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Abstract We prove a conjecture raised by the work of Diaconis and Shahshahani (Z
Wahrscheinlichkeitstheorie Verwandte Geb 57(2):159–179, 1981) about the mixing
time of random walks on the permutation group induced by a given conjugacy class.
To do this we exploit a connection with coalescence and fragmentation processes and
control theKantorovich distance by using a variant of a coupling due toOdedSchramm
as well as contractivity of the distance. Recasting our proof in the language of Ricci
curvature, our proof establishes the occurrence of a phase transition, which takes the
following form in the case of random transpositions: at time cn/2, the curvature is
asymptotically zero for c ≤ 1 and is strictly positive for c > 1.
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1 Introduction

1.1 Main results

Let Sn denote the multiplicative group of permutations of {1, . . . , n}. Let � ⊂ Sn be
a fixed conjugacy class in Sn , i.e., � = {gγ g−1 : g ∈ Sn} for some fixed permutation
γ ∈ Sn . Alternatively,� is the set of permutation inSn having the same cycle structure
asγ . Let Xσ = (X0, X1, . . .)bediscrete-time randomwalkonSn inducedby�, started
in the permutation σ ∈ Sn , and let Y σ be the associated continuous time randomwalk.
These are the processes defined by

Xσ
t = σ ◦ γ1 ◦ · · · ◦ γt ; t = 0, 1, . . .

Y σ
t = Xσ

Nt
; t ∈ [0,∞)

(1)

where γ1, γ2, . . . are i.i.d. random variables which are distributed uniformly in �;
and (Nt , t ≥ 0) is an independent Poisson process with rate 1. Then Y is a Markov
chain which converges to an invariant measure μ as t → ∞. If � ⊂ An (where An

denotes the alternating group) then μ is uniformly distributed on An and otherwise
μ is uniformly distributed on Sn . The simplest and most well known example of
a conjugacy class is the set T of all transpositions, or more generally of all cyclic
permutations of length k ≥ 2. This set will play an important role in the rest of the
paper. Note that� depends on n but we do not indicate this dependence in our notation.

The main goal of this paper is to study the cut-off phenomenon for the randomwalk
X . More precisely, recall that the total variation distance ‖X − Y‖T V between two
random variables X , Y taking values in a set S is given by

‖X − Y‖T V = sup
A⊂S

|P(X ∈ A) − P(Y ∈ A)|. (2)

For 0 < δ < 1, the mixing time tmix(δ) is by definition given by
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tmix(δ) = inf{t ≥ 0 : dTV (t) ≤ δ}

where
dTV (t) = sup

σ
‖Y σ

t − μ‖T V (3)

and μ is the invariant measure defined above.
In the case where � = T is the set of transpositions, a famous result of Diaconis

and Shahshahani [10] is that the cut-off phenomenon takes place at time (1/2)n log n
asymptotically as n → ∞. That is, tmix(δ) is asymptotic to (1/2)n log n for any fixed
value of 0 < δ < 1. It has long been conjectured that for a general conjugacy class
such that |�| = o(n) (where here and in the rest of the paper, |�| denotes the number
of non fixed points of any permutation γ ∈ �), a similar result should hold at a time
(1/|�|)n log n. This has been verified for k-cycles with a fixed k ≥ 2 by Berestycki et
al. [6]. This is a problem with a substantial history which will be detailed below. The
primary purpose of this paper is to verify this conjecture. Hence our main result is as
follows.

Theorem 1.1 Let � ⊂ Sn be a conjugacy class and suppose that |�| = o(n). Define

tmix := 1

|�|n log n. (4)

Then for any ε > 0,

lim
n→∞ dTV ((1 − ε) tmix) = 1 and lim

n→∞ dTV ((1 + ε) tmix) = 0. (5)

The first limit of (5) is proved in Appendix A. The rest of the paper focuses on
the second limit. Our main tool for this result is the notion of discrete Ricci curvature
as introduced by Ollivier [18], for which we obtain results of independent interest.
We briefly discuss this notion here; however we point out that this turns out to be
equivalent to the more well-known path coupling method and transportation metric
introduced by Bubley and Dyer [8] and Jerrum [14] (see for instance Chapter 14 of
the book [16] for an overview). However we will cast our results in the language of
Ricci curvature because we find it more intuitive. Recall first that the definition of the
L1-Kantorovich distance (sometimes also calledWasserstein or transportation metric)
between two random variables X,Y taking values in a metric space (S, d) is given by

W1(X,Y ) := inf E[d(X̂ , Ŷ )] (6)

where the infimum is taken over all couplings (X̂ , Ŷ )which are distributed marginally
as X and Y respectively. Ollivier’s definition of Ricci curvature of a Markov chain
(Xt , t ≥ 0) on a metric space (S, d) is as follows:

Definition 1.1 Let t > 0. The curvature between two points x, x ′ ∈ S with x �= x ′ is
given by

κt (x, x
′) := 1 −

W1

(
Xx
t , X

x ′
t

)

d(x, x ′)
(7)
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where Xx
t and Xx ′

t denote Markov chains started from x and x ′ respectively. The
curvature of X is by definition equal to

κt := inf
x �=x ′ κt (x, x

′).

In the terminology of Ollivier [18], this is in fact the curvature of the discrete-time
random walk whose transition kernel is given by mx (·) = P(Xt = ·|X0 = x). We
refer the reader to [18] for an account of the elegant theory which can be developed
using this notion of curvature, and point out that a number of classical properties of
curvature generalise to this discrete setup.

For our results it will turn out to be convenient to view the symmetric group as a
metric space equipped with the metric d which is the word metric induced by the set
T of transpositions (we will do so even when the random walk is not induced by T but
by a general conjugacy class �). That is, the distance d(σ, σ ′) between σ, σ ′ ∈ Sn is
the minimal number of transpositions one must apply to get from one element to the
other (one can check that this number is independent of whether right-multiplications
or left-multiplications are used).

For simplicity we focus in this introduction on the case where the random walk is
induced by the set of transpositions T . (A more general result will be stated later on
the paper). For c > 0 and σ �= σ ′, let

κc(σ, σ ′) = 1 −
W1

(
Xσ�cn/2/, Xσ ′

�cn/2
)

d(σ, σ ′)
(8)

and define κc(σ, σ ) = 1. That is, κc(σ, σ ′) = κ�cn/2(σ, σ ′) with our notation from
(7). In particular, κc depends on n but this dependency does not appear explicitly in
the notation. It is not hard to see that κc(σ, σ ′) ≥ 0 (apply the same transpositions
to both walks Xσ and Xσ ′

). For parity reasons it is obvious that κc(σ, σ ′) = 0 if σ

and σ ′ do not have the same signature. Thus we only consider the curvature between
elements of even distance. For c > 0 define

κc = inf κc(σ, σ ′),

where the infimum is taken over all σ, σ ′ ∈ Sn such that d(σ, σ ′) is even. Our main
result states that κc experiences a phase transition at c = 1. More precisely, the
curvature κc is asymptotically zero for c ≤ 1 but for c > 1 the curvature is strictly
positive asymptotically. In order to state our result, we introduce the quantity θ(c),
which is the largest solution in [0, 1] to the equation

θ(c) = 1 − e−cθ(c). (9)

It is easy to see that θ(c) = 0 for c ≤ 1 and θ(c) > 0 for c > 1. In fact, θ(c)
is nothing else but the survival probability of a Galton–Watson tree with Poisson
offspring distribution with mean c.

Theorem 1.2 For any c > 0, we have:

θ(c)4 ≤ lim inf
n→∞ κc ≤ lim sup

n→∞
κc ≤ θ(c)2 (10)
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In particular, limn→∞ κc = 0 if and only if c ≤ 1, while lim infn→∞ κc > 0 otherwise.

A more general version of this theorem will be presented later on, which gives
results for the curvature of a random walk induced by a general conjugacy class �.
This will be stated as Theorem 2.3.

We believe that the upper bound is the sharp one here, and thus make the following
conjecture.

Conjecture 1.3 For c > 0,

lim
n→∞ κc = θ(c)2.

Of course the conjecture is already established for c ≤ 1 and so is only interesting for
c > 1.

1.2 Relation to previous works on the geometry of random transpositions

The transition described byTheorem1.2 says that the discreteRicci curvature increases
abruptly (asymptotically) from zero to a positive quantity as c increases past the critical
value c = 1, and so as we consider longer portions of the random walk. It is related to
a result proved by the first author in [2]. There it was shown that the triangle formed
by the identity and two independent samples Xt and X ′

t from the random walk run for
time t = cn/4, is thin (in the sense of Gromov hyperbolicity) if and only if c < 1.
Note that by reversibility, the path running from Xt to X ′

t (via the identity) is a random
walk run for time cn/2. In other words, the result from [2] implies that the permutation
group appears Gromov hyperbolic from the point of view of a random walker so long
as it takes fewer than cn/2 steps with c < 1.

Hence, in both Theorem 1.2 and [2], there is a change of geometry (as perceived
by a random walker) from low to high curvature after running for exactly t = cn/2
steps with c = 1. At this point, we do not know of a formal way to relate these two
observations, so they simply seem analogous. In a private conversation with the first
author in 2005, Gromov had suggested that the hyperbolicity transition of [2] could
be translated more canonically into the language of Ricci curvature and was an effect
of the global positive curvature of Sn rather than a breakdown in hyperbolicity. In a
sense, Theorem 1.2 can be seen as a formalisation and justification of his prediction.

1.3 Relation to previous works on mixing times

Mixing times of Markov chains were initiated independently by Aldous [1] and by
Diaconis and Shahshahani [10]. In particular, as already mentioned, Diaconis and
Shahshahani proved Theorem 1.1 in the case where � is the set T of transposi-
tions. Their proof relies on some deep connections with the representation theory
of Sn and bounds on so-called character ratios. The conjecture about the general
case appears to have first been made formally in print by Roichman [20] but it
has no doubt been asked privately before then. We shall see that the lower bound
tmix(δ) ≥ (1 + o(1))(1/|�|)n log n is fairly straightforward (it is carried out in
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1202 N. Berestycki, B. Şengül

Appendix A and is as usual based on a coupon-collector type argument); the diffi-
cult part is the corresponding upper bound.

Flatto et al. [13] built on the earlier work of Vershik and Kerov [25] to obtain that
tmix(δ) ≤ (1/2+o(1))n log n when |�| is bounded (as is noted in [9, pp. 44–45]). This
was done using character ratios and this method was extended further by Roichman
[20,21] to show an upper bound on tmix(δ) which is sharp up to a constant when
|�| = o(n) (and in fact, more generally when |�| is allowed to grow to infinity as fast
as (1−δ)n for any δ ∈ (0, 1)). Again using character ratios Lulov and Pak [17] showed
the cut-off phenomenon as well as tmix = (1/|�|)n log n in the case when |�| ≥ n/2.
Roussel [22,23] obtains the correct value of themixing time and establishes the cut-off
phenomenon for the case |�| ≤ 6.

Finally, let us discuss two more recent papers to which this work is most closely
related to. Berestycki et al. [6], show using coupling arguments and a connection
to coalescence–fragmentation processes that the cutoff phenomenon occurs at tmix =
(1/k)n log n in the case when� consists only of cycles of length k for any k ≥ 2 fixed.

Shortly after, Bormashenko [7] devised a path coupling argument for the
coagulation-fragmentation process associated to random transpositions to obtain a new
proof of a slightly weaker version of the Diaconis–Shahshahani result: her argument
implies that the mixing time of random transpositions is O(n log n) (unfortunately the
implicit multiplicative constant is not sharp, so this is not sufficient to obtain cutoff).
See also [19] for another discussion of her results together with a reformulation in the
language of coarse Ricci curvature. In a way her approach is very similar to ours, to the
point that it can be considered a precursor to our work, since our method is also based
on a certain path coupling for the coagulation-fragmentation process which exploits
certain remarkable properties of Schramm’s coupling [6,24].

Comparison with [6] The authors in Berestycki et al. [6] remark that their proof can
be extended to cover the case when � is a fixed conjugacy class and indicate that their
methods can probably be pushed to cover the case when |�| = o(n1/2), but it is clear
that new ideas are needed if |�| is larger. Indeed, their argument uses very delicate
estimates about the behaviour of small cycles, together with a variant of a coupling due
to Schramm [24] to deal with large cycles. The most technical part of their argument
is to analyse the distribution of small cycles, using delicate couplings and carefully
bounding the error made in these couplings.

However,when k = |�| is larger thann1/2,we canno longer thinkof the points in the
conjugacy class as being sampled independently (with replacement) from {1, . . . , n},
by the birthday problem. This introduces many more ways in which errors in the
above coupling arguments could occur. These seem quite hard to control, and hence
new ideas are required for the general case.

The proof in this paper relies on similar observations as [6], and in particular the
connection with coalescence–fragmentation process as well as Schramm’s coupling
argument play a crucial role. Thekeynew ideahowever, is to try to provemixingnot just
in the total variation sense but in the stronger sense of the L1-Kantorovich distance
(Ricci curvature) and to estimate it at a time well before the mixing time, roughly
O(n/k) instead of O(n(log n)/k). This may seem counterintuitive initially, however
studying the random walk at this time scale allows us to make precise comparisons
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between the random walk and an associated random graph process. It turns out the
random graph at these time scales can be described rather precisely. Furthermore,
due to the contraction properties of the Kantorovich distance, somehow (and rather
miraculously, we find), the estimate we obtain can be bootstrapped with sufficient
precision to yield mixing exactly at the time tmix = (1/k)n log n.

In particular, since the heart of the proof consists in studying the situation at a
time well before mixing, and purely to take advantage of the giant component at such
times, we never have to study the distribution of small cycles. This is really quite
surprising, given that the small cycles (in particular, the fixed points) are responsible
for the occurrence of the cutoff at time tmix.

1.4 Organisation of the paper

We stress that compared to [6], the main arguments are quite elementary. The heart
of the proof is contained in Sects. 4.2 and 2 . Readers who are familiar with [6] are
encouraged to concentrate on these two short sections.

