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Abstract In this paper, we consider the linearly reinforced and the once-reinforced
random walk models in the transient phase on trees. We show the large deviations for
the upper tails for both models. We also show the exponential decay for the lower tail
in the once-reinforced random walk model. However, the lower tail is in polynomial
decay for the linearly reinforced random walk model.

Keywords Reinforced random walks on trees · Large deviation

Mathematics Subject Classification 60K37 · 60J15

1 Introduction

Let T be an infinite tree with vertex set V. Each v ∈ V has b + 1 neighbors except a
vertex, called the root, which has b neighbors for b ≥ 2. We denote the root by 0. For
any two vertices u, v ∈ V, let e = [u, v] be the edge with vertices u and v. We denote
by E the edge set. Consider a Markov chain X = {Xi , ω(e, i)}, which starts at X0 = 0
with ω(e, 0) = 1 for all e ∈ E, where ω(e, 0) is called the initial weight. For i ≥ 1
and e ∈ E, let Xi ∈ V and let ω(e, i) ≥ 1 be the i-th weight. The transition from Xi

to the nearest neighbor Xi+1 is randomly selected with probabilities proportional to
weights ω(e, i) of incident edges e to Xi .

After Xi has changed to Xi+1, the weights are updated by the following rule:

w(e, i + 1) =
{

1 + k(c − 1) for [Xi , Xi+1] = e and e had been traversed k times,
w(e, i) otherwise
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656 Y. Zhang

for fixed c > 1. With this weight change, the model is called a linearly reinforced
random walk. Note that if c = 1, then it is a simple random walk.

The linearly reinforced random walk model was first studied by Coppersmith and
Diaconis in 1986 (see [4]) for finite graphs on the Zd lattice. They asked whether the
walks are recurrent or transient. For d = 1, the walks are recurrent for all c ≥ 1 (see
[3] and [10]). For d ≥ 1, Sabot and Tarres [9] showed that the walks are also recurrent
for a large c. The other cases on the Zd lattice still remain open. Pemantle [8] studied
this model on trees and showed that there exists c0 = c0(b) ≥ 4.29 such that when
1 < c < c0, then the walks are transient and when c > c0, then the walks are recurrent.
Furthermore, Collevecchio [2] and Aidekon [1] investigated the behavior of h(Xn) on
the transient phase, where h(x) denotes by the number of edges from the root to x for
x ∈ T. They focused on c = 2 and showed that the law of large numbers holds for
h(Xn) with a positive speed for any b ≥ 2. More precisely, if c = 2, then there exists
0 < T = T (b) < b/(b + 2) such that

lim
n→∞

h(Xn)

n
= T a.s.. (1.1)

By the dominated convergence theorem,

lim
n→∞ E

h(Xn)

n
= T . (1.2)

By a simple computation, the probability that the walks repeatedly move between
an edge connected to the root is larger than n−C for some C = C(b) > 0. Therefore,

n−C ≤ P(h(Xn) ≤ 1), (1.3)

so the lower tail of h(Xn) has the following behavior:

n−C ≤ P(h(Xn) ≤ n(T − ε)) (1.4)

for all ε < T and for all large n. In this paper, C and Ci are positive constants depending
on c, b, ε, N , M , and δ, but not on n, m, and k. They also change from appearance
to appearance. From (1.4), unlike a simple random walk on a tree, we have

lim
n→∞

−1

nη
log P(h(Xn) ≤ n(T − ε)) = 0 (1.5)

for all ε < T and for all η > 0.
We may ask what the behavior of the upper tail is. Unlike the lower tail, we show

that the upper tail has a standard large deviation behavior for large b.

Theorem 1 For the linearly reinforced random walk model with c = 2 and b ≥ 70,
and for ε > 0, there exists a positive number α = α(b, ε) such that

lim
−1

n
log P(h(Xn) ≥ (T + ε)n) = α.
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Large deviations in the reinforced random walk model 657

Remark 1 The proof of Theorem 1 depends on a few Collevecchio’s estimates (see
Lemma 2.1 as follows). Since his estimates need a requirement that b ≥ 70, Theorem
1 also needs this restriction. We conjecture that Theorem 1 holds for all b ≥ 2. Durrett
et al. [5] also investigated a similar reinforced random walk {Yk, w(e, i)}, except that
the weight changes by

w(e, i + 1) =
{

c for [Yi , Yi+1] = e,

w(e, i) otherwise
(1.6)

for fixed c > 1. This random walk model is called a once-reinforced random walk. For
the once-reinforced random walk model, Durrett et al. [5] showed that for any c > 1,
the walks are always transient. In addition, they also showed the law of large numbers
for h(Yn). More precisely, they showed that there exists 0 < S = S(c) < b/(b + c)
such that

lim
n→∞

h(Yn)

n
= S a.s.. (1.7)

We also investigate the large deviations for h(Yn). We have the following theorem,
similar to the linearly reinforced random walk model.

