlotViz http://salsahpc.indiana.edu/plotviz D, V No Choi et al. 2010

RnavGraph https://cran.r-project.
org/web/packages/RnavGraph

V No Waddell and Oldford
2011

Arena3D http://arena3d.org V No Secrier et al. 2012

a Column 3 highlights the supported features of the tools using the following codes: N normalization/preprocessing, P predictive model building,
C unsupervised clustering, D dimension reduction (variable selection or feature transformation), V visualization. Tools available as web applications
are highlighted in column 4
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estimated. More detailed guidelines on how to optimize
machine-learning models using cross-validation and bootstrap
procedures and how to evaluate the model performance on
external tests set have already been provided elsewhere
(Browne 2000; Braga-Neto and Dougherty 2004).
Importantly, in particular when combining attribute selection
methods with predictive machine learning, care must be taken
to avoid selection biases (Wood et al. 2007).

In addition to classical generic statistical learning methods,
new machine learning approaches guided by prior domain
knowledge have been developed in recent years. These algo-
rithms use dedicated multi-objective optimization approaches,
which optimize the generated prediction models both by min-
imizing the training set error and by maximizing the consis-
tency of the model with prior biological knowledge, or exploit
biology-inspired data structures like ontology graphs or mo-
lecular networks for a structured data integration of multiple
omics datasets. Representative examples for these types of
approaches include the sparse overlapping Group Lasso ap-
proach for integrative multi-omics analysis (Park et al. 2015),
which identifies driver genes in a biomedical omics datasets
based on prior biological knowledge derived from predefined
overlapping groups of features (e.g., gene functions in
the Gene Ontology database), the network-constraint regular-
ization approach for machine learning analysis of omics
data by Li and Li (2008), and the multi-omics analysis

approach by Mosca and Milanesi (2013), using a multi-
objective optimization procedure to drive the identification
of network regions enriched in molecular alterations across
multiple omics data sources. A review by Li et al. (2016b)
provides a more detailed overview on corresponding methods
that exploit prior biological knowledge for integrative ma-
chine learning analysis of omics data.

In PD research, previous machine learning applications on
omics data have mainly focused on diagnostic biomarker dis-
covery in cerebrospinal fluid (CSF) and whole-blood samples.
These efforts were motivated by the observation that even
after the onset of visible motor symptoms, the currently used
clinical diagnostic criteria for PD (UK Parkinson’s Disease
Society Brain Bank criteria) only reached around 76% speci-
ficity in recent studies (increasing to 82% with retrospective
application and 90% at death in a follow-up study; Berg et al.
2013). Importantly, while omics-based biomarker signatures
for PD could in principle enable a more objective and accurate
diagnosis, it is important to highlight that the previously pro-
posed signatures have mostly not been reproduced or do not
provide sufficient sensitivity and specificity for practical diag-
nostic purposes. This may largely be explained by limitations
arising from small sample sizes, high biological and technical
variance in the data, biases in the experimental procedures and
instruments used for omics profiling (e.g., related to the ma-
chine, kit, experimenter, library or lane), no filtering of

Fig. 2 Common generic workflow for a machine learning analysis of
omics data, including steps to reduce the dimension of the data through
feature selection or feature extraction, higher-level machine learning

analysis for classifying omics data samples (a supervised analysis) or
clustering the samples (an unsupervised analysis), and evaluation of the
obtained machine learning models on external test data
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treatment/medication effects, no adjustment for common con-
founding factors, missing control samples for other neurode-
generative disorders, and the application of inadequate model
building and validation techniques that result in over-fitted
prediction models. Therefore, previous research on omics-
based biomarker models for PD still represents preliminary
work that has to be interpreted cautiously, and major technical
and methodological challenges still have to be overcome to
obtain clinically useful biomarker signatures.

A first representative metabolomics profiling study on
blood samples from 66 PD patients and 25 unaffected controls
reported a signature with 100% correct separation (Bogdanov
et al. 2008). However, no cross-validation and no independent
test set validation was performed, and, although some of the
metabolite markers could be linked to known PD-associated
processes, e.g., oxidative stress, the robustness and replicabil-
ity of the prediction model has not yet been verified.
Therefore, further study is needed, also in order to evaluate
the extent to which the overall signature reflects PD-specific
or generic disease-associated changes (e.g., blood
inflammation-related markers are altered in many disorders).

