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Abstract
Consider (Xi (t)) solving a system of N stochastic differential equations interacting
through a random matrix J = (Ji j ) with independent (not necessarily identically dis-
tributed) random coefficients. We show that the trajectories of averaged observables of
(Xi (t)), initialized from some μ independent of J, are universal, i.e., only depend on
the choice of the distribution J through its first and second moments (assuming e.g.,
sub-exponential tails). We take a general combinatorial approach to proving univer-
sality for dynamical systems with random coefficients, combining a stochastic Taylor
expansion with a moment matching-type argument. Concrete settings for which our
results imply universality include aging in the spherical SK spin glass, and Langevin
dynamics and gradient flows for symmetric and asymmetric Hopfield networks.

Keywords Stochastic differential equations · Universality · Markov semi-group ·
Random matrices, Disordered systems · Langevin dynamics · Gradient flows

Mathematics Subject Classification 60J60 · 60B20 · 60J35 · 60K35 · 82C44

1 Introduction

Markov processes with random coefficients arise in numerous contexts: e.g., dynamics
of spin glasses, optimization on random landscapes, and learningwith neural networks.
In many cases, when the underlying randomness is Gaussian, they have been found to
give rise to a rich class of behaviors, including metastability, trapping, and aging. In

B Reza Gheissari
gheissari@berkeley.edu

Amir Dembo
adembo@stanford.edu

1 Department of Statistics and Department of Mathematics, Stanford University, Stanford, CA,
USA

2 Departments of Statistics and EECS, University of California, Berkeley, Berkeley, CA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00440-021-01027-7&domain=pdf


1058 A. Dembo, R. Gheissari

this paper, we analyze a class of stochastic differential systems (SDS’s) in their high
dimensional limit, where the couplings are linear and encoded by a random matrix.
We show that trajectories of polynomial statistics of the SDS are universal: they have
the same high-dimensional behavior if one replaces the Gaussian interaction matrix
by a non-Gaussian one with the same mean and variance profiles.

Universality, can broadly be described as the phenomenon that for high dimensional
ensembles (Xi )i≤N governed by a large number of independent random variables
(Zi )i≤N ,macrocopic statistics of the ensemble only dependon the laws of (Zi ) through
their low moments. Of course, the most classical example of universality is the central
limit theorem (CLT), where (Xi ) = (Zi ), and the statistic is the normalized sum.
Slightly more involved examples are invariance principles, where the limiting Brow-
nian motion only depends on the distribution of the random walk increments through
its first and second moments.

Lindeberg’s classical proof of the CLT iteratively replaces Zi with Z̃i (Gaussian
with the same mean and variance) and shows that the cumulative effect of these
replacements is microscopic. This approach has proven to be very robust, and has
been generalized e.g., to polynomials f (Z1, . . . , ZN ) in [29,34] and more generally,
smooth functions with bounded derivatives in [8,9]. A more combinatorial approach
is a moment matching argument to compare moments of statistics f (X1, . . . , XN )

to moments of f (X̃1, . . . , X̃ N ) and showing that the difference is dominated by the
differences in the first few moments of Zi and Z̃i .

With these approaches, universality has been proven in a wide range of ensembles
where the relationship between (Xi ) and (Zi ) is more complicated. A fundamental
example is when (Xi ) are the eigenvalues of a randommatrix with entries (Zi ). There,
the empirical distribution of (Xi ) is well-known to have the same limit (e.g., the semi-
circle law for Wigner matrices [40]). In the last decade, remarkably, universality has
been found to extend to local statistics of the ensemble (Xi ) e.g., typical size of gaps
between eigenvalues, and k-point correlations. Universality in random matrix theory
has been a tremendous success and we cannot hope to do justice to the literature
therein; we instead refer to the seminal works [19,37] and the surveys [20,38].

Another class of ensembles for which universality has been shown is disordered
interacting particle systems from statistical physics, and in particular the family of
mean-field spin glass models. A canonical example of these are spin glasses where
N particles in states (Xi ), interact through a random symmetric coupling matrix (or
in the case of higher order interactions, tensor) composed of independent entries Zi .
More precisely, with these interactions, they are endowedwith an energy landscape, or
Hamiltonian, that is topologically complex, and (Xi ) are drawn from the corresponding
Gibbs distribution. The statistics of (Xi ) in such families of spin glasses have been
found to exhibit an extremely rich and varied phase diagram featuring phenomena like
breaking of ergodicity and replica symmetry [33]. Most of their analysis, including
the calculation of the free energy, and the proof of the celebrated Parisi formula for the
overlap distribution,were first carried out in theGaussian setting [22,32,36]. Talagrand
later showed that these also held in the case of Bernoulli (Zi ) in [35]; this universality
was extended to general (Zi ) as an application of [9].

The dynamics (Markov processes exploring the Hamiltonian) for such spin glass
models are a prototype and motivating force for this paper. The general setting we
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consider here is that of a system of N linearly coupled SDE’s, where the couplings
are encoded in a random matrix J, and driven by N independent Brownian motions.
That is, Xt = (X1(t), . . . , XN (t)) is the solution to the SDS

{
dXt = JTXt dt + hdt + �(Xt )dBt

X0 ∼ μ ∈ M1(R
N )

, (1.1)

where J is a random matrix with independent entries (up to, possibly, a symmetry
constraint) and variance profile m = (mi j )i, j scaled such that E[‖J‖2] = O(1), h
is a bounded drift vector, and � is an affine transform of Xt . Note that for �(Xt )

non-constant, we do not expect to have an explicit closed-form solution to (1.1).
In the N → ∞ limit, the diffusions of (1.1) encompass many interesting and

well-studied models of Markov processes with random coefficients, and give rise
to rich and varied behavior. This includes metastability, aging, and non-Markovian
limiting evolution equations, in e.g., randomly coupled (geometric)Brownianmotions,
and Langevin dynamics and gradient flows for the spherical Sherrington–Kirkpatrick
(SK) spin glass and symmetric and asymmetric Hopfield nets [6,13,25–27]: concrete
applications are described in Sect. 1.4. In many such examples, the analysis is more
tractable when J is Gaussian and one can use tools like Gaussian integration by parts,
Girsanov, and the rotational invariance of the Gaussian ensemble.

In this paper, we develop a simple combinatorial framework for proving universality
for the solution trajectories of SDS’s of the form (1.1). Before describing our approach,
we explain a few difficulties one encounters when trying to prove universality for
solutions of randomly coupled dynamical systems, using some of the approaches
described above for other universality results. We begin by considering a Lindeberg
approach where we examine the effect that re-sampling one Ji j has on an averaged
statistic F(t) = F(X1(t), . . . , XN (t)). The obstacle in employing such an approach
is that changing Ji j to J̃i j on X j (t), say, beyond affecting the drift

∑
1≤i≤N

Ji j Xi (t) + h j ,

of the j-th coordinate of the SDS, also induces a highly non-linear effect both on
X j (t) and on Xi (t) for all i �= j . The problem instead lends itself to comparing the
effect of J → J̃ in a more averaged way.

An alternative approach would be to use the linear structure of the problem in a
strong way, relying on sharp universality results on the spectra of random matrices to
study the problem. This approach, while feasible if �(Xt ) is constant, requires one
to diagonalize the problem without loss of generality—i.e., it requires an assumption
of joint rotational invariance for the laws of (X0, J,B). In [2], such an approach is
followed for analyzing the dynamics of the spherical SKmodel, and their results hold
assuming the law of J is invariant under the orthogonal group, and its spectrum satisfies
certain large deviation estimates satisfied by theGOE. However, this restriction would
not include the cases of e.g., the uniform measures on [−1, 1]N and {±1}N absent the
rotational symmetry, and could not include the case of non-constant �(Xt ).
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Very recently, [17] proved a universality result for the dynamics of the asymmetric
Langevin dynamics for the soft-spin SKmodel. There they used large deviations theory
to obtain exponential control on the empirical measure on sample paths—as obtained
in the Gaussian setting in [6,7]—together with sharp control via Girsanov’s theorem
on the Radon–Nikodym derivative between the Gaussian paths and those driven by
non-Gaussian J on short time scales, to show universality for the empirical measure
LN = 1

N

∑
i δXi (t). While such an approach allows for a deterministic non-linearity

in the drift through a (double-well) confining potential, it cannot handle degenerate
diffusions, e.g. the gradient flow. Further, the need for control on the trajectories at
the exponential scale forces [17] to consider only asymmetric i.i.d. J (whereby the
Radon–Nikodym derivative is a product of functions of independent rows of JT ).

We introduce a simple combinatorial approach to proving universality for SDS’s
of the form of (1.1), similar in flavor to the moment method. Namely, we avoid the
inherent difficulty of the problem, that the transformation J → J̃ affects X j (t) through
both (Ji j )i → ( J̃i j )i and (Xi (t))i → (X̃i (t))i . We do so by Taylor expanding the
semigroup Pt f = EX0 [ f (Xt )] in powers of the infinitesimal generator: each term
appearing in this expansion is a polynomial in (xi ), (Ji j ) evaluated at X0 where,
crucially, the initial data is independent of Ji j . One then finds that on order one
timescales, the predominant contribution toE[Pt f ] is from polynomials whose degree
in (Ji j )i, j is at most two. We refer to Sect. 1.3 for more details.

This approach works quite generally, and is robust to symmetric and asymmet-
ric choices of J with non-homogenous means and variances, and general choices of
diffusion coefficients in (1.1), including �(Xt ) non-constant making the diffusion
non-linear, and � ≡ 0 corresponding to a deterministic dynamical system. Lastly, the
analysis works for arbitrary initialization independent of J. The assumption of linear
drift is, of course, important, and one would like to be able to drop it. We emphasize,
though, that this is primarily used in order to justify the absolute convergence of the
Taylor expansion of the semigroup, which one could hope to justify by other means
for higher order diffusions given that a strong solution exists; the remaining combina-
torial framework for moments of the generator may then generalize. We discuss this
in Remark 1.5.

We end this section by mentioning two recent results [1,10] showing universality
for a Lipschitz family of approximatemessage passing (AMP) algorithms—a discrete-
time state evolution that has found many applications to inference and optimization
in high dimensions. Some of the ideas there appear similar in spirit to our approach,
using a combinatorial approach to control moments of the final state of the AMP.
All the same, the general setting of (1.1) introduces many key differences e.g., the
diffusions of (1.1) are in general non-linear, not globally Lipschitz, and have a built-in
stochasticity.

1.1 Setup: diffusions with random linear interactions

Consider an N -dimensional stochastic differential system with a mixture of random
and deterministic linear interactions, along with possibly, some constant drifts. More
precisely, consider the SDS Xt := (Xi (t))Ni=1 driven by the following parameters.
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Suppose that for some matrixm = (mi j )i, j we have random interactions given by
the random matrix

A = (Ai j )1≤i, j≤N , where E[Ai j ] = 0, E[A2
i j ] = mi j .

We assume that the entries Ai j are either fully independent, or are independent up
to a symmetry constraint Ai j = A ji . Let PA be the law of A. In order to scale the
interactions to have an order one cumulative effect, it will be convenient to work with
the rescaled interactions matrix J given by

J := N−1/2A .

We then denote the distribution induced by PA on J by PJ.
We further consider additional deterministic interactions satisfying, for some con-

stant C� < ∞,

� = (�i j )1≤i, j≤N , where max
i

‖(�i j ) j‖1 ≤ C� and

sup
i, j

|�i j | ≤ C�

N�
for N� := max

j
‖(�i j )i‖0

(the ‖·‖0-norm of a vector is its number of non-zero entries).We also consider external
drift parameters

h = (hi )1≤i≤N , where sup
i≤N

|hi | ≤ Ch for a constant Ch < ∞ ,

and diffusion coefficients �(Xt ) governed by the matrix

σ = (σi j )0≤i≤N ,1≤ j≤N where sup
1≤ j≤N

|σ0 j | ≤ Cσ and

sup
1≤i, j≤N

|σi j | ≤ Cσ

Nσ
for Nσ := max

j
‖(σi j )i‖0 .

The SDS (Xt )t≥0 = (X1(t), X2(t), . . . , XN (t))t≥0 initialized from some random
X0 distributed according to a product measure μ is driven by a standard Brownian
motion Bt = (B1(t), . . . , BN (t)) as follows

dX j (t) =
N∑
i=1

Ji j Xi (t)dt +
N∑
i=1

�i j Xi (t)dt + h jdt + √
2
( N∑

i=0

σi j Xi (t)
)
dB j (t) ,

Xi (0) ∼ μi , (1.2)
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where for ease of notation, we hereon set X0(t) ≡ 1 so that (σ0 j ) j≥1 capture the
constant diffusion coefficients. We denote the martingale part of Xt by

Mt = (Mj (t)) j≤N , where dMj (t) = √
2
( N∑

i=0

σi j Xi (t)
)
dB j (t) . (1.3)

The process Xt is well-defined for a.e. J and all t ≥ 0 (as we have finite, possibly
N -dependent operator norms ‖J‖2, ‖�‖2 and ‖(σi j )i≥1‖2, see e.g., [31, Theorem
5.2.1]).
Notational comment There are three distinct sources of randomness above dictating
the law of the solution Xt to (1.2): the law of the interaction matrix PJ, the law of
the Brownian motions, denoted PB, and the law of the initial data μ—each of these
are product measures and we do not distinguish notationally between the law of the
individual entries of J,B or X0 and the ensembles.