Theorem 2 For the once-reinforced random walk model with c > 1 and for ε > 0,
there exists a finite positive number β = β(c, b, ε) such that

lim
−1

n
log P(h(Yn) ≥ (S + ε)n) = β.

Remark 2 It is difficult to compute the precise rate functions α and β. But we may
obtain some properties such as the continuity in ε for them.

We may ask what the lower tail deviation for h(Yn) is. Unlike in the linearly rein-
forced random walk model, the lower tail is still exponentially decaying.

Theorem 3 For the once-reinforced random walk model with c > 1 and 0 < ε < S,

0 < lim inf
−1

n
log P(h(Yn) ≤ (S − ε)n) ≤ lim sup

−1

n
log P(h(Yn)

≤ (S − ε)n) < ∞.

Remark 3 Durrett et al. [5] also showed that (1.7) holds for a finitely many times
reinforced random walk. We can also adopt the same proof of Theorems 2 and 3
to show that the same arguments hold for a finitely many times reinforced random
walk. In fact, our proofs in Theorems 2 and 3 depend on Durrett, Kesten, and Limic’s
Lemmas 7 and 8 (2002). These proofs in their lemmas can be extended for the finitely
many times reinforced random walk model.

Remark 4 We believe that the limit exists in Theorem 3, but we are unable to show it.
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658 Y. Zhang

2 Preliminaries

In this section, we focus on the linearly reinforced random walk model with c = 2.
We define a hitting time sequence {ti } as follows.

tk = min{ j ≥ 0 : h(X j ) = k}.

Note that walks are transient, so h(X j ) → ∞ as j → ∞. Thus, tk is finite and

0 = t0 < t1 < t2 < · · · < tk < · · · < ∞. (2.1)

With this definition, for each k ≥ 1,

h(Xtk ) − h(Xtk−1) = 1. (2.2)

We also define a leaving time sequence {ρi } as follows.

ρi = max{ j ≥ 0 : h(X j ) = i}.

Since the walk X is transient,

ρ0 < ρ1 < · · · < ρk < · · · < ∞. (2.3)

However, unlike the simple random walk model, {t j − t j−1} are not independent
increments. So we need to look for independence from these times. To achieve this
target, we call ti a cut time if

ρi − ti = 0. (2.4)

Since the walks X is transient, we may select these cut times and list all of them in
increasing order as

τ1 < · · · < τk < · · · < ∞. (2.5)

With these cutting times, we consider difference

Hk = h(Xτk+1) − h(Xτk ) for k = 1, 2, . . . . (2.6)

By this definition, it can be shown that for k = 1, 2, . . . ,

(τk+1 − τk, Hk) is an i.i.d. sequence. (2.7)

In fact (see page 97 in [2]), to verify (2.7), it is enough to realize that Xτk , k ≥ 1,
are regenerative points for the process X. These points split the process X into i.i.d.

pieces, which are {Xm, τk ≤ m < τk+1}, k ≥ 1.
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Large deviations in the reinforced random walk model 659

Level k ≥ 1 is the set of vertices v such that h(v) = k. Level k is a cut level if the
walk visits it only once. We also call Xk , the only vertex to be visited, the cut vertex.
It follows from the cut time definition that Xτk is a cut vertex for k ≥ 1. We want to
remark that τ1 may or may not be equal zero. If τ1 = 0, the root is a cut vertex. For
convenience, we just call τ0 = 0 whether the root is a cut vertex or not. In addition, let

H0 = h(Xτ1) − h(Xτ0) = h(Xτ1). (2.8)

With these definitions, Collevecchio [2] proved the following lemma.