The paper is organised as follows. In Sect. 2 we state and discuss Theorem 2.3,
which is a general curvature theorem (of which Theorem 1.2 is the prototype). We also
discuss why this implies the main theorem (Theorem 1.1). In Sect. 3.1 we study the
associated random hypergraph process. The main result in that section is Theorem 3.1,
which proves the existence and uniqueness of the giant component. Curiously this is
the most technical aspect of the paper, and really the only place where the myriad of
ways in which the conjugacy class � might be really big plays a role and needs to be
controlled. Section 4 contains a proof of the main curvature theorem (Theorem 2.3),
starting with the easy upper bound on curvature (Sect. 4.1) and following up with the
slightly more complex lower bound (Sect. 4.2), which really is the heart of the proof.
The two appendices contain respectively a proof of the lower bound on themixing time
(certainly known in the folklore, essentially a version of the coupon collector lemma);
and an adaptation of Schramm’s argument [24] for the Poisson–Dirichlet structure of
cycles inside the giant component, which is needed in the proof.

2 Curvature and mixing

2.1 Curvature theorem

As discussed above, the lower bound (5) is relatively easy and is probably known in
the folklore; we give a proof in Appendix A.We now start the proof of the main results
of this paper, which is the upper bound (the right hand side) of (5). In this section, we
first state the more general version of Theorem 1.2 discussed in the introduction, and
we will then show how this implies the desired result for the upper bound on tmix(δ).
To begin, we define the cycle structure (k2, k3, . . . ) of � to be a vector such that for
each j ≥ 2, there are k j cycles of length j in the cycle decomposition of any γ ∈ �

(note that this does not depend on τ ∈ �). Then k j = 0 for all j > n and we have that
k := |�| = ∑∞

j=2 jk j .
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In the case for the transposition random walk the quantity θ(c) which appears
in the bounds is the survival probability of a Galton–Watson process with offspring
distribution given by a Poisson random variable with mean c. Our first task is to
generalise θ(c). We do so via a fixed point equation, which is more complex here.
Define

α j = jk j
k

,

and note that α j ∈ [0, 1] (α j is the proportion of the mass in cycles of size j for any
γ ∈ �). Thus (α j ) j≥2 is compact in the product topology (the topology of pointwise
convergence). Suppose that the limit

(ᾱ2, ᾱ3, . . . ) := lim
n→∞ (α2, α3, . . . ) (C)

exists, where the limit is taken to be pointwise. It follows that for each j ≥ 2, ᾱ j ∈
[0, 1] and ∑∞

j=2 ᾱ j ≤ 1 by Fatou’s lemma. Note that the sum is strictly less than 1
when a positive fraction of the mass of conjugacy class � comes from cycles whose
size tends to ∞. This will be an important distinction in what follows. For x ∈ [0, 1]
and c > 0 define

ψ(x, c) = exp

⎧⎨
⎩−c

⎛
⎝1 −

∞∑
j=2

ᾱ j (1 − x) j−1

⎞
⎠
⎫⎬
⎭ . (11)

Note that for each c > 0, x �→ ψ(x, c) is convex on [0, 1]. Moreover, the function
x �→ ψ(1− x, c) is the generating function of a random variable whose law depends
on c and is degenerate if

∑
j≥2 ᾱ j < 1. Note that in the case � = T of transpositions,

ψ(x, c) = e−cx so that random variable is simply Poisson (c).

Lemma 2.1 Define

c� :=
⎧⎨
⎩

(∑∞
j=2( j − 1)ᾱ j

)−1
if
∑∞

j=2 ᾱ j = 1

0 if
∑∞

j=2 ᾱ j < 1.
(12)

Then for c > c� there exists a unique θ(c) ∈ (0, 1) such that

θ(c) = 1 − ψ(θ(c), c).

For c > c� , c �→ θ(c) is increasing, continuous and differentiable. Further
limc↓c� θ(c) = 0 and limc↑∞ θ(c) = 1.

Proof For x ∈ [0, 1] and c > 0 define fc(x) := 1− ψ(x, c) − x . There are two cases
to consider. First suppose that z = ∑∞

j=2 ᾱ j < 1. Then we have that

fc(0) = 1 − e−c(1−z) > 0 and fc(1) = −e−c < 0.

As x �→ fc(x) is concave on [0, 1] it follows that there exists a unique θ(c) ∈ (0, 1)
such that fc(θ(c)) = 0.
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Next suppose that
∑∞

j=2 ᾱ j = 1, then

fc(0) = 0 and fc(1) = −e−c < 0

Moreover we have that

d

dx
fc(x)|x=0 = c

∞∑
j=2

( j − 1)ᾱ j − 1.

Hence for c > c� we have that d
dx fc(x)|x=0 > 0 and again by concavity it follows

that there exists a unique θ(c) ∈ (0, 1) such that fc(θ(c)) = 0.
For the rest of the statements suppose that c > c� . The fact that c �→ θ(c) is

increasing follows from the definition of ψ(x, c) and the fact that θ(c) = ψ(θ(c), c).
Continuity and differentiability for c > c� is a straightforward application of the
inverse function theorem.

Notice that θ(c) ∈ [0, 1] and is monotone, hence θ(c) converges as c ↓ c� to a
limit L . Then it follows that L solves the equation L = 1 − ψ(L , c�). This equation
has only a zero solution and thus L = 0 and hence limc↓c� θ(c) = 0. The limit as
c ↑ ∞ follows from a similar argument. ��
Remark 2.2 In the case when � = T is the set of transpositions we have that k′

2 = 1
and ᾱ j = 0 for j ≥ 3, hence ψ(x, c) = e−cx and thus the definition of θ(c) above
agrees with the definition given in the introduction.

Having introduced θ(c)we now introduce the notion of Ricci curvature we will use
in the general case. For c > 0 and σ �= σ ′, let

κc(σ, σ ′) = 1 −
W1

(
Xσ�cn/k, Xσ ′

�cn/k
)

d(σ, σ ′)
(13)

where d is the graph distance associated with transpositions (even in the case � �= T ).
Define κc(σ, σ ) = 1. Then let

κc = inf κc(σ, σ ′),

where the infimum is taken over all σ, σ ′ ∈ Sn such that d(σ, σ ′) is even. That is,
κc(σ, σ ′) = κ�cn/k(σ, σ ′) with our notation from (7). We now state a more general
form of Theorem 1.2 which in particular covers the case of Theorem 1.2.

Theorem 2.3 Let � ⊂ Sn be a conjugacy class such that k = |�| = o(n) and the
convergence in (C) holds. Recall the definition of c� from (12). Then for c ≤ c� ,

lim
n→∞ κc = 0. (14)

On the other hand, for c > c�
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1206 N. Berestycki, B. Şengül

θ(c)4 ≤ lim inf
n→∞ κc ≤ lim sup

n→∞
κc ≤ θ(c)2 (15)

where θ(c) is the unique solution in (0, 1) of

θ(c) = 1 − ψ(θ(c), c). (16)

where ψ is given by (11).

2.2 Curvature implies mixing

Wenow show howTheorem 2.3 implies the second limit in Theorem 1.1. First suppose
that � = �(n) is a sequence of conjugacy classes for which the limit (C) holds
and |�| = o(n). Again fix ε > 0 and define t = (1 + 2ε)(1/k)n log n and let
t ′ = �(1 + ε)(1/k)n log n where k = |�|. We are left to prove that dTV (t) → 0 as
n → ∞. For s ≥ 0 let

d̄T V (s) := sup
σ,σ ′

‖Xσ
s − Xσ ′

s ‖T V ,

where the sup is taken over all permutations at even distances. We first claim that it
suffices to prove that

d̄T V (t ′) → 0 as n → ∞. (17)

Indeed, assume that d̄T V (t ′) → 0 as n → ∞. Then there are two cases to consider.
Assume that � ⊂ An . Then Xs ∈ An for all s ≥ 1 and μ is uniform on An . Then by
Lemma 4.11 in [16],

sup
σ∈An

∥∥Xσ
t ′ − μ

∥∥
T V ≤ 2d̄T V (t ′).

Hence Theorem 1.1 (or more precisely the second limit in that theorem) follows from
(17) in this case. In the second case, � ⊂ Ac

n . In this case Xs ∈ An for s even, and
Xs ∈ Ac

n for s odd. Using the same lemma, we deduce that if s ≥ t ′ is even,∥∥∥X id
s − μ1

∥∥∥
T V

≤ 2d̄T V (s)

where μ1 is uniform on An . However, if s ≥ t ′ is odd,
∥∥∥X id

s − μ2

∥∥∥
T V

≤ 2d̄T V (s)

where this time μ2 is uniform on Ac
n . Let N = (Ns : s ≥ 0) be the Poisson clock of

the random walk Y . Then P(Ns even) → 1/2 as s → ∞, μ = (1/2)(μ1 + μ2), and
P(Nt ≥ t ′) → 1 as n → ∞. Thus we deduce that

∥∥∥Y id
t − μ

∥∥∥
T V

→ 0.

Again, the second limit in Theorem 1.1 follows. Hence it suffices to prove (17).
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Note that for any two random variables X,Y on a metric space (S, d) we have the
obvious inequality ‖X −Y‖T V ≤ W1(X,Y ) provided that x �= y implies d(x, y) ≥ 1
on S. This is in particular the case when S = Sn and d is the word metric induced
by the set T of transpositions. In other words it suffices to prove mixing in the L1-
Kantorovich distance.

Note that by definition of κc, if σ , σ ′ are at an even distance then

W1

(
Xσ�cn/k, Xσ ′

�cn/k
)

≤ (1 − κc)d(σ, σ ′),

so that, iterating as in Corollary 21 of [18] (and noting that the distance between
Xσ�cn/k and Xσ ′

�cn/k is again even), we have for each s ≥ 1,

sup
d(σ,σ ′) even

W1

(
Xσ
s�cn/k, Xσ ′

s�cn/k
)

≤ (1 − κc)
s sup
d(σ,σ ′) even

d(σ, σ ′) ≤ n(1 − κc)
s

(18)
since the diameter of Sn is equal to n − 1. Solving n(1 − κc)

s ≤ δ we get that

s ≥ log n − log δ

− log(1 − κc)
(19)

Thus if u = scn/k ≥ s�cn/k, it suffices that

u ≥ 1

k

c

− log(1 − κc)
n(log n − log δ). (20)

Now, Theorem 2.3 gives

lim inf
n→∞ − log(1 − κc) ≥ − log(1 − θ(c)4).

Lemma 2.4 We have that

lim
c→∞

c

log(1 − θ(c)4)
= −1.

Proof Using L’Hopital’s rule twice we have that

lim
θ↑1

log(1 − θ)

log(1 − θ4)
= lim

θ↑1
1 − θ4

(1 − θ)4θ3
= 1.

Next we have that limc→∞ θ(c) = 1 and hence

lim
c→∞

c

log(1 − θ(c)4)
= lim

c→∞
c

log(1 − θ(c))
= lim

c→∞
c

logψ(θ(c), c)

= lim
c→∞ − 1

1 − ∑∞
j=2 ᾱ j (1 − θ(c)) j−1

= −1.

��
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1208 N. Berestycki, B. Şengül

Consequently we have that for u ≥ t ′ = �(1 + ε)(1/k)n log n u satisfies (20) for
some sufficiently large c > c� . Hence lim supn→∞ d̄T V (t ′) → 0 and thus (17) holds,
which shows Theorem 1.1 for conjugacy classes such that the limit in (C) exists and
|�| = o(n).

Now suppose that � is a conjugacy class such that |�| = o(n). Let t ′ = �(1 +
ε)(1/|�|)n log n and notice that dTV (t ′) is bounded. Along any subsequence {ni }i≥1
such that limni→∞ dTV (t ′) exists, we can extract a further sub-sequence {ni j } j≥1 such
that (C) holds since (α j ) j≥2 ∈ [0, 1]∞ which is compact under the product topology.
Then we see that limni j →∞ dTV (t ′) = 0 and consequently limni→∞ dTV (t ′) = 0.

Since dTV (t ′) is bounded and converges to 0 along any convergent subsequence, we
conclude that limn→∞ dTV (t ′) = 0, thus concluding the proof.

2.3 Stochastic commutativity

To conclude this section on curvature, we state a simple but useful lemma. Roughly,
this says that the random walk is “stochastically commutative”. This can be used to
show that the L1-Kantorovich distance is decreasing under the application of the heat
kernel. In other words, initial discrepancies for the Kantorovich metric between two
permutations are only smoothed out by the application of random walk.

Lemma 2.5 Let σ be a random permutation with distribution invariant by conjugacy.
Let σ0 be a fixed permutation. Then σ0 ◦ σ has the same distribution as σ ◦ σ0.

Proof Define σ ′ = σ0 ◦ σ ◦ σ−1
0 . Then since σ is invariant under conjugacy, the law

of σ ′ is the same as the law of σ . Furthermore, we have σ0 ◦ σ = σ ′ ◦ σ0 so the result
is proved. ��

This lemma will be used repeatedly in our proof, as it allows us to concentrate on
events of high probability for our coupling.

3 Preliminaries on random hypergraphs

For the proof of Theorem 1.1 we rely on properties of certain random hypergraph
processes. The reader who is only interested in a first instance in the case of random
transpositions, and is familiar with Erdős–Renyi random graphs and with the result of
Schramm [24] may safely skip this section.

3.1 Hypergraphs

In this section we present some preliminaries which will be used in the proof of
Theorem 2.3. Throughout we let � ⊂ Sn be a conjugacy class and let (k2, k3, . . . )
denote the cycle structure of �. Thus � consists of permutations such that in their
cycle decomposition they have k2 many transpositions, k3 many 3-cycles and so on.
Note that we have suppressed the dependence of � and (k2, k3, . . . ) on n. We assume
that (C) is satisfied so that for each j ≥ 2, jk j/|�| → ᾱ j as n → ∞. We also let
k = |�| so that k = ∑

j≥2 jk j , as usual.
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Definition 3.1 A hypergraph H = (V, E) is given by a set V of vertices and E ⊂
P(V ) of edges, where P(V ) denotes the set of all subsets of V . An element e ∈ E is
called a hyperedge and we call it a j-hyperedge if |e| = j .

Consider the random walk X = (Xt : t = 0, 1 . . .) on Sn where Xt = X id
t with

our notations from the introduction. Hence

Xt = γ1 ◦ · · · ◦ γt

where the sequence (γi )i≥1 is i.i.d. uniform on �. A given step of the random walk,
say γs , can be broken down into cycles, say γs,1 ◦ · · · γs,r where r = ∑

j k j . We will
say that a given cyclic permutation γ has been applied to X before time t if γ = γs,i
for some s ≤ t and 1 ≤ i ≤ r .