In proving universality, we consider the difference between PJ,PJ̃ induced by

two different distributions PA and PÃ over mean-zero random matrices A, Ã with
independent entries (possibly up to symmetry), having matching variance profiles
m = m̃. For ease of notation, we will henceforth use

P = μ ⊗ PJ ⊗ PB , and P̃ = μ ⊗ PJ̃ ⊗ PB ,

and denote the corresponding expectations E and Ẽ respectively.

1.2 Main results

We begin by describing the observables to which our universality results apply. The
building blocks of these observables are chosen among the family of vector valued
functions,

F =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1t = (1, . . . , 1)

Xt = (X1(t), . . . , XN (t))

Gt = (G1(Xt ), . . . ,GN (Xt ))

Mt = (M1(t), . . . , MN (t))

, where G j (x) =
N∑
i=1

Ji j xi . (1.4)

We establish universality in the mean for weighted empirical averages of monomials
in functions from F evaluated at a finite collection of times. Specifically, fixing an
m-tensor a = (ai1,...,im ) with entries bounded by Ca and a p-tuple of times t =
(t1, . . . , tp), for every � ≤ m, fix p observables Y(�,1), . . . ,Y(�,p) ∈ F which are to
be evaluated at these p times. That is,

F(t) = 1

Nm

∑
i1,...,im≤N

ai1,...,im F
(1)
i1

(t) · · · F (m)
im

(t) , where

F (�)
i (t) = Y(�,1)

i (t1) · · ·Y(�,p)
i (tp) . (1.5)
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We also need to add a sub-exponential tail constraint onμ and PA beyond the minimal
assumptions of zero-mean and matching variances of PA and PÃ; this is henceforth
referred to as Hypothesis 1.

Hypothesis 1 Assume that the lawμ is a product ofμi of Xi (0) having finite moments
of all order, which are bounded uniformly over i and N. That is, there exist Cμ(r) ≥ 1
such that for any r finite,

sup
N

sup
i≤N

E[|Xi (0)|r ] ≤ Cμ(r) . (1.6)

Further assume PA has uniformly bounded exponential tails, i.e., the following equiv-
alent properties hold:

sup
N

sup
i, j≤N

E[eε|Ai j |] < ∞ , for some ε > 0 , (1.7)

sup
N

sup
i, j≤N

E[|Ai j |�] ≤ (� − 1)!C�/2
A , ∀� ≥ 1 and some CA < ∞ . (1.8)

For ease of notation for dependencies on constants, we denote by C� :=
max{C1/2

A ,C1/2
Ã

,C�,Ch,C2
σ } (where CÃ is the constant CA with respect to distri-

bution PÃ), and state our first result, on universality at the level of the mean (hence
also of moments), for observables (1.5).

Theorem 1 Let μ,PA,PÃ satisfy Hypothesis 1 and suppose that A, Ã, symmetric
or independent, are mean-zero of matching variance profile m = (mi j )i, j . For any
T ,m, p < ∞ and a ∈ R

Nm
with ‖a‖∞ ≤ Ca, there exists C(T ,m, p,Ca,C�,Cμ) <

∞, such that for every N and F as in (1.5) with (Y(�,1), . . . ,Y(�,p)) ∈ F,

sup
t∈[0,T ]p

∣∣E[F(t)] − Ẽ[F(t)]∣∣ ≤ CN−1/2 .

In particular,
∣∣E[F(t)] − Ẽ[F(t)]∣∣ → 0 as N → ∞, uniformly in t ∈ [0, T ]p.

Theorem 1 follows from a more general result bounding the difference in expecta-
tions for each individual monomial F (�)

i from (1.5) with (Y(�,1), . . . ,Y(�,p)) ∈ F. As
a special case, see Proposition 2.1, we find that the moments of each spin Xi (t) are
universal. Specifically, for every fixed k,

sup
t∈[0,T ]

max
1≤i≤N

∣∣E[Xi (t)
k] − Ẽ[Xi (t)

k]∣∣ = O(N−1/2) . (1.9)

For a more restricted class of observables, with additional restrictions on the dis-
tributions μ and PA and PÃ, we extend the above to almost sure and Lq convergence
for the observable trajectories. Precisely, we restrict the observables of (1.5) to m = 1
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and p = 2, leaving, the following quadratic observables

F(t) = FY,Y ′,a(Xt ,Xt ′) := 1

N

N∑
i=1

aiYi (t)Y ′
i (t

′) . (1.10)

In order to extend Theorem 1 to a convergence for the trajectories of these observables,
we further need to assume that � is constant, so that Mt is just a scaled Brownian
motion, and assume the following concentration property on μ,PA,PÃ, which we
refer to as Hypothesis 2.

Hypothesis 2 A sequence of probability measures (P(n))n≥1 over Zn in metric spaces
(Xn, d) satisfies exponential concentration for Lipschitz functions if there exists some
C > 0 such that for any sequence of 1-Lipschitz functions fn : (Xn, d) → (R, | · |)
and all λ > 0,

P
(n)
(| fn(Zn) − E[ fn(Zn)]| > λ

) ≤ C exp(−λ/C) . (1.11)

Assume that μ,PA respectively satisfy exponential concentration for Lipschitz func-
tions onRN andRN2

(orRN (N+1)/2 ifA is symmetric), equipped with their Euclidian
norms, for some Cμ,CA > 0.

Remark 1.1 Recall, from the theory of measure concentration, that Hypothesis 2 holds
for any distribution on R

n which satisfy a Poincaré inequality with constant c > 0
(independent of n), namely for all nice f one has that Var[ f (Zn)] ≤ cE[|∇ f (Zn)|2]
(see [21]). By the tensorization of the Poincaré inequality, if Zn = (Z1, . . . , Zn), and
each of the laws of Zi satisfy this inequality, then the product also satisfies it with the
worst constant c. Having here product measures μ,PA, the marginal laws can come
from any distribution satisfying a Poincaré inequality in n = 1. These include (see
e.g., [39])

– Exponential, Gaussian, and log-concave measures of the form exp(−V (x)) for
V (x) strictly convex,

– Linear functionals of r.v.’s having a Poincaré inequality: e.g., the uniformmeasure
on [−1, 1].

The next theorem shows that underHypothesis 2, any F of the form (1.10) concentrates
around its mean.

Theorem 2 Suppose μ, PA satisfy Hypotheses 1–2 and the diffusion coefficients have
σi j = 0 if i �= 0. Then, for some C(T ,Ca,C�,Cμ) > 0, any ‖a‖∞ ≤ Ca, every F as
in (1.10) with Y,Y ′ ∈ F, all λ > 0 and N ≥ N0(T ,Ca,C�,Cμ),

P

(
sup

t∈[0,T ]2
|F(t) − E[F(t)]| ≥ λ

)
≤ pN (λ) :=

{
NCe−λ

√
N/C , λ ≤ C

e−(log λ)
√
N/C , λ > C

. (1.12)
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(One might observe that the exp(−	(
√
N )) concentration in (1.12) differs from

the more traditional exp(−	(N )) concentration in e.g. [2,3]; such differences, which
recur throughout the paper, are because our Hypothesis 2 allows for merely sub-
exponential, as opposed to Gaussian, tails.) Combining Theorems 1 and 2 we get the
following strong universality for such quadratic observables.

Corollary 3 Suppose μ,PA,PÃ satisfy Hypotheses 1–2, where A, Ã, symmetric or
independent, are mean-zero and have matching variance profile m = (mi j )i, j . Let
F(·) and F̃(·) be as in (1.10), for a ∈ R

N such that ‖a‖∞ ≤ Ca, with respect to the
corresponding solutions Xt , X̃t for (1.2) with constant �, i.e., σi j = 0 if i �= 0. Then,
for every T < ∞ we have that as N → ∞,

ZN := sup
t∈[0,T ]2

∣∣F(t) − F̃(t)
∣∣ → 0 almost surely, and in Lq for q ≥ 1 .

Proof The observables of (1.10) correspond to the m = 1 and p = 2 case of (1.5),
so Theorem 1 applies here with some constant C1 = C(T ,m, p,Ca,C�,Cμ). For
N ≥ (λ/C1)

2 we then get upon combining the triangle inequality with Theorems 1–2,
that

P(ZN > 3λ) ≤ 2pN (λ) .

Since
∑

N pN (λ) < ∞ for any fixed λ > 0, by Borel-Cantelli ZN
a.s.→ 0 as N → ∞.

Similarly, upon using the triangle inequality for ‖ · ‖q we get from Theorems 1 and 2
that

(
E[|ZN |q ])1/q ≤ C1N

−1/2 + 2
(
Cq +

∫ ∞

C
qλq−1 pN (λ)dλ

)1/q
.

Further, N �→ pN (·) decrease pointwise on [C,∞), while for anyq ≥ 1, the preceding
integral is finite for all N large enough. With {Zq

N }N uniformly integrable, it follows
that ZN → 0 also in Lq .

1.3 Proof strategy

As mentioned in the introduction, traditional approaches to proving universality run
into substantial difficulty when we apply them to diffusions with random coefficients.
The dependence on specific entries of the random matrix are quite bad, as the depen-
dence applies in the drift both through the Ji j , and through its effect on Xt , whose
history evidently also depends on Ji j : this effect can exponentially amplify small
differences; in fact, the exponential amplification is inherent to the problem at hand.

At a high level, our strategy for proving Theorem 1, and the main novelty of the
paper, is to leverage the independence of μ from PJ,PJ̃ by pulling back f (Xt ) and

f (X̃t ) to properties of (time) derivatives of f (Xt ) evaluated at t = 0. At the level of
expectations, these derivatives can be seen as iterates of the infinitesimal generator
applied to the function F , which can then be controlled by combinatorial moment
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methods. The dominant contribution to the drift of F comes from drift terms that are
polynomials of degree at most two in (Ji j )i j . Since the first two moments of PA and
PÃ match, these terms do not contribute to the difference in expectations above. We
emphasize that the approach does not need rely on an explicit solution to the SDE

of (1.2), nor does it use exponential control, or large deviations theory as in [17], or
refined estimates on the spectrum of A as in the setting of [2] where, crucially, the
process has a rotational symmetry.

Recall that the SDE defined in Eq. (1.2) has infinitesimal generator L that we split
as follows (see e.g., [31, Theorem 7.3.3]):

L :=
∑

1≤i, j≤N

Ji j xi∂ j

︸ ︷︷ ︸
LJ

+
∑

1≤i, j≤N

�i j xi∂ j

︸ ︷︷ ︸
L�

+
∑

1≤ j≤N

h j∂ j

︸ ︷︷ ︸
Lh

+
∑

1≤ j≤N

( ∑
0≤i≤N

σi j xi
)2

∂ j∂ j

︸ ︷︷ ︸
L�

.

(1.13)

By Ito’s formula, we have for every f , say, in C∞(RN ),

∣∣E[ f (Xt )] − Ẽ[ f (X̃t )]
∣∣ =∣∣E[Pt f (X0)] − Ẽ[Pt f (X0)]

∣∣ ,
where Pt = Pt (J) denotes the semi-group operator

Pt f (x) := EB[ f (Xt ) | X0 = x] with formal expansion Pt = etL (1.14)

in terms of the generator L . In order to reduce the problem to a combinatorial question,
we wish to Taylor expand the semi-group operator Pt f = etL f . As long as f is
smooth and the Taylor expansion converges absolutely—shown in Sect. 2.2—this
formal expansion is valid and we can switch expectations over μ,PJ,PJ̃ with the
sum, and compute expectations of powers of the generator L acting on f . Namely,
the difference in expectations is bounded by controlling (1) the size in N , and (2) the
growth in k of

|E[(Lk f )(X0)] − Ẽ[(Lk f )(X0)]| . (1.15)

Expanding these terms as words in LJ, L�, Lh, L�, we observe that a non-zero dif-
ference between the two expectations in (1.15), can only come from the summands
(monomials in J,X,�,h, σ ) satisfying

– Every Ji j that is present, must appear at least twice.
– At least one Ji j must appear at least three times.

This is because the means of PA,PÃ are zero, and the variances of PA and PÃ match.
A careful analysis of this combinatorial problem for the monomials eventually yields
that the contributions from these monomials are, together, O(N−1/2) in N , and o(k!)
in k: this computation is carried out in Sect. 2.3.

Remark 1.2 One may notice that in the case where �(Xt ) is constant so that Mt is
just a Brownian motion, we are left with a linear SDS and one could use this linearity
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in a more central way, to explicitly solve expectations of monomials in (Xi (t))i as
Gaussian integrals and time integrals over words in esJ and (Xi (t))i . If the system
Xt is invariant under rotations, then we can work in the coordinates of J so that it
is diagonal and apply universality results for the spectrum of J. Absent rotational
symmetry, however, the natural step would be to Taylor expand esJ, at which point the
expansion and the resulting combinatoricswill be similar, and perhaps less transparent,
than our generator based approach.Of course, for non-constant�(Xt ) as in Theorem1,
the SDS is non-linear, and such an approach would not generalize.