Lemma 2.1 For c = 2 and b ≥ 70,

P(Hk ≥ k) ≤ 0.115k for k ≥ 0. (2.9)

Furthermore, for p0 = 1002/1001,

Eτ
p0

1 < ∞. (2.10)

With Lemma 2.1, we can see that h(Xτk+1)−h(Xτk ) is large with a small probability.
Also, τk+1 − τk is large with a small probability. However, to show a large deviation
result, we need a much shorter tail requirement. Therefore, we need to truncate both
Hk = h(Xτk+1) − h(Xτk ) and τk+1 − τk . We call τk N -short for k ≥ 1 if

Hk = h(Xτk+1) − h(Xτk ) ≤ N ; (2.11)

otherwise, we call it N -long. Since we only focus on the transient phase, we have

τk(N ) < ∞.

We list all N -short cut times as

τ1(N ) < τ1(N ) < · · · < ∞. (2.12)

For convenience, we also call τ0(N ) = 0 whether the root is a cut vertex or not. We
know that τk(N ) = τi for some i .We denote it by τ ′

k(N ) = τi+1. In particular, let
τ ′

0(N ) = 0. For N > 0, let

In = max{i : τi (N ) ≤ n}

and

hn(N ) =
In∑

i=0

(
h
(
Xτ ′

i (N )

) − h
(
Xτi (N )

))
.

If In = 0,

hn = 0. (2.13)
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660 Y. Zhang

Now we state standard tail estimates for an i.i.d. sequence. The proof can be followed
directly from Markov’s inequality.

Lemma 2.2 Let Z1, . . . Zk, . . . be an i.i.d. sequence with EZ1 = 0 and E exp(θ Z1) <

∞ for some θ > 0, and let

Sm = Z1 + Z2 + · · · + Zm .

For any ε > 0, i ≤ n and j ≥ n, there exist Ci = Ci (ε) for i = 1, 2 such that

P(Si ≥ nε) ≤ C1 exp(−C2n),

and

P(S j ≤ −εn) ≤ C1 exp(−C2n).

Now we show that hn(N )/n and h(Xn)/n are not very different if N is large.

Lemma 2.3 For ε > 0, c = 2, and b ≥ 70, there exist N = N (ε) and Ci = Ci (ε, N )

for i = 1, 2 such that

P(h(Xn) ≥ hn(N ) + nε) ≤ C1 exp(−C2n).

Proof If

h(Xn) − hn(N ) ≥ εn, (2.14)

we may suppose that there are only k ≥ 1 many N -long cut time pairs {τi j , τi j +1} for
j = 1, . . . , k such that

τi1 <τi1+1 < τi2 < τi2+1 < · · · < τi j < τi j +1 · · · < τik−1 <τik−1+1 < τik ≤ n ≤τik+1

with i1 ≥ 1 and with

k∑
j=1

Hi j =
k∑

j=1

h(Xτi j +1) − h(Xτi j
) ≥ εn/2, (2.15)

where

Hi j = h(Xτi j +1) − h(Xτi j
) > N for j = 1, 2, . . . , k ≤ n/N , (2.16)

or

h(Xτ1) ≥ εn/2. (2.17)
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Large deviations in the reinforced random walk model 661

For the second case in (2.17), by Lemma 2.1, there exist Ci = Ci (ε) for i = 1, 2
such that

P(h(Xτ1) ≥ εn/2) = P(H0 ≥ εn/2) ≤ C1 exp(−C2n). (2.18)

We focus on the first case in (2.15). By (2.7) and Lemma 2.1, {H1, H2, . . .} is an i.i.d
sequence with

P(Hi ≥ m) ≤ 0.115m for i ≥ 1. (2.19)

Thus, if (2.15) holds, by (2.15) and (2.16), it implies that there exist k many Hi s in
{H1, . . . , Hn} for 1 ≤ k ≤ �n/N	 such that Hi > N and their sum is large than εn/2.

For a fixed k, it costs at most
(n

k

)
to fix the subsequence of these Hi s from

{H1, . . . , Hn}. We denote by Hi1 , . . . , Hik these fixed random variables. Since {Hi } is
an i.i.d sequence, the joint distribution of Hi1 , . . . , Hik is always the same for different
i j s. With these observations,

P (h(Xn) ≥ hn(N ) + nε/2, (2.15) holds)≤
�n/N	∑
k=1

(
n

k

)
P(Hi1 + · · ·+Hik ≥ nε/2).

(2.20)

By (2.19), we know that

E Hi = E H1 < ∞ for each i ≥ 1.