To X we associate a certain hypergraph process H = (Ht : t = 0, 1, . . .) defined
as follows. For t = 0, 1, . . ., Ht is a hypergraph on {1, . . . , n} where a hyperedge
{x1, . . . , x j } is present if and only if a cyclic permutation consisting of the points
x1, . . . , x j in some arbitrary order has been applied to the random walk X prior to
time t as part of one of the γi ’s for some i ≤ t . Thus at every step, we add to Ht k j
hyperedeges of size j sampled uniformly at random without replacement, and these
edges are independent from step to step. However, note that the presence of hyperedges
themselves are not in general independent.

3.2 Giant component of the hypergraph

In the case � = T , the set of transpositions, the hypergraph Hs is a realisation of an
Erdős–Renyi graph. Analogous to Erdős–Renyi graphs, we first present a result about
the size of the components of the hypergraph process H = (Ht : t = 0, 1, . . . ) (where
by size, we mean the number of vertices in this component). For the next result recall
the definition of ψ(x, c) in (11). Recall that for c > c� , where c� is given by (12),
there exists a unique root θ(c) ∈ (0, 1) of the equation θ(c) = 1 − ψ(θ(c), c).

Theorem 3.1 Consider the random hypergraph Hs and suppose that s = s(n) is such
that sk/n → c as n → ∞ for some c > c� . Then there is a universal constant D > 0
such that with probability tending to one all components but the largest have size at
most Dn2/3(log(n))3. Furthermore, the size of the largest component, normalised by
n, converges to θ(c) in probability as n → ∞.

Of course, this is the standard Erdős–Renyi theorem in the case where � = T
is the set of transpositions. See for instance [12], in particular Theorem 2.3.2 for a
proof. In the case of k-cycles with k fixed and finite, this is the case of random regular
hypergraphs analysed byKaroński and Łuczak [15]. For the slightly more general case
of bounded conjugacy classes, this was proved by Berestycki [4].

Discussion Note that the behaviour of Hs in Theorem 3.1 can deviate markedly from
that of Erdős–Renyi graphs. The most obvious difference is that Hs can contain
mesoscopic components, something which has of course negligible probability for
Erdős–Renyi graphs. For example, suppose � consists of n1/2 transpositions and one
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1210 N. Berestycki, B. Şengül

cycle of length n1/3. Then the giant component appears at time n1/2/2 with a phase
transition (i.e., c� > 0, because in this case

∑
ᾱ j = 1, as most of the mass comes

from microscopic cycles). Yet even at the first step there is a component of size n1/3.
Nevertheless we will see that once there is a giant component there is a limit to how
big can the nongiant component be (we show this is less that O(n2/3) up to logarithmic
terms; this is certainly not optimal).

From a technical point of view this has nontrivial consequences, as proofs of the
existence of a giant component are usually based on the dichotomy between micro-
scopic components and giant components. Furthermore, when the conjugacy class is
large and consists of many small or mesoscopic cycles, the hyperedges have a strong
dependence, which makes the proof very delicate.

In effect, perhaps surprisingly this will be the only place of the proof where all
the possible ways in which the conjugacy class � might be big (potentially of size
very close to n), needs to be handled. The difficulty of the proof below is to find an
argument which works no matter how � is made up, so long as k = |�| = o(n). This
is of course also the problem in the original question of studying the mixing time of
the random walk induced by �. However, what we have gained here compared to this
original question, is the monotonicity of component sizes when hyperedges are added
to Hs .

Preliminaries: exploration Suppose that s = s(n) is such that sk/n → c for some
c > 0 as n → ∞ for some c ≥ 0. We reveal the vertices of the component containing
a fixed vertex v ∈ {1, . . . , n} using breadth-first search exploration, as follows. There
are three states that each vertex can be: unexplored, removed or active. Initially v

is active and all the other vertices are unexplored. At each step of the iteration we
select an active vertex w according to some prescribed rule among the active vertices
at this stage (say with the smallest label). The vertex w becomes removed and every
unexplored vertex which is joined tow by a hyperedge becomes active. We repeat this
exploration procedure until there are no more active vertices. At stage i = 0, 1, . . . of
this exploration process, we let Ai , Ri and Ui denote the set of active, removed and
unexplored vertices respectively. Thus initially A0 = {v}, U0 = {1, . . . , n}\{v} and
R0 = ∅. We will let ai = |Ai |, ui = |Ui |, ri = |Ri |.

For t = 1, . . . , s we call the hyperedges which are associated with the permutation
γt the t-th packet of hyperedges. Thus note that each packet consists of k j hyper-
edges of size j , j ≥ 2, which are sampled uniformly at random without replacement
from {1, . . . , n}. In particular, within a given packet, hyperedges are not independent.
However, crucially, hyperedges from different packets are independent. We will need
to keep track of the hyperedges we reveal and where they “came from” (i.e., which
packet they were part of), in order to deal with these dependencies. More precisely,
as we explore the hypergraph Hs , we discover various hyperedges of various sizes in
Hs and this may affect the likelihood of other types of hyperedges in subsequent steps
of the exploration process. To account for this, we introduce for t = 1, . . . , s and for
j ≥ 2, the random subset of {1, . . . , n}, Y (t)

j (i), which is defined to be the hyperedges
of size j in the t-th packet that were revealed in the exploration process prior to step
i . We let y(t)

j (i) = |Y (t)
j (i)| denote the number of such hyperedges.
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Additional notations Let i ≥ 0 and letHi denote the filtration generated by the explo-
ration process up to stage i , including the information of the number of hyperedges
of each size in each packet that were revealed up to step i of the exploration process.
That is,

Hi = σ
(
A1, . . . , Ai ,Y

(t)
j (1), . . . ,Y (t)

j (i) : 1 ≤ t ≤ s, j ≥ 2
)

.

Our first goal will be to give uniform stochastic bounds on the distribution of ai+1−ai ,
so long as i is not too large. We will thus fix i (a step in the exploration process) and
in order to ease notations we will often suppress the dependence on i , in Y (t)

j (i): we

will thus simply write Y (t)
j and y(t)

j . Note that by definition, for each t = 1, . . . , s and

j ≥ 2, Y (t)
j ≤ k j and s∑

t=1

∑
j≥2

j y(t)
j ≥ n − ui = ai + i, (21)

where the right hand side counts the total number of vertices explored by stage i , while
the left hand side counts the sum of the sizes of all hyperedges revealed by stage i , so
the ≥ sign accounts for possible intersections between the hyperedges.

Let w be the vertex being explored for stage i + 1. For t = 1, . . . , s let Mt be
the indicator that w is part of an (unrevealed) hyperedge in the t-th packet. Thus,
(Mt )1≤t≤s are independent conditionally given Hi , and

P(Mt = 1|Hi ) =
∑
j≥2

j
(
k j−y(t)

j

)

|Ui | , (22)

since k j − y(t)
j counts the number of hyperedges of size j still unrevealed in the t-th

packet. If w is part of a hyperedge in the t-th packet, let Vt be the size of the (unique)
hyperedge of that packet containing it. Then

P(Vt = j |Hi , Mt = 1) = j
(
k j−y(t)

j

)
∑

m≥2 m(km−y(t)
m )

(23)

Note that when Mt = 1 it implies that the denominator above is non-zero and thus
(23) is well defined. When Mt = 0 we simply put Vt = 1 by convention. Then we
have the following almost sure inequality:

ai+1 − ai ≤ −1 +
s∑

t=1

Mt (Vt − 1). (24)

This would be an equality if it were not for possible self-intersections, as hyperedges
connected to w coming from different packets may share several vertices in common.
In order to get a bound in the other direction, we simply truncate the ai+1 −ai at n1/4.
Let Ii be the indicator that among thefirstn1/4 vertices towhichw is connected, no self-
intersection or intersection with the past occurs. Note that E(Ii ) ≥ pn = 1 − n−1/2,
by straightforward bounds on the birthday problem. We then have
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1212 N. Berestycki, B. Şengül

(ai+1 − ai ) ∧ n1/4 ≥ −1 + Ii

(
s∑

t=1

Mt (Vt − 1) ∧ n1/4
)

. (25)

Organisation of proof of Theorem 3.1 We will stop the exploration process once we
have discovered enough vertices, or if the active set dies out, whichever comes first.
We aim to show that starting from a given vertex v, with probability approximately
θ(c) the cluster of v contains about order n vertices. However, we proceed in stages as
different arguments are needed in order to reach so many vertices. In Step 1, we first
show that the cluster contains about (log n)2 vertices with probability approximately
θ(c). Then in Step 2, given that the exploration of the cluster has discovered (log n)2

vertices, we show that with high probability the exploration will in fact discover n2/3

vertices. Finally, in Step 3we show using the sprinkling technique that any two clusters
that reach a size of about n2/3 can be connected using only very few additional edges,
which implies the result.

Main quantitative lemma We define

T ↓ := inf{i ≥ 1 : ai = 0} (26)

T ↑ := inf{i ≥ 1 : ai > n2/3} (27)

We set T = T ↑ ∧ T ↓. Hence our first goal (which we will show at the end of Step 2)
will be to show that T = T ↑ with probability θ(c): in fact we will show that T↓ occurs
before T ↑ or n2/3 with probability approximately 1 − θ(c). Either way, this means
that the component is greater than n2/3 with probability approximately θ(c). To do
this we need to study the distribution of ai+1 − ai ; the next lemma shows that these
random variables converge in distribution to a sequence of i.i.d. (possibly degenerate)
random variables, uniformly for i < T : the limit is improper if

∑
j ᾱ j < 1.

Equivalently, the active process |Ai | converges (at least for finite dimensional
marginals) to the exploration process of a Galton–Watson tree whose offspring distri-
bution is given by the limit of ai+1−ai +1 and thus has a moment generating function
given by ψ(1 − ·, c).

It is perhaps surprising that the lemma below is sufficient for the proof of The-
orem 3.1: the lemma below essentially only records whether a cycle is microscopic
(finite) or “more than microscopic”; in particular, whether the mass of � comes from
many small mesoscopic or fewer big cycles makes no difference.

Lemma 3.2 For each q0 ∈ [0, 1), there exists some deterministic functionw : N → R

such that w(n) → 0 as n → ∞ with the following property:

sup
i≥1

sup
q∈[0,q0]

∣∣∣E[qai+1−ai |Hi ] − ψ(1−q,c)
q

∣∣∣1{T>i} ≤ w(n)

almost surely.
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Proof Suppose T > i . From (24) we have that

qE[qai+1−ai |Hi ] ≥ E

[
q
∑s

t=1 Mt (Vt−1)|Hi

]
=

s∏
t=1

E

(
qMt (Vt−1)|Hi

)

= ∏s
t=1

[
1 − P(Mt = 1|Hi )

(
1 − E

(
qVt−1|Hi , Mt = 1

))]
.

Recall from (23) that

E(qVt−1|Hi , Mt = 1) =
∑
j≥2

q j−1 j
(
k j−y(t)

j

)
∑

m≥2 m(km−y(t)
m )

≥
∑
j≥2

q j−1 j
(
k j−y(t)

j

)

k

and from (22) that

P(Mt = 1|Hi ) =
∑
m≥2

m(km−y(t)
m )

|Ui | ≤
∑
m≥2

mkm
n−2n2/3

≤ k
n (1 + 3n−1/3)

by definition of T ↑. Therefore, using 1 − x ≥ e−x−x2 for all x sufficiently small,

qE[qai+1−ai |Hi ] ≥
s∏

t=1

⎡
⎣1 − k

n (1 + 3n−1/3)

⎛
⎝1 −

∑
j≥2

q j−1 j
(
k j−y(t)

j

)

k

⎞
⎠
⎤
⎦

≥
s∏

t=1

⎧⎨
⎩1 − k

n

⎛
⎝1 + 3n−1/3 −

∑
j≥2

q j−1α j

⎞
⎠ − k

n (1 + 3n−1/3)
∑
j≥2

q j−1 j y(t)
j
k

⎫⎬
⎭

≥
s∏

t=1

⎧⎨
⎩1 − k

n

⎛
⎝1 −

∑
j≥2

q j−1α j

⎞
⎠ − 3n−1/3 k

n − 1
n (1 + 3n−1/3)

∑
j≥2

j y(t)
j

⎫⎬
⎭

≥ exp

⎧⎨
⎩−s kn

⎛
⎝1 −

∑
j≥2

q j−1α j

⎞
⎠ − O(n−1/3) skn − O

(
s k

2

n2

)
⎫⎬
⎭ . (28)

Hence, since sk/n = O(1) in the regime we are concerned with,

qE
[
qai+1−ai |Hi

] ≥ ψ(1 − q, c)(1 + o(1)) ≥ ψ(1 − q, c) + o(1)

where the o(1) term is non random and independent of i , and for the last inequality
we have used that

exp

⎛
⎝−c

∑
j

q j−1α j

⎞
⎠ → exp

⎛
⎝−c

∑
j

q j−1ᾱ j

⎞
⎠ (29)

which follows from the fact that q ≤ q0 < 1 and the dominated convergence theorem,
as jk j/k is uniformly bounded by 1. Note that the above estimate is uniform in i ≥ 1.
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For the upper bound, we use (25). Let εn → 0 sufficiently slowly that εnn1/3 → ∞.
For concreteness take εn = n−1/6. Define G := {t ∈ {1, . . . , s} : ∑m≥2 my(t)

m ≤
εnk}, and let I = Gc. Packets t ∈ I are the bad packets for which a significant fraction
of the mass corresponding to that packet (at least εn) was already discovered at step
i ; by contrast packets t ∈ G are those for which a fraction at least (1− εn) remains to
be discovered in the exploration. In the case where the conjugacy class contains only
one type of cycles, say k-cycles, then I coincides with the set of hyperedges already
revealed. At the other end of the spectrum, when the conjugacy class� is broken down
into many small cycles, then I is likely to be empty. But in all cases, |I | satisfies the
trivial bound |I | ≤ 2n2/3

εnk
by definition of T ↑, and in particular

k|I |
n ≤ 2

εnn1/3
≤ 2n−1/6 → 0. (30)

This turns out to be enough for our purposes.
Note that E(q

∑s
t=1 Mt (Vt−1)) and E(qn

1/4∧∑s
t=1 Mt (Vt−1)) can only differ by at most

qn
1/4
, which is exponentially small in n1/4 for a fixed q ≤ q0 < 1, so we can neglect

this difference. Then we may write, counting only hyper edges from good packets,
using the fact that 1− x ≤ e−x for all x ∈ R, and (30) (recalling that Ii is the indicator
of the event that no self-intersection occurs among the first n1/4 vertices connected to
w):

qE[qai+1−ai |Hi ] ≤ 1 − E(Ii ) + E(Ii )

⎛
⎝qn

1/4 +
s∏

t=1

⎡
⎣1 − k−∑

m≥2 my(t)
m

n

×
⎛
⎝1 −

∑
j≥2

q j−1 j
(
k j−y(t)

j

)

k−∑
m≥2 my(t)

m

⎞
⎠
⎤
⎦
⎞
⎠

≤ 2n−1/2 + qn
1/4 +

∏
t∈G

⎡
⎣1 − k

n (1 − εn)

×
⎛
⎝1 −

∑
j≥2

q j−1 jk j
k(1−εn)

⎞
⎠
⎤
⎦

≤ o(1) + exp

⎧
⎨
⎩−s kn (1 − εn) + k

n |I |(1 − εn) + s kn
∑
j≥2

q j−1α j

⎫
⎬
⎭

= o(1) + exp

⎧⎨
⎩−s kn + sk

n

∑
j≥2

q j−1α j

⎫⎬
⎭ (1 + o(1))

≤ ψ(1 − q, c) + o(1) (31)

where the o(1) term again is non random and uniform in i ≥ 1, but might depend on
q (the last inequality again from comes from (29)). The proof is complete. ��
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Lemma 3.2 above tells us that, at the level of generating functions, the distribution
of ai+1 − ai behaves very much like a sequence of i.i.d. random variables with distri-
bution determined by ψ , even if we don’t ignore self-intersections. It is thus easy to
build martingales from quantities of the form qai , which behave as if the increments
of ai were i.i.d., at least until we reach size n2/3. Hence this will allow us to reach a
size of n2/3 for ai almost as if there were no self-intersections, and so with probability
approximately θ(c). Fundamentally, this is because even if self-intersections do occur,
they are rare and do not cause a significant loss of mass. Technically, it is easier to
have a separate argument for bringing the cluster to a polylogarithmic size before
using this information to show that the cluster reaches size n2/3 with essentially the
same probability. This is what we achieve in Step 1, which we are now ready for.