In Sect. 3, we extend this bound on the difference in expectations of statistics f
to multi-time observables, then to statistics that contain the driving martingale terms
and finally establish the universality at the level of expectation for observables of the
form of (1.5), as stated in Theorem 1. In Sect. 4, we adapt the approach of [3] to
establish Theorem 2, namely, to show that the restricted class of observables of (1.10)
concentrate around their expectations, by localizing to a set of large probability where
F is O(N−1/2)-Lipschitz in the triplet (X0, J, (Mt )t∈[0,T ]) and using Hypothesis 2.

1.4 Applications

In this section, we discuss systems for which Theorem 1–Corollary 3 imply concrete
universality results. All the examples that follow will be in the context of � that is
constant, i.e., σi j = 0 if i �= 0, where both Theorems 1–2 apply. Among the examples
with non-constant �, one which may be of interest is a system of geometric Brownian
motions interacting linearly through J.

Wenext describe twowell-studied families ofMarkovprocesses/dynamical systems
to which our results apply: Langevin dynamics and gradient flows on various energy
landscapes (Hamiltonians) or loss functions.

Langevin dynamics

In the case where J and � are symmetric matrices, and σ0 j are identically one, (1.2)
corresponds exactly to the Langevin dynamics for the Hamiltonian

H(x) = − β
∑

1≤i, j≤N

(Ji j + �i j )xi x j − β
∑

1≤i≤N

hi xi . (1.16)

The linearity of the diffusion here corresponds to having a quadratic Hamiltonian.
The Langevin dynamics is a reversible Markov process designed such that, when
non-degenerate, its invariant measure on R

N is given by dπ(x) ∝ e−H(x)dx. For
Hamiltonians coming from spin glass theory, the Langevin dynamics has been ana-
lyzed at length in the case of Gaussian disorder, and found to have a varied and rich
behavior; in §1.4.1, we explore this further in the context of a simple spin glass model,
called the spherical SK model.
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Gradient flows

The case where σ0 j are identically zero—i.e., besides the randomness of J and, possi-
bly, the initial data, the dynamics is deterministic— also fits into the framework of the
paper. Here, given J and X0, the law of the dynamics is taken to be the delta function
on the trajectory of the solution to the resulting system of ODE’s. This corresponds
to the gradient flow on H(x): in optimization and learning settings, e.g., the examples
of Sects. 1.4.2–1.4.3, gradient descent and its many variants, are favored methods.

We now turn to a few well-studied concrete problems to which our results are
applicable.

1.4.1 The (soft) spherical SKmodel

The dynamics of spin glasses are a canonical setting in which Markov processes with
random coefficients are studied in their thermodynamic (N → ∞) limit. The short-
time (N → ∞, then T → ∞) behavior of Langevin dynamics, especially, in the
context of spin glasses have been extensively studied in both the physics and math
literature [2–7,11,12,15,18]. Perhaps the most well-known mean field spin glass is the
Sherrington–Kirkpatrick (SK) spin glass, where N spins taking values in {+1,−1}
interact pairwise with one another, and their interaction strengths are moderated by
“coupling” parameters Ji j = J ji which are drawn i.i.d., say, Gaussian. We discuss
a simplification of this known as the spherical SK model, which has been found to
nevertheless exhibit some of the same phenomena.

Take an i.i.d. symmetric matrix J = (Ji j )i j with law PJ. The spherical SK model
has Hamiltonian

H(x) =
∑

1≤i, j≤N

Ji j xi x j for x ∈ S
N−1(

√
N ) . (1.17)

To avoid differential geometry on the sphere, it is sometimes preferable to extend
the Hamiltonian to all x ∈ R

N (note that the Hamiltonian is homogeneous so that
dividing x by the Euclidean norm ‖x‖/√N gives the same process on S

N−1(
√
N )).

Instead of adding a non-linear confining force as is done in, e.g., [2], we either add a
linear confining force FK (x) = Kx , or have no confinement (K = 0) (the linearity
of the system ensures no finite time blowup). Consider now the Langevin dynamics at
inverse temperature β > 0 for the Hamiltonian of (1.17), corresponding toXt = X(β)

t
solving the SDS

{
dXt = −∇H(Xt )dt − F ′

K (‖Xt‖2/N )Xt dt + β−1/2dBt

X0 ∼ μ
. (1.18)

We also consider the gradient flow where we take β = ∞, so that the Brownian
motion term drops out: Xt is then the (deterministic) dynamical system following the
(random) gradient vector field of H(x) + FK (‖x‖2/N ). The following universality
for the above system is an immediate corollary of Theorem 3.
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Corollary 1.3 Fix β ∈ (0,∞] and consider the SDS’s Xt and X̃t given by (1.18) for
A and Ã having mean zero, matching variance profiles mi j = 1{i �= j}. Suppose μ

is independent of PA,PÃ and these satisfy Hypotheses 1–2. Then for F as in (1.10)
with Y,Y ′ ∈ F and ‖a‖∞ ≤ Ca, for every T < ∞,

sup
s,t∈[0,T ]

∣∣F(Xs,Xt ) − F(X̃s, X̃t )
∣∣ → 0 almost surely, and in Lq for q ≥ 1 .

As shown in [14] and rigorously proved in [2], when J is Gaussian, the spherical SK
model, or the soft sphericalSKModelwith confining potential F satisfying F(x)/x →
∞ as x → ∞, exhibits a sharp aging transition. Informally, aging is defined as
the notion that the older a system gets, the more it remembers its past; formally, it
corresponds to a transition in the behavior of the auto-correlation,

CN (s, t) := 1

N

∑
i≤N

Xi (s)Xi (t) ,

between a (FDT) regime where CN (s, t) ∼ �(t − s) and an aging regime where
CN (s, t) ∼ �( ts ) for large s, t . In [2], it was established that for J having rotationally
invariant law, e.g., aGOEmatrix,CN (s, t) solves a non-linear equation [2, Eq. (2.16)],
which exhibits exactly this type of transition at some βag. Our results allow us to read
off universality for this limiting behavior, as formalized in the following corollary.

Corollary 1.4 Consider the Langevin dynamics for the soft spherical SK model, as
defined in (1.18)wherePA is aWigner matrix satisfyingHypothesis 2, the confinement
is FK (x) = Kx for some K > E[‖J‖2→2], and the initialization μ is e.g., standard
Gaussian, independent of PA. Then, for every β ∈ (0,∞] and every T < ∞, the limit
(limN→∞ CN (s, t))s,t∈[0,T ] exists, and satisfies [2, Eq. (2.16)].

In the specific case of β = ∞, the conclusions of [2, §3.2.2] apply, and the solution
exhibits aging: i.e., there is a γ > 0 (specified therein) such that for every λ > 1,

lim
s→∞ lim

N→∞
CN (s, λs)√

CN (s, s)CN (λs, λs)
≈ (λ − 1)−γ .

Proof For the first statement, while [2, Theorem 2.6] is stated for confinement F
growing super-linearly, following the proof one sees that it is only used to localize the
process, for which it suffices for K to exceed ‖J‖2→2 (which for Wigner matrices is
a.s. less than 2 + ε for any ε > 0). The first part of the corollary therefore follows
from Corollary 1.3 together with the result of [2, Theorem 2.6] showing that for A
standard normal, CN (s, t) satisfies [2, (2.16)].

For concreteness, the analysis of the limiting equation [2, (2.16)] and the derivation
of the aging transition is carried out in [2] only for a specific choice of quadratic F .
One could in principle perform the same analyses with other choices of F including
F = FK that is linear, corresponding to the case we consider, and understand the
limiting behavior ofCN (s, t) as N → ∞ then s, t → ∞ as β varies.We do not pursue
this, and instead notice that in the specific case of β = ∞, the homogeneity allows us
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to disregard the choice of the confining potential and obtain universality for the zero-
temperature aging behavior. To see this, since H(x) is a homogeneous polynomial, if
β = ∞, we see that dXt is a constant multiple (for a constant depending only on ‖Xt‖)
of d(Xt/‖Xt‖). Therefore, at β = ∞, the projection of the dynamics (1.18) onto the
sphere SN−1(

√
N ) matches the projection of the Langevin SDS of [2], regardless of

the choice of confining potential used therein. We apply Corollary 1.3 first to deduce
that lims→∞ limN→∞ CN (s, s) =: C∞ is the same for Gaussian and non-Gaussian
PA. Then applying it to CN (s, λs), we find that the N → ∞ limit of the normalized
auto-correlation is the same for Gaussian and non-Gaussian PA, and it is further
independent of the choice of confining potential: as such for any PA, it has the same
N → ∞ limit as in [2].

Remark 1.5 It would be of interest to consider similar Langevin dynamics for the
spherical or soft spherical p-spin glass models for p > 2. Permitting higher
order interactions gives rise to a wealth of more complicated models and differ-
ent behavior. At the level of the off-equilibrium Langevin dynamics, these lead
to the famous Cugliandolo–Kurchan/Crisanti–Horner–Sommers limit of coupled
integro-differential equations for CN (s, t) and an integrated response χN (s, t) =
1
N

∑
i Xi (s)Bi (t) [3,11,12,15,16,18,23], as well as the evolution of other observ-

ables e.g., the Hamiltonian and its square gradient [5]. Our combinatorial framework
suggests that the differences in expectations (over p-tensors J and J̃) of averaged
observables are microscopic, as long as there is a non-linear confining potential to
prevent finite-time blowup. The complication is in the fact that the two non-linearities
(from the interactions, and the confining potential) cancel out, but these cancellations
are not easily seen in the Taylor series obtained by expanding in powers of the genera-
tor; thus we are not able to show that this series is absolutely summable and exchange
the infinite sum with its expectation.

1.4.2 Symmetric and asymmetric Hopfield networks

Let us also mention a different context in which diffusions of the form of (1.1) appear.
Hopfield networks were introduced by [26] and have become one of the simplest and
most fundamental examples of neural networks. In this model, a set of N neurons
(Xi )i are either active {+1} or inactive {−1} depending on whether the neuron X j ’s
input

∑
Ji j Xi , for some weights J = (Ji j )i, j , exceeds a deterministic threshold hi .

This model was introduced in the symmetric setting, but has since been analyzed
extensively both in symmetric and asymmetric setups [13,25,41].

One typically initializes the neurons at some pre-determined state independent
of J, e.g., all inactive/active, or uniformly at random, and tracks their time-evolution,
whereby each neuron activates/de-activates at some rate, depending on the relationship
between its input and threshold. Though there are many ways this is implemented, one
is to soften the problem to continuous state space, either to the sphere, or to full-space
and add in stochasticity by running some Langevin dynamics. This is the approach
pursued in [13] as well as e.g., [41]. Then, with a linear confining force, our results
imply universality for both for the symmetric and asymmetric Langevin dynamics (and
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gradient flow) of general Hopfield networks: this includes universality for observables
capturing the energy/loss in the network, its square gradient, and its “memory”.

1.4.3 Rayleigh quotient minimization for randommatrices

We conclude with a related optimization problem in high dimensions: that of opti-
mizing the Rayleigh quotient of a random matrix J with a certain mean and variance
profile. Maximizing the Rayleigh quotient is an efficient way to find the top eigen-
vector and eigenvalue of the random matrix via local iteration, e.g., either gradient
descent or Langevin dynamics at low temperatures (large β). To place this in the
framework of (1.2), take H(x) = 〈x, Jx〉 and either no confining force or F ′

K = K for
some K > ‖J‖2→2 in (1.18). In the situation where the matrix ensemble is rotation-
ally invariant, e.g., the GOE, the limiting trajectories of, say, H(Xt ) for the gradient
flow/Langevin dynamics can be explicitly solved (by diagonalization). Corollary 3
implies these limiting trajectories will be universal, and thus, match the limiting tra-
jectories obtained when J is not Gaussian. In [1,10], similar universality results were
described for an AMP approach to finding the top eigenvalue/eigenvector of J.

2 Universality of expectations of monomial observables

In this section, we prove that two solutionsX and X̃ of (1.2) driven by J and J̃ are such
that expectations of observables of the form (1.10) are universal, as long as A and Ã
have the same variance profiles. As discussed in Sect. 1.3, we reduce differences in
expectations to combinatorial calculations by expanding the Markov transition semi-
group of the process Xt in terms of its generator, an approach for proving universality
in randomly driven dynamical systems which is the key contribution of this paper.

For the entirety of this paper, we will take two distributions PA and PÃ on A
and Ã that are mean zero and have the same, uniformly bounded, variance profiles
m = m̃. Recall that PA and PÃ are either fully independent or symmetric ensembles.
For conciseness, we present our results in the case of fully independent (in particular,
not symmetric). The case where they are symmetric is handled mutatis mutandis and
only induces a few constant factors in certain estimates (see Remark 2.8 for more on
these minimal modifications).

2.1 Main result on difference in expectations

The observables in Theorem 1 are composed of polynomials in J andX, as well asM.
We first establish the universality of expectations for general monomials in J and X
via a combinatorial moment matching type of argument. In Sect. 3 such universality is
reduced for monomials that additionally involve the martingale, to that of monomials
only in J and X.