Recently, a new metabolomics signature in CSF was
proposed by Trezzi et al., using a non-targeted gas chro-
matography-mass spectrometry approach to study the CSF
metabolome of 44 early-stage, untreated idiopathic PD pa-
tients in comparison with 43 age- and gender-matched unaf-
fected controls (Trezzi et al. 2017). By applying a logistic
regression approach, a machine learning model was trained
to discriminate between patients and controls and tested on
two independent validation sets (n = 18 and n = 38). The mod-
el involved the three metabolites mannose, threonic acid, and
fructose as predictive features and was reported to provide a
sensitivity of 0.79 and a specificity of 0.8. Additional studies
including patients with other neurological disorders and larger
numbers of samples from multiple cohorts are still needed to
assess the predictive value of the signature for differential
diagnosis.

Apart from metabolomics and proteomics signatures,
gene expression changes in blood have also been consid-
ered as possible biomarkers for PD. Molochnikov et al.
investigated gene transcription in blood samples from 62
early-stage PD patients and 64 unaffected controls and
built a predictive model using stepwise multivariate logis-
tic regression (Molochnikov et al. 2012). The resulting
five-gene classification model was tested on an indepen-
dent cohort of 30 advanced stage PD patients and 29
Alzheimer’s disease patients and separated them with
100% accuracy. However, no unaffected controls and no
atypical forms of PD as disease control were included in
the study validation set. Since Alzheimer’s disease is not
associated with any motor symptoms similar to PD,
assessing the potential of the proposed model for differen-
tial diagnosis of similar movement disorders will require

additional investigations, including more disease condi-
tions and larger sample sizes.

A further transcriptomics signature for PD was proposed
by Scherzer et al., who used whole-blood microarray expres-
sion data from 105 subjects, covering 50 patients with early
motor-stage PD, 33 control subjects with other neurological
disorders and 22 unaffected controls (Scherzer et al. 2007).
Their multigene marker was built by ranking and selecting
genes in terms of their absolute Pearson correlation with bina-
ry sample class labels (representing PD vs. all controls),
forming a template for each class from the mean values of
the discriminating genes, and then defining a combined risk
score for new biospecimen measurements corresponding to
their Pearson correlation with the PD template minus its
Pearson correlation with the non-PD template. The resulting
signature was further validated in 39 independent test sam-
ples, but has so far not been replicated by independent re-
search groups.

While most PD biomarker discovery approaches focus on
data from idiopathic PD (IPD) patients, an interesting alterna-
tive approach using an integrative analysis of whole-blood
gene expression data from IPD patients, familial PD patients
with the LRRK2 G2019S mutation and different mouse
models was presented by Chikina et al. (2015). By first iden-
tifying differentially expressed genes between four groups of
mice (overexpressing wild-type LRRK2, overexpressing
G2019S LRRK2, LRRK2-knockout and wild-type mice)
and combining them with previously proposed PD marker
genes from the literature, a panel of 113 candidate marker
genes was assembled and their expression measured for 34
symptomatic PD patients (both wild-type LRRK2 and
G2019S LRRK2) and 32 asymptomatic controls using a dig-
ital gene expression platform. This led to the discovery of a
subset of 14 markers discriminating between PD patients and
asymptomatic controls with a reported accuracy of 79%.
However, similar to other PD biomarker studies, no neurolog-
ical disorder controls were included in the analysis, and fur-
ther studies are required to determine whether the gene signa-
ture provides a significant informative value for differential
diagnosis or whether it reflects a more generic inflammation
response that may also occur in other disorders.

More recently, Shamir et al. presented a whole-blood gene
expression signature for idiopathic PD, derived from microar-
ray data analysis of 486 subjects (n = 205 PD, n = 233 con-
trols, n = 48 other neurodegenerative diseases) (Shamir et al.
2017). Using batch-effect reduction and cross-validation pro-
cedures to prevent overfitting, their machine learning model
included signatures of 100 genetic probes and was reported to
reach a significant predictive performance on an independent
validation cohort [area under the curve (AUC) = 0.79, P =
7.13E-6] and a subsequent independent test cohort (AUC =
0.74, P = 4.2E-4). The model was trained to differentiate be-
tween PD and unaffected controls rather than between PD and

Cell Tissue Res (2018) 373:91–109 101



other neurologic disorders, and further analyses are needed to
evaluate the potential of extending the model towards differ-
ential diagnostic applications, reducing the number of re-
quired genetic probes and increasing the generalization
performance.