Step 1. We show that the cluster containing a given vertex v is at least logarithmically
large with probability approximately θ(c), and furthermore the number of vertices for
which this occurs is approximately nθ(c) in the sense of convergence in probability.

Lemma 3.3 Let Cv denote the component containing v. We have that

lim
n→∞P(|Cv| > (log n)2) = θ(c). (32)

Proof We start with the upper bound of (32), for which we simply make a comparison
with aGalton–Watson process: to reach size log n the exploration processmust survive
more than a finite number of steps.More precisely, wemake the following observation.
Let m ≥ 1 be some arbitrary fixed large integer, and observe P(|Cv| > (log n)2) ≤
P(|Cv| ≥ m) trivially. Now, whether |Cv| reaches size m is something that can be
decided by performing the breadth-first search exploration of the cluster on a finite (at
most m) number of steps: i.e., if we let Xi+1 = |Ai+1 \ Ai |, then a direct and crude
consequence of Lemma 3.2 is that (X1, . . . , Xm) converge to i.i.d. random variables
(X̄1, . . . , X̄m) (which are possibly improper, if

∑
ᾱ j < 1) having as generating

function E(q X̄ ) = ψ(1 − q, c). Formally, the X̄i have the same distribution as

X̄ =
⎛
⎝∑

j

( j − 1) Poisson (cᾱ j )

⎞
⎠ + ∞ · Poisson

⎛
⎝c

⎛
⎝1 −

∑
j

ᾱ j

⎞
⎠
⎞
⎠

where the Poisson random variables are independent. Consequently, if W is the total
progeny of a Galton–Watson branching process with offspring distribution X̄i (note
in particular thatW = ∞ as soon as one nodes in the tree has offspring X̄i = ∞). We
conclude that P(|Cv| ≥ m) → P(W ≥ m), and hence, taking the limsup and letting
m → ∞,

lim sup
n→∞

P(T ↓ ≥ (log n)2) ≤ P(W = ∞) = θ(c).

This proves the upper bound in (32).
We now discuss the lower bound to (32), which is essentially the same argu-

ment, together with the observation that self-intersections are unlikely to occur before
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1216 N. Berestycki, B. Şengül

(log n)2 vertices have been explored. For this we can assumewithout loss of generality
that θ(c) > 0, otherwise there is nothing to prove. Let

T1 = inf
{
i ≥ 1 : ai > (log n)2

}
;

we will prove the slightly stronger result that lim infn→∞ P(T1 < T↓) ≥ θ(c). (This
is slightly stronger, because |Cv| could in principle be greater than (log n)2 without the
active set ever reaching that size). Let Xi be i.i.d. random variables with generating
function given by

ψn(q) = E(qXi ) =
s∏

t=1

⎛
⎝1 − k

n

⎛
⎝1 −

∑
j

q j−1α j

⎞
⎠
⎞
⎠ , (33)

so that, by (23), a1 − a0 has the same distribution as X1 when A0 = {v} (see e.g.
(28) where a similar calculation is carried). We can use the random variables Xi to
generate the breadth first exploration of Cv until we find a self-intersection. Thus let
Ỹi be a collection of randomly chosen vertices of {1, . . . , n} of size Xi , and at each
time step, add to the active set Ãi+1 the set Ỹi and remove the currently explored
vertex. Then we can couple Ai and Ãi so that Ai = Ãi until the first time Tinter such
that Ỹi ∩ (Ỹ j ∪ {v}) �= ∅ for some i �= j ≤ Tinter. Furthermore, until Tinter, Ãi is the
breadth-first search exploration of a branching processwith offspring distribution (33).
It becomes extinct with a probability qn , and we claim that qn satisfies qn → 1− θ(c)
as n → ∞ by (29). Indeed, ψn clearly converges uniformly to ψ(·, c) on [0, x0] for
x0 < 1 by Lemma 3.2 and this is the regime we are interested in since by assumption
θ(c) > 0.

Hence, it is clear that if Wn is the total progeny of this branching process, then
P(Wn ≥ (log n)2) ≥ P(Wn = ∞) = 1 − qn → θ(c), and combining with the
argument in the upper bound on (32) we deduce that P(Wn ≥ (log n)2) → θ(c). On
the other hand, T1 < Tinter with probability tending to 1 as n → ∞ by the birthday
problem, and so in fact P(T1 < T↓) = P(Wn ≥ (log n)2) + o(1), so we are done. ��

It is important to note that self-intersections may occur at the very step that ai
exceeds (log n)2 (for instance, think about the case when the conjugacy class has
some of its mass coming from cycles larger than n1/2: discovering such a cycle would
immediately produce a self-intersection). Even so, the active set reaches size (log n)2

before such a self-intersection is discovered.
As announced at the beginning of Step 1, we complement this with a law of large

numbers:

Lemma 3.4
1
n |{v : |Cv| ≥ (log n)2}| → θ(c) (34)

in probability as n → ∞.

Proof Let Z = ∑n
v=1 1{|Cv |≥(log n)2}, so by the previous lemma we know that

E(Z)/n → θ by (32). Hence if we show that Var(Z) ≤ εn2 for any ε > 0 and
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any n sufficiently large, then (34) follows by Chebyshev’s inequality. In particular, it
suffices to show that for v �= w ∈ {1, . . . , n},

lim sup
n→∞

Cov
(
1{|Cv |≥(log n)2}, 1{|Cw |≥(log n)2}

) ≤ 0

or equivalently,

lim sup
n→∞

P

(
|Cv| ≥ (log n)2, |Cw| ≥ (log n)2

)
≤ θ(c)2. (35)

On the other hand, (35) can be proved in exactly the same way as the upper bound of
(32) above: for both |Cv| and |Cw| to be larger than (log n)2, both must be greater than
m wherem ≥ 1 is fixed. This is an event which depends on a finite number of steps (at
most 2m) in the explorations of Cv and Cw, and so can be approximated by Lemma 3.2
by the same event for two independent branching processes. Letting m → ∞ finishes
the proof. ��

For the rest of the proof we now assume that c > c� so that θ(c) > 0. Hence
fix q ∈ [0, 1) such that ψ(1 − q, c)/q < 1, and note that using Lemma 3.2, we can
suppose that, for some fixed ε > 0, n is large enough so that

E
[
qai+1−ai |Hi

] ≤ (1 + ε)−1 (36)

almost surely on {T > i}.

Step 2. We now extrapolate the information obtained in the previous step to show that,
still with probability approximately θ(c), the active set of Cv can reach a size of at
least O(n2/3). To do so we suppose our exploration from Step 1 yields an active set
of size at least (log n)2 (which, as discussed, occurs with probability θ(c) + o(1). We
will restart the exploration from that point on, calling this time i = 0 again. Hence
the setup is the same as before, except that at time i = 0 we have a0 = �(log n)2:
we only keep the first (log n)2 of the active vertices discovered at time T1, and declare
all further active vertices at time T1 to be removed at time i = 0 in the exploration of
Step 2.

Recall our notations for T ↓ and T ↑ in (26) and (27). Our goal in this step is to show
the following control:

Lemma 3.5 Suppose that given H0, it is a.s. the case that a0 = �(log n)2, and
r0 ≤ n2/3.Then

P(T ↓ < n2/3 ∧ T ↑|H0) = O
(
q(log n)2

)
= o(n−1). (37)

Proof Set S = n2/3 ∧ T ↑ ∧ T ↓ and for i ≥ 0, let

Mi := qai∧S (1 + ε)i∧S,
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1218 N. Berestycki, B. Şengül

so M = (Mi : i = 0, . . . ) is a supermartingale in the filtration (H0,H1, . . .). Observe
that S ≤ n2/3 so M is bounded. Note that on the event {S = T ↓},

MT = (1 + ε)T
↓ ≥ 1{S=T ↓}

hence by the optional stopping theorem (since M is bounded), given H0 and under
the assumptions of the lemma on H0,

P(S = T ↓|H0) ≤ E(MS1{S=T ↓}|H0)

≤ M0 = qa0 ≤ q(log n)2−1,

as desired. ��
Consequently, since the error bound in Eq. (37) is o(n−1), we deduce that if

G =
{
v : |Cv(s)| > n2/3

}
, G̃ =

{
v : |Cv(s)| > (log n)2

}
, (38)

then G = G̃ with high probability, and hence in particular

|G|
n

→ θ(c) (39)

in probability as n → ∞.

Step 3. We now show that if v and v′ are two vertices such that Cv = Cv(s) and
Cv′ = Cv′(s) are both larger at time s than n2/3 then they are highly likely to be
connected at some slightly later time s+s′. This follows from a so-called “sprinkling”
argument, as follows. That is, suppose we add s′ packets, with

s′ =
⌈
Dn2/3 log n

k

⌉

for some D > 0 to be chosen later on. Note that s′k/n → 0 so that (s + s′)k/n → c.
Since s = s(n) is an arbitrary sequence such that sk/n → c it suffices to show that v
and v′ are then connected at time s+ s′. In fact we will check that the two clusters can
be connected using smaller edges that the hyperedges making each packet, as follows.
For each hyperedge of size j we will only reveal a subset of � j/2 edges (of size 2)
with disjoint support. Since � j/2 ≥ j/3 for any j ≥ 2, this gives us at least k/3
edges for each packet; these are sampled uniformly at random without replacement
from {1, . . . , n}. We will check that a connection occurs between the two clusters
within these s′k/3 edges, with high probability.

Call the two clusters A and A′ for simplicity; these are two arbitrary sets of size
�n2/3 which we can assume to be disjoint otherwise there is nothing to prove. Call
a packet of edges good if their intersections with each of A and A′ contains at most
�n2/3/2 vertices, and call it bad otherwise. We reveal the edges in a given packet one
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by one, sampling without replacement. Note that so long as packet of edges has not
been observed to be bad, the probability that the next edge connects A and A′ is at
least n4/3/(16(n − k)2) ≥ n−2/3/32. (Note that if k ≤ n2/3/2 then every packet is
necessarily good). Hence the probability that no connection between A and A′ occurs
for a good packet is at most

(1 − n−2/3/32)k/3 ≤ exp

(
−kn−2/3

96

)
.

Now, each packet is bad independently of each other, with probability tending to 0
by Markov’s inequality (since the expected intersection of a pack of edges with A
is at most |A|k/n = o(|A|)) and hence less than 1/2 say. So by standard Chernoff
bounds on Binomial random variables, with probability at least 1 − exp(−h × s′)
(where h > 0 = (1/4) log(1/4) + (3/4) log(3/4) + log 2 is a universal constant), at
least s′/4 packs are good. Putting together these two observations, we deduce that the
probability that there are no connections between A and A′ after s′ packs of edges
have been added is at most

exp

(
−kn−2/3

96

s′

4

)
+ exp(−hs′) ≤ exp

(
− D

400
log n

)
+ exp(−hs′), (40)

By choosing D = 1201, this is o(n−3) at least if k ≥ n2/3/2 (so that s′ ≥ 2D log n).
However, if k ≤ n2/3, then every packet is good, and so (40) holds without the second
term on the right hand side. Either way,

P(Cv(s + s′) ∩ Cv′(s + s′) = ∅) = o(n−3). (41)

Proof of Theorem 3.1 We are now ready to conclude that vertices are either in small
component at time s or connected at time s + s′. Recall our notation G = {v :
|Cv(s)| > n2/3}. Then by (39), we know that |G|/n → θ(c) in probability as n → ∞.
We now aim to show that G is connected at time s + s′, with high probability. For
v, v′ ∈ {1, . . . , n}, write v ↔ v′ to indicate that v is connected to v′. Then by Step 3
(more specifically, (41)),

P

⎛
⎝ ⋃

v,v′∈G
{v ↔ v′ at time s + s′}c

∣∣∣∣∣∣
Hs

⎞
⎠ ≤ |G|2o(n−3) ≤ o(n−1).