More precisely, the statisticswe consider throughout this section are of the following
form. Fix any s (not necessarily distinct) pairsα = (α1, . . . , αs)where eachαk = ik jk ,
and r -tuple (not necessarily distinct) γ = (γ1, . . . , γr ) where each γi ∈ {1, . . . , N }.
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Then consider observables fα,γ (x) of the form

fα,γ (x) =
s∏

k=1

Jαk

r∏
l=1

xγl . (2.1)

For an s-tuple of pairs α, let

– Iα count the number of distinct pairs in α, i.e., Iα = |{α1, . . . , αs}|,
– Iα,1 count the number of (αk)k which appear exactly once in α, and
– I+

α,1 equal Iα,1 plus the indicator that no pair appears more than twice in α.

Our bound on the distance between the expectations of fα,γ (Xt ) and fα,γ (X̃t ) depends
on α, γ and the laws μ, PA, PÃ only through C�, Cμ, s, r and I+

α,1. More precisely,
we derive here the following.

Proposition 2.1 There exists C = C(r , s, T ,C�,Cμ(r)) such that for every T , r , s ≥
0, every s-tuple of pairs α and every r-tuple γ , if PA, PÃ and μ satisfy Hypothesis 1,
then

sup
t∈[0,T ]

∣∣E[ fα,γ (Xt )] − Ẽ[ fα,γ (X̃t )]
∣∣ ≤ CN−(s+I+

α,1)/2 .

Observe that in the case s = 0, the right-hand side is CN−1/2.

Remark 2.2 The above theorem shows that having more distinct J ’s in the observable,
decreases the difference in expectations by more than N−s/2 as would be expected
from the typical size of Ji j . This should be expected due to CLT-type cancellations:
one way to motivate this scaling is by recalling averaged statistics which have J in
them, in the context of the spherical SK model, e.g., the most relevant being

H(x)
N

= 1

N 3/2

∑
1≤i, j≤N

Ai j xi x j and

|∇H(x)|2
N

= 1

N

∑
1≤i≤N

G2
i (x) = 1

N

∑
1≤i≤N

( ∑
1≤ j≤N

1√
N

Ai j x j
)2

.

(Notice that these statistics are not rescaled by the number of order-one sized mono-
mials; but they remain on the O(1) scale due to additional cancellations from (Ji j )).
This gain in the scaling has to be visible at the level of the difference in expectations
under P and P̃ in order to hope for universality for such statistics.

Recall from Sect. 1.3 that our high level strategy is to reduce the expectations
of statistics of the solution Xt of the sds to combinatorial calculations in terms of
mixed moments of J and X0. This is possible by writing EB[ f (Xt )] as Pt f (X0)

and then Taylor expanding Pt = etL where L is the generator for the process Xt as
defined in (1.13). In order for this expansion to be valid, and therefore our approach
to be permissible, we need the Taylor expansion for etL to converge absolutely, for
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each fixed N . In the next sub-section, we show that indeed with μ,PA,PÃ satisfying
Hypothesis 1, for each fixed N , the infinite series corresponding to Pt f converges
absolutely, so we can follow this plan.

Before proceeding further, we make the following notational remark.
Notational comment on set and sequence differences For sets {b1, . . . , bm} ⊂
{a1, . . . , an}, we let {a1, . . . , an} \ {b1, . . . , bm} denote the set difference as usual.
Frequently we deal with tuples, or sequences in which the order does not matter. For
two such tuples (a1, . . . , an) and (b1, . . . , bm) (where of course there may be rep-
etitions in each sequence), we denote by (a1, . . . , an) \ (b1, . . . , bm) the difference
wherein for each bi appearing in {a1, . . . , an}weonly remove one of its appearances—
say the first one—from (a1, . . . , an). We also define (a1, . . . , an) � (b1, . . . , bm) to
be the concatenation given by (a1, . . . , an, b1, . . . , bm).

2.2 Switching the expectation and the infinite series

The goal of this sub-section is to prove the following absolute convergence result.

Proposition 2.3 Suppose PA andμ satisfyHypothesis 1. Then, there exists finite No =
No(r , T ,C�) such that for every N ≥ No, every T < ∞, every s-tuple of pairs α, and
every r-tuple of indices γ , we have

∑
k≥0

T k

k! E
[∣∣Lk fα,γ (X0)

∣∣] < ∞ .

As a consequence of Proposition 2.3 and Fubini–Tonelli, we may use the following
expansion.

Corollary 2.4 Suppose PA, PÃ, μ satisfy Hypothesis 1. Setting L and L̃ for their
generators, we have that

E[ fα,γ (Xt )] − Ẽ[ fα,γ (X̃t )] =
∑
k≥0

tk

k!
(
E[Lk fα,γ (X0)] − Ẽ[L̃k fα,γ (X0)]

)
,

for every N ≥ No(r , T ,C�), every t < ∞, and every s-tuple of pairs α and r-tuple
of indices γ .

Proceeding hereafter to prove Proposition 2.3, we fix r , s,α and γ , and set f =
fα,γ . Aiming for upper bounds on E[|Lk f (X0)|] which are summable against T k/k!,
we first utilize (1.13) to expand Lk as a sum over the 4k words W in the letters
{LJ, L�, Lh, L�} and thereby get the bound

E
[|Lk f (X0)|

] ≤4k sup
W∈{LJ,L�,Lh,L�}k

E
[|W f (X0)|

]
, (2.2)

where for every x ∈ R
N , W f (x) should be understood as (Wk · · ·W2W1 f )(x). For

every word W ∈ {LJ, L�, Lh, L�}k , let kJ = kJ(W ) denote the number of LJ’s that
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appear in W , and similarly define k�, kh, and k�, so that kJ + k� + kh + k� = k and
the following structural decomposition of W f holds.

Claim For any word W ∈ {LJ, L�, Lh, L�}k with kJ, k�, kh, k� occurrences of the
corresponding symbols, W f can be expressed as a sum of (not necessarily distinct)
monomials of the form

φβ,β ′,ζ ′,ζ ,ξ (x) =
s∏

i=1

Jαi

kJ∏
�=1

Jβ�

k�∏
�=1

�β ′
�

kh∏
�=1

hζ ′
�

2k�∏
�=1

σζ�

r∏
�=1

xξ�
, (2.3)

β,β ′, ζ denote the collection of pairs (β�)�≤kJ , (β
′
�)�≤k�

, (ζ�)�≤2k� , while ζ ′, ξ denote
the sequences (ζ ′

�)�≤kh , (ξ�)�≤r and hereupon we adopt the convention x0 ≡ 1, allow-
ing for ξ� = 0 as well as ζ� ∈ (0 j) j .

In view of Hypothesis 1 on PA we have that for every N , � ≥ 0, and index pair α,

E[|Jα|�+1] ≤ �!
(CA

N

)(�+1)/2
.

Thus, if Iα�β distinct index pairs appear atmultiplicities (n�+1)�≤Iα�β
in the sequence

α � β of length kJ + s, then by the independence of (Jα)α ,

E

[∣∣∣ s∏
i=1

Jαi

kJ∏
�=1

Jβ�

∣∣∣] ≤
(CA

N

)(kJ+s)/2
Iα�β∏
�=1

n�! .

Consequently, with X0 independent of J we have in view of the assumed bounds on
(�i j )i, j (σi j )i, j and (hi )i , that for any term of the form (2.3) with Iζ entries such that
ζ� /∈ (0 j) j ,

E

[∣∣φβ,β ′,ζ ′,ζ ,ξ (X0)
∣∣] ≤

(CA

N

)(kJ+s)/2(C�

N�

)k�
(C2k�

σ

N Iζ
σ

)
Ckh
h sup

i
{E[|Xi (0)|r ]}

Iα�β∏
�=1

n�!

≤Cμ(r)Cs
�

Ck
�

N (kJ+s)/2N k�

� N Iζ
σ

Iα�β∏
�=1

n�! , (2.4)

using in the last inequality also (1.6) from Hypothesis 1 on μ, and the definition of
C�.

Our next result is a first step in controlling the number of monomial terms that can
appear in the expansion of each word W ∈ {LJ, L�, Lh, L�}k .
Lemma 2.5 For every kJ, k�, kh, k� and everyβ,β ′, ζ ′, ζ , ξ , if we letφ = φβ,β ′,ζ ′,ζ ,ξ

be as in (2.3), then Lhφ, LJφ, L�φ and L�φ can each be expressed as a sum of at
most r , r N , rN� and rN 2

σ many such monomials, respectively, each of the same form
(with possibly different β,β ′, ζ ′, ζ , ξ ) as (2.3), with the respective kJ, k�, kh or k�

increased by one.
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Proof Fixing kJ, k�, kh, k� which sum up to k, we proceed by separately considering
the effect each of Lhφ, LJφ, L�φ and L�φ has on the monomial φ. First,

(Lhφ)(x) =
s∏

�=1

Jα�

kJ∏
�=1

Jβ�

k�∏
�=1

�β ′
�

kh∏
�=1

hζ ′
�

2k�∏
�=1

σζ�

N∑
j=1

h j∂ j

( r∏
�=1

xξ�

)
, (2.5)

with non-zero contribution only from j ∈ ξ , yielding atmost r non-zero terms. To each
of these corresponds a monomial of the form of (2.3), for kh �→ kh+1, ζ ′ �→ ζ ′ � ( j)
and ξ �→ (ξ \ ( j)) � (0). Next,

(LJφ)(x) =
s∏

�=1

Jα�

kJ∏
�=1

Jβ�

k�∏
�=1

�β ′
�

kh∏
�=1

hζ ′
�

2k�∏
�=1

σζ�

N∑
i, j=1

Ji j xi∂ j

( r∏
�=1

xξ�

)
, (2.6)

with non-zero contribution only when j ∈ ξ . With i ≤ N the total number of resulting
non-zeromonomials is now atmost r N , each having the stated formwith kJ �→ kJ+1,
β �→ β � (i j) and ξ �→ (ξ \ ( j)) � (i). Likewise, we have that

(L�φ)(x) =
s∏

�=1

Jα�

kJ∏
�=1

Jβ�

k�∏
�=1

�β ′
�

kh∏
�=1

hζ ′
�

2k�∏
�=1

σζ�

N∑
i, j=1

�i j xi∂ j

( r∏
�=1

xξ�

)
, (2.7)

with non-zero contributions only for j ∈ ξ . Enumerating over i ≤ N , gives now at
most rN� non-zeromonomials, of the stated form, with k� �→ k�+1, β ′ �→ β ′�(i j)
and ξ �→ (ξ \ ( j)) � (i). Finally,

(L�φ)(x) =
s∏

�=1

Jα�

kJ∏
�=1

Jβ�

k�∏
�=1

�β ′
�

kh∏
�=1

hζ ′
�

2k�∏
�=1

σζ�

N∑
j=1

( N∑
i,i ′=0

σi jσi ′ j xi xi ′
)
∂ j∂ j

( r∏
�=1

xξ�

)
, (2.8)

is non-zero only for the summands in which j ∈ ξ . Enumerating over 0 ≤ i, i ′ ≤ N
(recalling the convention that x0 ≡ 1), gives at most rN 2

σ non-zero monomials, of the
stated form, with k� �→ k� + 1, ζ �→ ζ � (i j) � (i ′ j) and ξ �→ (ξ \ ( j, j)) � (i, i ′).

Fixing N , k, an s-tuple of pairs α, an r -tuple of indices γ and W ∈
{LJ, L�, Lh, L�}k , upon inductively applying Lemma 2.5, we are able to express
W f as the sum of at most

rk NkJN k�

� N 2k�
σ , (2.9)

many non-zero monomials of the form of (2.3). Recall that for a monomial φ, we use
Iζ for the number of ζ� /∈ (0 j) j , Iα for the number of distinct pairs in α, Iα�β for the
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1076 A. Dembo, R. Gheissari

number of distinct pairs in α � β, and introduce I� = Iα�β − Iα , which counts the
number of distinct pairs in {β}\{α}. A careful examination of the proof of Lemma 2.5,
yields the following significant refinement upon the crude bound of (2.9).

Proposition 2.6 Fix N, r , s, k ≥ 0, an s-tuple of pairs α, an r-tuple of indices γ , and
a word W ∈ {LJ, L�, Lh, L�}k . Then, of the monomials in such expansion of W f , at
most

(
kJ

I�, n1, . . . , nIα�β

)(
2k�

Iζ

)
rk N I� N k�

� N Iζ
σ (2.10)

have Iζ elements of ζ with ζ� /∈ (0 j) j , and the Iα�β = Iα + I� distinct pairs in α �β

appear in multiplicities {n� + 1{�>Iα}}�≤Iα�β
within the sequence β of length kJ. (N.b.

we ordered the (n�) with multiplicities in β of the distinct pairs of α appearing first,
and the multiplicities in β of the remaining I� distinct pairs next.)

Proof The first improvement in (2.10) over (2.9) is from observing that the growth
factor Nσ applies only in those Iζ of the 2k� applications of L� within W which
have led to an element ζ� /∈ (0 j) j (see (2.8)), and that there are at most

(2k�

Iζ

)
ways to

choose which Iζ elements of ζ are not from the 0-th row of σ .
Similarly, the growth factor N in counting the number of monomials after applying

LJ is only relevant during the I� applications of LJ within W in which a new pair
(i j) is selected (see (2.6)). The left-most term in (2.10) counts the number of ways
to select the locations of these I� new elements within the kJ long sequence β, and
thereafter to partition the remaining kJ − I� consistently with having the prescribed
n� ≥ 0 repeats for each of the Iα�β distinct pairs in question. Putting all this together
yields the stated bound (2.10) on the number of relevant monomials in the expansion
of W f .