Multivariate machine learning methods have not only been
applied for the analysis of PD-specific omics data but also for
cross-disease comparisons between PD and other neurodegen-
erative disorders. In an exemplary study by Potashkin et al.,
splice variant-specific microarrays were used to find markers
discriminating between whole-blood samples from 51 PD pa-
tients, 17 patients with multiple systems atrophy (MSA), 17
patients with progressive supranuclear palsy (PSP) and 39
unaffected controls (Potashkin et al. 2012). When applying a
linear discriminant analysis to test the predictive accuracy of a
signature of 13 selected differentially expressed, PD patients
were reported to be distinguished from all controls with 96%
sensitivity and 90% specificity and from the combined MSA
and PSP patients with 94% sensitivity and 96% specificity.
Seven of the 13 candidate markers were later confirmed to
be dysregulated in PD on an independent set of whole-blood
samples from 50 PD patients and 46 unaffected controls as
part of a follow-up study by the authors (Santiago et al. 2013).
While a major benefit of this work is that the baseline study
considered two atypical forms or parkinsonism, MSA and
PSP, in addition to PD, the signature has not yet been repli-
cated by independent investigators and larger sample sizes for
the neurodegenerative disorder controls will be required in
future studies to evaluate the utility of the signature for differ-
ential diagnosis more precisely and robustly.

A further cross-disease comparative machine learning anal-
ysis presented by Abdi et al. (2006) involved a multiplex
quantitative proteomics method, iTRAQ (isobaric tagging
for relative and absolute protein quantification), applied in
conjunction with multidimensional chromatography, followed
by tandem mass spectrometry (MS/MS). This experimental
procedure was used to compare the cerebrospinal fluid
(CSF) proteome in patients with PD (n = 10), Alzheimer’s
disease (n = 10), dementia with Lewy body (n = 5) and unaf-
fected controls (n = 10). The authors determined a multifacto-
rial marker signature using logistic regression, which was re-
ported to provide a sensitivity of 78% and a specificity of 95%
for discriminating between PD and the other disorders. Given
the limited sample sizes in this study and the lack of an exter-
nal replication, the authors acknowledge that their preliminary
findings will have to be validated in a larger and independent
population of patients.

Finally, a comparative machine learning analysis across
multiple neurodegenerative disorders has also been performed
by Ishigami et al., who used MALDI-TOF profiling of CSF
peptides and proteins from 37 PD patients, 32 MSA patients
and 26 control subjects with other neurological disorders
(OND) (Ishigami et al. 2012). They applied a PCA for

dimension reduction in combination with a support vector
machine algorithm for supervised sample classification, and
reported average cross-validated classification accuracies of
90.2% for distinguishing PD versus MSA and 98.2% for PD
versus OND. The authors acknowledged that the sample size
was small, and no independent replication has so far been
conducted. Thus, additional external validation is still required
to assess the generalization performance of this model.

Unsupervisedmachine learning approaches for patient sub-
group identification in PD research have so far mainly been
applied to clinical data. A first data-driven approach to char-
acterize the heterogeneity in PD via clustering techniques was
presented by Graham and Sagar (1999), who collected clinical
information for 176 idiopathic patients and applied k-Means
clustering to the normalized continuous variables. Their anal-
ysis suggested a separation of patients into three sub-groups at
a disease duration of 5.6 years, and two sub-groups at
13.4 years. The identified sub-groups mainly differed in terms
of measures of motor control and complications, age at onset
and the degree of cognitive impairment. Similar studies by
other research groups suggested a variety of different patient
sub-groups: A two-group separation into rapid and slow pro-
gression (Gasparoli et al. 2002), a mild and a severely im-
paired group in terms of motor dysfunction and cognition
(Dujardin et al. 2004), a young and an old onset group
(Schrag et al. 2006), a three-group separation (Post et al.
2008), four alternative clusterings into four groups (Lewis
et al. 2005; Reijnders et al. 2009; Liu et al. 2011; Van
Rooden et al. 2011) and one five-group clustering (Lawton
et al. 2015). The differences in the number and characteristics
of the estimated clusters in these previous studies may mainly
be explained by differences in the underlying patient cohorts
and the considered features (e.g., only the study by Dujardin
included SPECT measurements, and the clinical variables
used across the studies differed significantly). While some of
the proposed sub-types were reported to be reproduced in
independent cohorts (Lewis et al. 2005; Reijnders et al.
2009; Van Rooden et al. 2011), in most studies no quantitative
cluster validity index analyses were provided. Overall, further
study is still warranted to derive and evaluate clinically rele-
vant classification algorithms for PD patient sub-groups. A
detailed review of stratification analysis results obtained so
far, including recommendations on how to translate the gained
knowledge into PD clinical research, has been provided by
Marras and Lang (2013).