Hence G is entirely connected at time s + s′ with probability tending to 1. This proves
that Hs+s′ contains a component of relative size converging to θ(c) in probability.
Let us now check that every other component at time s + s′ is small. Note that since
G = G̃ with probability tending to one (where G̃ is defined in (38)), any component
disjoint from G at time s + s′ must have been smaller than (log n)2 at time s. Since
at most s′k connections are added, this means that, on the event G = G̃, the maximal
size of a component at time s + s′ disjoint from G is smaller than s′k(log n)2 ≤
Dn2/3(log n)3. This shows that every other component is O(n2/3(log n)3) on an event
of high probability.
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1220 N. Berestycki, B. Şengül

The proof of Theorem 3.1 is complete, since s + s′ in an arbitrary sequence such
that (s + s′)k/n → c. ��

3.3 Poisson–Dirichlet structure

The renormalised cycle lengths X(σ ) of a permutation σ ∈ Sn is the cycle lengths
of σ divided by n, written in decreasing order. In particular we have that X(σ ) takes
values in

∞ :=
{

(x1 ≥ x2 ≥ · · · ) : xi ∈ [0, 1] for each i ≥ 1 and
∞∑
i=1

xi = 1

}
. (42)

We equip ∞ with the topology of pointwise convergence. If σn is uniformly dis-
tributed in Sn then X(σn) → Z in distribution as n → ∞ where Z is known as a
Poisson–Dirichlet random variable. It can be constructed as follows. Let U1,U2, . . .

be i.i.d. uniform random variables on [0, 1]. Let Z∗
1 = U1 and inductively for i ≥ 2

set Z∗
i = Ui (1 − ∑i−1

j=1 Z
∗
j ). Then (Z∗

1 , Z
∗
2 , . . . ) can be ordered in decreasing size

and the random variable Z has the same law as (Z∗
1 , Z

∗
2 , . . . ) ordered by decreasing

size.
The next result is a generalisation of Theorem 1.1 in [24] to the case of general

conjugacy classes. The proof is a simple adaptation of the proof of Schramm and we
provide the details in an appendix.

Theorem 3.6 Suppose s = s(n) is such that sk/n → c as n → ∞ for some c > c� .
Then we have that for any m ∈ N

(
X1(Xs)

θ(c)
, . . . ,

Xm(Xs)

θ(c)

)
→ (Z1, . . . , Zm)

in distribution as n → ∞ where Z = (Z1, Z2, . . . ) is a Poisson–Dirichlet random
variable.

4 Proof of curvature theorem

4.1 Proof of the upper bound on curvature

We claim that it is enough to show the upper bound for c > c� in (15). Indeed,
notice that c �→ κc is nondecreasing. Hence let c ≤ c� and suppose we know that
lim supn→∞ κc′ ≤ θ(c′)2 holds for all c′ > c� . Then we have that lim supn→∞ κc ≤
θ(c′)2 for each c′ > c� . Taking c′ ↓ c� and using the fact that limc′↓c� θ(c′) = 0
shows that limn→∞ κc = 0.

Fix c > c� and let t := �cn/k. We need to show the upper bound in (15). In other
words, we wish to prove that for some σ, σ ′ ∈ Sn
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lim inf
n→∞

W1(Xσ
t , Xσ ′

t )

d(σ, σ ′)
≥ 1 − θ(c)2.

We will choose σ = id and σ ′ = τ1 ◦ τ2, where τ1, τ2 are independent uniformly
chosen transpositions. To prove the lower bound on the Kantorovich distance we use
the dual representation of the distanceW1(X,Y ) between two random variables X,Y :

W1(X,Y ) = sup{E[ f (X)] − E[ f (Y )] : f is Lipschitz with Lipschitz constant 1}.
(43)

Let f (σ ) = d(id, σ ) be the distance to the identity (using only transpositions, as
usual). Then observe that f is 1-Lipschitz. It suffices to show

lim inf
n→∞ E

[
f (X τ1◦τ2

t )
] − E

[
f
(
X id
t

)]
≥ 2(1 − θ(c)2). (44)

We will now show (44) by a coupling argument. Construct the two walks X τ1◦τ2

and X id as follows. Let γ1, γ2, . . . be a sequence of i.i.d. random variables uniformly
distributed on �, independent of (τ1, τ2). Using Lemma 2.5 with σ0 = τ1 ◦ τ2, which
is independent of X id, we can construct X τ1◦τ2

t as

X τ1◦τ2
t = γ1 ◦ · · · ◦ γt ◦ τ1 ◦ τ2.

Next we couple X id
t by constructing it as

X id
t = γ1 ◦ · · · ◦ γt .

Thus under this coupling we have that X τ1◦τ2
t = X id

t ◦ τ1 ◦ τ2. Let X = X id, then from
(44) the problem reduces to showing

lim inf
n→∞ E[d(id, Xt ◦ τ1 ◦ τ2) − d(id, Xt )] ≥ 2(1 − θ(c)2). (45)

We recall that a transposition can either induce a fragmentation or a coalescence of
the cycles. Indeed, a transposition involving elements from the same cycle generates a
fragmentation of that cycle, and one involving elements from different cycles results
in the cycles being merged. (This property is the basic tool used in the probabilistic
analysis of random transpositions, see e.g. [5] or [24]). Hence either τ1 fragments
a cycle of Xt or τ1 coagulates two cycles of Xt . In the first case, d(id, Xt ◦ τ1) =
d(id, Xt ◦ τ1)− 1, and in the second case we have d(id, Xt ◦ τ1) = d(id, Xt ◦ τ1)+ 1.
Let F denote the event that τ1 causes a fragmentation. Then

E[d(id, Xt ◦ τ1) − d(id, Xt )] = 1 − 2P(F).

Using the Poisson–Dirichlet structure described in Theorem 3.6 it is not hard to show
that P(F) → θ(c)2/2 (see, e.g., Lemma 8 in [6]). Applying the same reasoning to
Xt ◦ τ1 ◦ τ2 and Xt ◦ τ1 we deduce that

lim
n→∞E[d(id, Xt ◦ τ1 ◦ τ2) − d(id, Xt )] = 2(1 − θ(c)2)

from which the lower bound (45) and in turn the upper bound in (10) follow readily.
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4.2 Proof of lower bound on curvature

We now assume that c > c� and turn out attention to the lower bound on the Ricci
curvature, which is the heart of the proof. Throughout we let k = |�| and t = �cn/k.
With this notation in mind we wish to prove that

lim sup
n→∞

sup
σ,σ ′

Ed(Xσ
t , Xσ ′

t )

d(σ, σ ′)
≤ α := 1 − θ(c)4

for some appropriate coupling of Xσ and Xσ ′
, where the supremum is taken over all

σ, σ ′ with even distance. Note that we can make several reductions: first, by vertex
transitivity we can assume σ = id is the identity permutation. Also, by the triangle
inequality (since W1 is a distance), we can assume that σ ′ = (i, j) ◦ (�,m) is the
product of two distinct transpositions. There are two cases to consider: either the
supports of the transpositions are disjoint, or they overlap on one vertex. We will
focus in this proof on the first case where the support of the transpositions are disjoint;
that is, i, j, l,m are pairwise distinct. The other case is dealt with very much in the
same way (and is in fact a bit easier).

Clearly by symmetry Ed(X id
t , X (i, j)◦(�,m)

t ) is independent of i , j , � and m, so long
as they are pairwise distinct. Hence it is also equal to Ed(X id

t , X τ1◦τ2
t ) conditioned

on the event A that τ1, τ2 having disjoint support, where τ1 and τ2 are independent
uniform random transpositions. This event has an overwhelming probability for large
n, thus it suffices to construct a coupling between X id and X τ1◦τ2 such that

lim sup
n→∞

Ed
(
X id
t , X τ1◦τ2

t

)
≤ 2(1 − θ(c)4). (46)

Indeed, it then immediately follows from stochastic commutativity (Lemma 2.5) that
the same is true with the expectation replaced by the conditional expectation given A,
since the distance is bounded by two.

Next, let X be a random walk on Sn which is the composition of i.i.d. uniform
elements of the conjugacy class �. We decompose the random walk X into a walk X̃
which evolves by applying transpositions at each step as follows. For t = 0, 1, . . . ,
write out

Xt = γ1 ◦ · · · ◦ γt

where γ1, γ2, . . . are i.i.d. uniformly distributed in �. As before we decompose each
step γs of the walk into a product of cyclic permutations, say

γs = γs,1 ◦ · · · ◦ γs,r (47)

where r = ∑
j≥2 k j . The order of this decomposition is irrelevant and can be chosen

arbitrarily. For concreteness, we decide that we start from the cycles of smaller sizes
and progressively increase to cycles of larger sizes. We will further decompose each
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of these cyclic permutation into a product of transpositions, as follows: for a cycle
c = (x1, . . . , x j ), write

c = (x1, x2) ◦ · · · ◦ (x j−1, x j ).

This allows to break any step γs of the random walk X into a number

ρ :=
∑
j

( j − 1)k j

of elementary transpositions, and hence we can write

γs = τ (1)
s ◦ · · · ◦ τ (ρ)

s (48)

where τ
( j)
s are transpositions. Note that the vectors (τ

(i)
s ; 1 ≤ i ≤ ρ) in (48) are

independent and identically distributed for s = 1, 2, . . . and for a fixed s and 1 ≤ i ≤
ρ, τ

(i)
s is a uniform transposition, by symmetry. However it is important to observe

that the transpositions τ
(i)
s are not independent. Nevertheless, they obey a crucial

conditional uniformity which we explain now. First we have to differentiate between
the set of times when a new cycle starts and the set of times when we are continuing
an old cycle.

Definition 4.1 (Refreshment Times) We call a time s a refreshment time if s is of the
form s = ρ� + ∑m

j=2( j − 1)k j for some � ∈ N ∪ {0} and m ∈ N\{1}.

We see that s is a refreshment time if the transposition being applied to X̃ at time s is
the start of a new cycle. Using this we can describe the law of the transpositions being
applied to X̃ .

Proposition 4.1 (Conditional Uniformity) For s ∈ N and i ≤ ρ, the conditional
distribution of τ (i)

s given τ
(1)
s , . . . , τ

(i−1)
s can be described as follows. We write τ

(i)
s =

(x, y) and we will distinguish between the first marker x and the second marker y.
There are two cases to consider:

(i) sρ + i is a refreshment time and thus τ
(i)
s corresponds to the start of a new cycle

(ii) sρ + i is not a refreshment time and so τ
(i)
s is the continuation of a cycle.

In case (i) x is uniformly distributed on Si := {1, . . . , n} \ Supp(τ (1)
s ◦ · · · ◦ τ

(i−1)
s )

and y is uniformly distributed on Si \ {x}. In case (ii) x is equal to the second marker
of τ (i−1)

s and y is uniformly distributed in Si .

Note that in either case, the second marker y is conditionally uniformly distributed
among the vertices which have not been used so far. This conditional independence
property is completely crucial, and allows us to make use of methods (such as that of
Schramm [24]) developed initially for random transpositions) for general conjugacy
classes, so long as |�| = o(n). Indeed in that case the second marker y itself is not
very different from a uniform random variable on {1, . . . , n}.
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We will study this random walk using this new transposition time scale. We thus
define a process X̃ = (X̃u : u = 0, 1, . . .) as follows. Let u ∈ {0, 1, . . .} and write
u = sρ + i where s, i are nonnegative integers and i < ρ. Then define

X̃u := Xs ◦ τ
(1)
s+1 ◦ · · · ◦ τ

(i)
s+1. (49)

Thus it follows that for any s ≥ 0, X̃sρ = Xs . Notice that X̃ evolves by applying
successively transpositions with the above mentioned conditional uniformity rules.

Now consider our two random walks, X id and X τ1◦τ2 respectively, started respec-
tively from id and τ1◦τ2, and let X̃ id and X̃ τ1◦τ2 be the associated processes constructed
using (49), on the transposition time scale. Thus to prove (46) it suffices to construct
an appropriate coupling between X̃ id

tρ and X̃ τ1◦τ2
tρ . Next, recall that for a permutation

σ ∈ Sn , X(σ ) denotes the renormalised cycle lengths of σ , taking values in ∞
defined in (42). The walks X̃ id and X̃ τ1◦τ2 are invariant by conjugacy and hence both
are distributed uniformly on their conjugacy class. Thus ultimately it will suffice to
couple X(X̃ id

tρ) and X(X̃ τ1◦τ2
tρ ).

Fix δ > 0 and let � = �δ−9�. Define

s1 = �(cn − δ−9)/kρ
s2 = s1 + �

s3 = tρ.

Our coupling consists of three intervals [0, s1], (s1, s2] and (s2, s3].
Let us informally describe the coupling before we give the details. In what follows

we will couple the random walks X̃ id and X̃ τ1◦τ2 such that they keep their distance
constant during the time intervals [0, s1] and (s2, s3]. In particular we will see that at
time s1, the walks X̃ id and X̃ τ1◦τ2 will differ by two independently uniformly chosen
transpositions. Thus at time s1 most of the cycles of X̃ id and X̃ τ1◦τ2 are identical but
some cycles may be different.Wewill show that given that the cycles that differ at time
s1 are all reasonably large, then we can reduce the distance between the two walks to
zero during the time interval (s1, s2]. Otherwise if one of the differing cycles is not
reasonably large, then we couple the two walks to keep their distance constant during
the time interval [0, s1], (s1, s2] and (s2, s3].

More generally, our coupling has the property that d(X id
t , X τ1◦τ2

t ) is uniformly
bounded, so that it will suffice to concentrate on events of high probability in order to
get a bound on the L1-Kantorovich distance W (X id

t , X τ1◦τ2
t ).

4.2.1 Coupling for [0, s1]

First we describe the coupling during the time interval [0, s1]. Let X̃ = (X̃s : s ≥ 0) be
awalkwith the same distribution as X̃ id, independent of the two uniform transpositions
τ1 and τ2. Then we have that by Lemma 2.5 for any s ≥ 0, X̃ τ1◦τ2

s has the same
distribution as X̃s ◦ τ1 ◦ τ2. Thus we can couple X(X̃ id

s1) and X(X̃ τ1◦τ2
s1 ) such that
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X
(
X̃ id
s1

)
= X(X̃s1)

X
(
X̃ τ1◦τ2
s1

)
= X(X̃s1 ◦ τ1 ◦ τ2). (50)

4.2.2 Coupling for (s1, s2]

For s ≥ 0 define X̄s = X(X̃ id
s+s1) and Ȳs = X(X̃ τ1◦τ2

s+s1 ). Here we will couple X̄s and
Ȳs for s = 0, . . . ,�. During this time we aim to show that the discrepancies between
X̄0 and Ȳ0 resulting from performing the transpositions τ1 and τ2 at the end of the
previous phase can be resolved. Our main tool for doing this will be a variant of a
coupling of Schramm [24], which was already used in [6].

At each step s we try to create a matching between X̄s and Ȳs by matching an
element of X̄s to at most one element of Ȳs of the same size. At any time s there
may be several entries that cannot be matched. By parity the combined number of
unmatched entries is an even number, and observe that this number cannot be equal to
two. Now X̃ id

s1 and X̃ τ1◦τ2
s1 differ by two transpositions as can be seen from (50). This

implies that in particular initially (i.e., at the beginning of (s1, s2]), there are four, six
or zero unmatched entries between X̄0 and Ȳ0.