Since k ≤ n/N + 1, we may take N = N (ε) large such that for each k ≤ n and fixed
i1, . . . , ik

P(Hi1 + · · · + Hik ≥ nε/2) ≤ P([Hi1 − E Hi1 ] + · · · + [Hik − E Hik ] ≥ nε/4)

(2.21)

Note that {Hi j − E Hi j } is an i.i.d sequence with a zero-mean and an exponential tail
for j = 1, . . . , k, so by Lemma 2.2,

P([Hi1 − E Hi1 ] + · · · + [Hik − E Hi1 ] ≥ nε/4) ≤ C3 exp(−C4n). (2.22)

By a standard entropy bound, as given in Corollary 2.6.2 of Engel [6], for k ≤ n/N ,

(
n

k

)
≤ exp(n log N/N ). (2.23)

By (2.19)–(2.22), if we take N large, then there exist Ci =Ci (ε, N ) for i =5, 6 such that

P (hn(Xn) ≥ hn(N ) + nε, (2.15) holds) ≤ C5n exp(−C6n). (2.24)

So Lemma 2.3 holds by (2.18) and (2.24). 
�
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662 Y. Zhang

We also need to control the time difference such that τ ′
k(N ) − τk(N ) cannot be

large. We call τk(N ) M-tight for k ≥ 1 if

τ ′
k(N ) − τk(N ) ≤ M.

We list all M-tight N -short cut times as

τ1(N , M), τ2(N , M), . . . , τk(N , M), . . . .

Suppose that τk(N , M) < ∞. We know that τk(N , M) = τi for some i . We denote
τ ′

k(N , M) = τi+1. For convenience, we also call τ0(N , M) = 0 and τ ′
0(N , M) = 0

whether the root is a cut vertex or not. Let

Jn = max{i : τi (N , M) ≤ n}

and

hn(N , M) =
Jn∑

i=0

(
h
(
Xτ ′

i (N ,M)

) − h
(
Xτi (N ,M)

))
. (2.25)

If Jn = 0, then

hn(N , M) = 0. (2.26)

The following lemma shows that hn(N , M)/n and hn(N )/n are not far away.

Lemma 2.4 For ε > 0, for N, and for each n, there exists M = M(ε, N ) such that

hn(N ) ≤ hn(N , M) + nε.

Proof If hn(N ) > hn(N , M) + nε, we know that there are at least εn/2N many
{τi (N )} such that

τ ′
i (N ) − τi (N ) > M. (2.27)

If we take M ≥ 3Nε−1, then

n ≥
In∑

i=1

(
τ ′

i (N ) − τi (N )
)

> Mεn/2N > n. (2.28)

The contradiction shows that

hn(N ) ≤ hn(N , M) + nε.

So Lemma 2.4 follows. 
�
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Large deviations in the reinforced random walk model 663

Let E(ε) be the event that h(Xn) ≥ n(T − ε). By Lemmas 2.3 and 2.4,

lim
n→∞ P(hn(N , M) ≤ T n/2, En(ε)) = 0.

Note that P(En(ε)) is near one for large n, so there are at least T n/2M many
τi (N , M)s with τi (N , M) ≤ n that also have a probability near one for large n.
Hence, τk(N , M) = ∞ cannot have a positive probability for each k. Therefore,

τ1(N , M) < τ2(N , M) < · · · τk(N , M) < · · · < ∞. (2.29)

By (2.29), we know that τk(N , M) = τi for some i and

τ ′
k(N , M) − τk(N , M) = τi+1 − τi .

Therefore, by the same proof of (2.7), for k ≥ 1

{(
τ ′

k(N , M) − τk(N , M), h
(
Xτ ′

k (N ,M)

) − h
(
Xτk (N ,M)

))}
is an i.i.d. sequence.

(2.30)

3 Large deviations for hn(N, M)

By Lemma 2.1, we let

E(τ2 − τ1) = A ≥ 1 and E
(
τ ′

1(N , M) − τ1(N , M)
) = A(N , M)

and

E(h(Xτ2) − h(Xτ1)) = B ≥ 1 and E
(

h
(
Xτ ′

1(N ,M)

) − h
(
Xτ1(N ,M)

)) = B(N , M).

