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Abstract The Sineβ process is the bulk point process limit of the Gaussian
β-ensemble. For β = 1, 2 and 4 this process gives the limit of the GOE, GUE and
GSE randommatrixmodels. The Schτ process is obtained similarly as the bulk scaling
limit of the spectrum of certain discrete one-dimensional random Schrödinger opera-
tors. Both point processes have asymptotically constant average density, in our chosen
normalization one expects close to 1

2π λ points in a large interval of length λ. We prove
large deviation principles for the average densities of the processes, identifying the
rate function in both cases. Our approach is based on the representation of the counting
functions using coupled systems of stochastic differential equations. Our techniques
work for the full range of parameter values. The results are novel even in the classical
β = 1, 2 and 4 cases for the Sineβ process. They are consistent with the existing
rigorous results on large gap probabilities and confirm the physical predictions made
using log-gas arguments.

Mathematics Subject Classification 60B20 · 60F10 · 15B52

1 Introduction

The Gaussian orthogonal, unitary and symplectic ensembles (GOE, GUE, GSE) are
some of themost studied randommatrixmodels. These are symmetric (resp.Hermitian
or symplectic) matrices with i.i.d. standard real (resp. complex or quaternion) normal
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entriesmodulo the appropriate symmetry. It has been know from the classical results of
Gaudin andMehta [20] that if we appropriately scale the spectrum in the bulk (e.g. near
zero) then we obtain a limiting point process. The point process can be described via
its n-point correlation functions. These are given by determinantal formulas in the
GUE case and Pfaffian formulas in the GOE, GSE cases. (See [2,13,20] for more
details and the precise description.)

The GOE, GUE, GSE models can be naturally included in a one-parameter family
of distributions. The joint eigenvalue distribution for these classical models is known
to be

p(λ1, . . . , λn) = 1

Zn,β

∏

1≤i< j≤n

|λi − λ j |βe
− β

4

n∑
i=1

λ2i
(1)

where β is equal to 1, 2 and 4 in the three cases. Note, that the constant β/4 in
the exponential can be easily changed via linear scaling. It is natural to consider the
density (1) for general β > 0, this is the Gaussian (or Hermitian) β-ensemble. In [23]
the authors show the existence of the bulk scaling limit for general β. In particular,
if �n,β is distributed according to (1) then 2

√
n�n,β converges to a random point

process, denoted by Sineβ . For β = 1, 2, 4 this gives the bulk limit process for the
GOE, GUE, GSE ensembles.

The Sineβ process can be described through its counting function using a system
of stochastic differential equations. Consider the system

dαλ = λ
β

4
e−β

4 t dt+Re
[
(e−iαλ − 1)(dB1 + id B2)

]
, αλ(0) = 0, t ∈ [0,∞) (2)

where B1, B2 are independent standard Brownian motions. Note, that this is a one-
parameter family of SDEs driven by the same complex Brownian motion. In [23] it
was shown that Nβ(λ) = limt→∞ 1

2π αλ(t) exists almost surely and it is an integer
valued monotone increasing function in λ. Moreover, the function λ → Nβ(λ) has the
same distribution as the counting function of the Sineβ process, i.e. the distribution of
the number of points in [0, λ] for λ > 0 is given by that of Nβ(λ).

Note, that for any fixed λ the process αλ satisfies the SDE

dαλ = λ
β

4
e−β

4 t dt + 2 sin(αλ/2)dBt , αλ(0) = 0, t ∈ [0,∞) (3)

where Bt = B(λ)
t = ∫ t

0 Re
[ − ie− 1

2 iαλ(s)d(B1 + id B2)
]
is a standard Brownian

motion which depends on λ. Thus, if we are interested in the number of points in a
given interval [0, λ] then it is enough to study the SDE (3) instead of the system (2).

Using the SDE characterization of the Sineβ process one can show that it is trans-
lation invariant with density (2π)−1 (see [23]). In particular, in a large interval [0, λ]
one expects roughly (2π)−1λ points. In [19] the authors refined this by showing that
Nβ(λ) satisfies a central limit theorem, it is asymptotically normal with mean λ

2π and
variance 2

βπ2 log λ.
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The main goal of the current paper is to characterize the large deviation behavior of
Nβ(λ). We will find the asymptotic probability of seeing an average density different
from (2π)−1 on a large interval. Our main theorem will show that λ−1Nβ(λ) satisfies
a large deviation principle with a good rate function.

Before stating the exact form of the theorem we need to introduce a couple of
notations. We will use

K (a) =
∫ π/2

0

dx√
1 − a sin2 x

, E(a) =
∫ π/2

0

√
1 − a sin2 xdx, (4)

for the complete elliptic integrals of the first and second kind, respectively. Note that
there are several conventions denoting these functions, we use the one in [1]. We also
introduce the following function for a < 1:

H(a) = (1 − a)K (a) − E(a). (5)

Now we are ready to state our main theorem.

Theorem 1 Fix β > 0. The sequence of random variables 1
λ
Nβ(λ) satisfies a large

deviation principle with scale λ2 and good rate function β ISine(ρ) with

ISine(ρ) = 1

8

[ν

8
+ ρH(ν)

]
, ν = γ (−1)(ρ), (6)

where γ (−1) denotes the inverse of the continuous, strictly decreasing function given
by

γ (ν) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

H(ν)
8

ν∫
−∞

H−2(x)dx, if ν < 0,

1
2π , if ν = 0,
H(ν)
8

ν∫

1
H−2(x)dx, if 0 < ν < 1,

0, if ν = 1.

(7)

Roughly speaking, this means that the probability of seeing close to ρλ points in
[0, λ] for a large λ is asymptotically e−λ2β ISine(ρ). The precise statement is that if G is
an open, and F is a closed subset of [0,∞) then

lim inf
λ→∞

1

λ2
P( 1

λ
Nβ(λ) ∈ G) ≥ − inf

x∈G β ISine(x),

lim sup
λ→∞

1

λ2
P( 1

λ
Nβ(λ) ∈ F) ≤ − inf

x∈F β ISine(x).

The function γ may also be defined as the solution to the equation 4x(1−x)γ ′′(x) =
γ (x) on the intervals (−∞, 0] and [0, 1] with boundary conditions limx→0± γ (x) =
1
2π , γ (1) = 0 and limx→−∞ γ (x)√|x | = 1

4 . The rate function ISine(ρ) is strictly convex
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and non-negative with ISine(
1
2π ) = 0 and ISine(0) = 1

64 . The function ISine(
1
2π + x)

behaves like − π2x2
4 log(1/|x |) for small |x |, and ISine(ρ) grows like 1

2ρ
2 log ρ as ρ → ∞.

These statements will be proved in Proposition 20.
We note that the behavior of ISine(ρ) near ρ = 1

2π is formally consistent with the
already mentioned central limit theorem of Nβ(λ). For ρ = 1

2π + x with a small, but
fixed |x | the probability of seeing close to 1

2π λ + xλ points in [0, λ] is approximately

exp
(− βπ2λ2x2

4 log(1/|x |)
)
. Now let us assume, that this is true even if x decays with λ, even

though this regime is not covered in our theorem. If we substitute λx =
√

2
βπ2 log λ · y

(with a fixed y), then this probability would asymptotically equal to e−y2/2. This is
in agreement with the fact that Nβ(λ) is asymptotically normal with mean 1

2π λ and
variance 2

βπ2 log λ.
Before moving on, a couple of historical notes are in order. In [23] the authors

also show another large deviation statement for the Sineβ process regarding large
intervals, namely that the asymptotic probability of not seeing any points in [0, λ] is
approximately e− β

64λ2 . In [24] this result was sharpened by providing the more precise
asymptotics of

P(Nβ(λ) = 0) = (κβ + o(1))λυβ exp
{
− β

64λ
2 +

(
β
8 − 1

4

)
λ
}

, as λ → ∞ (8)

withυβ = 1
4

(
β
2 − 2

β
− 3

)
and a positive constant κβ whose valuewas not determined.

Similar results have been proven before for the classical cases β = 1, 2, 4, see e.g. [3,
8,22,25].Moreover, the value of κβ and higher order asymptoticswere also established
for these specific cases by [7,11,18]. Further extension in the classical cases include
the exact asymptotics of P(Nβ(λ) = n) for fixed n and also for n = o(λ). (See [22]
and [13] for details.) In all of these results the main term of the asymptotic probability

is e− β
64λ2 . This is consistent with our result, as Theorem 1 and ISine(0) = 1

64 implies

lim
ε→0

lim
λ→∞

1
λ2

log P(Nβ(λ) ≤ ελ) = − β
64 .

The large deviation rate function (6) has been predicted using non-rigorous scaling
and log-gas arguments in [10] and [12]. (See Section 14.6 of [13] for an overview.)
Using the same techniques [14] treats the corresponding problem for the soft edge and
hard edge limit processes of β-ensembles.

One can also study the large deviation behavior of the empirical distribution of
the β-ensembles on a macroscopic level. It is known that after scaling with

√
n the

empirical measure of the distribution (1) converges to the Wigner semicircle law. In
[4] the authors prove a large deviation principle for the scaled empirical measure,
this describes the asymptotic probability of seeing a different density profile than the
semicircle. One could consider our theorem a microscopic analogue of that result.

We will study the asymptotic behavior of the diffusions (2) and (3) by comparing
them to similar diffusions with piecewise constant drifts. This connects us to another,
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Large deviations for the Sineβ and Schτ processes 343

related symmetric random matrix ensemble. Let Hn,σ be a random symmetric tridi-
agonal matrix with entries equal to 1 above and below the diagonal and i.i.d. normals
with mean zero and variance σ 2

n on the diagonal.

Hn,σ =

⎛

⎜⎜⎜⎜⎜⎜⎝

ω1 1
1 ω2 1

1
. . .

. . . 1
1 ωn

⎞

⎟⎟⎟⎟⎟⎟⎠
, ωi ∼ N (0, σ 2n−1). (9)

The matrix Hn,σ can be viewed as a one-dimensional discrete random Schrödinger
operator. In [19] it was shown that the bulk scaling limit of the spectrum of Hn,σ (along
appropriate subsequences) is a point process with density (2π)−1 denoted by Schτ .
(The parameter τ > 0 depends on σ and the point in the spectrum where we zoom in
to take the limit.) The process Schτ can be characterized via its counting function in
a similar way to the Sineβ process. Consider the following one-parameter family of
SDEs:

dφλ = λdt + dB0 + Re
[
e−iφλ(dB1 + id B2)

]
, φλ(0) = 0, t ∈ [0,∞) (10)

where B0, B1, B2 are independent standard Brownian motions. Then the random set

�τ := {λ : φλ/τ (τ ) ∈ 2πZ}

has the same distribution as Schτ . Denote the counting function of the process by Ñτ ,
i.e. for λ > 0 let Ñτ (λ) = #(Schτ ∩ [0, λ]). In [19] it was shown that Ñτ (λ) is close
to a normal with mean λ

2π and a constant variance τ
4π2 . In our next result we derive

the large deviation behavior of Ñτ (λ), this is the analogue of Theorem 1 for the Schτ

processes.

Theorem 2 Fix τ > 0. The sequence of random variables 1
λ
Ñτ (λ) satisfies a large

deviation principle with scale λ2 and rate function 1
τ
ISch(·) where ISch(ρ) = I(2πρ)

and for q > 0

I(q) = 2−a
8 − E(a)

4K (a)
, with a = a(q) = K−1(π/(2q)) (11)

and I(0) = 1/8.

The rate function ISch(ρ) is strictly convex and locally quadratic at the absolute
minimum point ρ = 1

2π . (See Proposition 16.) The local behavior of ISch(ρ) at
ρ = 1

2π is formally consistent with the fact that Nτ (λ) − λ
2π is close to a normal

random variable with a constant variance τ
4π2 .