Fix δ > 0 and let A(δ) denote the event that the smallest unmatched entry between
X̄0 and Ȳ0 has size greater than δ > 0. We will show that on the event A(δ) we can
couple the walks such that X̄� = Ȳ� with high probability. On the complementary
event A(δ)c, couple the walks so that their distance remains O(1) during the time
interval (s1, s2], similar to the coupling during [0, s1].

It remains to define the coupling during the time interval (s1, s2] on the event A(δ).
We begin by estimating the probability of A(δ).

Lemma 4.2 For any c > 1 and δ > 0,

lim inf
n→∞ P(A(δ)) ≥ [θ(c)(1 − p(δ))]4.

where p(δ) → 0 as δ → 0.

Proof Recall that by construction X̄0 and Ȳ0 only differ because of the two transpo-
sitions τ1 and τ2 appearing in (50).

Recall the hypergraph Hs1/ρ on {1, . . . , n} defined in the beginning of Sect. 3.1.
Since c > c� , by Theorem 3.1, Hs1/ρ has a (unique) giant component with high
probability. Let A1 be the event that the four points composing the transpositions
τ1, τ2 fall within the largest component of the associated hypergraph Hs1/ρ . Since the
relative size of the giant component converges in probability θ(c) by Lemma 3.1, note
that P(A1) → θ(c)4.

Furthermore, it follows from Theorem 3.6 that conditionally on the event A1, the
asymptotic relative size of the cycles containing the four points making the trans-
positions τ1, τ2 can be thought of as the size of four independent samples from a
Poisson-Dirichlet distribution, multiplied by θ(c). Hence the lemma is proved with
p(δ) being the probability that one of the four samples has a size smaller than δ/θ(c).
Clearly p(δ) → 0 so the result is proved. ��
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Recall that the transpositions which make up the walks X̃ id and X̃ τ1◦τ2 obey what
we called conditional uniformity in Proposition 4.1. For the duration of (s1, s2] we
will assume the relaxed conditional uniformity assumption, which we describe now.

Definition 4.2 (Relaxed Conditional Uniformity) For s = s1 + 1, . . . , s2 suppose we
apply the transposition (x, y) at time s. Then

(i) if s is a refreshment time then x is chosen uniformly in {1, . . . , n},
(ii) if s is not a refreshment time then x is taken to be the second marker of the

transposition applied at time s − 1.

In both cases we take y to be uniformly distributed on {1, . . . , n}\{x}.
In making the relaxed conditional uniformity assumption we are disregarding the

constraints on (x, y) given in Proposition 4.1. However the probability we violate
this constraint at any point during the interval (s1, s2] is at most 2(s2 − s1)ρ/n =
2�k/n → 0; and on the event that this constraint is violated the distance between the
random walks can increase by at most (s2 − s1) = �. Hence we can without a loss
of generality assume that during the interval (s1, s2] both X̃ id and X̃ τ1◦τ2 satisfy the
relaxed conditional uniformity assumption.

Now we show that on the event A(δ) we can couple the walks such that X̄� = Ȳ�

with high probability. The argument uses a coupling of Berestycki et al. [6], itself a
variant of a beautiful coupling introduced by Schramm [24]. We first introduce some
notation. Let

n :=
⎧
⎨
⎩(x1≥ · · · ≥xn) : xi ∈ {0/n, 1/n, . . . , n/n} for each i ≤ n and

∑
i≤n

xi = 1

⎫
⎬
⎭ .

Notice that the walks X̄ and Ȳ both take values in n .

Marginal evolution Let us describe the evolution of the random walk X̄ = (X̄s :
s = 0, 1, . . . ). Suppose that s ≥ 0 and X̄s = (x1, . . . , xn). Now imagine the interval
(0, 1] tiled using the intervals (0, x1], . . . , (0, xn] (the specific tiling rule does not
matter). Initially for s = 0, and more generally if s is a refreshment time, we select
u ∈ {1/n, . . . , n/n} uniformly at random and then call the tile that contains u the
marked tile. If s ≥ 1 is not a refreshment time then the marked tile is the one
containing the second marker y of Proposition 4.1 from the previous step. Either way,
we have a distinguished tile (the tile containing the ‘first marker’ at the beginning of
each step s = 0, 1, . . .

We now describe the marginal evolution of this tiling for one step. In fact this
evolution takes as an input a tiling X̄s and a marked tile I . The output will be another
tiling X̄s+1 and a new marked tile for the next step. Let I be the tile containing the
first marker at the beginning of the step, and place I first from left. (I represents the
cycle containing the first marker u and we imagine that u is the leftmost point of that
tile, i.e., in position 1/n). Select v ∈ {2/n, . . . , n/n} uniformly at random and let I ′
be the tile that v falls into. Then there are two possibilities:
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• if I ′ �= I then we merge the tiles I and I ′. The new tile we created is now marked
for the next step.

• If I = I ′ then we split I into two fragments, corresponding to where v falls. Thus,
one of size v − 1/n and the other of size |I | − (v − 1/n). The rightmost one of
these two tiles, containing v, is now marked for the next step. Now X̄s+1 is the
sizes of the tiles in the new tiling we have created (with additional reordering of
tiles in decreasing order). .

This defines a transformation T (X̄s, I, v). The evolution described above has the
law of the projection onto n of X̄ . Indeed, suppose we apply the transposition (x, y)
to X̄s in order to obtain X̄s+1. The marked tile at time s corresponds to the cycle of
X̄s containing x : if s is a refreshment time then x ∈ {1, . . . , n} is chosen uniformly,
otherwise x is the second marker from the previous step.

Coupling We now recall the coupling of [6]. Let s ≥ 0. Suppose that X̄s = X̄ =
(x1, . . . , xn) and Ȳs = Ȳ = (y1, . . . , yn). Then we can differentiate between the
entries that are matched and those that are unmatched: we say that two entries from
X̄ and Ȳ are matched if they are of identical size. Our goal will be to create as many
matched parts as possible and as quickly as possible. When putting down the tilings
X̄ and Ȳ , associated with X̄ and Ȳ respectively, we will do so in such a way that all
matched parts are to the right of the interval (0, 1] and the unmatched parts occupy
the left part of the interval.

Let IX̄ and IȲ be the respective marked tiles of the tilings X̄ and Ȳ at some step
s ≥ 0, and let X̂ , Ŷ be the tiling which is the reordering of X̄ , Ȳ in which IX̄ and
IȲ have been put to the left of the interval (0, 1]. We assume that at the start of the
step, either IX̄ and IȲ are both matched to each other, or they are both unmatched.
(We will then verify that this property is preserved by the coupling). Let a = |IX̄ |
and let b = |IȲ | be the respective lengths of the marked tiles, and assume without
loss of generality that a < b. Let v ∈ {2/n, . . . , n/n} be chosen uniformly. We
will apply T (X̄ , IX̂ , v) to X̂ as we did before, and obtain X̄s+1. To obtain Ȳs+1 we
will also apply the transformation T to it, but with an other uniform random variable
v′ ∈ {2/n, . . . , n/n} which may differ from v. To construct v′ we proceed as follows.

If IX̂ is matched (so that IŶ is matched to it by assumption) then we take v′ = v,
as in the coupling of Schramm [24]. In the case when IX̂ is unmatched (which also
implies that IŶ is unmatched), we apply to v a measure-preserving map �, defined as
follows: for w ∈ {2/n, . . . , n/n} consider the map

�(w) =

⎧⎪⎨
⎪⎩

w ifw > b or if 2/n ≤ w ≤ γn + 1/n,

w − γn if a < w ≤ b,

w + b − a if γn + 1/n < w ≤ a,

(51)

where γn := �an/2−1�/n. (This is contrast with Schramm’s original coupling, where
v′ = v nomatterwhat). See Fig. 1 (top right corner) for an illustration of�, fromwhich
it should be clear in particular that� is a bijection and hence measure-preserving; this
is easy to check. Thus letting v′ = �(v) we have that v′ has the correct marginal
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matchedu

X̃

Ỹ

X̂

Ŷ

X̂

Ŷ

v

v′ = Φ(v)

Φ:

matched

matched

Fig. 1 One step of the evolution under the coupling between X̄ and Ȳ . The red entries represent the marked
tiles. Left: the tilings are rearranged so that both marked tiles (which are here both unmatched) are to the
left. Right: the second marker v falls, and defines a marker v′ = �(v). In this case we get a fragmentation
in both copies. The new marked tile is the rightmost fragment thus created; here they are both matched to
each other, verifying in this case the consistency property of the coupling (Lemma 4.3). The total number of
unmatched entries has been left unchanged, though. And while the smallest unmatched entry has decreased
in size, this has not been by more than a factor of two. This is the content of the key Lemma 4.4 (colour
figure online)

distribution and thus so does Ȳs+1 = T (Ŷs, IȲ , v′). The rest of Fig. 1 illustrates the
various steps in the coupling aswell as the content of Lemmas 4.3 and 4.4, as explained
in the caption.

Before checking that the coupling is well defined (in the sense that our assumption
on the marked tiles, which are needed for the definition of the coupling, remains true
throughout), we briefly add a few words of motivation for this definition.

Motivation for the coupling The coupling defined above is, as already mentioned
above, the same as the one used in [6], which is a modification of a coupling due
to Schramm [24]. In Schramm’s original coupling, the map � was taken to be the
identity, which is natural enough. However this leads to the undesirable property that
it is possible for very small unmatched pieces to appear; once these small unmatched
pieces appear they remain in the system for a very long time which could prevent
coupling. The reason for introducing the map � here and in [6] (where it was one of
the main innovations) is that it prevents the occurrence of small unmatched pieces: as
we will see in Lemma 4.4, the crucial property is that the worst thing that can happen
is for the smallest unmatched piece to become smaller by a factor of two, and this only
happens with small probability. This means all unmatched pieces remain relatively
large, and so they disappear quite quickly (leading in turn to a coupling of the two
copies). We start by a proof that the coupling is well defined:

Lemma 4.3 At the end of a step the two marked tiles are either matched to each other
or both unmatched.

Proof The proof consists of examining several cases. If the first marker u was in a
matched tile, then whether v falls in the matched or unmatched part, the property holds
(if v is unmatched then we attach two unmatched tiles to two matched tiles, so they
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both become unmatched. If it falls in the matched part, either two tiles of the same
size are being attached, or the marked tile splits into two tiles of same size, and the
rightmost piece which is the new marked tile matches in both copies).

A similar analysis can be done if the first marked tile was unmatched. The only case
which requires an observation is if v falls in the same tile as IX̄ (where we assume,
as in the figure, that this is the sorter of the two unmatched pieces), then if v falls in
the first half of the tile this results in two matched pieces which are unmarked for the
next step and two unmatched pieces which are both marked. If however v falls in the
second half of IX̄ then this results in two matched pieces which are marked, and two
unmatched pieces which are not marked. (Recall that the marked tile at the next step
is the one containing the rightmost fragment). ��

This coupling has several remarkable deterministic properties, as already observed
in [6]. Chief among those is the fact that the number of unmatched entries can
only decrease. Unmatched entries disappear when they are coalesced. In particular
they disappear quickly when their size is reasonably large. Hence it is particularly
desirable to have a coupling in which unmatched components stay large. The second
crucial property of this coupling is that it does not create arbitrarily small unmatched
entries: even when unmatched entry is fragmented, the size of the smallest unmatched
entry cannot decrease by more than a factor of two. (As these properties hold deter-
ministically given the marked tiles, they do not need to be proved again). A direct
consequence of these properties is the following lemma, which is Lemma 19 from [6].

Lemma 4.4 Let U be the size of the smallest unmatched entry in two partitions x̄, ȳ ∈
n, let x̄ ′, ȳ′ be the corresponding partitions after one transposition of the coupling,
and let U ′ be the size of the smallest unmatched entry in x̄ ′, ȳ′. Assume that 2 j ≤
U < 2 j+1 for some j ≥ 0. Then it is always the case that U ′ ≥ (1/n)�nU/2, and
moreover,

P(U ′ ≤ 2 j ) ≤ 2 j+2/n.

Finally, the combined number of unmatched parts may only decrease.

Remark 4.5 In particular, it holds that U ′ ≥ 2 j−1/n.

We now explain our strategy. On A(δ) we will expect that the unmatched com-
ponents will remain of a size roughly of order at least δ for a while. In fact we will
show that they will stay at least as big as O(δ2) for a long time. Unmatched entries
disappear when they are merged together. If all unmatched entries are of size at least
δ2, we will see that with probability at least δ8, we have a chance to reduce the number
of unmatched entries in every 3 steps. Then a simple argument shows that after time
� = �δ−9�, X̄� and Ȳ� are perfectly matched with a probability tending to one as
δ → 0.

Lemma 4.6 There is δ0 such that if δ < δ0, during [0,�], both X̄s and Ȳs always
have an entry of size greater than δθ(c) with probability at least 1 − 2δ1/2 for all n
sufficiently large.
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Proof Let δ0 > 0 be such that (1− δ)9! ≥ δ1/2 for all δ ≤ δ0; we may assume without
loss of generality that δ ≤ δ0. Let Z = (Z1, . . .) be a Poisson-Dirichlet random
variable on ∞ and let (Z∗

1 , . . . ) denote the size biased ordering of Z . Recall that
Z∗
1 is uniformly distributed over [0, 1], Z∗

2 is uniformly distributed on [0, 1 − Z∗
1 ],

and so on. For the event {Z1 ≤ δ} to occur it is necessary that Z∗
1 ≤ δ, Z∗

2 ≤
δ/(1 − δ), . . . , Z∗

10 ≤ δ/(1 − δ)9. This has probability at most δ10/(1 − δ)9!. Thus

P(Z1 ≤ δ) ≤ δ10

(1 − δ)9!
≤ δ9+1/2.

Summing over � = �δ−9� steps we see that the expected number of times during
the interval [0,�] such that X̄s or Ȳs don’t have a component of size at least θ(c)δn
is less than δ1/2 as n → ∞ and is thus less than 2δ1/2 for n sufficiently large, by
Theorem 3.6 (note that we can apply the result because this calculation involves only
a finite number of components). The result follows. ��

We now check that all unmatched components really do stay greater than δ2 during
[0,�]. Let Tδ denote the first time s that either X̄s or Ȳs have no cycles greater than
δθ(c)n (suppose without loss of generality that δ is small enough that δ2 ≤ δθ(c)).

Lemma 4.7 On A(δ), for all s ≤ Tδ ∧ �, all unmatched components stay greater
than δ2 with probability at least 1 − O(δ), where the constant implied in O(δ) can
depend on c but not on δ.