We set

Tn =
n∑

k=1

(τk+1 − τk) and Tn(N , M) =
n∑

k=1

(
τ ′

k(N , M) − τk(N , M)
)

and

Hn =
n∑

k=1

(
h

(
Xτk+1

) − h
(
Xτk

))
and Hn(N , M)

=
n∑

k=1

(
h
(
Xτ ′

k (N ,M)

) − h
(
Xτk (N ,M)

))
.
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By the law of large numbers,

lim
n→∞

Tn

n
= A and lim

n→∞
Tn(N , M)

n
= A(N , M) (3.1)

and

lim
n→∞

Hn

n
= B and lim

n→∞
Hn(N , M)

n
= B(N , M). (3.2)

If τi ≤ n ≤ τi+1 for i ≥ 1, then

h(Xτi ) ≤ h(Xn) ≤ h(Xτi+1). (3.3)

Thus,

h(Xτi )

τi+1
≤ h(Xn)

n
≤ h(Xτi+1)

τi
. (3.4)

By (3.1) and (3.2),

lim
i→∞

h(Xτi )

τi+1
= lim

i→∞
h(Xτi+1)

τi
= B

A
. (3.5)

So by (1.1), (3.4), and (3.5),

B

A
= T . (3.6)

Regarding B(N , M) and A(N , M), we have the following lemma.

Lemma 3.1 For c = 2 and b ≥ 70,

lim
N ,M→∞ A(N , M)= A and lim

N ,M→∞ B(N , M)= B and lim
N ,M→∞

B(N , M)

A(N , M)
=T .

Proof By (2.5) and the definitions of τ1(N ) and τ1(N , M), for each sample point ω,
there exist large N and M such that

τ1(N , M)(ω) = τ1(ω),

where τ1(N , M)(ω) and τ1(ω) are τ1(N , M) and τ1 with ω. It also follows from the
definition of τ ′

1(N , M) that for the above N and M ,

τ ′
1(N , M)(ω) = τ2(ω).

Thus, for each ω

lim
N ,M→∞ τ ′

1(N , M)(ω) − τ1(N , M)(ω) = τ2(ω) − τ1(ω). (3.7)
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Large deviations in the reinforced random walk model 665

By the dominated convergence theorem,

lim
N ,M→∞ A(N , M) = lim

N ,M→∞ E(τ ′
1(N , M) − τ1(N , M)) = E(τ2 − τ1) = A. (3.8)

Similarly,

lim
N ,M→∞ B(N , M) = lim

N ,M→∞ E
(

h
(
Xτ ′

1(N ,M)

) − h
(
Xτ1(N ,M)

)) = B. (3.9)

Therefore, Lemma 3.1 follows from (3.8), (3.9), and (3.6). 
�
Now we show that hn(N , M) has an exponential upper tail.

Lemma 3.2 If c = 2 and b ≥ 70, then for ε > 0, there exist N0 = N0(ε) and
M0 = M0(ε) such that for all N ≥ N0 and M ≥ M0

P(hn(N , M) ≥ n(T + ε)) ≤ C1 exp(−C2n), (3.10)

where Ci = Ci (ε, N , M) for i = 1, 2 are constants.

Proof Recall that

Jn = max{i : τi (N , M) ≤ n}.

So

P(hn(N , M) ≥ n(T + Bε))

= P

( Jn∑
i=1

(
h
(
Xτ ′

i (N ,M)

) − h
(
Xτi (N ,M)

)) ≥ n(T + Bε)

)

≤ P

( Jn∑
i=1

(
h
(
Xτ ′

i (N ,M)

)−h
(
Xτi (N ,M)

))≥n(T + Bε), Jn ≤n

(
T

B(N , M)
+ε/2

))

+P
(

Jn > n

(
T

B(N , M)
+ ε/2

))

≤ P

⎛
⎝n(T/B(N ,M)+ε/2)∑

i=1

(
h
(
Xτ ′

i (N ,M)

) − h
(
Xτi (N ,M)

)) ≥ n(T + Bε)

⎞
⎠

+P
(

Jn > n

(
T

B(N , M)

)
+ ε/2)

)

= I + I I. (3.11)

Here without loss of generality, we assume that n(T/B(N , M) + ε/2) is an integer,
otherwise we can use �n(T/B(N , M)) + ε/2)	 to replace n(T/B(N , M)) + ε/2).
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We will estimate I and I I separately. For I , note that by Lemma 3.2, there exist
N0 = N0(ε) and M0 = M0(ε) such that for all N ≥ N0 and M ≥ M0

E

⎛
⎝n(T/B(N ,M)+ε/2)∑

i=1

(
h
(
Xτ ′

i (N ,M)

) − h
(
Xτi (N ,M)

))⎞
⎠

≤ nT (1 + B(N , M)ε/2) ≤ nT (1 + 2Bε/3).