The proofs of Theorems 1 and 2 will rely on path level large deviation principles
on the corresponding stochastic differential equations. These in turn will follow by
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344 D. Holcomb, B. Valkó

analyzing the hitting time of 2π for the diffusion

dα̃λ = λdt + 2 sin(̃αλ/2)dB, α̃λ(0) = 0, t ∈ [0,∞) (12)

for a fixed large λ. Note, that for a fixed λ the process α̃λ(t) is equal in distribution to
φλ(t) − φ0(t) from (10).

In the next section we summarize some of the important properties of the SDEs we
work with, and state the needed path level large deviation results. In Sect. 3 we study
the diffusion α̃λ from (12) using the Cameron–Martin–Girsanov change of measure
technique. In Sect. 4 we will derive a path level large deviation principle for the
diffusion α̃λ from (12). Using this result and comparing αλ from (3) to a similar
diffusion with piecewise constant drift allows us to derive a path level large deviation
principle for αλ. This is done in Sect. 5. In Sect. 6 we analyze the rate functions for
the path level large deviations and in Sect. 7 we complete the proofs of Theorems 1
and 2. In the “Appendix” we will discuss various properties and asymptotics of the
used special functions.

2 Properties of the diffusions corresponding to Sineβ and Schτ

Our starting point is the observation that if λ > 0 is fixed, then if the diffusion α̃λ

(defined in (12)) hits 2nπ for n ∈ Z, it will stay above it. This can be seen from the fact
that when α̃λ hits 2nπ the noise term vanishes, but the drift term is always positive.
Introduce the notations

�y�2π = max{2πk : 2πk ≤ y}, 
y�2π = min{2πk : 2πk ≥ y}.

From the strong Markov property we immediately get the following proposition.

Proposition 3 Fix λ > 0. Then the process �α̃λ(t)�2π is non-decreasing in t. More-
over, the waiting times between the jump times of this process are i.i.d. with the same
distribution as the hitting time

τλ = inf{t : α̃λ(t) ≥ 2π}. (13)

Consider the diffusions α̃
(1)
λ and α̃

(2)
λ which are strong solutions of the SDE (12), but

with initial conditions α̃
(1)
λ (0) = c1 ≤ α̃

(2)
λ = c2. Then a simple coupling argument

shows that α̃
(1)
λ (t) ≤ α̃

(2)
λ (t) for all t ≥ 0. Our next proposition will build on this

statement using the strong Markov property.

Proposition 4 Let 0 = t0 < t1 < t2 < · · · < tn = T and fix a λ > 0. Consider
the solution α̃λ(t) of (12) on [0, T ]. Then there exists independent random variables
ξ1, ξ2, . . . , ξn so that

�ξi�2π ≤ �α̃λ(ti )�2π − �α̃λ(ti−1)�2π ≤ �ξi�2π + 2π, 1 ≤ i ≤ n, (14)

and ξi is distributed as α̃λ(ti − ti−1).
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Proof Let α̂i (s) be defined as the strong solution of (12) on [ti−1, ti ] with initial
condition α̂i (ti−1) = 0 and let ξi = α̂i (ti ). Clearly, ξi , 1 ≤ i ≤ n are independent

random variables and ξi
d= α̃λ(ti − ti−1), we just have to show that (14) holds. Fix an

integer 1 ≤ i ≤ n and for s ∈ [ti−1, ti ] define

α̃
(1)
λ (s) = α̂i (s) + �α̃λ(ti−1)�2π , α̃

(2)
λ (s) = α̂i (s) + �α̃λ(ti−1)�2π + 2π.

Then α̃λ, α̃
(1)
λ , α̃

(2)
λ are all strong solutions of (12) on [ti−1, ti ] with initial conditions

α̃
(1)
λ (ti−1) ≤ α̃λ(ti−1) ≤ α̃

(2)
λ (ti−1) = α̃

(1)
λ (ti−1) + 2π.

The ordering is preserved by the coupling so we have

α̃
(1)
λ (ti ) ≤ α̃λ(ti ) ≤ α̃

(2)
λ (ti ) = α̃

(1)
λ (ti ) + 2π.

(See Fig. 1 for an illustration.) From this we get

�α̃λ(ti )�2π − �α̃λ(ti−1)�2π = �α̃λ(ti )�2π − �α̃(1)
λ (ti−1)�2π

≥ �α̃(1)
λ (ti )�2π − �α̃(1)

λ (ti−1)�2π = �ξi�2π ,

Fig. 1 The coupling of Proposition 4. The process α̃λ is the diffusion in the middle, it is sandwiched

between α̃
(1)
λ and α̃

(2)
λ = α̃

(1)
λ + 2π which start at integer multiples of 2π at the beginning of the coupling

interval
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and

�α̃λ(ti )�2π − �α̃λ(ti−1)�2π = �α̃λ(ti )�2π − �α̃(1)
λ (ti−1)�2π

≤ �α̃(2)
λ (ti )�2π − �α̃(1)

λ (ti−1)�2π = �ξi�2π + 2π.

��
We will also need another type of coupling for a slightly more general family of

diffusions. Consider the SDE

dξ f,c = f dt + Re((e−iξ f,c − 1)(dB1 + id B2)), ξ f,c(0) = c, t ∈ [0,∞) (15)

where f is an integrable non-negative function. Note, that for fixed f, c this process
has the same distribution as

d ξ̃ f,c = f dt + 2 sin(̃ξ f,c/2)dB, ξ̃ f,c(0) = c, t ∈ [0,∞) (16)

The following properties of ξ f,c follow from the basic theory of diffusions and standard
coupling arguments.

Proposition 5 (i) Let τ2πn be the hitting time of 2πn, where 2πn > c and n is an
integer. Then for any t > τ2πn we have ξ f,c ≥ 2πn. In particular, if c ≥ 0 then
ξ f,c(t) stays non-negative for all t > 0.

(ii) If f ≥ g and ξ f,a and ξg,b are driven by the sameBrownianmotions then ξ f,a−ξg,b
has the same distribution as ξ f −g,a−b. If a ≥ b then ξ f,a − ξg,b stays a.s. non-
negative for all t .

(iii) For any finite T we have the following exponential tail bound

P(ξ f,0(T ) ≥ ka) ≤ 2

(∫ T
0 f (t)dt

2πa

)k

, k ∈ N. (17)

If
∫∞
0 f (t)dt < ∞ then ξ f,c(∞) = limt→∞ ξ f,c(t) exists a.s. and the previous

bound holds for T = ∞ as well.

Sketch of the proof The first statement follows from the strong Markov property and
the fact that in (16) the noise term vanishes if ξ̃ f,c ∈ 2πZ, but the drift is always
non-negative. The first part of (ii) follows by considering the difference of the SDEs
for ξ f,a , ξg,b and noting that (e−iξ f,a − e−iξg,b )(dB1 + id B2) has the same distribution
as (e−i(ξ f,a−ξg,b) − 1)(dB1 + id B2). The second part of (ii) follows from the first
statement.

Finally, (17) follows from the Markov inequality and the strong Markov property.
The existence of the limit is proved in Proposition 9 of [23]. (See that proposition for
more details on the proof.) ��

Our main theorems will follow from the following path level large deviations.
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Theorem 6 Fix β > 0 and let αλ(t) be the process defined in (2) or (3). Then the
sequence of rescaled processes (

αλ(t)
λ

, t ∈ [0,∞)) satisfies a large deviation principle
on C[0,∞) with the uniform topology with scale λ2 and good rate function JSineβ .
The rate function JSineβ is defined as

JSineβ (g) =
∫ ∞

0
f2(t)I (g′(t)/f(t)

)
dt, with f(t) = fβ(t) = β

4 e
−β

4 t

in the casewhere g(0) = 0 and g is absolutely continuouswith non-negative derivative
g′. In all other cases JSineβ (g) is defined as ∞.

Theorem 7 Fix T > 0 and let α̃λ(t) be the process defined in (12). Then the sequence
of rescaled processes (

α̃λ(t)
λ

, t ∈ [0, T ]) satisfies a large deviation principle onC[0, T ]
with the uniform topology with scale λ2 and good rate function JSch,T . The rate
function is defined as

JSch,T (g) =
∫ T

0
I (g′(t)

)
dt

in the casewhere g(0) = 0 and g is absolutely continuouswith non-negative derivative
g′, and JSch,T (g) = ∞ in all other cases.

In order to prove Theorem 7 we observe that α̃λ(t)
λ

is close to �α̃λ(t)�2π
λ

for large λ

and by Proposition 3 we only need to analyze the hitting time τλ to understand the
evolution of �α̃λ(t)�2π . The proof of Theorem 6 will follow along similar lines after
approximating the drift in (2) with a piecewise constant function.

3 Analysis of the hitting time τλ

The following proposition summarizes our bounds on the relevant hitting times.

Proposition 8 Let τλ = inf{t : α̃λ(t) ≥ 2π} where α̃λ is the solution of (12) and fix
a < 1. Then we have

Ee
λ2a
8 τλ− λ(|a|∧√|a|)

4 τλ ≤ e−λH(a). (18)

Let ta = 4K (a) and fix 0 < ε < |ta − 2π |. Then we have

P(λτλ ∈ [ta − ε, ta + ε]) ≥ A(ε, λ, a)e−λ(H(a)+ ata
8 )−λ

|a|ε
8 −λ

|a|
2 (ta+ε) (19)

where limλ→∞ A(ε, λ, a) = 1 for fixed a, ε.

Our first step is a change of variables in (12). We introduce Xλ(t) = log(tan(̃αλ(t)/
4)), by Itô’s formula this satisfies the SDE

dXλ = λ

2
cosh Xλ dt + 1

2
tanh Xλ dt + dBt , Xλ(0) = −∞. (20)
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The distribution of the hitting time of 2π for α̃λ(t) is the same as that of the hitting
time of∞ for Xλ. With a small abuse of notation from now on we will use the notation
τλ for the blow-up time of Xλ(t), i.e. τλ = sup{t : Xλ(t) < ∞}. In order to study τλ

we will introduce a similar diffusion with a modified drift. Let a < 1 and consider

dYλ,a = λ

2

√
cosh2 Yλ,a − a dt + 1

2
tanh Yλ,adt + dBt , Yλ,a(0) = −∞. (21)

To prove Proposition 8 we will choose an appropriate a and compare Xλ with the
diffusion Yλ,a using the Cameron–Martin–Girsanov formula. Introduce the following
notations for the drifts:

fλ(x) = λ

2
cosh x + 1

2
tanh x, hλ,a(y) = λ

2

√
cosh2 y − a + 1

2
tanh y.

Note, that we have the uniform bound

∣∣ fλ(x) − hλ,a(x)
∣∣ ≤ 1

2λ|a|. (22)

The following proposition will be our main tool for our estimates.

Proposition 9 Fix a < 1 and consider X = Xλ and Y = Yλ,a. Denote by τλ and τY,λ

the blowup times of X and Y to ∞. Then for any s > 0, we have

P(λτλ > s) = E
[
1(λτY,λ > s)e−Gs/λ(Y )

]
, (23)

and

1 = Ee−Gτ∧(s/λ)(Y ) = EeGτ∧(s/λ)(X), (24)

where

Gs(X) =
∫ s

0
hλ,a(X (t)) − fλ(X (t))dX − 1

2

∫ s

0
(h2λ,a(X) − f 2λ (X))dt.