Proof of Proposition 2.3. Combining Proposition 2.6 with the bound (2.4) we deduce
that for any word W of length k and any α whose Iα distinct terms appear in multi-
plicities (c�)�≤Iα ,

E[|W f (X0)|] ≤ Cμ(r)Cs
� kJ!

(4rC�)
k

N (kJ+s)/2

kJ∑
I�=0

N I�

I�!
∑

(n�)�≤Iα�β

Iα∏
�=1

(n� + c� − 1)!
n�! , (2.11)

where the inner sum is over all partitions of kJ− I� into Iα�β indistinguishable integers
n� ≥ 0. Since

∑
� c� = s and n� + c� ≤ kJ + s for all �, the right-most product is at

most (kJ + s)s . Further, the number of (n�)� considered here is at most the number
of integer partitions of kJ, which grows slower than ekJ (c.f. the Hardy-Ramanujan
asymptotic partition formula [24]). Thus, we find that for C(r , s,Cμ,C�) finite and
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any word W of length k,

E[|W f (X0)|] ≤ C

Ns/2 (4reC�)
k−kJ kJ! (kJ + s)s

(4reC�√
N

)kJ kJ∑
I�=0

N I�

I�! . (2.12)

Since k! ≥ kJ!(k − kJ)!, the bounds (2.12) and (2.2) will yield the stated abso-
lute convergence of the infinite series. Specifically, fixing T < ∞ and setting
δ = 1/(16TreC�), we have that

∞∑
k=0

T k

k! E[|Lk f (X0)|] ≤ C

Ns/2

∞∑
k=0

∑
kJ≤k

(4T )k

k! (4reC�)
k−kJ kJ! (kJ + s)s

(4reC�√
N

)kJ kJ∑
I�=0

N I�

I�!

≤ C

Ns/2

∞∑
k′=k−kJ=0

δ−k′

k′!
∞∑

kJ=0

(kJ + s)s
(
δ
√
N
)−kJ

kJ∑
I�=0

N I�

I�! ,

(2.13)

which is finite for any fixed N > δ−2, thereby concluding the proof.

2.3 Controlling the differences of the k’th order Taylor coefficients

By Corollary 2.4, we have that

sup
t∈[0,T ]

∣∣∣E[ f (Xt )] − Ẽ[ f (X̃t )]
∣∣∣

≤ sup
t∈[0,T ]

∑
k≥0

tk

k!
∣∣∣E[Lk f (X0)] − Ẽ[Lk f (X0)]

∣∣∣
≤
∑
k≥0

(4T )k

k! sup
W∈{LJ,L�,Lh,L�}k

∣∣∣E[W f (X0)] − Ẽ[W f (X0)]
∣∣∣

≤
∑
k≥0

(4T )k

k! sup
W∈{LJ,L�,Lh,L�}k

∑
φ∈(W f )(x)

∣∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣∣ , (2.14)

where the last sum is over φ appearing in the monomial decomposition of W f (x) per
Claim 2.2. To bound the differences of expectations on the rhs of (2.14), we next
control the type of monomials φ of the form (2.3) in the expansion of W f , for which
we may possibly have E[φ(X0)] �= Ẽ[φ(X0)].
Lemma 2.7 Forany k, s ≥ 0, every s-tuple of pairsα, and everyW ∈ {LJ, L�, Lh, L�}k ,
the monomials φ in the expansion of W f in Claim rm 2.2 may have E[φ(X0)] �=

123



1078 A. Dembo, R. Gheissari

Ẽ[φ(X0)] only if
kJ + s ≥ 3 and kJ ≥ 2I� + I+

α,1 , (2.15)

where as before, I� = Iα�β − Iα denotes the number of distinct elements in {β} \ {α}.
Proof By the independence of J, J̃ and μ, if E[φ(X0)] �= Ẽ[φ(X0)] for some φ =
φβ,β ′,ζ ,ζ ′,ξ as in (2.3), then

E

[ s∏
i=1

Jαi

kJ∏
�=1

Jβ�

]
�= Ẽ

[ s∏
i=1

Jαi

kJ∏
�=1

Jβ�

]
,

which for independent, zero-mean (Ji j )i j of matching variances 1
Nm = 1

N m̃, requires
that simultaneously:

No pairα� appears exactly once in the concatenationα � β. (2.16)

Someα� appears more than twice in the concatenationα � β. (2.17)

The condition (2.16) implies that each of the I� distinct elements in {β} \ {α} must
appear at least twice in {β}, towhich endweneed at least 2I� applications of LJ to select
those elements. In addition, some other Iα,1 of the kJ applications of LJ must align
exactly with the pairs (αi j ) appearing only once in α, so necessarily kJ ≥ 2I� + Iα,1.
Further, the condition (2.17) requires kJ + s ≥ 3 and when no pair appears more than
twice in α, an extra application of LJ beyond the preceding 2I� + Iα,1 is needed for
producing the third appearance of some α�, as stated in (2.15).

We are now able to prove that the expectations of monomials of the form fα,γ (Xt )

are universal.

Proof of Proposition 2.1. Fixing α, γ , in view of Lemma 2.7, it suffices when bound-
ing the rhs of (2.14), to consider only words W and monomials φ for which (2.15)
holds. By restricting attention only to monomials for which (2.15), holds, we find as
in (2.11), that for any α whose Iα distinct terms appear in multiplicities (c�)�≤Iα , and
every word W of length k such that kJ + s ≥ 3,

∣∣E[W f (X0)] − Ẽ[W f (X0)]
∣∣ ≤ 2Cμ(r)Cs

� kJ!
(4rC�)

k

N (kJ+s)/2

∑
{I�:kJ≥2I�+I+

α,1}

N I�

I�!

∑
(n�)�≤Iα�β

Iα∏
�=1

(n� + c� − 1)!
n�! ,

where as in (2.11), the inner sum runs over all partitions of kJ − I� into Iα�β indistin-
guishable integers n� ≥ 0. Reasoning as we did leading up to (2.12), we find that

∣∣E[W f (X0)] − Ẽ[W f (X0)]
∣∣ ≤ 2C

Ns/2 (4reC�)
k−kJ kJ! (kJ + s)s

(4reC�√
N

)kJ
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∑
{I�:kJ≥2I�+I+

α,1}

N I�

I�! . (2.18)

Plugging (2.18) into (2.14), as in the derivation of (2.13), we get for δ = 1/(16TreC�)

and N ≥ ρ := (2/δ)2,

sup
t∈[0,T ]

∣∣∣E[ f (Xt )] − Ẽ[ f (X̃t )]
∣∣∣

≤ 2C

Ns/2

∑
k′≥0

δ−k′

k′!
∑
I�≥0

1

I�!
∑

kJ≥2I�+I+
α,1

(kJ + s)s δ−kJN I�−kJ/2

≤ C̄ N−(s+I+
α,1)/2

∑
I�≥0

ρ I�

I�!
∑
kJ≥0

(kJ + s)s2−kJ , (2.19)

where C̄ = 2Ce−1/δρ
I+
α,1/2. This completes the proof, as both series on the rhs of

(2.19) are finite and independent of N .

Remark 2.8 In the case of symmetric random matrices A, Ã (where only the upper
triangular and diagonal elements are independent), we identify index pairs β = i j
and β̂ = j i as being the same. We do so whenever considering Iα , Iα,1, I

+
α,1, Iα�β ,

I�, and the multiplicities (n�)�, as well as in the restrictions (2.16)–(2.17) imposed on
the multiplicities within α � β. Once this is done, the only difference in our proof is
to replace in (2.10) the weight rk by (2r)k .

3 The extension tomulti-time polynomial observables

In this section, we extend the results of Sect. 2 to more general observables, namely
those that contain coefficients that depend on the driving martingale, and those that
depend on the trajectory through multiple times, rather than just one. We then use
those extensions to prove Theorem 1. To this end, fix any l, any (α(1), . . . ,α(l)) each
consisting of si pairs, any (γ (1), . . . , γ (l)) each consisting of ri indices, and also fix
m indices ξ = (ξ1, . . . , ξm). Fix l times 0 ≤ t1 ≤ · · · ≤ tl ≤ T and m times
0 ≤ u1 ≤ · · · ≤ um ≤ T . For fα(i),γ (i) as in (2.1), consider observables of the form,

g(α(i)),(γ (i)),ξ (t,u) =
( l∏
i=1

fα(i),γ (i) (Xti )
)( m∏

i=1

Mξi (ui )
)

. (3.1)

Let r̄ = ∑
i ri+m and ᾱ denote the concatenationα(1)�· · ·�α(l) of length s̄ := ∑

i si .

Proposition 3.1 There exist finite C(r̄ , s̄,m, l, T ,C�,Cμ(r̄)) such that for every
l,m, every (α(i))i≤l , (γ (i))i≤l , ξ , every t ∈ [0, T ]l , u ∈ [0, T ]m and g(t,u) =
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g(α(i)),(γ (i)),ξ (t,u) as in (3.1),

∣∣E[g(t,u)] − Ẽ[g(t,u)]∣∣ ≤ CN−(s̄+I+
ᾱ,1)/2 .

We proceed to prove Proposition 3.1, which we thereafter combine with a short
combinatorial estimate bounding the number of terms with specific values of I+

ᾱ,1 to
establish Theorem 1.

3.1 Proof of Proposition 3.1

We start with the case of m = 0 to which we will reduce the case of m > 0.

Lemma 3.2 Proposition 3.1 holds when m = 0.

Proof Fixing l, (α(i))i≤l and (γ (i))i≤l , we set here f (i)(x) = fα(i),γ (i) (x) and

g(x(1), . . . , x(l)) :=
l∏

i=1

f (i)(x(i)) =
l∏

i=1

J
α

(i)
1

· · · J
α

(i)
ri

x (i)

γ
(i)
1

· · · x (i)

γ
(i)
si

, (3.2)

and for any l-tuple of times t = (t1, . . . , tl) ∈ [0, T ]l , evaluate (3.2) on the argument
(Xt1 , . . . ,Xtl ): i.e., let

g(t) = g(α(i)),(γ (i))(t) = g(Xt1, . . . ,Xtl ) .

We express the expectation EB with respect to the Brownian motion of g(t), in terms
of the (diffusion) semi-group operator as

EB[g(t)] = (
Pt1 f

(1)Pt2−t1 f
(2) · · · Ptl−tl−1 f

(l))(X0) .

Expanding each semi-group operator in terms of powers of the generator L , the above
is precisely

∑
k1≥0

tk11
k1! L

k1
[
f (1)

∑
k2≥0

(t2 − t1)k2

k2! Lk2
[
f (2) · · ·

∑
kl≥0

(tl − tl−1)
kl

kl ! Lkl f (l)
]]

(X0)

=
∑

k1,...,kl≥0

( l∏
i=1

(ti − ti−1)
ki

ki !
)[
Lk1 f (1)Lk2 f (2) · · · Lkl f (l)](X0) .

Taking the difference in expectations between E and Ẽ, upon justifying swapping the
expectation with the infinite sum (as done in Sect. 2.2), and using the fact that

(
k

k1, . . . , kl

)
l−k ≤

∑
k1,...,kl≥0∑

ki=k

(
k

k1, . . . , kl

)
l−k = 1 , (3.3)
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for every k1, k2, . . . , kl such that k1 + · · · + kl = k, we obtain that

∣∣E[g(t)] − Ẽ[g(t)]∣∣ ≤
∑
k≥0

∑
k1,...,kl∑

i ki=k

lkT k

k!
∑

W1,...,Wl
Wi∈{LJ,L�,Lh,L�}ki∣∣E[(W1 f

(1) · · ·Wl f
(l))(X0)] − Ẽ[(W1 f

(1) · · ·Wl f
(l))(X0)]

∣∣ .
The following structural property for words appearing in the above will allow us to
reduce the analysis of multi-time observables to the combinatorial analysis of one-
time observables fᾱ,γ̄ = f (1) f (2) · · · f (l), for ᾱ = α(1) � · · · � α(l) and γ̄ :=
γ (1) � · · · � γ (l), which we have already completed.

Claim Fix k1, . . . , kl ≥ 0 such that
∑

i ki = k and words Wi ∈ {LJ, L�, Lh, L�}ki ,
i = 1, . . . , l, with kiJ, k

i
�, kih, k

i
�, of each appearing, respectively. Then, the function

(W1 f
(1)W2 f

(2) · · ·Wl f
(l))(x)

consists of a sum of (not necessarily distinct) monomials of the form

φ(x) =
s1∏
i=1

J
α

(1)
i

· · ·
sl∏
i=1

J
α

(l)
i

∑
kiJ∏

�=1

Jβ�

∑
ki�∏

�=1

�β ′
�

∑
kih∏

�=1

hζ ′
�

2
∑

k�∏
�=1

σζ�

∑
ri∏

�=1

xξ�
.