Note also that by (2.30),

{
h

(
Xτ ′

i (N ,M)

)
− h

(
Xτi (N ,M)

)}
is a uniformly bounded i.i.d. sequence,

so by Lemma 2.2, there exist Ci = Ci (ε, N , M) for i = 3, 4 such that

P

⎛
⎝n(T/B(N ,M)+ε/2)∑

i=1

(
h
(
Xτ ′

i (N ,M)

)−h
(
Xτi (N ,M)

))≥n(T + Bε)

⎞
⎠≤C3 exp(−C4n).

(3.12)

Now we estimate I I . By Lemma 3.1, there exist N0 = N0(ε, b) and M0 = M0(ε, b)

such that for all N ≥ N0 and M ≥ M0

P
(

Jn > n

(
T

B(N , M)

)
+ ε/2

)
= P

(
Jn > n

(
A−1(N , M) + ε/3

))
. (3.13)

Here without loss of generality, we also assume that n(A−1(N , M)+ε/3) is an integer,
otherwise we can use �n(A−1(N , M) + ε/3)	 to replace n(A−1(N , M) + ε/3). Note
that

{
Jn ≥ n(A−1(N , M) + ε/3)

}
⊂

⎧⎨
⎩

n(A−1(N ,M)+ε/3)∑
i=1

(τ ′
i (N , M) − τi (N , M)) ≤ n

⎫⎬
⎭ .

(3.14)

Note also that

E
n(A−1(N ,M)+ε/3)∑

i=1

(
τ ′

i (N , M) − τi (N , M)
) = n(1 + ε A(N , M)/3),

and, by (2.30), {τ ′
i (N , M) − τi (N , M)} is a uniformly bounded i.i.d. sequence, so by

(3.13), and (3.14), and Lemma 2.2, there exist Ci = Ci (ε, b, N , M) for i = 5, 6 such
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that

P
(

Jn > n

(
T

B(N , M)
+ ε/2

))

≤ P
(

Jn > n(A−1(N , M) + ε/3)
)

≤ P

⎛
⎝n(A−1(N ,M)+ε/3)∑

i=1

(τ ′
i (N , M) − τi (N , M)) ≤ n

⎞
⎠

≤ C5 exp(−C6n). (3.15)

For all large N and M , we substitute (3.12) and (3.15) in (3.11) to have

P(hn(N , M) ≥ n(T + ε)) ≤ I + I I ≤ C7 exp(−C8n) (3.16)

for Ci = Ci (ε, N , M) for i = 7, 8. Therefore, we have an exponential tail estimate
for hn(N , M). So Lemma 3.2 follows. 
�

Let

Ln = max{i : τi ≤ n}

and

hn =
Ln∑

i=1

(
h(Xτi ) − h(Xτi−1)

)
if Ln ≥ 1 and hn = 0 if Ln = 0. (3.17)

Recall that ρi is the leaving time defined in (2.3). We show the following subadditive
argument for hn .

Lemma 3.3 For c = 2, b ≥ 2, N > 0, and for each pair of positive integers n and
m,

P(hn ≥ nC, ρ0 ≤ N )P(hm ≥ mC, ρ0 ≤ N )

≤ 2N (b + 1)nP(hn+m+1

≥ (n + m)C + 1, ρ0 ≤ N ),

for any C > 0.

Proof By the definition in (3.17), there exists 0 ≤ k ≤ n such that

τk ≤ n ≤ τk+1.

So

hn = h(Xτk ) ≤ h(Xn) ≤ h(Xτk+1). (3.18)
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For i ≥ nC , we denote by F(x, i, N , nC) the event that walks {X1, X2, . . . , Xi }
have

h(X j ) < nC for j < i and h(Xi ) = x with h(x) ≥ nC. (3.19)

In addition, the number of walks {X1, X2, . . . , Xi } visiting the root is no more
than N .

Note that on {hn ≥ nC, ρ0 ≤ N }, walks eventually move to some vertex x at some
time i with h(x) ≥ nC , and walks {X1, X2, . . . , Xi } visit the root no more than N
times. So we may control {hn ≥ nC, ρ0 ≤ N } by a finite step walks {X1, X2, . . . , Xi }
in order to work on a further coupling process. More precisely,

P(hn ≥ nC, ρ0 ≤ N ) ≤
∑
i≤n

∑
x

P (F(x, i, N , nC)). (3.20)

There are b + 1 many vertices adjacent to x . We just select one of them and
denote it by z with h(z) = h(x) + 1. Let ez be the edge with the vertices x and z.
On F(x, i, N , nC), we require that the next move Xi+1 will be from x to z. Thus,
Xi+1 = z. We denote this subevent by G(x, z, i, N , nC) ⊂ F(x, i, N , nC). We have