Proof This is just the Cameron–Martin–Girsanov formula for diffusions with explo-
sion. Note, that because of (22) the process eGτ∧s (X) satisfies the Novikov criterion
and it is a positive martingale. From this the usual steps of the proof can be completed
(see e.g. [16,17]). ��
Proof of Proposition 8 We first estimate the Girsanov exponent

Gs(X) = λ

2

∫ s

0
(
√
cosh2 X − a − cosh X)dX

−1

2

∫ s

0

(
−λ2

4
a + λ

2
(
√
cosh2 X − a − cosh X) tanh X

)
dt.
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Applying Itô’s formula for θ(X) = hλ,a(X) − fλ(X) we have that
∫ t
0 θ(X)dX =∫ Xt

X0
θ(x)dx − 1

2

∫ s
0 θ ′(X)dt. This gives us

Gs(X) = λ2a

8
s + λ

2

∫ Xs

−∞

(√
cosh2 x − a − cosh x

)
dx

+λ

4

∫ s

0

a tanh√
cosh2 X − a

·
√
cosh2 X − a − cosh X√
cosh2 X − a + cosh X

ds.

Note, that

1

2

∫

R

(√
cosh2 x − a − cosh x

)
dx = −

∫ π/2

0

a

1 +
√
1 − a sin2 y

dy

= (1 − a)K (a) − E(a) = H(a),

where this last equality can be seen by differentiating both sides with respect to a and
checking equality at a = 0. It is not hard to check that

∣∣∣∣
a tanh√

cosh2 X−a

√
cosh2 X−a−cosh X√
cosh2 X−a+cosh X

∣∣∣∣ ≤
∣∣∣∣

a tanh x√
cosh2 x−a

∣∣∣∣ ≤ |a| ∧√|a|, for a < 1

uniformly in x . The upper bound |a| follows from
√
cosh2 x − a ≥ | sinh x |, while the

bound
√|a| requires the optimization of the function |a|√y−1√

y
√
y−a

for y ≥ 1. This gives

the bound

∣∣∣∣Gτλ(X) − λ2aτ

8
− λH(a)

∣∣∣∣ ≤ λτ(|a| ∧ √|a|)
4

. (25)

To get the exponential moment bound (18) we use 1 = EeGτ∧s/λ(X) from (24). We let
s → ∞, use Fatou’s lemma and (25) to get

1 ≥ EeGτ (X) ≥ Ee
λ2a
8 τ+λH(a)− λ(|a|∧√|a|)τ

4 . (26)

Rearranging the terms we get (18).
To prove the lower bound (19) we write

P(λτλ ∈ (ta − ε, ta + ε)) = P(λτY,λ > ta − ε) − P(λτY,λ > ta + ε)

= E
[
1(λτY,λ > ta − ε)e−Gτ∧(ta−ε)/λ(Y )

]
− E

[
1(λτY,λ > ta + ε)e−Gτ∧(ta+ε)/λ(Y )

]

= E
[
1(λτY,λ ∈ (ta − ε, ta + ε))e−Gτ∧(ta+ε)/λ(Y )

]

= E
[
1(λτY,λ ∈ (ta − ε, ta + ε))e−Gτ (Y )

]
, (27)
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where we used the fact that e−Gτ∧t (Y ) is martingale in the third line. Because of (25)
we have

Gτ (Y ) ≤ λ2aτ

8
+ λH(a) + λ|a|τ

4
, (28)

and we can bound the last expectation as

E
[
1(λτY,λ ∈ (ta − ε, ta + ε))e−Gτ (Y )

]

≥ E

[
1(λτY,λ ∈ (ta − ε, ta + ε))e− λ2aτ

8 −λH(a)− λ|a|τ
4

]

≥ P(λτY,λ ∈ (ta − ε, ta + ε))e− λa(ta±ε)
8 −λH(a)− λ|a|(ta+ε)

4 ,

where we choose the sign of ε in ta ± ε the same way as the sign of a.
If we can show that limλ→∞ P(λτY,λ ∈ (ta − ε, ta + ε)) = 1 for fixed a and ε then

this will complete the proof of (19). Note, that Ỹ (t) := Yλ,a(t/λ) satisfies the SDE

dỸ = 1

2

√
cosh2 Y − adt + 1

2λ
tanh Ỹ dt + 1√

λ
dBt , Ỹ (0) = −∞.

As λ → ∞, the strong solution of this SDE converges a.s. to the solution of the ODE

y′ = 1

2

√
cosh2 y − a, y(0) = −∞.

This ODE can be solved and the solutions satisfies
∫ y(t)
−∞

2√
cosh2 x−a

dx = t . This

shows that y explodes exactly at

∫ ∞

−∞
2√

cosh2 x − a
dx = 4K (a) = ta .

This shows that limλ→∞ P(λτY,λ ∈ (ta − ε, ta + ε)) = 1 for fixed a and ε and this
completes the proof of the proposition. ��

We can use the tail estimates of τλ to estimate the tail probabilities of α̃λ(t) for a
fixed t . Recall the definition of I(·) from (11).

Lemma 10 There exist a constant c so that for λ > 2 we have

e−λ2tI(q)+λc(t+1)(I(q)+1) ≥
{

P(
α̃λ(t)�2π ≥ qtλ) if q > 1,
P(�α̃λ(t)�2π ≤ qtλ) if 0 < q < 1.

(29)

Moreover, there are absolute constants c0, c1 so that if qtλ, q and λq log q are all
bigger than c0 then

P(
α̃λ(t)�2π ≥ qtλ) ≤ e−c1λ2t q2 log q . (30)
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Proof Introduce the hitting times

τ
(n)
λ = inf{t > 0 : α̃λ(t) > 2nπ}. (31)

Then by Proposition 3 the random variables τ̃ (n) = τ (n) − τ (n−1) are i.i.d. with the
same distribution as τλ. Applying the exponential Markov inequality we get

P(�α̃λ(t)�2π ≤ qtλ) = P

( 
qtλ/(2π)�∑

i=1

τ̃ (i) ≥ t

)
≤
(
EeAτλ

)
qtλ/(2π)�
e−At (32)

with any A > 0. Suppose first that q < 1 which also implies a = a(q) =
K−1(π/(2q)) ∈ (0, 1). By choosing

A = λ2a

8
− λ|a|

4
(33)

we have A > 0 if λ > 2 and from (18) we have EeAτλ ≤ e−λH(a). Together with (32)
this gives

P (̃αλ(t) ≤ qtλ) ≤ e−λH(a)
qtλ/(2π)�−( λ2a
8 + λ|a|

4 )t

≤ e− qtλ2

2π H(a)−( λ2a
8 + λ|a|

4 )t+λ|H(a)| = e
−λ2tI(q)+λ

( |a|t
4 +|H(a)|

)

(34)

where we used the definitions (11) and (5).
For the q > 1 case we use the same steps. Here a = K−1(π/(2q)) < 0 and A

defined in (33) is negative which is exactly what we need for the exponential Markov
inequality. Eventually we get

P(
α̃λ(t)�2π ≥ qλt) ≤ e−λH(a)�qtλ/(2π)�−( λ2a
8 − λ|a|

4 )t

≤ e− qtλ2

2π H(a)−( λ2a
8 − λ|a|

4 )t+λ|H(a)|

= e
−λ2tI(q)+λ

( |a|t
4 +|H(a)|

)

. (35)

By Lemma 18 in the “Appendix” there is a constant c so that

H(a(q)) + 1
4 |a(q)|t ≤ c(t + 1)( I(q) + 1), (36)

for all t, q > 0 which means that we can replace the upper bounds in (34) and (35)
with e−λ2tI(q)+λc(t+1)(I(q)+1). This proves the first part of Lemma 10.

For the second part we repeat the same steps as in the q > 1 case, but now use

A = λ2a

8
− λ

√|a|
4

.
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This gives

P(
α̃λ(t)�2π ≥ qλt) ≤ e−λH(a)�qtλ/(2π)�− λ2a
8 t+ λ

√|a|
4 t .

By Proposition 17 of the “Appendix” if q is large enough then a = K−1(π/(2q)) >

cq2 log2 q with some positive constant c. If −aλ and qtλ are big enough (which can
be achieved by choosing c0 big enough), we will have

�qtλ/(2π)� >
9

10
qtλ/(2π), −λ2a

8
+ λ

√|a|
4

< −11

10
· λ2a

8
.

Then

−λH(a)�qtλ/(2π)� − 1
8λ

2at + 1
4λ
√|a|t < −λ2t

( 9
10H(a)

q
2π + 11

10
a
8

)

= −λ2t

(
−7a

80
− 9E(a)

40K (a)
+ 9

40

)

< −c2λ
2tq2 log2 q.

with a positive constant c2, where in the last step we again used the asymptotics given
in Proposition 17 together with (89). This completes the proof of (30). ��

4 The path deviation for the α̃λ process

In this section we will prove Theorem 7. In order to show the large deviation principle
we need that

lim inf
λ→∞

1

λ2
P

(
α̃λ(·)

λ
∈ G

)
≥ inf

g∈G JSch,T (g), for any open set G ⊂ C[0, T ],

lim sup
λ→∞

1

λ2
P

(
α̃λ(·)

λ
∈ K

)
≤ inf

g∈K JSch,T (g), for any closed set K ⊂ C[0, T ].

The fact that JSch,T (g) is a good rate function will be proved in Proposition 14 of
Sect. 6.

We will use the fact that I(x) is strictly convex on (0,∞) with a global minimum
at I(1) = 0, and also that there is a constant c > 0 so that

c−1 ≤ I(x)

x2 log2 x
≤ c, for all x > 2. (37)

These statements will be proved in Propositions 16 and 17 of the “Appendix”.

Proof of the large deviations upper bound in Theorem 7 We will follow the standard
strategy for proving path level large deviations. Consider a closed subset K ofC[0, T ].
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We need to bound P( 1
λ
α̃λ(·) ∈ K ). Define the δ-‘fattening’ of K as

K δ:= { f ∈ C[0, T ] : ‖ f − g‖ ≤ δ for some g ∈ K }. (38)

From now on ‖ · ‖ denotes the sup-norm on the appropriate interval.
Let πN be the following projection of C[0, T ] to piecewise linear paths:

(πN f )(iT/N ) = � f (iT/N )�2π , 0 ≤ i ≤ N (39)

and πN f is defined linearly between these points. Then

P(α̃λ/λ ∈ K ) ≤ P(‖α̃λ − πN α̃λ‖ ≥ δλ) + P
( 1

λ
πN (α̃λ) ∈ K δ

)
. (40)

We will bound the two probabilities in (40) separately.
The first term can be rewritten as

P
[‖α̃λ − πN α̃λ‖ ≥ δλ

] = P

⎛

⎜⎝maxk sup
t∈
[

(k−1)T
N , kTN

] |πN α̃λ(t)−α̃λ(t)| ≥ δλ

⎞

⎟⎠. (41)

By Proposition 3 the process �α̃λ(t)�2π is non-decreasing.Thus for any fixed k we
have

sup
t∈[ (k−1)T

N , kTN ]
|πN α̃λ(t) − α̃λ(t)| ≤ 
α̃λ((k + 1)T /N )�2π − �α̃λ(kT /N )�2π .

By Proposition 4 the term on the right is stochastically dominated by α̃λ(T/N ) + 4π
therefore

P(‖α̃λ − πN α̃λ‖ ≥ δλ) ≤ N P (̃αλ(T/N ) + 4π ≥ δλ) ≤ N P
( 1

λ
α̃λ(T/N ) ≥ δ

2

)

(42)

where the last bound holds if λ > 8π/δ. Using Lemma 10 we get

N P

(
1

λ
α̃λ(T/N ) ≥ δ

2

)
≤ Ne

−(λ2 T
N +λc1(T/N+1))I

(
δN
2T

)
+λc1(T/N−1)

and this leads to

lim sup
λ→∞

1

λ2
log P(‖α̃λ − πN α̃λ‖ ≥ δλ) ≤ − T

N
I
(

δN

2T

)
. (43)

Note, that for fixed δ and T as N → ∞ the right hand side converges to −∞ by (37).
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The second term on the right side of (40) can be bounded as

P
(
πN (̃αλ/λ) ∈ K δ

) ≤ P

(
JSch,T (πN (̃αλ/λ)) ≥ inf

g∈K δ
JSch,T (g)

)
.