In summary, the previous application of machine learning
methods for stratification and biomarker profiling analysis of
PD suggest that multiple distinct sub-groups are present, and
that significant disease-associated alterations occur in both
CSF and blood. Given the limited sample sizes and restric-
tions in the types of neurodegenerative disorder controls avail-
able for biomarker profiling, further assessments are needed to
determine whether the proposed signatures can be translated
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into clinically relevant tests for differential diagnosis with high
robustness, sensitivity and specificity. Similarly, current strat-
ification studies are partly hampered by restrictions in terms of
the number and types of quantitative features considered, and
in terms of the external statistical validation of clustering re-
sults. Future studies could address these limitations by com-
bining further data types for robust cluster pattern identifica-
tion, by assessing cluster correlations with independent clini-
cally relevant variables and using additional quantitative ex-
ternal validations.

Outlook on challenges and possible next steps
for systems biology-based biomarker development
and drug target discovery for PD

In recent years, the discovery of multiple PD-causing muta-
tions and risk factor variants and the growth of public data
resources for PD research, e.g., through the Parkinson’s
Progression Markers Initiative (www.ppmi-info.org), have
provided new means to pinpoint the main affected cellular
pathways and gain a more detailed understanding of
pathological changes in the disease. In order to translate the
resulting knowledge and research efforts into improved
diagnostic models and preclinical drug intervention studies,
a variety of challenges still have to be overcome.

Since the midbrain (substantia nigra) is regarded as the
main affected tissue in PD and only post-mortem omics data
are available for this brain region, one of the main challenges
for omics-based biomarker modeling is to identify reliable
surrogate markers in peripheral tissues or body fluids. One
possible strategy to address this in the future could be to use
the non-lesional access to the brain during deep brain stimu-
lation (DBS) surgery, by capturing cells spontaneously adher-
ing to the DBS stylet for omics profiling (Zaccaria et al. 2016),
and correlating these profiles to corresponding molecular
measurements in blood samples. Using pathway and network
analysis approaches discussed in this review, blood–brain cor-
relations could not only be assessed at the level of individual
biomolecules but also via pathway or sub-network activity
scores to establish more robust correlations. A further strategy
to explore could be the combined analysis of measurements
for peripheral markers with limited specificity, e.g., bio-
markers for oxidative stress in blood, with neuroimaging and
clinical data using integrative machine learning methods.
Classification models trained on individual data types could
be combined via model averaging techniques (Dietterich
2000), or standardized features from the different data sources
could be used to train a single, integrative prediction model.
This synergistic modeling may help to address limitations of
the individual data modalities and provide more robust and
sensitive diagnostic models. Moreover, integrative analyses
may reveal new interrelations across the different data types.

In order to obtain clinically relevant and reliable biomarker
signatures for differential diagnosis, a further important objec-
tive for the future is to compare omics measurements for PD to
sufficiently large sample sizes for atypical forms of PD and
related neurodegenerative disorders. While it is challenging to
recruit large numbers of atypical PD patients for a study, on-
going work on integrating information across different disease
cohorts may help to address this issue.

A related hurdle in diagnostic model building is the general
lack of statistical power in many studies. The high heterogene-
ity among PD patients, discussed earlier in this review, in-
creases the variance in omics measurements and decreases the
power to detect significant differences between patients and
controls. Moreover, for PD, the number of publicly available
omics data samples is much smaller as compared to
Alzheimer’s disease and many cancer diseases. Larger sample
sizes in combination with dimension reduction techniques and
integrative analyses of multiple omics types will help to in-
crease the power to identify new statistically significant PD-
associated alterations and build more accurate prediction
models.Moreover, computational approaches for combinatorial
selection of biospecimens from a biobank for molecular profil-
ing, designed to attain an optimal matching between patient and
control samples in terms of multiple known confounding fac-
tors (age, gender, body-mass index, co-morbidities, smoking
and dietary habits), provide a further possibility to increase
the statistical power for comparative analyses at no added cost,
but they are rarely used in practice. Bioinformatics methods can
also facilitate biomarker discovery for the early pre-motor phase
of PD, e.g., by combining analyses of molecular data from
in vitro an in vivo models of early-stage PDwith measurements
from biospecimen of untreated de novo patients to pinpoint
shared early-stage disease-associated changes. These integra-
tive analyses could complement ongoing studies on the
follow-up of at-risk cohorts, applying omics profiling analyses
to biospecimens collected prior to the conversion to PD to dis-
cover presymptomatic molecular dysregulations.