Moreover, each monomial φ(x) appearing in this expansion, must also appear in such
monomial expansion of W fᾱ,γ̄ for W = W1 · · ·Wl ∈ {LJ, L�, Lh, L�}k .
Proof The structure of the monomials is evident. Every such monomial in
W1 f (1)W2 f (2) · · ·Wl f (l) must also appear in themonomial expansionof [W1 · · ·Wl ] fᾱ,γ̄

because a subset of the terms in the latter are obtained by applying the letters in Wl

to f (l), then the letters in Wl−1 to f (l−1)(Wl f (l)), and so on. Finally, observe that
W1 · · ·Wl is always a word in {LJ, L�, Lh, L�}k .

With Claim 3.1 in hand, we further get that

|E[g(t)] − Ẽ[g(t)]| ≤
∑
k≥0

∑
k1,...,kl∑

ki=k

4klkT k

k! sup
W1,...,Wl

Wi∈{LJ,L�,Lh,L�}ki

∑
φ∈(W1 f (1)···Wl f (l))(x)∣∣E[φ(X0)] − Ẽ[φ(X0)]

∣∣
≤
∑
k≥0

∑
k1,...,kl∑

ki=k

(4lT )k

k! sup
W∈{LJ,L�,Lh,L�}k

∑
φ∈(W fᾱ,γ̄ )(x)

∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣

≤
∑
k≥0

(k + 1)l(4lT )k

k! sup
W∈{LJ,L�,Lh,L�}k

∑
φ∈(W fᾱ,γ̄ )(x)
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∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣ , (3.4)

where the sums are over the monomials φ in the decomposition of W1 f (1) · · ·Wl f (l)

and that of W fᾱ,γ̄ per Claim 3.1. Note that each summand on the rhs of (3.4) is
at most some (k + 1)l lk times the corresponding summand of (2.14) for the choice
f = fᾱ,γ̄ for which we have deduced the bound of (2.18). Utilizing the latter and the
elementary bound k + 1 ≤ (kJ + 1)(k + 1− kJ), by proceeding as in the derivation of
(2.19), we find that for C = C(r̄ , s̄,Cμ(r̄),C�) finite, δ = 1/(16 l T r̄ eC�) positive
and N ≥ (2/δ)2,

sup
t∈[0,T ]l

∣∣E[g(t)] − Ẽ[g(t)]∣∣ ≤ 2C

Ns̄/2

∑
k′≥0

δ−k′

k′! (k′ + 1)l
∑
I�≥0

1

I�!∑
kJ≥2I�+I+

ᾱ,1

(kJ + s̄)s̄+l δ−kJ N I�−kJ/2

≤ C̄ N−(s̄+I+
ᾱ,1)/2

for some finite C̄ = C̄(l, r̄ , s̄, T ,C�,Cμ(r̄)).
We now add in the driving martingale observables (i.e., m > 0) and conclude the

proof of Proposition 3.1.

Proof of Proposition 3.1. We reduce the situation m > 0 to the combinatorial calcu-
lations of Lemma 3.2 by utilizing the following expansion from Ito’s lemma:

Mξi (u) = Xξi (u) −
∫ u

0
(L xξi )(Xτ )dτ .

When expanding (3.1) in this manner, the terms containing only products of Xξi (ui )
can be absorbed into γ , in which case their difference in expectations has already been
handled in Lemma 3.2, so by linearity it suffices for us to focus on handling terms of
the form

h(α(i)),(γ (i)),ξ (t,u) =
( l∏
i=1

fα(i),γ (i) (Xti )
)( m∏

i=1

∫ ui

0
(Lxξi )(Xτi )dτi

)

=
∫ u1

0
· · ·

∫ um

0
ĥ(t, τ )dτ1 · · · dτm ,

where τ = (τ1, . . . , τm) ∈ [0, T ]m and where, setting f (i)(x) = fα(i),γ (i) (x),

ĥ(t, τ ) :=
l∏

i=1

f (i)(Xti )

m∏
i=1

(Lxξi )(Xτi ) .
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Thus, fixing l,m, (α(i)), (γ (i)), ξ and letting h(t,u) = h(α(i)),(γ (i)),ξ (t,u) we obtain
after swapping the expectation and integrals that

E
[
h(t,u)

] =
∫ u1

0
· · ·

∫ um

0
E
[̂
h(t, τ )

]
dτ1 · · · dτm ,

which thereby yields the following bound on the relevant difference in expectations

∣∣E[h(t,u)]−Ẽ[h(t,u)]∣∣ ≤ Tm sup
τ∈[0,T ]m

∣∣∣E[̂h(t, τ )
] − Ẽ

[̂
h(t, τ )

]∣∣∣ .
Proceeding hereafter wlog to bound the difference in expectations for ĥ(t, τ ), we
suppose for ease of exposition that 0 ≤ tl = τ0 ≤ τ1 ≤ · · · ≤ τm (the situation where
the two groups intertwine is similarly analyzed with the obvious modifications). As
done in the proof of Lemma3.2, first expressingEB in terms of the semi-group operator
and then expanding that in powers of the generator L we find that

EB
[̂
h(t, τ )

]
= Pt1

[
f (1)Pt2−t1

[
f (2) · · · Ptl−tl−1

[
f (l)Pτ1−tl

[
Lxξ1 · · · Pτm−τm−1Lxξm

]]]]
(X0)

=
∑
k≥0

∑
(ki )≥0,(�i )≥1∑
ki+∑

�i=k+m

l∏
i=1

(ti − ti−1)
ki

ki !
m∏
i=1

(τi − τi−1)
�i−1

(�i − 1)! Lk1

[
f (1) · · · Lkl

[
f (l)L�1

[
xξ1 · · · L�m xξm

]]]
(X0) .

At this point, proceeding as in the derivation of (3.4), up to the transformations

k �→ k + m =: k̄ , l �→ l + m =: l̄ , and ( f (l+1), . . . , f (l̄)) �→ (xξ1 , . . . , xξm ) ,

we first use (3.3) to get the bound

∣∣∣E[̂h(t, τ )
] − Ẽ

[̂
h(t, τ )

]∣∣∣
≤
∑
k≥0

∑
(ki )≥0,(�i )≥1∑

ki+∑
�i=k̄

4k̄(l̄T )k

k! sup
W1,...,Wl ,W ′

1,...,W
′
m

Wi∈{LJ,L�,Lh,L�}ki
W ′

i ∈{LJ,L�,Lh,L�}�i∑
φ∈(W1 f (1)···W ′

mxξm )(x)

∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣ ,

with the sum running over monomial decomposition of (W1 f (1) · · ·Wl f (l)W ′
1xξ1 · · ·

W ′
mxξm )(x). Then, utilizing again Claim 3.1, as well as the bound k! ≥ k̄!/(k̄)m , we

arrive at
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∣∣∣E[̂h(t, τ )
] − Ẽ

[̂
h(t, τ )

]∣∣∣
≤

∑
k̄≥m

( k̄

l̄T

)m (k̄)l̄(4l̄T )k̄

k̄! sup
W∈{LJ,L�,Lh,L�}k̄

∑
φ∈(W fᾱ,γ̄ )(x)

∣∣E[φ(X0)] − Ẽ[φ(X0)]
∣∣ ,

(3.5)

where as before ᾱ = α(1) � · · · � α(l) is of length s̄ = ∑
i si , while γ̄ of length

r̄ = ∑
ri + m has now the additional elements (xξi )i≤m . Up to this update of r̄ and

the immaterial weight factor (k̄/(l̄T ))m of its summands, the expression on the rhs
of (3.5) is the same as that in (3.4). We thus conclude as in the proof of Lemma 3.2
that for some C(l,m, r̄ , s̄, T ,C�,Cμ(r̄)) all t ∈ [0, T ]l and u ∈ [0, T ]m ,

∣∣E[h(t,u)] − Ẽ[h(t,u)]∣∣ ≤ CN−(s̄+I+
ᾱ,1)/2 .

3.2 Proof of Theorem 1.

Fix T ,m, p, Ca, a ∈ R
Nm

such that ‖a‖∞ ≤ Ca, and t ∈ [0, T ]p. For every � ≤ m,
fix observables Y(�,1), . . . ,Y(�,p) ∈ F and let F(t) be as in (1.5) with those choices.
By linearity of expectations and the uniform bound on ‖a‖∞, it suffices to show that
uniformly over i1, . . . , im ,

sup
t∈[0,T ]p

∣∣∣E[ ∏
�≤m

Y(�,1)
i�

(t1) · · ·Y(�,p)
i�

(tp)
] − Ẽ

[ ∏
�≤m

Y(�,1)
i�

(t1) · · ·Y(�,p)
i�

(tp)
]∣∣∣

≤ CN−1/2 (3.6)

We denote by s̄ the number of Y terms appearing in the preceding product which is
a coordinate of Gt . In case s̄ = 0, the bound (3.6) follows from considering Propo-
sition 3.1 at s̄ = 0, in which case I+

ᾱ,1 = 1. Otherwise, we expand every term in
that product which is a coordinate of Gt to obtain a sum of monomials of the form
of (3.1). Each of these monomials has a sequence ᾱ of length s̄, and as a result of such
expansion there are at most s̄ s̄ N Iᾱ monomials with precisely Iᾱ distinct pairs in the
sequence ᾱ. Note that for any ᾱ,

s̄ + I+
ᾱ,1 ≥ 2Iᾱ + 1 .

Indeed, each pair which appears once in ᾱ, is counted both in s̄ and in Iᾱ,1, all other
pairs are counted at least twice in s̄, and for any ᾱ of maximal multiplicity two, we
have added one to I+

ᾱ,1. Consequently, the bound of Proposition 3.1 on the difference

in expectation for each of these s̄ s̄ N Iᾱ many monomials is at most CN−Iᾱ−1/2 for
some constant C(T ,m, p,C�,Cμ). From this, the bound (3.6) immediately follows
upon enumerating over the at most s̄ many choices for Iᾱ .
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4 Concentration for quadratic observables: Proof of Theorem 2

Assuming henceforth thatMt is a scaled Brownian motion (i.e., that σi j are identically
zero for i �= 0), our goal is to prove Theorem 2 about the uniform over t ∈ [0, T ]2
concentration property of the quadratic observable of (1.10),

F(t) = FY,Y ′,a(Xt1,Xt2) = 1

N

∑
i

aiYi (t1)Y ′
i (t2) ,

(for uniformly bounded non-random a = (ai )i and Y,Y ′ in the collection F =
{1t ,Xt ,Gt ,Mt } of (1.4)). To this end, we introduce in Sect. 4.1 high probability
localizing sets LN ,R on which various norms of Xt (and our observables F(t)), are
uniformly bounded. Sect. 4.2 shows that on LN ,R , such F(t) are O(N−1/2)-Lipschitz
in a mixed �2-norm. Combining these facts we prove Theorem 2 in Sect. 4.3.

4.1 Localizing the process

Denote the 2-to-2 matrix norm by

‖J‖2→2 := sup
x:‖x‖=1

‖Jx‖ = ‖JT ‖2→2 = sup
x:‖x‖=1

(∑
i≤N

Gi (x)2
)1/2

,

and for each constant R consider the following localization subset of EN := R
N ×

R
N2 × C([0, T ],RN ),

LN ,R :=
{
(X0, J,M) ∈ EN : ‖X0‖2 + N‖J‖22→2 + sup

t∈[0,T ]
‖Mt‖2 ≤ RN

}
, (4.1)

We begin by bounding the probability that (X0, J,M) /∈ LN ,R .

Lemma 4.1 There exists C = C(T ,Cμ,CA,Cσ ) > 0 and R0(T ,Cμ,CA,Cσ ) < ∞,
such that for every R ≥ R0 if μ,PA satisfy Hypotheses 1–2, then

P
(Lc

N ,R

) ≤ exp(−√
RN/C) .

Proof We bound Lc
N ,R by the union of the events where each of the three norms is

greater than
√
RN/3. First, since Mt is a Brownian motion (scaled by (σ0 j ) j ), by

Doob’s maximal inequality for the sub-martingale exp(δ‖Mt‖2), we have for some
C(Cσ ) > 0 any R ≥ T R0(Cσ ) and all N ,

PB

(
sup

t∈[0,T ]
‖Mt‖ >

√
RN/3

)
≤ exp(−RN/(CT )) . (4.2)

Next, since μ satisfies Hypotheses 1–2, the independent Xi (0) have uniform (in i and
N ), second moments and exponential tails. Hence, applying [30, Theorem 3] for the
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1086 A. Dembo, R. Gheissari

centered sum of i.i.d. variables that stochastically dominate X2
i (0), we have for some

C(Cμ) > 0, any R ≥ R0(Cμ) and all N ,

μ
(
‖X0‖2 > RN/3

)
≤ exp(−√

RN/C) .

It thus remains only to show that when PA satisfies Hypothesis 2, we have for some
C(CA) > 0 any R ≥ R0(CA) and all N ,

PA(‖A‖2→2 >
√
RN/3) ≤ exp(−√

RN/C) . (4.3)

To this end, recall [28, Theorem 2] that there exists a universal constant C such that
for any matrix A with independent, zero-mean entries of second moments mi j and
fourth moments bi j ,

EA[‖A‖2→2] ≤ C
(
max
i≤N

( ∑
j≤N

mi j

)1/2 + max
j≤N

(∑
i≤N

mi j

)1/2 +
( ∑
1≤i, j≤N

bi j
)1/4)

.