We introduce

�α̃i = N

λT
(�α̃(iT/N )�2π − �α̃((i − 1)T/N )�2π ) , for 1 ≤ i ≤ N

and Cδ = infg∈K δ JSch,T (g). Then we have to bound

P(JSch,T (πN (̃αλ/λ)) ≥ Cδ) = P

(
N∑

i=1

T

N
I (�α̃i ) ≥ Cδ

)
. (44)

We can apply Proposition 4 with ti = iT
N , 1 ≤ i ≤ N to get independent random

variables ξi with ξi
d= α̃λ(T/N ) and

N

λT
�ξi�2π ≤ �α̃i ≤ N

λT
(�ξi�2π + 2π) .

Because of the convexity of I(·) we then have

I (�α̃i ) ≤ max

(
I
(
N�ξi�2π

λT

)
, I
(
N�ξi�2π

λT
+ 2πN

λT

))

≤
(
1 + 2πN

λT

)
I
(
N�ξi�2π

λT

)
+ c

2πN

λT

where we used Lemma 19 of the “Appendix” for the last bound. Fix 1/2 > ε > 0.

Using the exponential Markov inequality, the independence of ξi and ξi
d= α̃λ(T/N )

we get the bound

P

(
N∑

i=1

T

N
I (�α̃i ) ≥ Cδ

)

≤
(
Ee

(1−2ε)λ2 T
N

((
1+ 2πN

λT

)
I
(
N�α̃λ(T/N )�2π

λT

)
+c 2πN

λT

))N

e−(1−2ε)λ2Cδ

≤
(
Ee

(1−ε)λ2 T
N I

(
N�α̃λ(T/N )�2π

λT

))N

e(1−2ε)c2πλN−(1−2ε)λ2Cδ , (45)

where the second inequality holds for fixed ε, N , T if λ is big enough. Our next step

is to estimate the exponential moment Ee
(1−ε)λ2 T

N I
(
N�α̃λ(T/N )�2π

λT

)

for a fixed ε > 0.
By Lemma 11 below if N , T, ε are fixed then
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lim sup
λ→∞

1

λ2
log Ee

(1−ε)λ2 T
N I

(
N�α̃λ(T/N )�2π

λT

)

≤ 0.

Using this with (45) we get

lim sup
λ→∞

1

λ2
log P

(
N∑

i=1

T

N
I (�α̃i ) ≥ Cδ

)
≤ −(1 − 2ε)Cδ. (46)

Now we let ε → 0 and then N → ∞. The bounds (43), (46) with (40) give

lim sup
λ→∞

1

λ2
log P(λ−1α̃λ(·) ∈ K ) ≤ − inf

g∈K δ
JSch,T (g). (47)

Using the fact that JSch,T is a good rate function (which is proved in Proposition 14
of Sect. 6) we get that the right hand side converges to − infg∈K JSch,T (g) as δ → 0.
(See e.g. Lemma 4.1.6 from [9].) This finishes the proof of the lower bound.

Now we will prove the missing estimate for the lower bound.

Lemma 11 Fix t > 0 and 1 > ε > 0. Then

lim sup
λ→∞

1

λ2
log Ee

(1−ε)λ2tI
( �α̃λ(t)�2π

λt

)

≤ 0.

Proof Introduce the temporary notation G(x) = λ2tI (x). This is a convex function
with G(1) = 0 as its minimum. Then we have

Ee
(1−ε)λ2tI

( �α̃λ(t)
λt

)
�2π ≤ 2 −

∫ 1

0
(1 − ε)G ′(x)e(1−ε)G(x)P(�α̃λ(t)�2π < λt x)dx

+
∫ ∞

1
(1 − ε)G ′(x)e(1−ε)G(x)P(�α̃λ(t)�2π > λt x)dx .

Using Lemma 10 we get

P(�α̃λ(t)�2π < λt x) ≤ exp
{− (1 − c1λ

−1(1 + t−1))G(x) + λc1(t + 1)
}

for x < 1 and a similar bound for P(�α̃λ(t)�2π > λt x) ≤ P(
α̃λ(t)�2π > λt x) for
x > 1. This gives us

Ee
(1−ε)λ2tI

(
α̃λ(t)

λt

)

≤ 2 −
∫ 1

0
(1 − ε)G ′(x)e((1+t−1)(c1/λ)−ε)G(x)+λc1(t+1)dx

+
∫ ∞

1
(1 − ε)G ′(x)e((1+t−1)(c1/λ)−ε)G(x)+λc1(t+1)dx

≤ 2 + 4ε−1eλ c1(t+1)
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where the last inequality holds if (1 + t−1)c1/λ < ε/2, i.e. for large enough λ. From
this the lemma follows. ��

Now we turn to the lower bound proof in the large deviation result of Theorem 7.
As we will see, we will be able to reduce the problem to studying the probability of
1
λ
α̃λ(t) being close to a straight line.

Proposition 12 Fix q > 0 and T, ε > 0. Then

lim
ε→0

lim inf
λ→∞

1

λ2
log P (̃α(t) ∈ [λ(qt − ε), λ(qt + ε)], t ∈ [0, T ]) ≥ −TI(q).

Proof As q > 0 we may assume ε ≤ qT/2 by choosing ε small enough. Let N =

(qT+ε)λ�2π

2π , and choose ε1 = πε
2q(qT+ε)

, which satisfies ε1 < ελ
2qN for λ > 2. Recall

the definition of τ
(n)
λ and τ̃

(n)
λ from (31). We will prove that

P (̃α(t) ∈ [λ(qt − ε), λ(qt + ε)], t ∈ [0, T ])
≥ P

(
λτ̃

(k)
λ ∈

(
2π
q − ε1,

2π
q + ε1

)
, 1 ≤ k ≤ N

)
.

Roughly speaking, this will follow from the simple fact that if we are within ε/q of the
line y = qt in the horizontal direction, then we are within ε in the vertical direction.
If λτ̃

(k)
λ ≥ 2π

q − ε1 for 1 ≤ k ≤ N then λτ
(k)
λ ≥ k( 2πq − ε1) and

α̃λ

(
k
λ

(
2π
q − ε1

))
≤ 2kπ = λ

2π

2π/q − ε1
· k
λ

(
2π
q − ε1

)

for 1 ≤ k ≤ N . Together with the fact that �α̃λ�2π is non-decreasing we get that

α̃λ(t) ≤ λ
2π

2π/q − ε1
· (t + 1

λ
(2π/q − ε1)

)
, for t ≤ N

λ

(
2π
q − ε1

)
.

This inequality implies α̃λ(t) ≤ λ(qt + ε), for t ≤ T , λε > 4π .
The other direction is similar, if we have λτ̃

(k)
λ ≤ 2π

q + ε1 for 1 ≤ k ≤ N then

α̃λ

(
k
λ

(
2π
q + ε1

))
≥ 2kπ = λ

2π

2π/q + ε1
· k
λ

(
2π
q + ε1

)

which implies

α̃λ(t) ≥ λ
2π

2π/q + ε1
· (t − 1

λ
(2π/q + ε1)

)
, for t ≤ N

λ

(
2π
q + ε1

)
.

and α̃λ(t) ≥ λ(qt − ε) for t ≤ T . Using the independence of τ̃
(k)
λ we get the bound

P (̃α(t) ∈ [λ(qt − ε), λ(qt + ε)], t ∈ [0, T ]) ≥ P
(
λτ̃

(k)
λ ∈ ( 2πq − ε1,

2π
q + ε1)

)N
.

(48)
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By the lower bound (19) we have

log P (̃α(t) ∈ [λ(qt − ε), λ(qt + ε)], t ∈ [0, T ])
≥ λ(qT + 2ε)

2π

(
−2πλ

q
I(q) − λ|a|

8
(ε1 + 4(2π/q + ε1)) + log A(ε1, λ, a)

)
.

Recalling ε1 = πε
2q(qT+ε)

we get

lim
ε→0

lim inf
λ→∞

1

λ2
log P (̃α(t) ∈ [λ(qt − ε), λ(qt + ε)], t ∈ [0, T ]) ≥ −TI(q).

��
Proof of the lower bound in Theorem 7 LetG be anopen subset ofC[0, T ].Wewould
like to show that

lim inf
λ→∞

1

λ2
log P

(
1

λ
α̃λ(·) ∈ G

)
≥ − inf

g∈G

∫ T

0
I (g′(t)

)
dt. (49)

For this it is enough to prove that for any g ∈ G with
∫ T
0 I (g′(t)

)
dt < ∞ and δ > 0

we have

lim inf
λ→∞

1

λ2
log P

(
1

λ
α̃λ(·) ∈ G

)
≥ −

∫ T

0
I (g′(t)

)
dt − δ. (50)

We can approximate g with a piecewise linear function g̃ in the sup-norm so that we
have | ∫ T

0 I (g′
n(t)

)
dt − ∫ T

0 I (g′(t)
)
dt | < δ. Because of this we may assume that g

is piecewise linear, moreover, we may assume that there are no horizontal segments in
g. Suppose that g is linear with slope qi on the interval [Ti , Ti+1] with 0 ≤ i ≤ k − 1
and 0 = T0 < T1 < · · · < Tk = T . We claim that if λ > λ0(ε, k) then

P

(
‖1
λ

α̃λ(·) − g(·)‖ ≤ ε

)

≥ P

(
|1
λ

(̃αλ(t) − α̃λ(Ti )) − qi (t − Ti )| ≤ ε/k, if t ∈ [Ti , Ti+1]
)

≥
k−1∏

i=0

P

(
|1
λ
α̃λ(t) − qi t | ≤ ε/(2k), for t ∈ [0, Ti+1 − Ti ]

)
(51)

The first inequality is straightforward, to prove the secondwe use the coupling in the
proof of Proposition 4. Recall the definition of the processes α̂i (s) defined on [ti−1, ti ].
These were independent for different values of i and the process α̂i (s + ti−1), s ∈
[0, ti − ti−1] had the same distribution as α̃λ(s), s ∈ [0, ti − ti−1]. We also had

α̂i (s) + �α̃λ(ti−1)�2π ≤ α̃λ(s) ≤ α̂i (s) + �α̃λ(ti−1)�2π + 2π.
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for s ∈ [ti−1, ti ]. By choosing λ > λ0 = 4πk/ε the inequality (51) follows by the
independent increment property of the Brownian motion.

By Proposition 12 we have the bound

lim
ε→0

lim inf
λ→∞

1
λ2

log P

(
‖1
λ

α̃λ(·) − g(·)‖ ≤ ε

)

≥ −
k−1∑

i=0

(Ti+1 − Ti )I(qi ) = −
∫ T

0
I (g′(t)

)
dt

from which (50) and thus the proof of the lower bound follows.

5 The path deviation for the Sineβ process

This section contains the proof of Theorem 6. The strategy for the proof is to approx-
imate the SDE (3) with a version where the drift is piecewise constant and then use
elements of the proof of Theorem 7. Just as in the proof of Theorem 7, we need to
show an upper and a lower bound to prove the large deviation principle. The fact that
JSineβ is a good rate function will be proved in Proposition 14 of Sect. 6.