∑
i≤n

∑
x

P (F(x, i, N , nC)) ≤ (b + 1)
∑
i≤n

∑
x

P (G(x, z, i, N , nC)). (3.21)

Now we focus on {hm ≥ Cm, ρ0 ≤ N }. Let Tz be the subtree with the root at z and
vertices in {v : h(v) ≥ h(z)}. We define {Xi

n(z)} to be the linearly reinforced random
walks starting from z in subtree Tz for n ≥ i + 1 with

Xi
i+1(z) = z and w(ez, i + 1) = 2.

Note that walks {Xi
n(z)} stay inside Tz , so

w(ez, n) = 2 for n ≥ i + 1. (3.22)

We can define τ i
k , ρi

0 and hi
m(z) for {Xi

n(z)} similar to the definitions of τk, ρ0 and hm

for {Xn}.
On w(ez, i + 1) = 2, we consider a probability difference between P(hm ≥

Cm, ρ0 ≤ N ) and P(hi
m(z) ≥ Cm, ρi

0 ≤ N ). Note that there are only b edges
from the root, but there are b + 1 edges from vertex z with w(ez, n) = 2, so the two
probabilities are not the same. We claim that

P(hm ≥ mC, ρ0 ≤ N ) ≤ 2N P(hi
m(z) ≥ Cm, ρi

0 ≤ N | w(ez, i + 1) = 2). (3.23)

To show (3.23), we consider a fixed path (u0 = 0, u1, u2, . . .) in T with {X1 =
u1, X2 = u2, . . .} ∈ {hm ≥ Cm, ρ0 ≤ N }. Note that [u j , u j+1] is an edge in E. If we
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remove T from the root to z, it will be Tz . So path (0, u1, u2, . . .) in T will be a new
path (u0(z) = z, u1(z), u2(z), . . .) in Tz after removing. Thus, if

{X0 = 0, X1 = u1, X2 = u1, . . .} ∈ {hm ≥ Cm, ρ0 ≤ N },
then

{Xi
i+1 = z, Xi

i+2(z) = u1(z), . . .} ∈ {hi
m(z) ≥ Cm, ρi

0 ≤ N }.
On the other hand, given a fixed paths {0, u1, . . . , u j , . . .}, it follows from the

definition of {z, u1(z), . . . , u j (z), . . .} that

w
([u j , u j+1], k

) = w
([u j (z), u j+1(z)], i + 1 + k

)
(3.24)

for any positive integers j and k. We may focus on a finite part {0, u1, . . . ul}
from {0, u1, . . .}. Now if we can show that for all large l, and for each path
{0, u1, u2, . . . , ul},

P(X1 = u1, X2 = u2, . . . , Xl = ul)

≤ 2N P
(

Xi
i+2(z) = u1(z), Xi

i+3(z) = u2(z), . . . , Xi
i+2+l(z)

= ul(z) | w(ez, i + 1) = 2
)

, (3.25)

then (3.23) will be followed by the summation of all possible paths {0, u1, u2, . . . ul}
for both sides in (3.25) and by letting l → ∞. Therefore, to show (3.23), we need to
show (3.25).

Note that

P(X1 =u1, X2 = u2, . . . , Xl = ul)=
l∏

j=1

P(X j =u j | X j−1 =u j−1, . . . , X1 = u1)

(3.26)

and

P(Xi
i+2 = u1(z), Xi

i+3(z) = u2(z), . . . , Xi
i+2+l(z) = ul(z))

=
l∏

j=1

P(Xi
i+1+ j (z) = u j (z) | Xi

i+ j (z) = u j−1(z), . . . , Xi
i+2(z)

= u1(z), w(ez, i + 1) = 2). (3.27)

If u j−1 = 0, then

P(X j = u j | X j−1 = u j−1, . . . , X1 = u1) = w([u j−1, u j ], j − 1)∑
e w(e, j)

, (3.28)
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where the sum in (3.28) takes over all possible edges adjacent to the root with vertices
in T. On the other hand, if u j−1 = 0, we know that u j−1(z) = z, then by (3.22),

P(Xi
i+1+ j (z)=u j (z) | Xi

i+ j (z)=u j−1(z), . . . , Xi
i+2(z) = u1(z), w(ez, i + 1) = 2)