For the specific goal of modeling and estimating the fu-
ture progression of PD using omics data, time-series mea-
surements from longitudinal studies will need to be collect-
ed in larger quantities and probably also at smaller time
intervals. Current longitudinal studies for PD typically in-
volve between one to two follow-up investigations per year.
While important changes in the disease course may occur
during shorter time periods, the burden for the patient
through blood draws and clinical assessments needs to be
minimized. Since many longitudinal studies so far only col-
lect limited molecular data, a more comprehensive molecu-
lar phenotyping may currently deserve higher priority than
narrowing the time interval between follow-up investiga-
tions. For the statistical analysis of time series data from
corresponding studies, similar strategies to increase the sta-
tistical power can be applied as discussed for cross-sectional
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analyses in this review, e.g., using dimension reduction ap-
proaches, prior knowledge on interrelationships between bio-
molecules from pathways/networks and the literature, and in-
tegrative omics analyses to identify coordinated alteration
trends over time. Representative examples of relevant time
series analysis approaches for omics data have been presented
by Wachter and Beißbarth (2014) and Lee et al. (2016).

Apart from the exploration of new omics measurements for
biomarker modeling, the same data will also provide an impor-
tant resource for systems biology analyses dedicated to the
discovery, validation and characterization of PD drug targets.
Network analyses including the causal reasoning approaches
discussed in this review can help to identify pathological activ-
ity alterations in key regulatory proteins, and provide a starting
point to prioritize candidate protein drug targets for further
analyses. These investigations can be integrated with other
more generic in silico target prioritization approaches (Aerts
et al. 2006; Chen et al. 2009; Isik et al. 2015) and algorithms
for scoring protein druggability via automated analyses of their
molecular surface cavities in crystal structures (An et al. 2005;
Volkamer et al. 2012). A limitation in the subsequent validation
of pre-selected candidate targets using in vitro and in vivo dis-
ease models is that the current model systems for PD only
reflect small subsets of the pathological features of PD as op-
posed to more established models for other complex disorders
like Alzheimer’s disease (Beal 2001; Antony et al. 2011).
Strategies involving the combined use of multiple complemen-
tary disease models, as well as ongoing projects on developing
models with more robust pathological changes (e.g., using dou-
ble knockouts of PD-mutated genes), will help to address these
shortcomings. In this context, omics profiling and computation-
al systems biology approaches will help to compare different
disease models in terms of pathological and protective pathway
activity changes and to assess their similarity to corresponding
alterations in biospecimens from PD patients.

Finally, apart from their possible roles in the identification
and preclinical validation of a drug target, systems biology
approaches can also support the discovery of relevant drug-
like small molecule binders. For example, a variety of
systems-level approaches for drug repositioning have been
developed (Dudley et al. 2011; Li and Lu 2013; Napolitano
et al. 2013; Wu et al. 2013; Wang et al. 2014; Li et al. 2016a;
Xu and Wang 2016), which can be complemented by virtual
screening methods to identify new small molecule ligands for
pre-selected targets (Stahura and Bajorath 2004; McInnes
2007). Further compound filtering is required due to the spe-
cific challenge for brain disorders that candidate drug-like
molecules need to pass the blood–brain barrier (BBB).
However, for compounds with unknown BBB permeability,
dedicated in silico methods to predict this property are avail-
able as a prior filter for subsequent experimental testing
(Kortagere et al. 2008; Muehlbacher et al. 2011; Carpenter
et al. 2014). A more problematic common bottleneck is that

extensive preclinical validation experiments for drug targets
and their small-molecule binders are often not feasible in an
academic setting in terms of the associated cost and resources,
preventing promising target and compound discoveries from
moving forward towards clinical development and testing.
Projects that incentivize an earlier and more intensive collab-
oration between industry and academia on experimental target
validation and preclinical drug development, e.g., the
European Lead Factory (Mullard 2013), as well as the estab-
lishment of shared hardware and software infrastructures for
systems biology (Athey et al. 2013; Auffray et al. 2016), will
therefore be key facilitators for bridging the gap between new
biomedical discoveries and their clinical translation.

In summary, computational systems biology approaches
support experimental biomedical investigations by helping
to prioritize candidate biomarkers, drug targets and binding
compounds for subsequent validation, and providing insights
into the mechanisms of molecular network and pathway
dysregulations. For PD research specifically, integrative and
comparative omics analyses that exploit prior biological
knowledge can help to address current limitations in the avail-
able disease models and omics sample sizes, and to find sur-
rogate markers for molecular changes in the brain. These com-
putational systems-level analyses do not represent an alterna-
tive to targeted experimental studies of individual genes and
proteins, but rather both targeted and systems-level approaches
provide complementary information that will, collectively,
help to pave the way towards improved biomarker signatures
and new viable drug targets.
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