Proof of the upper bound in Theorem 6 For the proof of the upper bound we go
through a series of approximations: we essentially cut of the tail of the process, then
replace the drift in the SDE with a piecewise constant version and then approximate
the process with a piecewise linear version. Recall that αλ(t) solves the SDE (2) and

that we introduced the notation f(t) = β
4 e

β
4 t . Fix T > 0, the value of which will go

to infinity later. The first approximating process is defined as

α
(1)
λ (t) = αλ(t)1(t ≤ T ) + (αλ(T ) + λ(e− β

4 T − e− β
4 t ))1(t > T ),

this solves the SDE (2) with the noise ‘turned off’ at t = T . For the second process
we define

fN (t) = f(T i/N ), t ∈ [T i/N , T (i + 1)/N ) (52)

and consider the solution ξλfN of (15) with drift λfN and initial condition 0. Let

α
(2)
λ (t) = ξλfN (t)1(t ≤ T ) + (ξλfN (T ) + λ(e− β

4 T − e− β
4 t ))1(t > T ).

Finally, let πMN is the projection defined in (39) with intervals of size T/MN , that is
πMN f is the piecewise linear path that satisfies

(πMN f )(T i/(MN )) = � f (T i/(MN ))�2π ,

and is linear between these values. Define

α
(3)
λ (t) = πMN ξλfN (t)1(t ≤ T ) + (πMN ξλfN (T ) + λ(e− β

4 T − e− β
4 t ))1(t > T ).
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Then for any closed set K ⊂ C[0,∞) we have that

P
(αλ

λ
∈ K

)
≤ P

(α
(3)
λ

λ
∈ K 3δ

)
+ P(‖α(1)

λ − αλ‖∞ ≥ δλ)

+P(‖α(2)
λ − α

(1)
λ ‖∞ ≥ δλ) + P(‖α(3)

λ − α
(2)
λ ‖∞ ≥ δλ), (53)

where K 3δ is defined similarly to (38), as the 3δ-fattening of K . We will begin with
the main term. Let

JN (g) =
∫ ∞

0
f2N (t)I

(
g′(t)
fN (t)

)
dt,

and define (similarly to the α̃λ case in the proof of Theorem 7)

�αi = MN

λfN ( T i
MN )T

(
�α(3)(T i/(MN ))�2π − �α(3)(T (i − 1)/(MN ))�2π

)
,

for 1 ≤ i ≤ MN . Then,

P
(α

(3)
λ

λ
∈ K 3δ

)
≤ P

(
JN

(
α

(3)
λ

λ

)
≥ inf

g∈K 3δ
JN (g)

)

= P

( MN∑

i=1

T (fN (T i/(MN )))2

MN
I(�αi ) ≥ inf

g∈K 3δ
JN (g)

)
.

Take α̂i to solve (12) but with the Brownian motion B(t+T i/(MN ))−B(T i/(MN ))

and λi = λfN (T i/(MN )). Then using the same arguments as in the bound (45) we
get

P
(α

(3)
λ

λ
∈K 3δ

)

≤ e−(1−ε)λ2Cδ,N

MN∏

i=1

(
Ee

(1−ε)λ2i
T

MN

(
(1+ 2πMN

λT )I
( �α̂i (T/(MN ))�2π

λi (T/MN )

)
+c2

2πMN
λi T

))

where Cδ,N = infg∈K 3δ JN (g). Using the bound proved in Lemma 11 we get that

lim sup
λ→∞

1

λ2
log P

(α
(3)
λ

λ
∈ K 3δ

)
≤ −(1 − ε)Cδ,N (54)

We now turn to the first error term. Using the fact that �αλ�2π is non-decreasing (which
follows from (i) of Proposition 5) we get that

‖α(1)
λ − αλ‖ ≤ αλ(∞) − αλ(T ) + λe−β

4 T ,
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where αλ(∞) is the limit of αλ(t) as t → ∞. Choose T large enough so that e− β
4 T ≤

δ/2. Then

P(‖α(1)
λ − αλ‖ ≥ δλ) ≤ P(αλ(∞) − αλ(T ) ≥ δλ/2)

We will deal with this tail probability in Proposition 13 below. In particular, we will
show that there is a constant c1 > 0 so that

lim sup
λ→∞

1

λ2
log P(‖α(1)

λ − αλ‖ ≥ δλ) ≤ −c1T δ2. (55)

For the second error termwefirst note that‖α(2)
λ −α

(1)
λ ‖ = supt∈[0,T ] |α(2)

λ (t)−α
(1)
λ (t)|.

Using the coupling of Proposition 5 we can show that on [0, T ] the process α
(2)
λ −α

(1)
λ

will have the same distribution as the solution of the SDE (15) with initial condition 0
and drift λ(fN − f) ≥ 0. Moreover, this process will be non-negative (because the drift
is non-negative), and since λ(fN (t)− f(t)) ≤ λ

βT
4N for t ∈ [0, T ], it will be bounded by

the solution of the SDE (15) with a constant drift λβT
4N . Because of this ‖α(2)

λ − α
(1)
λ ‖

is stochastically bounded by supt∈[0,T ] α̃
λ

βT
4N

(t) ≤ α̃
λ

βT
4N

(T ) + 2π with α̃λ from (12,

using the fact that �α̃λ(t)�2π is non-decreasing. Thus for δλ > 4π we have

P(‖α(2)
λ − α

(1)
λ ‖ ≥ δλ) ≤ P

(
α̃

λ
βT
4N

(T ) ≥ 1
2δλ

)
.

If N and T are fixed then if λ is big enough then we can apply Lemma 10 for the right

hand side with λ̃ = λ
βT
4N , t = T and q =

1
2 δλ

Tλ
βT
4N

= 2δN
βT 2 . This leads to

lim sup
λ→∞

1

λ2
log P(‖α(2)

λ − α
(1)
λ ‖ ≥ 1

2δλ) ≤ −β2T 3

42N 2 I
(
2δN

βT 2

)
. (56)

For the third error term we first note that

‖α(3)
λ − α

(2)
λ ‖ ≤ sup

t∈[0,T ]
|α(3)

λ (t) − α
(2)
λ (t)| ≤ max

i
sup

t∈[T i/N ,T (i+1)/N ]
|α(3)

λ (t)−α
(2)
λ (t)|,

and thus

P(‖α(3)
λ − α

(2)
λ ‖ ≥ δλ) ≤

N−1∑

i=0

P

(
sup

t∈[T i/N ,T (i+1)/N ]
|α(3)

λ (t) − α
(2)
λ (t)| ≥ δλ

)
.

In the interval [T i/N , T (i+1)/N ] the process α
(2)
λ solves the SDE (12) with constant

drift λfN (T i/N ). Here we can use the same steps that we used in the proof of Theorem
7 between (41) and (42) to get
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P(‖α(3)
λ − α

(2)
λ ‖ ≥ δλ) ≤

N−1∑

i=1

MP
(
α̃λfN (T i/N )(T/(MN )) ≥ δλ/2

)

≤ MNP

(
α̃ β
4 λ

(T/(MN )) ≥ δλ/2

)

for λ big enough compared to δ−1. For large enough λ we can apply Lemma 10 for
the right hand side with λ̃ = β

4 λ, t = T/(MN ) and q = 2δMN
βT to get

lim sup
λ→∞

1

λ2
log P(‖α(3)

λ − α
(2)
λ ‖ ≥ δλ) ≤ −β2

42
T

MN
I
(
2δMN

βT

)
. (57)

Now taking (53) with the bounds (54), (55), (56) and (57) we get

lim sup
λ→∞

1

λ2
log P

(αλ

λ
∈ K

)

≤ max

{
−(1−ε)Cδ,N ,−c1T δ2,−β2T 3

42N 2 I
(
2δN

βT 2

)
,−β2

42
T

MN
I
(
2δMN

βT

)}
.

(58)

Taking N to ∞ the last two terms go to −∞ (using the bounds (37)) while the first
term converges to (1 − ε)CT

δ with

CT
δ = inf

g∈K 3δ

∫ T

0
f2(t)I (g′(t)/f(t)

)
dt

Letting now T → ∞ and then ε → 0 we get

lim sup
λ→∞

1

λ2
log P

(αλ

λ
∈ K

)
≤ − inf

g∈K 3δ
JSineβ (g).

Finally taking δ → 0 and using the fact that JSineβ is a good rate function gives the
result

lim sup
λ→∞

1

λ2
log P

(αλ

λ
∈ K

)
≤ − inf

g∈K JSineβ (g).

This completes the proof of the lower bound. ��
We now prove the tail bound for the proof of the lower bound.

Proposition 13 Fix T, δ > 0, then there is a constant c > 0 so that

lim sup
λ→∞

1

λ2
log P(αλ(∞) − αλ(T ) ≥ δλ) ≤ −cT δ2. (59)
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Proof of Proposition 13 Take ν = 1/8, and set Tk = k(k+1)
2 θT where the value of

θ > 0 will be specified later. Then we can break up the probability in question as

P(αλ(∞) − αλ(T ) ≥ δλ) ≤
�2√λ�∑

k=1

P(αλ(Tk+1) − αλ(Tk) ≥ δ
4λνk−(1+ν))

+P(αλ(∞) − αλ(T�2√λ�+1) ≥ δλ/2). (60)

Note, that for any fixed s > 0 the process α̂s,λ(t) = αλ(s + t) satisfies the SDE

(3) with λ̂ = λe−β
4 s with initial condition αλ(s). Using the coupling techniques of

Propositions 4 and 5 one can show that α̂s,λ(t) − α̂s,λ(0) = αλ(s + t) − αλ(s) is
stochastically dominated by α̃λf(s) + 2π . This (together with Tk+1 − Tk = θ(k + 1)T )
gives

P(αλ(Tk+1)−αλ(Tk) ≥ δ
4λνk−(1+ν)) ≤ P (̃αλf(Tk )(θ(k + 1)T ) ≥ δ

4λνk−(1+ν) − 2π)

≤ P (̃αλf(Tk )(θ(k + 1)T ) ≥ δ
8λνk−(1+ν))

where the last bound follows for big enough λ from k ≤ 2
√

λ. We can use bound
(30) of Lemma 10 for the probability on the right with λ̃ = λf(Tk), t = θ(k + 1)T

and q = δνk−(1+ν)

8θT (k+1)f(Tk )
, since with these choices qt λ̃, q and λ̃q log q are all big, if we

choose θ > 0 small enough and then λ big enough. This leads to

P (̃αλf(Tk )(T ) ≥ δ
4λνk−(1+ν))

≤ exp

(
−c1

δ2

82
λ2ν2k−2(1+ν)θ−1(k + 1)−1T−1 log2

(
δνk−(1+ν)

8θ(k + 1)T f(Tk)

))

≤ exp

(
−c2δ

2λ2k−3−2νT−1
(
c3 + β

4 T
k(k+1)

2

)2) ≤ exp
(
−c4λ

2δ2T k1−2ν
)

,

with a positive constant c4, which in turn implies (for large enough λ)

�2√λ�∑

k=1

P
(
αλ(Tk+1) − αλ(Tk) ≥ δ

4λνk−(1+ν)
)

≤ 2 exp
(
−c4λ

2δ2T
)

. (61)

Lastly we bound the remaining term using Proposition 5:

P(α(∞) − α(Tλ) ≥ δλ/2) = P(ξλf(λT )(∞) ≥ �δλ/2�) ≤ 2
(
e− β

4 λT
)�δλ/2�

,

which together with (60) and (61) gives us the necessary upper bound for (59). ��
Proof of the lower bound in Theorem 6 We will show that if g ∈ C[0,∞) with
JSineβ (g) < ∞ then

lim
ε→0

lim inf
λ→∞

1
λ2

log P(‖λ−1αλ(·) − g(·)‖ ≤ ε) ≥ −JSineβ (g). (62)
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From this the lower bound will follow.
In Proposition 14 of the “Appendix” we will prove that if JSineβ (g) < ∞ then

g(∞) = limt→∞ g(t) < ∞ exists. Let ε > 0 and choose T > 0 so that

g(∞) − g(T ) ≤ ε/2, and e−β
4 T ≤ ε/4. (63)

From the first assumption in (63) and the Markov property we have

P(|λ−1αλ(t) − g(t)| ≤ ε, t ≥ 0)