Proof Say that a number x ∈ [0, 1] is in scale j if 2 j/n ≤ x < 2 j+1/n. For s ≥ 0, let
U (s) denote the scale of the smallest unmatched entry of X̄s, Ȳs . Let j0 be the scale
of δ, and let j1 be the integer immediately above the scale of δ2.

Suppose for some time s ≤ Tδ , we haveU (s) = j with j1 ≤ j ≤ j0, and themarked
tile at time s corresponds to the smallest unmatched entry. Then after this transposition
we have U (s + 1) ≥ j − 1 by the properties of the coupling (Lemma 4.4). Moreover,
U (s + 1) = j − 1 with probability at most r j = 2 j+2/n. Furthermore, since s ≤ Tδ ,
we have that this marked tile merges with a tile of size at least θ(c)δ with probability at
least θ(c)δ after the transposition. We call the first occurrence a failure and the second
a mild success.

Once a mild success has occurred, there may still be a few other unmatched entries
in scale j , but no more than five since the total number of unmatched entries is
decreasing, and there were at most six initially. And therefore if six mild successes
occur before a failure, we are guaranteed that U (s + 1) ≥ j + 1. We call such an
event a good success, and note that the probability of a good success, given that U (s)
changes scale, is at least p j = 1 − 6r j/(r j + θ(c)δ). We call q j = 1 − p j .

Let {qi }i≥0 be the times at which the smallest unmatched entry changes scale, with
q0 being the first time the smallest unmatched entry is of scale j0. Let {Ui } denote the
scale of the smallest unmatched entry at time qi . Introduce a birth–death chain on the
integers, denoted vn , such that v0 = j0 and

P(vn+1 = j − 1|vn = j) =
⎧⎨
⎩
1 if j = j0
0 if j = j1
q j otherwise,

(52)
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and

P(vn+1 = j + 1|vn = j) =
{
p j , j > j1
0, j = j1.

(53)

Then it is a consequence of the above observations that (Ui , i ≥ 1) is stochastically
dominating (vi , i ≥ 1) for s ≤ Tδ . Set τ j = min{n > 0 : vn = j}. An analysis of the
birth–death chain defined by (52), (53) gives that

P
j0(τ j1 < τ j0) = 1∑ j0

j= j1+1

∏ j0−1
m= j

pm
qm

≤
j0−1∏

j= j1+1

q j

p j

(see, e.g., Theorem (3.7) in Chapter 5 of [11]). Note also that q j ≤ 6r j/(δθ(c)),
so q j/p j � r j/(δθ(c)). Moreover all the r j in this product satisfy r j � δ. Thus,
by considering the 10 terms with lowest index in the product above (and note that
for δ > 0 small enough, there are at least 10 terms in this product), we deduce that
P
j0(τ j1 < τ j0) decays faster than O(δ)10. Since Tδ ∧ � ≤ � = �δ−9� we conclude

that the probability that U (s) = j1 before Tδ ∧ � is at most O(δ). ��
We are now going to prove that on the event A(δ), after time � there are no

unmatched entries with probability tending to one as n → ∞ and δ → 0. The basic
idea is again to exploit that there are initially at most six unmatched parts, and this
number cannot increase. We need a few preparatory lemmas which construct a sce-
nario which lead to a coagulation of two unmatched entries in each copy, in three
steps. Let T ′

δ be the first time one of the unmatched entries is smaller than δ2. Let Fs

denote the filtration generated by (X̄1, . . . , X̄s) including the marked tiles at the end
of each step up to time s. Let Ks be the event that step s results in two unmatched
entries being merged in both copies, so our first goal (achieved in Lemma 4.10) will
be to get a lower bound on the probability of Ks .

Step 1. We show that with good probability both marked tiles are unmatched at the
end of a step (and thus also at the beginning of the next step).

Lemma 4.8 Let Ms be the event that at the end of step s, both marked tiles are
unmatched. Then

P(Ms ∪ Ks |Fs−1; T ′
δ ≥ s) ≥ δ2.

Proof Let u, v be the two markers for step s. If the tile containing u was matched,
then it suffices for v to fall in an unmatched tile (then Ms occurs), which occurs
again with probability at least δ2. If however the tile containing u was unmatched, the
copy which contains the smallest of these two unmatched tiles necessarily contains
at least another unmatched tile. It then suffices for v to fall in that tile. Indeed if we
are very lucky and the other copy also just happen to have two unmatched entries this
might lead to a reduction in the number of unmatched entries, in which case Ks has
occurred. Otherwise we have simply shuffled the unmatched entries and v is now in
an unmatched entry, so Ms holds. Either way, the conditional probability is at least
δ2. ��
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Step 2. We show that if the marked tiles are unmatched, with good probability we can
get to a “balanced configuration” where both copies contain at least two unmatched
tiles, and that the marked tiles at the end of the step are both unmatched.

Lemma 4.9 Suppose s is not a refreshment time. Let Bs denote the event that X̄s and
Ȳs contain at least two unmatched entries each, and that the second marker is in one
of these unmatched tiles for both X̄s, Ȳs at the end of the step (i.e.,Ms holds). Then

P(Bs ∪ Ks |Fs−1; T ′
δ ≥ s;Ms−1) ≥ δ2. (54)

Suppose now that s is a refreshment time. Then

P(Bs |Fs−1; T ′
δ ≥ s) ≥ δ4. (55)

Proof Let u, v be the two markers for step s. Suppose first that s is not a refreshment
time, so we aim to prove (54). We treat several cases, according to whether Bs−1 holds
or not. We start by assuming that Bs−1 does not hold. The idea is that in that case, at
time s − 1, one copy (say Ȳs−1) has one unmatched entry, while the other one has at
least three. It then suffices to fragment the unmatched entry in Ȳs−1 and to coagulate
the other two entries in X̄s−1. Since Ms−1 holds, and s is not a refreshment time, it
suffices for v (the marker corresponding to the copy which has the smallest unmatched
entry, which is necessarily X̄s−1) to fall in any of the other unmatched entries of X̄s−1:
this necessarily results in a balanced configuration. Note also that this always results
in both marked tiles to be unmatched at the end of the step, so Bs indeed holds in that
case. Moreover, this event has probability at least δ2 since T ′

δ ≥ s.
Suppose now that Bs−1 holds. Then let us show directly Ks can occur with good

probability. Indeed, if the second marker v′ = �(v) (this is the marker associated with
the copy, say Ȳs , that contains the larger of the two marked unmatched tiles) falls in
another unmatched tile of Ȳs , then in this case a coagulation of two unmatched entries
is guaranteed to occur in both copies. Hence Ks occurs with probability at least δ2.
Either way, (54) is proved.

Now suppose that s is a refreshment time. In that case it suffices to require that the
first marker falls in an unmatched tile (which occurs with probability δ2) and from
then on we argue exactly as in the proof of (54) to obtain a proof of (55). All in all
the lemma is proved. ��

We point out that, combining Lemmas 4.8 and 4.9 , regardless of whether s is a
refreshment time, P(Bs |Fs−1) ≥ δ4.

Step 3. Having reached a balanced configuration with one marked unmatched entry
in both copies, we show that a coagulation of two unmatched entries in both copies
has a good chance of occurring. In that case, the number of unmatched entries has
decreased by two or four.

Lemma 4.10 We have

P(Ks |Fs−1;Bs−1; T ′
δ ≥ s) ≥ δ4.
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Proof We again need to distinguish between the cases where s is refreshment time or
not. If not, then since Bs−1 holds, then the first marker is in an unmatched tile for both
copies. If the second marker v′ corresponding to the copy with the larger of these two
unmatched tiles falls in a different unmatched tile (which has probability at least δ2)
then a coagulation is guaranteed to occur in both copies so Ks holds.

If s is refreshment time, then the same argument applies, but the first marker must
first fall in an unmatched component (which has probability at least δ2 since T ′

δ ≥ s).
This gives a lower bound of δ4 on the probability of Ks , as desired. ��

Combining these three steps, it is now relatively easy to deduce the following:

Lemma 4.11 We have that for all δ > 0 small enough

lim
δ→0

lim sup
n→∞

P(X̄� �= Ȳ�|A(δ)) = 0

Proof Initially there are at most 6 unmatched entries. Due to parity there can be
either 6, 4 or 0 unmatched entries (note in particular that 2 is excluded, as a quick
examination shows that no configuration can give rise to two unmatched entries).
Furthermore, form the properties of the coupling, the number of unmatched entries
either remains the same or decreases at each step. Once all the entries are matched
they remain matched thereafter.

We have just shown that in any sequence of three transpositions, the probability
that the number of unmatched decreases is at least δ8, unless T ′

δ occurs during this
sequence. Let Z be a binomial random variable with parameters m = �(� − 1)/3
and p = δ8. Thus the event that {X� �= Y�} implies that there has been at most one
success (i.e. Z ≤ 1, so

P(X� �= Y�|A(δ)) ≤ P(Z ≤ 1) + P(T ′
δ ≤ �|A(δ))

≤ (1 − p)m + mp(1 − p)m−1 + O(δ).

Since � � δ−9 and p = δ8, the first two terms tend to 0 as δ → 0, which proves
Lemma 4.11. ��

4.2.3 Coupling for (s2, s3]

The walks X̃ id and X̃ τ1◦τ2 are uniformly distributed on their conjugacy class. Thus
one can couple X̃ id and X̃ τ1◦τ2 so that

• on the event A(δ)c we have that d(X̃ id
s2 , X̃

τ1◦τ2
s2 ) = 2,

• we have that using Lemma 4.11

lim inf
δ↓0 lim inf

n→∞ P

(
X̃ id
s2 = X̃ τ1◦τ2

s2 |A(δ)
)

= 1,

• on the event {X̃ id
s2 �= X̃ τ1◦τ2

s2 }, note that thewalks X̄ and Ȳ have atmost 6 unmatched

entries. Hence the coupling is such that d(X̃ id
s2 , X̃

τ1◦τ2
s2 ) ≤ 4 no matter what.
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Combining this with Lemma 4.2 we have just shown the following lemma.

Lemma 4.12 There exists a coupling of X̃ id and X̃ τ1◦τ2 such that

lim sup
δ↓0

lim sup
n→∞

E

[
d
(
X̃ id
s2 , X̃

τ1◦τ2
s2

)]
≤ 2(1 − θ(c)4)

The theorem now follows immediately:

Proof of Theorem 1.2 It remains to see the coupling during the time interval (s2, s3].
During this time interval we apply the same transpositions to both X̃ id and X̃ τ1◦τ2

which keeps their distance constant throughout (s2, s3]. Thus we have that

d
(
X id
t , X τ1◦τ2

t

)
= d

(
X̃ id
s3 , X̃

τ1◦τ2
s3

)
= d

(
X̃ id
s2 , X̃

τ1◦τ2
s2

)
.

Thus using Lemma 4.12 we see that (46) holds which finishes the proof. ��
Acknowledgements We thank Yuval Peres and Spencer Hughes for useful discussions on discrete Ricci
curvature.
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and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Lower bound on mixing

In this section we give a proof of the lower bound on tmix(δ) for some arbitrary
δ ∈ (0, 1). This is for the most part a well-known argument, which shows that the
number of fixed points at time (1−ε) tmix is large. In the case of random transpositions
or more generally of a conjugacy class � such that |�| is finite, this follows easily
from the coupon collector problem. When |�| is allowed to grow with n, we present
here a self-contained argument for completeness.

Let � ⊂ Sn be a conjugacy class and set k = k(n) = |�|.
Lemma A.1 We have that for any ε ∈ (0, 1),

lim
n→∞ dTV ((1 − ε) tmix) = 1

Proof Let Km ⊂ Sn be the set of permutations which have at least m fixed points.
Recall that μ is the invariant measure, which is a uniform probability measure on Sn

or An depending on the parity of �. Let U denote the uniform measure on Sn . Either
way,

μ(Km) ≤ 2U (Km).
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Now, U (Km) → ∑∞
j=m e−1 1

j ! as n → ∞, hence we deduce that

lim sup
m→∞

lim sup
n→∞

μ(Km) = 0. (56)

Fix β > 0 and let

tβ = 1

k
n(log n − logβ).

Assume that β is such that tβ is an integer. For each i ≥ 0, γi write N (γi ) ⊂ {1, . . . , n}
for the set of non-fixed points of γi . Then we have that for each i ≥ 0, |N (γi )| = k
and further {N (γi )}∞i=1 are i.i.d. subsets of {1, . . . , n} chosen uniformly among the
subsets of size k = |�|.

Consider for 1 ≤ i ≤ n the event Ai that the i-th card is not collected by time tβ ,

that is i /∈ ⋃tβ
�=1 N (γ�). Thus for 1 ≤ i1 < · · · < i� ≤ n and � ≤ n − k,

P(Ai1 ∩ · · · ∩ Ai� ) =
((n−�

k

)
(n
k

)
)tβ

.

Let N = N (n) ∈ N be increasing to infinity such that N 2 = o(n) and N = o(n2k−2).
Then by the inclusion-exclusion formula we have that

P(A1 ∪ · · · ∪ AN ) =
N∑

�=1

(−1)�+1
(
n

�

)((n−�
k

)
(n
k

)
)tβ

. (57)

Writing out the fraction of binomials on the right hand side we have

(
1 − k

n − �

)�tβ
≤
((n−�

k

)
(n
k

)
)tβ

≤
(
1 − k

n

)�tβ
.

Now −x/(1 − x) ≤ log(1 − x) ≤ −x for x ∈ (0, 1) thus we have that

exp

(
− �ktβ
n − k − �

)
≤
((n−�

k

)
(n
k

)
)tβ

≤ exp

(
−�ktβ

n

)
. (58)

On the other hand we have that

(n − �)�

�! ≤
(
n

�

)
≤ n�

�! . (59)

Note that ne−tβk/n = β, then combining (58) and (59) we get

(
1 − �

n

)�

exp

(
− k(k + �)�tβ
n(n − k − �)

)
β�

�! ≤
(
n

�

)((n−�
k

)
(n
k

)
)tβ

≤ β�

�! . (60)
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Let us lower bound the error term on the left hand side of (60). First (1 − �/n)� ≥
e−�2/(n−�), hence it follows that

inf
�≤N

(
1 − �

n

)�

exp

(
− k(k + �)�tβ
n(n − k − �)

)
≥ inf

�≤N
exp

(
− �2

n − �
− k(k + �)�tβ

n(n − k − �)

)
.