For PA satisfying Hypothesis 1, bi j and mi j are bounded uniformly in i, j and N
(see (1.8)). Hence, in the case where A is composed of independent entries, for some
C(CA) finite and all N ,

EA[‖A‖2→2] ≤ C
√
N . (4.4)

Likewise, representing a symmetric A as A = A+ + A−, with A+ the upper triangle
(including the diagonal) part of A and A− its lower triangle part, [28, Theorem 2]
holds for the matrices A− and A+ of zero-mean, independent entries (with uniformly
bounded forth moments). Thus, (4.4) holds also in this case up to a factor of 2. Thanks
to (4.4), if

√
R ≥ 4C then

PA
(‖A‖2→2 >

√
RN/3

) ≤ PA
(| ‖A‖2→2 − EA[‖A‖2→2] | >

√
RN/4

)
.

Recall that ‖A‖2→2, which is the largest singular value ofA, is 1-Lipschitz in its entries
(endowed with the Euclidean norm, on A+ when A assumed symmetric). Indeed, this
follows by combining the triangle inequality |‖A‖2→2−‖B‖2→2| ≤ ‖A−B‖2→2 with
the domination of the operator normby the Frobenius norm, ‖A−B‖2→2 ≤ ‖A−B‖F .
Hypothesis 2 for PA thus yields the bound (4.3).

We further have on the sets LN ,R the following localization for both (Xt )t∈[0,T ]
and (Gt )t∈[0,T ].

Proposition 4.2 There exists R0(T ,C�) and C0(C�) such that if R ≥ R0, and
(X0, J,M) ∈ LN ,R, then

1√
N

sup
t∈[0,T ]

{‖Xt‖} ≤ eC0
√
RT ,

1√
N

sup
t∈[0,T ]

{‖Gt‖} ≤ eC0
√
RT . (4.5)
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In addition, for every a such that ‖a‖∞ ≤ Ca (uniformly over N) and everyY,Y ′ ∈ F,
if F(t) is as in (1.10), we have for all k ≥ 1,

lim sup
N→∞

E
[( 1√

N
sup

t∈[0,T ]
‖Xt‖

)k]
< ∞ , lim sup

N→∞
E
[( 1√

N
sup

t∈[0,T ]
‖Gt‖

)k]
< ∞ ,

(4.6)

lim sup
N→∞

E
[

sup
t∈[0,T ]2

|F(t)|k] < ∞ . (4.7)

Proof Setting eN (t) = 1√
N

‖Xt‖, we get upon expanding (1.2), that

(eN (t))2 ≤ 1

N

∑
j≤N

|X j (t)|
(
|X j (0)| + |Mj (t)| +

∫ t

0
|h j |ds +

∫ t

0
|G j (Xs)|ds +

∫ t

0
|� j (Xs)|ds

)
=: I1 + I2 + I3 + I4 + I5 .

From the definition of the 2-to-2 norm, evidently

‖Gs‖ =
√∑

j≤N

G j (Xs)2 ≤ ‖J‖2→2‖Xs‖ ,

√∑
j≤N

� j (Xs)2 ≤ ‖�‖2→2‖Xs‖ .(4.8)

Hence, by Cauchy–Schwarz,

I1 ≤ eN (t)
1√
N

‖X0‖ , I2 ≤ eN (t)
1√
N

‖Mt‖ , I3 ≤ eN (t)Ch T ,

I4 ≤ eN (t)
1√
N

∫ t

0
‖Gs‖ds ≤ eN (t)‖J‖2→2

∫ t

0
eN (s)ds ,

I5 ≤ eN (t)
1√
N

∫ t

0

( ∑
j≤N

|� j (Xs)|2
)1/2

ds ≤ eN (t)C�

∫ t

0
eN (s)ds ,

where in the last inequality we rely on our assumption that ‖�‖1→1 ≤ C� and
‖�‖∞→∞ ≤ C�, to deduce that ‖�‖2→2 ≤ C�. Combining these bounds on (Ii )i≤5,
and dividing out by eN (t), we see that

eN (t) ≤ 1√
N

[
‖X0‖ + ‖Mt‖

]
+ ChT + (‖J‖2→2 + C�)

∫ t

0
eN (s)ds .

By Gronwall’s inequality, using the localization to LN ,R , it then follows that for any
t ∈ [0, T ],

eN (t) ≤ (
√
R + ChT ) exp

(
(
√
R + C�)t

)
,
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1088 A. Dembo, R. Gheissari

yielding the lhs of (4.5) as soon as R ≥ R0(T ,C�) ≥ 1. From the lhs of (4.8) we
know that ‖Gt‖ ≤ √

R ‖Xt‖ throughout LN ,R , hence after suitably increasing C0 and
R0, the rhs of (4.5) holds as well.

To deduce the uniformly bounded moment estimate of (4.6) forXt , recall first from
the lhs of (4.5) that

Zk
N ,X := (

sup
t≤T

eN (t)
)k ≤ eC0

√
RTk =: f (R) , ∀R ≥ R0 , (X0, J,M) ∈ LN ,R .

Combining the latter bound with that of Lemma 4.1, we arrive at

E[Zk
N ,X] =

∫ ∞

0
f ′(R)P(Zk

N ,X > f (R))dR

≤ f (R0) +
∫ ∞

R0

f ′(R)P(Lc
N ,R)dR ≤ f (R0) +

∫ ∞

R0

f ′(R)e−√
RN/CdR .

(4.9)

The rhs decreases in N and as f ′(R) = (C0T k)/(2
√
R) f (R), it is finite for

√
N/C >

C0T k, yielding the lhs of (4.6). The rhs of (4.6) follows by applying the same
reasoning to Zk

N ,G = (
N−1/2 supt∈[0,T ] ‖Gt‖

)k while utilizing the rhs of (4.5).
Turning to (4.7), note that for any k ≥ 1 and F(t) of (1.10) with ‖a‖∞ ≤ Ca, by

Cauchy–Schwarz,

|F(t)|k ≤ Ck
a

√
Z2k
N ,Y

√
Z2k
N ,Y ′ , where Z2k

N ,Y := ( 1√
N

sup
t∈[0,T ]

{‖Y(t)‖})2k .

Thus, yet another application of Cauchy–Schwarz results with

E
[

sup
t∈[0,T ]2

|F(t)|k] ≤ Ck
a

√
E[Z2k

N ,Y ]
√
E[Z2k

N ,Y ′ ] ≤ Ck
a max
Y∈F

E[Z2k
N ,Y ] .

If Y is 1, this latter expectation is simply 1. If Y isM, using the tail bound of (4.2) in
combination with (4.9) (now for f (R) = (R/3)k), the latter expectation is uniformly
bounded in N . Lastly ifY is from {X,G}, the expectation above is uniformly bounded
in N by (4.6). Combining these yields the desired (4.7).

4.2 A Lipschitz estimate on quadratic observables

Our next proposition shows that on LN ,R all F(t) of the form (1.10) are O(N−1/2)-
Lipschitz in the (X0, J,M) endowed with the following mixed 2-norm on EN ,

‖(X0, J,M)‖2
mix

:= ‖X0‖2 + N
∑

1≤i, j≤N

J 2i j + sup
t∈[0,T ]

‖Mt‖2 (4.10)

(which is taken from [3, Hypothesis 1.1]).
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Proposition 4.3 Fixing a such that ‖a‖∞ ≤ Ca and Y,Y ′ ∈ F, denote by
F(t; (X0, J,M)) the observable in (1.10) evaluated on the trajectory Xt constructed
out of the triplet (X0, J,M). There exist R0(T ,Ca,C�) and C(T ,Ca,C�) such that
for any R ≥ R0 all N and (X0, J,M), (X′

0, J
′,M′) in LN ,R

sup
t∈[0,T ]2

|F(t; (X0, J,M)) − F(t; (X′
0, J

′,M′))|

≤ CeC
√
R

√
N

‖(X0, J,M) − (X′
0, J

′,M′)‖mix .

The key to Proposition 4.3 is to show that Xt is O(1)-Lipschitz on LN ,R endowed
with ‖ · ‖mix. Specifically, denoting by Xt (X0, J,M) the solution to (1.2), constructed
from the triplet (X0, J,M) and X′

t (X0, J,M) the solution constructed from the triplet
(X′

0, J
′,M′), our next lemma establishes a uniform over LN ,R Lipschitz bound on

‖Xt − X′
t‖.

Lemma 4.4 There exist R0(T ,C�),C(T ,C�) such that for all R ≥ R0 and
(X0, J,M), (X′

0, J
′,M′) ∈ LN ,R,

sup
t∈[0,T ]

∥∥Xt (X0, J,M) − X′
t (X

′
0, J

′,M′)
∥∥ ≤ eC

√
R
∥∥(X0, J,M) − (X′

0, J
′,M′)

∥∥
mix

.

Proof Following the strategy of proof of [3, Lemma 2.6], we let

eN (t) := 1√
N

‖Xt (X0, J,M) − X′
t (X

′
0, J

′,M′)‖ ,

and expanding over j ≤ N , we have by the definition of the solution Xt for the sds
(1.2)–(1.3), that

eN (t)2 ≤ 1

N

∑
j≤N

|X j (t) − X ′
j (t)|

(
|X j (0) − X ′

j (0)| + |Mj (t) − M ′
j (t)| +

∫ t

0
|� j (Xs) − � j (X′

s)|ds

+
∫ t

0
|G j (Xs) − G j (X′

s)|ds +
∫ t

0
|G j (X′

s) − G ′
j (X

′
s)|ds

)
=: I1 + I2 + I3 + I4 + I5 ,

where G′(·) is defined as G(·) but constructed using J′ instead of J. By Cauchy–
Schwarz,

I1 ≤ eN (t)
1√
N

‖X0 − X′
0‖ , and I2 ≤ eN (t)

1√
N

‖Mt − M′
t‖ .
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Recalling (4.8), we similarly find that

I3 ≤ eN (t)
1√
N

∫ t

0

( ∑
j≤N

|� j (Xs − X′
s)|2

)1/2
ds ≤ eN (t)C�

∫ t

0
eN (s)ds .

Turning to the terms involving G(·) or G′(·), observe first that

‖G(Xt ) − G(X′
t )‖ ≤ ‖J‖2→2‖Xt − X′

t‖] , and

‖G(Xt ) − G′(Xt )‖ ≤ ‖J − J′‖2→2‖Xt‖ . (4.11)

Using the localization to LN ,R , we thus find that

I4 ≤ eN (t)
1√
N

∫ t

0
‖G(Xs) − G(X′

s)‖ds ≤ eN (t)‖J‖2→2

∫ t

0
eN (s)ds

≤ eN (t)
√
R
∫ t

0
eN (s) ,

I5 ≤ eN (t)
1√
N

∫ t

0
‖G(X′

s) − G′(X′
s)‖ds ≤ eN (t) ‖J − J′‖2→2

1√
N

∫ t

0
‖X′

s‖ds

≤ eN (t) ‖J − J′‖2→2 T e
C0

√
RT ,

where in the last inequality we further assumed R ≥ R0(T ,C�), utilizing the lhs of
(4.5). Further increasing R0 such that T eC0

√
R0T ≥ 1, upon combining the bounds on

(Ii )i≤5, and dividing out by eN (t), we see that

eN (t) ≤ T eC0
√
RT

√
N

[
‖X0 − X′

0‖ + √
N‖J − J′‖2→2 + sup

t≤T
‖Mt − M′

t‖
]

+
[
C� + √

R
] ∫ t

0
eN (s)ds .

Recall that ‖J‖22→2 ≤ ∑
i j J

2
i j , so by Gronwall’s inequality, there exist C(T ,C�),

such that

eN (t) ≤ eC
√
R

√
N

‖(X0, J,M) − (X′
0, J

′,M′)‖mix ,

for any R ≥ R0, every N and all t ∈ [0, T ], as claimed.

Proof of Proposition 4.3. Fix Y1,Y2 ∈ F, a such that ‖a‖∞ ≤ Ca and t = (t1, t2) ∈
[0, T ]2. EquippedwithLemma4.4 and (4.11) it remains to establish aLipschitz control
on differences of F(t; (X0, J,M)) in terms of differences of ‖Gt‖, ‖Xt‖ and ‖Mt‖
corresponding to any pair of triplets (X0, J,M) and (X′

0, J
′,M′) in LN ,R . To this end,
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we start with the following bound on differences of F(t; ·):
∣∣F(t; (X0, J,M)) − F(t; (X′

0, J
′,M′))

∣∣ ≤ Ca

N

∑
i≤N

∣∣Y1
i (Xt1) − Y1

i (X′
t1)
∣∣∣∣Y2

i (Xt2)
∣∣

+ Ca

N

∑
i≤N

∣∣Y1
i (X′

t1)
∣∣∣∣Y2

i (Xt2) − Y2
i (X′

t2)
∣∣ .