≥ P(|λ−1αλ(t) − g(t)| ≤ ε/2, t ∈ [0, T ], |αλ(∞) − αλ(T )| ≤ λε/4)

≥ P(|λ−1αλ(t) − g(t)| ≤ ε/2, t ∈ [0, T ])
× sup

x
P(αλ(∞) − αλ(T ) ≤ λε/4

∣∣αλ(T ) = x). (64)

Using the same line of reasoning as in the proof of Proposition 13 (see after (60)) we

get that with λT = λe−β
4 T we have

P(αλ(∞) − αλ(T ) ≤ λε/4|αλ(T ) = x)

≥ P(αλT (∞) ≤ λε/4 − 2π) ≥ P(αλT (∞) ≤ λε/8),

where the second inequality follows if λ is big enough compared to ε. Now we can
use part (iii) of Proposition 5 with f (t) = λT f(t), k = 1 and a = λε/8 to get

P(αλT (∞) ≤ λε/8) = 1 − P(αλT (∞) > λε/8) ≥ 1 − 2
8λT

2πλε
≥ 1 − 2

π
,

where the last step follows from the second assumption of (63).
Using this with (64) we get that

lim inf
λ→∞

1

λ2
log P(|λ−1αλ(t) − g(t)| ≤ ε, t ≥ 0)

≥ lim inf
λ→∞

1

λ2
log P(|λ−1αλ(t) − g(t)| ≤ ε/2, t ∈ [0, T ]),

and it is enough to estimate the right hand side. We do this by introducing the process
ξN (t) on [0, T ] which is a solution of the SDE (15) with initial condition 0 and the
piecewise constant drift function λfN where fN is defined as in (52). From Proposition
5 we have that αλ(t) ≤ ξN (t) and ξ̂N (t) = ξN (t) − αλ(t) satisfies SDE (16) with
initial condition 0 and drift λ(fN (t) − f(t)). We have

P(|λ−1αλ(t) − g(t)| ≤ ε/2, t ∈ [0, T ]) ≥ P(|λ−1ξN (t) − g(t)| ≤ ε/4, t ∈ [0, T ])
− P

(
sup

t∈[0,T ]
|ξN (t) − αλ(t)| ≥ λε/4

)
.

(65)
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The second term on the right may be bounded in the same manner as (56). this gives
us

lim sup
λ→∞

1

λ2
log P

(
sup

t∈[0,T ]
|ξN (t) − αλ(t)| ≥ λε/4

)
≤ −β2T 3

42N 2 I
(

εN

βT 2

)
.

Note, that as N → ∞ the right hand side converges to −∞.
The only thing left is to estimate the first term on the right of (65). Introduce the

notation tk = T k
N . We start with the bound

log P(|λ−1ξN (t) − g(t)| ≤ ε/4, t ∈ [0, T ])
≥ P(|λ−1(ξN (s + tk) − ξN (tk)) − (g(s + tk) − g(tk))| ≤ ε/(4N ), s ∈ [0, T/N ]).

For any fixed k the process ξN (s + tk), s ∈ [0, T/N ] satisfies the SDE (16) with
initial condition ξN (tk) and a constant drift λfN (tk). Using the coupling in the proof
of Proposition 4 we can construct independent processes α̂k(t), t ∈ [0, T/N ] so that

α̂k(s) − 2π ≤ ξN (s + tk) − ξN (tk) ≤ α̂k(t) + 2π, s ∈ [0, T/N ]

and α̂k(t), t ∈ [0, T/N ] has the same distribution as α̃λfN (tk )(t), t ∈ [0, T/N ]. From
this it immediately follows that

lim inf
λ→∞

1
λ2

log P(|λ−1ξN (t) − g(t)| ≤ ε/4, t ∈ [0, T ])

≥
N−1∑

k=0

lim inf
λ→∞

1
λ2

log P

(∣∣∣∣
α̃λfN (tk )(s)

λ
− (g(s + tk) − g(tk))

∣∣∣∣ <
ε

8N
, s ∈

[
0,

T

N

])
.

From our path level large deviation lower bound on α̃ we get

lim inf
λ→∞

1
λ2

log P(|λ−1α̃λfN (tk )(s) − (g(s + tk) − g(tk))| ≤ ε/(4N ), s ∈ [0, T/N ])

≥ − inf
|g̃(s)−g(s)|<ε/(8N )

s∈[tk ,tk+1]
fN (tk)

2
∫ T/N

0
I(fN (tk)

−1g̃′(tk + s))ds.

This yields the estimate

lim inf
λ→∞

1
λ2

log P(|λ−1αλ(t) − g(t)| ≤ ε/4, t ∈ [0, T ])

≥ − inf
|g̃(s)−g(s)|<ε/(8N ),

s∈[0,T ]

∫ T

0
fN (s)2I(f−1

N g̃′(s))ds.
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Letting N → ∞ the lower bound converges to − ∫ T
0 f(s)2I(f−1(s)g′(s))ds which

(together with our previous estimates) shows that

lim inf
λ→∞

1

λ2
log P(|λ−1αλ(t) − g(t)| ≤ ε, t ≥ 0) ≥ −

∫ T

0
f(s)2I(f−1(s)g′(s))ds.

Letting ε → 0 we also have T = Tε → ∞which yields the bound (62) and concludes
the proof of the lower bound in the large deviation principle. ��

6 JSch,T and JSineβ
are good rate functions

In this section we will show that JSch,T and JSineβ are good rate functions. Our main
tools are the bound (37) and the estimate

I(x) ≥ c1(x − 1)2, if x > 0 (66)

both of which will be proved in Proposition (17) of the “Appendix”.

Proposition 14 The functions JSineβ (·) and JSch,T (·) are both good rate functions
on the spaces C[0,∞) and C[0, T ] respectively. Moreover, if g ∈ C[0,∞) and
JSineβ (g) < ∞ then limt→∞ g(t) is finite.

Proof Fix T > 0 and r ≥ 0. In order to prove that Kr = {g : JSch,T (·) ≤ r} is
compact we first show the equicontinuity of this set. Suppose that g ∈ Kr . Then
g(0) = 0 and g′(x) ≥ 0 exists a.e. in [0, T ]. We have for 0 ≤ x ≤ y ≤ T

|g(x) − g(y) − (x − y)| =
∣∣∣∣
∫ y

x
(g′(s) − 1)ds

∣∣∣∣ ≤ (y − x)1/2

√∫ y

x
(g′(s) − 1)2ds

≤ c(y − x)1/2

√∫ y

x
I(g′(s))ds ≤ c(y − x)1/2r1/2

where we used (66) in the second step. This shows that Kr is equicontinuous. Using
Tonelli’s semicontinuity theorem (e.g. Theorem 3.5, [5]) the compactness of Kr now
follows.

The proof forJSineβ (·) is bit more involved. Fix β > 0. It is convenient to transform
the interval [0,∞) into [0, 1) using the function y = 1 − e−βt/4. Then for a g ∈
C[0,∞) with JSineβ (g) < ∞ we have

JSineβ (g) =
∫ ∞

0
f2(t)I(g′(t)f−1(t))dt = β

4

∫ 1

0
(1 − y)I(g̃′(y))dy
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where g̃(y) = g(− 4
β
log(1 − y)), g̃ ∈ C[0, 1). Consider the functional J̃Sine(·) on

C[0, 1) defined as

J̃Sine(g) = β
4

∫ 1

0
(1 − t)I(g′(t))dt (67)

if g′(t) exists and non-negative for a.e. 0 ≤ t < 1, and as ∞ otherwise. Clearly, if
we show that J̃Sine(·) is a good rate function on C[0, 1) then the same will hold for
JSineβ . We first show that if g ∈ C[0, 1) and J̃Sine(g) < ∞ then limy→1− g(y) is

finite, i.e. we can consider J̃Sine(·) on C[0, 1]. We have

lim
y→1− g(y) =

∫ 1

0
g′(y)dy ≤ 2 +

∫ 1

0
g′(y)1(g′(y) ≥ 2)dy.

We will prove that

if h(y) ≥ 0, and
∫ 1

0
(1 − y)h(y)2 log2(h(y) + e)dy < ∞,

then
∫ 1

0
h(y)dy < ∞. (68)

Using this with h(y) = g′(y)1(g′(y) ≥ 2) together with the bound in (37) we get the
boundedness of

∫ 1
0 g′(y)dy and the existence on limy→1− g(y).

Let �(x) = x2 log2(|x | + e), this is a strictly convex, even function with
limx→0

�(x)
x = 0, limx→∞ �(x)

x = ∞ (i.e. � is a ‘nice Young function’). Introduce
the complementary function

�(x) = �∗(x) = sup
y≥0

{y|x | − �(y)} =
∫ |x |

0
(�′)(−1)(y)dy

where (�′)(−1) is the inverse of the strictly increasing function �′ on [0,∞). Assume
that

A =
∫ 1

0
(1 − y)�(h(y))dy < ∞ (69)

and let μ the measure on [0, 1] with dμ = 1
A (1 − x)dx . Consider the Orlicz spaces

L�
μ =

{
f : there is an a > 0 with

∫

[0,1]
�(a f )dμ < ∞

}
,

L�
μ =

{
f : there is an a > 0 with

∫

[0,1]
�(a f )dμ < ∞

}
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with the Luxemburg-norms defined as

‖ f ‖� = inf

{
b > 0 :

∫

[0,1]
�(b−1 f )dμ ≤ 1

}
,

‖ f ‖� = inf

{
b > 0 :

∫

[0,1]
�(b−1 f )dμ ≤ 1

}
. (70)

(See e.g. [21] for more on Orlicz spaces.) Note, that by our assumption (69) we have
‖h‖� ≤ 1. By the generalized Hölder inequality for Orlicz spaces (c.f. Theorem 3 in
Chapter III of [21]), for any f ∈ L�

μ one has

‖ f h‖1 ≤ 2‖ f ‖�‖h‖� ≤ 2‖ f ‖� (71)

where ‖ · ‖1 is the L1 norm on [0, 1] with reference measure μ. Choose f (x) = 1
1−x .

If we show that ‖ f ‖� < ∞ then this would imply

∞ > 2‖ f ‖� ≥ ‖ f h‖1 = 1
A

∫ 1

0

1

1 − x
h(x)(1 − x)dx = 1

A

∫ 1

0
h(x)dx,

and the statement (68) would follow. It is not hard to check, that there is a c > 0 so
that

�(x) ≤ c
x2

log2(x + e)
, for x ≥ 0. (72)

Since the integral
∫ 1
0 (1 − x) (1−x)−2

log2((1−x)−1+e)
dx is finite, this implies that ‖ 1

1−x ‖� is

finite and thus
∫ 1
0 h(y)dy < ∞. This completes the proof that if J̃Sine(g) < ∞ then

limy→1− g(y) is finite, and also shows the last statement of the proposition.

Next we will prove the equicontinuity of the set Kr = { f : J̃Sine( f ) ≤ r}, we will
show that if g ∈ Kr then for ε < ε0 we have

|g(a + ε) − g(a)| ≤ C(log ε−1)−1/3 for any a ∈ [0, 1 − ε]. (73)

Here ε0,C only depend on r .
We first assume a ≤ 1 − √

ε. Then

|g(a + ε) − g(a) − ε| =
∣∣∣∣
∫ a+ε

a
(g′(y) − 1)dy

∣∣∣∣

≤
(∫ a+ε

a

1

1 − y
dy

)1/2 (∫ a+ε

a
(1 − y)(g′(y) − 1)2dy

)1/2

≤ Cr1/2
(
log

(
1 + ε

1 − a − ε

))1/2

≤ Cr1/2ε1/4
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Where we used 1 − a >
√

ε, the bound (66) and the fact that ε can be chosen to be
small enough.