It is easy to see that the right hand side above converges to 1 as n → ∞. Using this
and (60) it follows that

lim
n→∞

N∑
�=1

(−1)�+1
(
n

�

)((n−�
k

)
(n
k

)
)tβ

= lim
n→∞

N∑
�=1

(−1)�+1 β�

�! = 1 − e−β.

For integers a < b let Let K[a,b] = Aa+1 ∪ Aa+2 ∪ · · · Ab. Then we have shown

lim inf
n→∞ P(Xtβ ∈ K[1,N ]) ≥ 1 − e−β.

Likewise, for any j < �n/N,

lim inf
n→∞ P(Xtβ ∈ K[ j N ,( j+1)N ]) ≥ 1 − e−β.

Hence

lim inf
n→∞ P

(
Xtβ ∈ ∩m

j=1K[ j N ,( j+1)N ]
)

≥ 1 − me−β.

Let ε > 0. Then for any β > 0, if t = (1− ε) tmix then t < tβ for n sufficiently large,
and hence

lim inf
n→∞ P

(
Xt ∈ ∩m

j=1K[ j N ,( j+1)N ]
)

= 1.

But it is obvious that ∩m
j=1K[ j N ,( j+1)N ] ⊂ Km and hence for t = (1 − ε) tmix,

lim inf
n→∞ P(Xt ∈ Km) = 1. (61)

Comparing with (56) the result follows. ��

B Proof of Theorem 3.6

Let � ⊂ Sn be a conjugacy class with cycle structure (k2, k3, . . . ). Let X = (Xt :
t = 0, 1, . . . ) be a random walk on Sn which at each step applies an independent
uniformly random element of �. Let ρ = ∑

j ( j − 1)k j and let X̃ be the transposition

walk associated to the walk X using (49). In particular for t ≥ 0, X̃tρ = Xt . Finally
let Z = (Z1, Z2, . . . ) denote a Poisson–Dirichlet random variable.

For convenience we restate Theorem 3.6 here.
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Theorem B.1 Let s ≥ 0 be such that sk/(nρ) → c for some c > c� . Then for each
m ∈ N we have that as n → ∞,

(
X̄1(X̃s)

θ(c)
, . . . ,

X̄m(X̃s)

θ(c)

)
→ (Z1, . . . , Zm)

in distribution where θ(c) is given by (16).

The proof of this result is very similar to the proof of Theorem 1.1 in [24]. We give
the details here.

Recall the hypergraph process H = (Ht : t = 0, 1, . . . ) associated with the walk X
defined in Sect. 3.1. Analogously let G̃ = (G̃t : t = 0, 1, . . . ) be a process of graphs
on {1, . . . , n} such that the edge {x, y} is present in G̃t if and only if the transposition
(x, y) has been applied to X̃ prior to and including time t . Hence we have that for
each t = 0, 1, . . . , G̃tρ = Ht .

Recall that X̃ satisfies conditional uniformity as described in Proposition 4.1. Using
the graph process G̃ above and the conditional uniformity of X̃ the following lemma,
which is the analogue of Lemma 2.4 in [24], follows almost verbatim from Schramm’s
arguments.

Lemma B.2 Let s ≥ 0 be such that sk/(nρ) → c for some c > c� and let ε ∈
(0, 1/8). Let M = M(ε, n, s) be the minimum number of cycles of X̃s which are
needed to cover at least (1 − ε) proportion of the vertices in the giant component of
G̃s . Then for α ∈ (0, 1/8) we have that

lim sup
n→∞

P(M > α−1| log(αε)|2) ≤ Cα

for some constant C which does not depend on α nor ε.

Henceforth fix some time s ≥ 0 such that sk/(nρ) → c for some c > c� . Fix
ε ∈ (0, 1/8) and define

� := �ε−1
s0 := s − �.

For t = 0, . . . ,� define X̄t = X(X̃s0+t ).We can assume that for t ≤ �, X̃s0+t satisfies
the relaxed conditional uniformity assumption described in Definition 4.2. Indeed
by making this assumption we are disregarding the constraint on the transpositions
described in Proposition 4.1 applied to X̃t for t = s0, . . . , s. However the probability
that we violate this constraint is at most 2�k/n.

Colour an element of X̄0 = X(X̃s0) green if the cycle whose renormalised cycle
length of this element lies in the giant component of G̃s0 . We colour all the other
elements of X̄0 red. Thus asymptotically in n, the sum of the green elements is θ(c)
and the sum of the red elements is 1− θ(c). In the evolution of (X̄t : t = 0, 1, . . . ) we
keep the colour scheme as follows. If an element fragments, both fragments retain the
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same colour. If we coagulate two elements of the same colour then the new element
retains the colour of the previous two elements. If we coagulate a green element and
a red element, then the colour of the resulting element is green.

Define X̄ ′ = (X̄ ′
t : t = 0, . . . ,�) and X̄ ′′ = (X̄ ′′

t : t = 0, . . . ,�) as follows.
Initially X̄ ′

0 = X̄ ′′
0 = X̄0. Apply the same colouring scheme to X̄ ′ and X̄ ′′ as we did

to X̄ . Each step evolution is described as follows. Then the walks evolve as follows.

• X̄ ′
t : Evolves the same as X̄ except we ignore any transition which involves a red

entry.
• X̄ ′′

t : Evolves the same as X̄ ′ except that the markers u, v used in the transitions of
X̄ ′′ are distributed uniformly on [0, 1].
Lemma 3.1 states that the second largest component of G̃s0 has size o(n). Hence,

initially each red element has size o(1) as n → ∞. Now � does not increase with n,
hence for any s = 0, 1, . . . ,�, we are unlikely to make a coagulation (or fragmenta-
tion) in X̄ ′

s without coagulating (or fragmenting) entries of X̄s of similar size. Similar
considerations for the processes X̄ ′ and X̄ ′′ leads to the following lemma.

Lemma B.3 There exists a coupling between the walks X̄ and X̄ ′, and between X̄ ′
and X̄ ′′ such that for each η > 0,

lim
n→∞P

(
sup
i∈N

|X̄i (�) − X̄ ′
i (�)| > η

)
= lim

n→∞P

(
sup
i∈N

|X̄ ′
i (�) − X̄ ′′

i (�)| > η

)
= 0.

Using the preceding lemma, it suffices now to find an appropriate coupling between
X̄ ′′ and Z . To do this wemodify Schramm’s coupling in [24]. First we let {J1, . . . , JL }
be the set of times s ∈ {0, . . . ,�} such that X̄ ′′

s−1 �= X̄ ′′
s . It is easy to see that

limn→∞ P(L >
√

�) = 1 and henceforth we will condition on the event that {L >√
�} and set �′ = �√�. Define a process Ȳ = (Ȳt : t = 0, . . . ,�′) as follows.

Initially Ȳ0 = X̄ ′′
0 . For t = 1, . . . ,�′ we let Ȳt be X ′′

Jt
renormalised so that

∑
i Ȳi (t) =

1 where Ȳi (t) is the i-th element of Ȳt .
We define a process Z̄ = (Zt : t = 0, 1, . . . ,

√
�) as follows. Initially Z0 has

the distribution of a Poisson–Dirichlet random variable, independent of Ȳ . Then for
t = 1, . . . ,�′ define Z̄t by applying the coupling in Sect. 4.2.2 to Ȳ and Z̄ but with
the following modifications:

• the markers u, v ∈ [0, 1] are taken uniformly at random,
• we always take v′ = v,
• we modify the definition of a refreshment time: s is a refreshment time if either

Js−1 + 2 ≤ Js or Js + s0 is a refreshment time in the sense of Definition 4.1,
• when a marked tile of size a fragments, it creates a tile of length v and a tile of
length a − v. We mark the tile of length a − v.

It is not hard to check that the Poisson–Dirichlet distribution is invariant under this
evolution and hence we have that for each t = 0, 1, . . . , �′, Zt has the law of a
Poisson–Dirichlet.

Our coupling agrees with the coupling in [24, Section 3] when � = T is the set
of all transpositions. In this case each time s is a refreshment time and hence the
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marked tile at time s is always chosen by the marker u. One can adapt the arguments
in Chapter 3 of Schramm’s paper to our case by using the following idea. Note first
that all the estimates of Schramm apply at s when s is a refreshment time. When s is
not a refreshment time and Schramm considers the event that the marker u at time s
falls inside an unmatched tile, instead we consider the event that the marker v at time
s − 1 falls inside an unmatched tile. By the properties of the coupling, this guarantees
that at time s the marked tile is unmatched.

Adapting Schramm’s arguments leads to the following lemma, which is the ana-
logue of [24, Corollary 3.4].

Lemma B.4 Define

N 0 := #{i ∈ N : Ȳi (0) > ε} + #{i ∈ N : Z̄i (0) > ε}

and let

ε̄ := ε +
∞∑
i=1

Ȳi (0)1{Ȳi (0)<ε} +
∞∑
i=1

Z̄i (0)1{Z̄i (0)<ε}.

Define the event

B =
{

ε̄4/5 ≤ 1

�′ ≤ ε̄1/5

N 0 ∨ 1

}
.

Let q ∈ {1, . . . ,�′} be distributed uniformly, independent of the processes Ȳ and Z̄ .
Then we have that for each ρ > 0,

P

(
sup
i∈N

|Ȳi (q) − Z̄i (q)| > ρ

)
≤ C

P(B)

ρ log�′

for some constant C > 0.

UsingLemmaB.4 it suffices to show thatP(B)/ log�′ → 0 as ε ↓ 0. The following
lemma shows a stronger result.

Lemma B.5 Suppose that B is defined as in Lemma B.4, then

lim
ε↓0 P(B) = 1.

Proof Let

B1 :=
{
ε̄4/5 ≤ 1

2
ε1/2

}

B2 :=
{
2ε1/2 ≤ ε̄1/5

N 0 ∨ 1

}
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Now as (1/2)ε−1/2 ≤ �′ ≤ 2ε−1/2 we have that B ⊃ B1 ∩ B2. First let us bound
P(Bc

1). Note that on the event Bc
1 we have that ε̄ > 2−5/4ε5/8. Note that a size biased

sample from a Poisson–Dirichlet random variable has a uniform law on [0, 1]. Hence
it follows that

E

[ ∞∑
i=1

Z̄i (0)1{Z̄i (0)<ε}

]
= ε

and thus

P

( ∞∑
i=1

Z̄i (0)1{Z̄i (0)<ε} > ε5/6

)
≤

E

[∑∞
i=1 Z̄i (0)1{Z̄i (0)<ε}

]

ε5/6
≤ ε1/6.

Next consider the random variable M in Lemma B.2 at time s0 = s − � where we
recall that Ȳ (0) = X(X̃s0). We have that

∞∑
i=1

Yi (0)1{Ȳi (0):Ȳi (0)<ε} ≤ ε(M + 1)

Then applying Lemma B.2 at time s0 we have that

P

( ∞∑
i=1

Ȳi (0)1{Ȳi (0)<ε} > ε5/6

)
≤ P(M > ε−1/5) ≤ Cε1/6

for some constant C > 0. Hence it follows that for ε > 0 small

P(Bc
1) = P(ε̄ > 2−5/4ε5/8) ≤ P(ε̄ > ε5/6) ≤ ε1/6 + Cε1/6.

which shows that P(B1) → 1 as ε ↓ 0.
Now we bound P(Bc

2). Firstly we use the bound ε̄ ≥ ε and so we are left to bound
N 0 from above. Using the stick breaking construction of Poisson–Dirichlet random
variables (see for example [3, Definition 1.4]) one can show that

P

(
# {i ∈ N : Zi (0) > ε} > ε−1/4

)
≤ C ′ε

for some constant C ′ > 0. On the other hand we have that

# {i ∈ N : Yi (0) > ε} ≤ M

and hence using Lemma B.2 we obtain

P

(
# {i ∈ N : Yi (0) > ε} > ε−1/4

)
≤ C ′′ε1/5

for some constant C ′′ > 0. Hence it follows that P(Bc
2) ≤ C ′ε +C ′′ε1/5 and the result

now follows. ��
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Theorem B.1 now follows from Lemmas B.3, B.4 and B.5.

References

1. Aldous, D.: Random walks on finite groups and rapidly mixing Markov chains. In: Seminar on Prob-
ability, XVII, Volume 986 of Lecture Notes in Mathematics, pp. 243–297. Springer, Berlin (1983)

2. Berestycki, N.: The hyperbolic geometry of random transpositions. Ann. Probab. 34(2), 429–467
(2006)

3. Berestycki, N.: Recent Progress in Coalescent Theory, Volume 16 of Ensaios Matemáticos [Mathe-
matical Surveys]. Sociedade Brasileira de Matemática, Rio de Janeiro (2009)

4. Berestycki, N.: Emergence of giant cycles and slowdown transition in random transpositions and
k-cycles. Electron. J. Probab. 16, 152–173 (2011)

5. Berestycki, N., Durrett, R.: A phase transition in the random transposition randomwalk. Probab. Theor.
Relat. Fields 136, 203–233 (2006)

6. Berestycki, N., Schramm, O., Zeitouni, O.: Mixing times for random k-cycles and coalescence–
fragmentation chains. Ann. Probab. 39(5), 1815–1843 (2011)

7. Bormashenko, O.: A coupling argument for the random transposition walk. arXiv preprint
arXiv:1109.3915

8. Bubley, R., Dyer, M.: Path coupling: a technique for proving rapid mixing in Markov chains. In: 38th
Annual Symposium on Foundations of Computer Science, 1997. Proceedings, pp. 223–231. IEEE
(1997)

9. Diaconis, P.: Group Representations in Probability and Statistics. Institute of Mathematical Statistics
Lecture Notes—Monograph Series, 11. Institute of Mathematical Statistics, Hayward (1988)

10. Diaconis, P., Shahshahani, M.: Generating a random permutation with random transpositions. Z.
Wahrscheinlichkeitstheorie Verwandte Geb. 57(2), 159–179 (1981)

11. Durrett, R.: Probability: Theory and Examples. Cambridge Series in Statistical and Probabilistic Math-
ematics, 4th edn. Cambridge University Press, Cambridge (2010)

12. Durrett, R.: Random Graph Dynamics. Cambridge Series in Statistical and Probabilistic Mathematics.
Cambridge University Press, Cambridge (2010)

13. Flatto, L., Odlyzko, A.M., Wales, D.B.: Random shuffles and group representations. Ann. Probab.
13(1), 154–178 (1985)

14. Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a low-degree graph.
Random Struct. Algorithms 7(2), 157–165 (1995)
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