Since the two terms on the RHS can be bounded symmetrically, wlog we focus on
the first one, which by Cauchy–Schwarz, is at most

Ca sup
Y∈F,t∈[0,T ]

{ 1√
N

‖Y(Xt ) − Y(X′
t )‖

}
sup

Y∈F,t∈[0,T ]
{ 1√

N
‖Y(Xt )‖

}
, (4.12)

where as before, X′
t is constructed out of the triplet (X′

0, J
′,M′). Now recall from

(X0, J,M) ∈ LN ,R and Proposition 4.2, that the right-most term in (4.12) is at most
exp(C0

√
RT ) for all R ≥ R0, in which case by the preceding

sup
t∈[0,T ]2

∣∣F(t; (X0, J,M)) − F(t; (X′
0, J

′,M′))
∣∣

≤ 2CaeC0
√
RT

√
N

sup
Y∈F,t∈[0,T ]

‖Y(Xt ) − Y(X′
t )‖ . (4.13)

Recall Lemma 4.4 and (4.11), to deduce that for some C(T ,C�) > 0, every R ≥ R0,
and all (X0, J,M), we have (X′

0, J
′,M′) ∈ LN ,R ,

sup
Y∈F,t∈[0,T ]

‖Y(Xt ) − Y(X′
t )‖ ≤ √

ReC
√
R‖(X0, J,M) − (X′

0, J
′,M′)‖mix .

Putting these all together, we deduce that there exists some other R0(T ,C�) and
C(T ,Ca,C�), such that for all R ≥ R0(T ,C�),

sup
(X0,J,M),(X′

0,J
′,M′)∈LN ,R

t∈[0,T ]2

∣∣F(t; (X0, J,M)) − F(t; (X′
0, J

′,M′))
∣∣

≤ CeC
√
R

√
N

‖(X0, J,M) − (X′
0, J

′,M′)‖mix .

We conclude this subsection by combining the respective exponential concentra-
tions of Lipschitz functions due to μ, PA and PB.

Lemma 4.5 Suppose thatμ,PA satisfyHypothesis 2. Then P = μ⊗PA⊗PB satisfies
exponential concentration of Lipschitz functions with respect to (EN , ‖ · ‖mix).

123



1092 A. Dembo, R. Gheissari

Proof Fix any function f that is 1-Lipschitz on (EN , ‖ · ‖mix). Let us expand

f (X0, J,M) − E[ f (X0, J,M)] = ( f (X0, J,M) − EB[ f (X0, J,M)])
+ (EB

[
f (X0, J,M)] − EJ,B[ f (X0, J,M)])

+ (EJ,B[ f (X0, J,M)] − E[ f (X0, J,M)]) ,

where the subscripts of the expectations indicate which random variables the expec-
tation is taken over. Call the above three differences IM, IJ and IX0 say. For every
X0, J fixed, f (X0, J,M) is 1-Lipschitz in M ∈ C([0, T ],RN ) endowed with the
norm supt≤T ‖ · ‖. As such, from the exponential concentration of Lipschitz functions
satisfied by PB with respect to C([0, T ],RN ) endowed with supt≤T ‖ · ‖ (see e.g., the
discussion around [3, Hypothesis 1.1]), there exists C = C(Cσ ) > 0 such that for
every r > 0,

sup
X0,J

PB
(|IM| > r/3

) ≤ Ce−r/C .

Similarly, we have that for every fixed X0, EB[ f (X0, J,M)] is 1-Lipschitz in J
endowedwith its rescaledFrobenius norm

∑
i, j (

√
N Ji j )2, andfinally,EJ,B[ f (X0, J,M)]

is 1-Lipschitz in X0 endowed with its �2 norm. Altogether, expanding

P(| f (X0, J,M) − E[ f (X0, J,M)]| > r)

≤ E
[
PB(|IM| > r/3 | X0, J)

] + E
[
PJ
(|IJ| > r/3 | X0

)] + μ
(|IX0 | > r/3

)
we see that the exponential concentrations for 1-Lipschitz functions of μ,PA and PB
lift to exponential concentration of P for functions that are 1-Lipschitz in the triplet
(X0, J,M) on (EN , ‖ · ‖mix).

4.3 Proof of Theorem 2

We first prove a concentration estimate for F at a fixed pair of times t ∈ [0, T ]2,
before extending this to the full trajectory (F(t))t∈[0,T ]2 by bounding the modulus of
continuity of F .

Proposition 4.6 Supposeμ, PA satisfyHypotheses 1–2. There exist C(T ,Ca,C�,Cμ)

large, such that for any F as in (1.10) with ‖a‖∞ ≤ Ca, Y,Y ′ ∈ F, all t ∈ [0, T ]2,
λ > 0 and N ≥ N0(T ,Ca,C�,Cμ),

P
(|F(t) − E[F(t)]| > λ

) ≤ qN (λ) :=
{
Ce−λ

√
N/C + λ−1e−√

N/C , λ ≤ C

e−(log λ)
√
N/C , λ > C

.

(4.14)

Proof In proving [3, Lemma 2.5] it is shown, using a Lipschitz extension, that if P
satisfies exponential concentration for Lipschitz functions as in (1.11) and V is an
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A-Lipschitz function on a set L on which |V | is uniformly bounded by K , then for
some universal constant C > 0 and every λ > 0,

P(|V − E[V ]| ≥ λ) ≤ Ce−λ/(2AC) + P(Lc) + 2

λ
(
√
E[V 2] + K )

√
P(Lc) .(4.15)

Recall from Lemma 4.5 that P = μ ⊗ PA ⊗ PB satisfies exponential concentration
for Lipschitz functions in (EN , ‖ · ‖mix) and Proposition 4.3 that V = F(t; ·) is D(R)√

N
-

Lipschitz on L = LN ,R for D(R) = C1eC1
√
R , for some C1(T ,Ca,C�) for every

R ≥ R0(T ,Ca,C�), all N , and every F , t as in Theorem 2.
Further, increasing R0 as needed for Lemma 4.1 and Proposition 4.2, yields

sup
(X0,J,M)∈LN ,R

|F(t; (X0, J,M))| ≤ K (R) where

K (R) := Ca max(R, e2C0
√
RT ) ,

as well as guaranteeing that C2
2 := supN ,t{E[F(t)2]} is finite and that P(Lc

N ,R) ≤
exp(−√

RN/C3) for some C3(T ,Cμ,CA,Cσ ). Plugging all this into (4.15) gives us
a family of upper bounds for R ≥ R0,

qN (λ; R) = Ce−λ
√
N/(2D(R)C) + e−√

RN/C3 + 2

λ
(C2 + K (R))e−√

RN/(2C3) .

For R = R0 we can embed the constant factor 2D(R0) into C and further adjust C3 to
bound the pre-exponent 2(C2+K (R0))within the factor exp(−√

R0N/(2C3))multi-
plying it, resultingwithqN (λ; R0) as in the top line on the rhs of (4.14). For a better tail
decay, consider Rλ = (η log λ)2 ≥ R0, with η = 1/(2C1) so D(Rλ) = C1eC1η log λ ≤
C1λ/ log λ for all λ ≥ 4. In addition, once

√
N/(2C3) ≥ 4C0T we can again embed

the pre-exponent 2(C2 + K (Rλ))/λ within the factor exp(−√
RλN/(2C3)) multiply-

ing it . Thus, upon adjusting the various constants we end up with qN (λ; Rλ) as in the
bottom line on the rhs of (4.14).

Setting hereafter R for the larger of R0 and Rλ values from the preceding proof
of Proposition 4.6, recall that the event Lc

N ,R was already ruled out as part of the

derivation of (4.14). Thus, proceeding to prove Theorem 2, we fix ε = N−k , k > 1,
and apply Proposition 4.6 at the MN = �T Nk�2 grid points ti, j = (iε, jε) within
[0, T ]2, to deduce by the union bound that

P(Lc
N ,R) + P

(
sup
i, j

∣∣F(ti, j ) − E[F(ti, j )]
∣∣ > λ,LN ,R

)
≤ MN qN (λ) .

It is easy to check that 2MNqN (λ) is further bounded by pN (3λ) of (1.12) once we
suitably enlarge the constant C on the rhs of (1.12) relative to that of (4.14). In
addition, since the right-most term in (4.15) exceeds one whenever E[|V |1Lc

N ,R
] =
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E[|F(t)|1Lc
N ,R

] ≥ λ/2, if that inequality holds for any t ∈ [0, T ]2, then qN (λ) and in

turn pN (3λ) of (1.12) would exceed one. Thus, we may assume wlog that

sup
t,s:t+s∈[0,T ]2

{E[|F(t + s) − F(t)| 1Lc
N ,R

]} ≤ 2 sup
t∈[0,T ]2

E[|F(t)|1Lc
N ,R

] ≤ λ .(4.16)

We can then expand

P

(
sup

t∈[0,T ]2
∣∣F(t) − E[F(t)]∣∣ > 3λ

)

≤ P(Lc
N ,R) + P

(
sup
i, j

|F(ti, j ) − E[F(ti, j )]| > λ,LN ,R

)

+ MN sup
i, j

P

(
sup

s∈[0,ε]2
|F(ti, j + s) − F(ti, j )| > λ,LN ,R

)

+ 1
{
sup
t,s

E[|F(t + s) − F(t)|1LN ,R ] > λ
}

.

Restricting to λ > 1/
√
N (as otherwise pN (3λ) ≥ 1), and using pN (3λ) �

MN exp(−(λ2 ∧ λ)Nk/C ′) (as k > 1) with the above, the stated bound of Theo-
rem 2, follows from the following short-time estimates.

Lemma 4.7 There exists C ′(Cσ ), such that for every ε ≤ 1, λ ≥ C ′ε, and F as in
Theorem 2,

sup
t∈[0,T−ε]2

P

(
sup

s∈[0,ε]2
|F(t + s) − F(t)| > λ, LN ,R

)
≤ 2e−(λ2∧λ)/(C ′ε) . (4.17)

In particular, for any N ≥ N0(T ,Ca,Cμ,C�) and λ ≥ N−1/2 = ε1/(2k), k > 1,

sup
t∈[0,T−ε]2,s∈[0,ε]2

E
[|F(t + s) − F(t)|1LN ,R

] ≤ λ . (4.18)

Proof Similarly to the computation leading to (4.13),wefind that for any t+s ∈ [0, T ]2
and F as in Theorem 2, evaluated on the solution Xt (X0, J,M) that corresponds to
some (X0, J,M) ∈ LN ,R

|F(t + s) − F(t)| ≤ 2CaeC0
√
RT

√
N

max
Y∈F

max
i=1,2

{‖Y(ti + si ) − Y(ti )‖} .

When Y = 1 this difference is zero, whereas in case Y = X and si ≤ ε, assuming
wlog that R0,C� ≥ 1, we have on LN ,R , by (4.5) and the rhs of (4.8), that

‖Xti+si − Xti ‖ ≤ ‖Mti+si − Mti ‖ +
∫ ti+si

ti
[ ‖Gu‖ + C�‖Xu‖ + √

NCh ] du

≤ ‖Mti+si − Mti ‖ + 3ε
√
NC�e

C0
√
RT . (4.19)
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Further, similarly to the lhs of (4.11), on LN ,R ,

‖Gti+si − Gti ‖ ≤ ‖J‖2→2‖Xti+si − Xti ‖ ≤ √
R‖Xti+si − Xti ‖ ,

so up to extra factor
√
R the bound (4.19) applies for Y = G, and considering all

cases we get for s ∈ [0, ε]2,

|F(t + s) − F(t)| ≤ 2Ca
√
ReC0

√
RT

√
N

max
i=1,2

‖Mti+si − Mti ‖

+6εCaC�

√
Re2C0

√
RT . (4.20)

For some C ′ > 0, when R = R0 and λ ≥ C ′ε, the right most term in (4.20) can not
exceed λ/2. The same applies for R = Rλ = (η log λ)2 provided η ≤ 1/(3C0T ). By
the same reasoning, for such η and some C4(T ,Ca, R0) > 0, the factor multiplying
‖Mti+si −Mti ‖ in (4.20), is in both cases atmost (

√
λ∨1)/(2C4

√
N ). Recall from (4.2)

and the stationarity of Brownian increments, that there existsC(Cσ ) such that for every
L ≥ ε2L0(Cσ ), every N ,

sup
t∈[0,T−ε]

PB

(
sup

s∈[0,ε]
{‖Mt+s − Mt‖} > L

√
N
)

≤ e−3L2/(Cε) . (4.21)

Combining (4.20) and (4.21), we thus get that for some C ′(Cσ ), for every λ ≥ C ′ε,
and every N , t = (t1, t2),

P

(
sup

s∈[0,ε]2
|F(t + s) − F(t)| > λ, LN ,R

)

≤ 2 max
i=1,2

P

(
sup

s∈[0,ε]
‖Mti+s − Mti ‖ > C4(λ ∧ √

λ)
√
N
)

≤ 2e−(λ2∧λ)/(C ′ε) ,

as claimed in (4.17). Next, by Cauchy-Schwarz, (4.7) and (4.17), there exists
C(T ,Ca,Cμ,C�) such that for every N ≥ N0(T ,Ca,Cμ,C�), every λ ≥ 2C ′ε,
every t, s and all F ,

E
[|F(t + s) − F(t)|1LN ,R

] ≤ λ

2
+ 2P

(|F(t + s) − F(t)| >
λ

2
, LN ,R

)1/2
sup

t∈[0,T ]2
{
√
E[F(t)2]}

≤ λ

2
+ Ce−(λ2∧λ)/(4C ′ε) .

Our assumption that λ ≥ ε1/(2k) for some k > 1 guarantees that the right most term
is at most λ/2 (as soon as N ≥ N0), thereby establishing (4.18).
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