Next we assume that a > 1 − √
ε. Because of the monotonicity of g it is enough

to bound |g(1) − g(1− √
ε)|. Setting f (x) = 1

1−x and h(x) = g′(x)1(g′(x) ≥ 2) we
have

g(1) − g(1 − √
ε) ≤ 2

√
ε +

∫ 1

1−√
ε

h(x)dx . (74)

Since J̃Sine(g) ≤ r , we can assume that (69) holds with some finite A > 0. We will
now follow the previous argument using Orlicz spaces.We use the same definitions for
�,�, μ but for the norms ‖ · ‖�, ‖ · ‖� defined in (70) we use the interval [1−√

ε, 1]
instead of [0, 1].

Using inequality (74) and (71) we get the bound

g(1) − g(1 − √
ε) ≤ 2

√
ε + A

∫ 1

1−√
ε

f (x)h(x)dμ(x) ≤ 2
√

ε + A‖ f ‖�.

To estimate ‖ f ‖� we will prove that with b = (log ε−1)−1/3 there is a constant ε0
depending on A so that

∫ 1

1−√
ε

�(b−1 f (x))dμ(x) = A−1
∫ 1

1−√
ε

(1−x)�(b−1(1−x)−1)dx < 1, for ε<ε0.

This will imply that for such ε we have ‖ f ‖� ≤ b. Using (72) we get

A−1
∫ 1

1−√
ε

(1 − x)�(b−1(1 − x)−1)dx ≤ cb−2A−1
∫ √

ε

0
x−1 1

log2(2x−1b−1)
dx

≤ c(log ε−1)2/3

A log
(
2(log ε−1)−1/3ε−1/2

) .

Since the right hand side converges to 0 as ε → 0 we get that ‖ f ‖� ≤ b for small
enough ε which in turn leads to the upper bound (73). This completes the proof of the
equicontinuity of the set Kr and the compactness follows again by Tonelli’s theorem.

��

7 From the path to the endpoint

In this section we will complete the proofs of Theorems 1 and 2.

Proof of Theorem 2 Consider the continuousmap F : C[0, T ] → R given by F(g) =
g(T )/(2π). By the contraction principle (see e.g. [9]) the random variables 1

λ
αλ(T )
2π

satisfy a large deviation principle with scale function λ2 and good rate function J
defined as

123



Large deviations for the Sineβ and Schτ processes 369

J (ρ) = min

{∫ T

0
I(g′(t))dt : g′(t) ≥ 0, g(T ) = 2πρ

}
. (75)

We will now solve this variational problem. If g provides the minimum then we can
assume that g′ is monotone decreasing. To see this define g̃ with g̃(0) = 0 and
g̃′(t) = sup{x : m(g′(s) ≥ x) ≥ t} where m indicates Lesbegue measure. Then
g̃(T ) = g(T ), JSch,T (g̃) = JSch,T (g), and g̃′(t) is decreasing. If g′ > 0 on [0, a]
and g′ = 0 on (a, 1] then by the classical variational method we get that I ′(g′(x)) is
constant on [0, a]. This means that g′(x) = 2πρ

a on [0, a] and g′(x) = 0 on (a, T ]
and our variational problem is reduced to finding the minimum of

f (a) = aI
(
2πρ
a

)
+ (T − a)I(0), on 0 ≤ a ≤ T .

But we have

f ′(a) = I
(
2πρ
a

)
− I(0) − I ′ ( 2πρ

a

)
2πρ
a < 0,

since I is strictly convex, which means that the minimum is at a = T . Thus

J (ρ) = min

{∫ T

0
I(g′(t))dt, g′(t) ≥ 0, g(T ) = 2πρ

}
= TI(2πρ/T ) (76)

is the large deviation rate function for 1
λ

αλ(T )
2π .

Now recall that the counting function of Schτ is given by

Ñτ (λ) = #{ν : 0 ≤ ν ≤ λ, φλ/τ (τ ) ∈ 2πZ}

where φλ is the solution of (10). Note, that φλ(t) − φ0(t) has the same distribution as
ξ f,0(t) with constant f = λ, which in turn has the same distribution as α̃λ(t). Using
the coupling methods of Proposition 5 we can show that φλ(t) is increasing in λ for
any fixed t (see [19] for a detailed proof of this fact). From this it follows that

∣∣∣Ñτ (λ) − 1
2π

(
φλ/τ (τ ) − φ0(τ )

)∣∣∣ ≤ 1.

This means that in order to get a large deviation principle for 1
λ
Ñτ (λ) it is enough

to prove one for 1
λ

φλ/τ (τ )−φ0(τ )

2π . But this has the same distribution as 1
λ

α̃λ/τ (τ )

2π , and a
simple rescaling of (76) completes the proof of the theorem.

Proof of Theorem 1 Theorem 6 shows that 1
λ
αλ(·) satisfies a path level large deviation

principle. By applying the time change y = 1−e−β
4 t , we get that t → 1

λ
αλ(1−e−β

4 t )

satisfies a path level LDP on C[0, 1) with the modified rate function J̃Sine given in
(67). In Proposition 14 we showed that if J̃Sine(g) < ∞ then the limit as t → 1−
exists and so the LDP actually holds on C[0, 1]. Using the contraction principle with
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the functional F(g) = 1
2π g(1), we get that

1
λ

αλ(∞)
2π satisfies a large deviation principle

with speed function λ2 and a good rate function

Jβ(ρ) = min
{
J̃Sine(g) : g(1) = 2πρ

}

= min

{
β
4

∫ 1

0
(1 − t)I(g′(t))dt : g(0) = 0, g′(t) ≥ 0, g(1) = 2πρ

}
.

The counting function Nβ(λ) of Sineβ is given by αλ(∞)
2π , so Theorem 1 will follow

if we can show that the solution of this variational problem is given by β ISine(ρ) as
defined in the theorem.

The function J̃Sine is a good rate function, so for any ρ ≥ 0 the minimum is
achieved at some gρ ∈ C[0, 1]. Clearly, when ρ = 1

2π then the minimum is zero, as
the g(t) = t function shows. (We will not denote the dependence of ρ in g = gρ from
this point.)

We may assume that for the minimizer the derivative g′ will not take values from
both (1,∞) and [0, 1) because otherwise we could construct a function ĝ with the
sameboundary condition ĝ(1) = 2πρ, butwith J̃Sine(g) > J̃Sine(ĝ). The construction
is as follows. Assume ρ < 1/(2π) and that A = {t : g′(t) > 1} has positive
measure. Since

∫ 1
0 (g′(t) − 1)dt = 2πρ − 1 < 0 and

∫
A(g′(t) − 1)dt > 0, by the

intermediate value theorem we can find B ⊂ [0, 1]\A so that
∫
A∪B(g′(t) − 1)dt = 0.

Define ĝ with ĝ(0) = 0, ĝ′(t) = g′(t) if t /∈ A ∪ B and ĝ′(t) = 1 otherwise. Then
g(1) = ∫ 1

0 g′(t)dt = ∫ 1
0 ĝ′(t)dt = ĝ(1), but clearly J̃Sine(g) > J̃Sine(ĝ). A similar

construction works for ρ > 1/(2π). Thus we may assume that g′(t) ≤ 1 for all t if
ρ < 1/(2π), and g′(t) ≥ 1 for all t if ρ > 1/(2π).

First assume that ρ > 1
2π . Then g′(t) ≥ 1 for all t and we can use the classical

variational method (see e.g. [5]) to conclude that (1− t)I ′(g′(t)) is constant in t . Thus
the optimizer is given by a function gρ which satisfies

gρ(0) = 0, I ′(g′(t)) = cρ
1−t ,

∫ 1

0
(I ′)(−1)

(
cρ
1−t

)
dt = 2πρ, (77)

for some constant cρ and the solution of the variational problem is

Jβ(ρ) = β
4

∫ 1

0
(1 − t)I

(
(I ′)(−1)

(
cρ
1−t

))
dt. (78)

In Proposition 15 below we will show that this is equal to β ISine(ρ) as defined in
Theorem 1.

Nowassume thatρ < 1
2π , herewe can assume that theminimizer satisfies g′(t) ≤ 1.

As in the case ofSchτ wemayassume g′ is decreasing, this canbe shownusing the same
construction as found in the paragraph directly following equation (75). Suppose that
g′ is zero for t ∈ [a, 1] and g′(t) > 0 in [0, a]. Then on [0, a] the classical variational
method shows that (1 − t)I ′(g′(t)) must be constant. Thus the optimizer must be of
the following form:
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g′(t) =
{

(I ′)(−1)
(
cρ,a
1−t

)
, 0 ≤ t ≤ a

0, a < t ≤ 1,
(79)

for some constant cρ which satisfies

2πρ =
∫ a

0
(I ′)(−1)

(
cρ,a
1−t

)
dt. (80)

By Propositions 16 and 17 of the “Appendix” the function I ′(x) is strictly increasing
on (0,∞) with a limit of − 1

2π at x = 0. Thus cρ,a in (79) cannot be smaller than
− 1−a

2π . Our next claim is that the optimizer has a continuous derivative at t = a, which
will identify cρ,a as c = − 1−a

2π . Assume the opposite, i.e. that cρ,a > − 1−a
2π and

g′(a) > 0. Let ηδ(x) = 1(a,a+δ) −1(a−δ,a). If δ, ε are small enough then g′ − εηδ ≥ 0
in [0, 1] and g̃(t) = ∫ t

0 (g′(s) − εηδ(s))ds satisfies the same boundary conditions as
g. Since g is a minimizer, the derivative of h(ε) = J̃Sine(g + εηδ) at ε = 0 cannot be
negative. We can compute the derivative as

h′(0) = β

4

∫ 1

0
(1 − t)I ′(g(t))ηδ(t)dt

= −
∫ a

a−δ

(1 − t) cρ,a
1−t dt +

∫ a+δ

a
(1 − t)

(− 1
2π

)
dt.

This is equal to δ(−cρ,a − 1−a
2π ) + δ2

4π which is negative if δ is small enough (by our
assumption that cρ,a > − 1−a

2π ). The contradiction shows thatwemust have c = − 1−a
2π .

Thus the optimizer is given by

g′(t) =
{

(I ′)(−1)
(

a−1
2π(1−t)

)
, 0 ≤ t ≤ a

0, a < t ≤ 1.
(81)

for some 0 ≤ a ≤ 1 with

2πρ =
∫ a

0
(I ′)(−1)

(
a−1

2π(1−t)

)
dt. (82)

and the solution of the variational problem in the 2πρ < 1 case is given by

Jβ(ρ) = β

4

∫ a

0
(1 − t)I

(
(I ′)(−1)

(
a−1

2π(1−t)

))
dt + β

64 (1 − a)2. (83)

In Proposition 15 below we will show that this is equal to β ISine(ρ).

Proposition 15 The rate function for the Sineβ process is given by

β ISine(ρ) = β

8

[ν

8
+ ρH(ν)

]
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where ν = γ −1(ρ), and γ is the strictly increasing function given in (7).

Proof We have to show that Jβ(ρ) defined by (77) and (78) for ρ > 1/(2π) and by
(82) and (83) for ρ < 1/(2π) is equal to β ISine given above.

We begin with the case where ρ > 1
2π . In this case the minimizer g = gρ is given

by (77). One easily checks that

d

dt

(
β
8

(
−(1 − t)2I(g′(t)) + cρ(1 − t)g′(t) + cρg(t)

))
= β

4 (1 − t)I(g′(t)). (84)

From this we get

Jβ(ρ) = β

4

∫ 1

0
(1 − t)I (g′(t))

)
dt = β

8

[I(g′(0)) − cρg
′(0) + 2πρcρ

]

where we used g(0) = 0, g(1) = 2πρ, and the limits

lim
t→1−(1−t)2I(g′(t))= lim

x→∞
c2ρI(x)

I ′(x)2
=0, lim

t→1−(1 − t)g′(t)= lim
x→∞

x

cρI ′(x)
= 0

which follow from the asymptotics (90) and (91) to be proven in Proposition 17.
Now for the case where ρ < 1

2π we have that gρ is given by (81). Using the notation
c = cρ = a−1

2π , the identity (84) gives

Jβ(ρ) = β

4

∫ 2πcρ+1

0
(1 − t)I (g′(t))

)
dt + β

8 (2πcρ)2I(0)

= β
8

[I(g′(0)) − cρg
′(0) + 2πρcρ

]
,

wherewe used g(0) = 0, g(a) = 2πρ, and g′(a) = 0.Note, that cρ > 0 ifρ > 1/(2π)

and − 1
2π ≤ cρ < 0 if ρ < 1/(2π). Introducing ν = K (−1)

(
π

2(I ′)(−1)(cρ)

)
, we get for

both ρ < 1/(2π) and ρ > 1/(2π) that

Jβ(ρ) = β

8

(ν

8
+ ρH(ν)

)

which agreeswith (6),we just have to show thatν = γ (−1)(ρ).Note, that ν = ν(ρ) < 0
if 2πρ > 1 and 0 < ν < 1 if 2πρ < 1.

Recall from (77) and (82) that

ρ = 1
2π

∫ 1

0
(I ′)(−1)

(
cρ
1−t

)
dt, if ρ >

1

2π
, and

ρ = 1
2π

∫ 2πc+1

0
(I ′)(−1)

(
cρ
1−t

)
dt, if ρ <

1

2π
.
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Applying the change of variables to both integrals with a new variable x satisfying
π

2K (x) = (I ′)(−1)(
cρ
1−t ), we get that ρ depends on ν = K (−1)

(
π

2(I ′)(−1)(cρ)

)
exactly

via (7) which finishes the proof. Note, that the finiteness of the integrals in (7) follow
from the asymptotics of K (x) and E(x) near 1 and −∞ (see the proof of Proposition
17). ��
Acknowledgments B.Valkówas partially supported by theNational Science FoundationCAREERaward
DMS-1053280. The authors would like to thank P. J. Forrester for helpful comments and additional refer-
ences.

Appendix A: All about I

In this section we prove the needed estimates about the function I.

Proposition 16 The function I(x) is strictly convex and continuous on (0,∞). It has
an absolute minimum at x = 1 where it is equal to 0.

Proof K is strictly increasing on (−∞, 1)which shows that I(x) is well-defined (and
differentiable) on (0,∞). By differentiating (11) and using the identities

K ′(x) = E(x) − (1 − x)K (x)

2(1 − x)x
, E ′(x) = E(x) − K (x)

2x

we can compute that

I ′(x) = 1

x
I(x) − 1

8x
K−1

( π

2x

)
, (85)

and

I ′′(x) = π

16x3
1

K ′(K−1( π
2x ))

. (86)

Observe that K ′(y) > 0 for y < 1 which gives I ′′(x) > 0 for x > 0 and the strict
convexity of I.

Using K (0) = E(0) = π
2 we get I(1) = I ′(1) = 0 which (by the strict convexity)

proves the second half of the proposition. ��
Proposition 17 We have limx→0+ I(x) = 1

8 and limx→0+ I ′(x) = − 1
2π . There is a

constant c1 > 0 so that

I(x) ≥ c1(x − 1)2, for all x, and (87)

H(−x)√
x log x

,
I(x)

x2 log2 x
and

−K−1(1/x)

x2 log2 x
are bounded away from 0 and∞ for x > 2.

(88)

Proof The following asymptotics can be readily derived from the definitions of elliptic
integrals (or by the existing more sophisticated expansions c.f. [6,15]). There is a
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constant c > 0 so that
∣∣∣∣K (−a) − 1

2
√
a
log(16a)

∣∣∣∣ ≤ c

a3/2
log(a),

∣∣E(−a) − √
a
∣∣ ≤ c

a1/2
log(a), for a > 2. (89)

From this it is easy to check that

lim
x→∞

H(−x)√
x log x

= 1

2
, lim

x→∞
−K−1(1/x)

x2 log2 x
= 1, and

lim
x→∞

I(x)

x2 log2 x
= 1

2π2 . (90)

This gives (88). Note, that together with (85) this also gives

lim
x→∞

I ′(x)
x log2 x

= 1

π2 . (91)

Using the functional identities

E(z) = √
1 − zE

(
z

z − 1

)
, K (z) = 1√

1 − z
K

(
z

z − 1

)
, z ∈ (0, 1)

the asymptotics of (89) can be transformed into

K (a) ∼ − 1
2 log(1 − a), E(a) ∼ 1, as a → 1−1

with explicit error bounds for 2/3 < a < 1. From this we can obtain limx→0+ I(x) =
1
8 and limx→0+ I ′(x) = − 1

2π . Using (88) with the continuity of I and the fact that
I(1) = 0 is an absolute minimum with I ′′(1) > 0 gives (87). ��

The following two lemmas help to consolidate error terms that appear in the proofs
Theorems 1 and 2.

Lemma 18 There exists an absolute constant c such that for any t, q > 0 we have

|H(a)| + |a|t/2 ≤ c(t + 1)(I(q) + 1) (92)

where a = a(q) = K−1(π/(2q)).

Proof Using (89) with the definition (11) we get that there is a constant c2 so that

c−1
2 a(q) ≤ I(q) ≤ c2a(q), if q > 2, (93)

and the same bounds also give

|H(a(q))| ≤ c3
√|a(q)| log |a(q)| (94)
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for some constant c3 in the same region. This shows the existence of a constant A
with

|H(a)| ≤ A I(q), and a(q) ≤ AI(q), for q > 2.

Since for 0 < q < 2 both a(q) and H(a(q)) are bounded the lemma follows.

Lemma 19 For any 0 ≤ ε < 1/2 there exists an absolute constant c, so that

I(x + ε) ≤ (1 + ε)I (x) + cε (95)

Proof Since I is convex, we have

I(x + ε) ≤ I(x) + εI ′(x + ε).

Since I(x) is decreasing on [0, π/2], the bound (95) follows immediately for x ∈
[0, π/2 − ε] with any c ≥ 0. Using (85) we get

I(x + ε) ≤ I(x) + ε
x+ε

(
I(x + ε) − 1

8K
−1
(

π
2(x+ε)

))
. (96)

From (90) it follows that there exists an x0 > 0 such that

ε

x + ε

(
I(x + ε) − 1

8
K−1

(
π

2(x + ε)

))
≤ εI(x), if x ≥ x0

uniformly in ε ∈ [0, 1/2]. Therefore, for x > x0 we have that I(x+ε) ≤ (1+ε)I(x).
We can assume x0 > π/2. By choosing

c = sup
x∈[π/2,x0+1/2]

I ′(x) = I ′(x0 + 1/2)

we get I(x + ε) ≤ I(x) + cε on [π/2 − ε, x0] with any 0 ≤ ε < 1/2 and the lemma
follows. ��

Appendix B: Properties of ISine

In the final section of the appendix we describe the behavior of the function ISine(ρ)

near ρ = 1
2π and ρ → ∞.

Proposition 20 The functions γ (ν) and ISine(ρ) satisfy the following.

1. The function γ (ν) defined in (7) is continuous and strictly decreasing. It satisfies
the differential equation 4x(1 − x)γ ′′(x) = γ (x) on (−∞, 0) and on (0, 1) with
boundary behavior limx→0± γ (x) = 1

2π , γ (1) = 0 and limx→−∞ γ (x)√|x | = 1
4 .

These limits and the differential equation identify γ (x) uniquely on (−∞, 0) ∪
(0, 1].
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2. We have ISine(0) = 1
64 , ISine(

1
2π ) = 0, and I ′′

Sine(x) > 0 for x �= 1
2π . Moreover,

we have the following limits:

lim
x→0

ISine(
1
2π + x)
x2

log(1/|x |)
= π2

4
, and lim

ρ→∞
ISine(ρ)

ρ2 log ρ
= 1

2
.

Proof Recall the function γ (ν) given in (7). Using the asymptotics (90) proved in
Proposition 17 it is easy to see that γ (ν) iswell-defined and positive in (−∞, 0)∪(0, 1)
with limν→1− γ (ν) = 0 = γ (1) and limx→−∞ γ (x)√|x | = 1

4 . We also get that γ (x)H(x)

blows up as ν → 0− or 0+.
Differentiating (7) and using the definition (5) lead to

H(x)γ ′(x) = 1

8
+ H′(x)γ (x),

γ ′′(x)
γ (x)

= H′′(x)
H(x)

= 1

4x(1 − x)
, (97)

for x ∈ (−∞, 0) ∪ (0, 1). We have H′(x) = − K (x)
2 < 0 for x < 1 and H(0) = 0.

Thus from the second identity we get that γ ′(ν) is strictly decreasing in (−∞, 0) and
strictly increasing in (0, 1). From the asymptotics (90) of Proposition 17 it is not hard
to check that limν→−∞ γ ′(ν) = 0 and limν→1− γ ′(ν) = − 1

8 . This, together with the
previous statement, proves that γ (ν) is decreasing on (−∞, 0) and also on (0, 1].

Since (γ (x)H(x)−1)′ = 1
8H(x)−2, L’Hospital’s rule gives

lim
ν→0

γ (ν) = lim
ν→0

γ (ν)H(ν)−1

H(ν)−1 = − 1
8H

′(0) = 1

2π
= γ (0).

Then from (97) it follows that

lim
ν→0

γ ′′(ν)ν = 1

8π
, lim

ν→0

γ ′(ν)

log |ν| = 1

8π
,

and also that

lim
x→0

γ (−1)( 1
2π + x)

8π x
log |x |

= 1. (98)

This shows that γ (ν) is continuous and strictly decreasing on (−∞, 1]. We have
γ (−1)(1) = 0 and ISine(0) = 1

64 .
Note, the fact that γ (x) solves 4x(1 − x)γ ′′(x) = γ (x) on (−∞, 0) ∪ (0, 1)

and has the proven asymptotics at −∞, 0 and 1 uniquely identifies it. The equation
4x(1 − x)y′′(x) = y(x) has two linearly independent solutions on both (−∞, 0)
and (0, 1). The function H(x) also solves the equation (on both intervals), but with
H(0) = 0, limx→1− H(x) = −1 and limx→−∞ H(x)√|x | log |x | = 1

2 . This shows that any

solution on (−∞, 0) or (0, 1) can be expressed as c1γ + c2H with some constants
c1, c2, and the values of the constants are determined by the behavior of the solution
at the end of the interval.
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Using (97) together with (6) we can also compute that

I ′
Sine(ρ) = 1

8

[
1

8γ ′(ν)
+ H(ν) + γ (ν)H′(ν)

γ ′(ν)

]
= 1

4
H(ν), and

I ′′
Sine(ρ) = 1

4

H′(ν)

γ ′(ν)
= −1

8

K (ν)

γ ′(ν)
,

where ν is short for γ −1(ρ). From this ISine( 1
2π ) = 0 follows, together with ISine(x) >

0 for x �= 1
2π . The asymptotics of ISine( 1

2π + x) as x → 0 can be obtained from the
definition (6), the asymptotics (98), and the fact that H(0) = 0,H′(0) = −π

4 .
Lastly we can look at the asymptotics of ISine(ρ) as ρ → ∞. Recalling again (90)

we get

H(−x) ∼ 1
2

√
x log x, γ (−x) ∼

√
x
4 , γ (−1)(x) ∼ 16x2 as x → ∞,

from which ISine(ρ) ∼ 1
2ρ

2 log ρ follows for ρ → ∞.
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