= w([u j−1(z), u j (z)], i + j)∑
e w(e, i + j) + w(ez, i + j)

= w([u j−1(z), u j (z)], i + j)∑
e w(e, i + j) + 2

, (3.29)

where the sum in (3.29) takes all edges adjacent to z with vertices in Tz (not including
ez). We check the numerators in the right sides of (3.28) and (3.29). If X1, . . . X j−1
never visit u j , then both w([u j−1, u j ], j −1] = 1 and w([u j−1(z), u j (z)], i + j) = 1.
Otherwise, by (3.24) the two numerators are also the same. Similarly, the two sums
in the denominators in the right sides of (3.28) and (3.29) are the same. Therefore, if
u j−1 = 0, note that

∑
e w(e, j) ≥ 2 for all j , so

2P(Xi
i+1+ j (z) = u j (z) | Xi

i+ j (z) = u j−1(z), . . . , Xi
i+2(z) = u1(z), w(ez, i + 1) = 2)

≥ P(X j = u j | X j−1 = u j−1, . . . , X1 = u1). (3.30)

If u j−1 
= 0, we do not need to consider the extra term w(ez, i + j) in the denominator
of the second right side of (3.29). So by the same argument of (3.30), if u j−1 
= 0,

P(Xi
i+1+ j (z) = u j (z) | Xi

i+ j (z) = u j−1(z), . . . , Xi
i+2(z) = u1(z), w(ez, i + 1) = 2)

= P(X j = u j | X j−1 = u j−1, . . . , X1 = u1) (3.31)

Since we restrict ρ0 ≤ N and ρi
0 ≤ N , walks {X1, X2, . . .} visit the root no more than

N times. On the other hand, walks {Xi
i+2(z), Xi

i+3(z), . . .} also visit z no more than N
times. This indicates that there are at most N vertices u j s with u j = 0 for 1 ≤ j ≤ l
for the above path {0, u1, . . . , ul}. Thus, (3.25) follows from (3.26)–(3.31). So does
(3.23).

With (3.23), we will show Lemma 3.3. Note that {hi
m(z) ≥ mC, ρi

0 ≤ N } only
depends on the weight configurations of the edges with vertices inside Tz , and weight
w(ez, i + 1), and the time interval [i + 2,∞). In contrast, on G(x, z, i, N , nC), the
last move of walks {X1, . . . , Xi , Xi+1} is from x to z, but the other moves use the
edges with the vertices inside {y : h(y) ≤ h(z) − 1}. So by (3.23),

P(hm ≥ Cm, ρ0 ≤ N )

≤ 2N P
(

hi
m(z) ≥ Cm, ρi

0 ≤ N | w(ez, i + 1) = 2
)

≤ 2N P
(

hi
m(z) ≥ Cm, ρi

0 ≤ N | G(x, z, i, N , nC)
)

. (3.32)

By (3.21) and (3.32),

P(hn ≥ nC, ρ0 ≤ N )P(hm ≥ mC, ρ0 ≤ N )

≤
∑
i≤n

∑
x

2N (b + 1)P
(
G(x, z, i, N , nC), hi

m(z) ≥ mC, ρi
0 ≤ N

)
. (3.33)
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If i ≤ n, then

hi
m(z) ≤ hi

m+n−i (z). (3.34)

By (3.33) and (3.34),

P(hn ≥ nC, ρ0 ≤ N )P(hm ≥ mC, ρ0 ≤ N )

≤
∑
i≤n

∑
x

2N (b + 1)P
(
G(x, z, i, N , nC), hi

m(z) ≥ mC, ρi
0 ≤ N

)

≤
∑
i≤n

2N (b + 1)P

(⋃
x

{
G(x, z, i, N , nC), hi

m+n−i (z) ≥ mC
})

. (3.35)

Note that for each x and i ,

{
G(x, z, i, N , nC), hi

m+n−i (z) ≥ mC
}

implies that the walks first move to x at time i with h(x) ≥ nC and the number of walks
{X1, . . . , Xi } back to the root is not more than N . After that, the walks continue to
move from x to z. After this move, the walks move inside subtree Tz . So i is a cut time
and Xi is a cut vertex with h(Xi ) ≥ nC . Therefore, together with hi

n+m−i (z) ≥ mC ,{G(x, z, i, N , nC), hi
m+n−i (z) ≥ mC

}
implies that {hn+m+1 ≥ (n + m)C + 1, ρ0 ≤

N } occurs. In other words,

{
G(x, z, i, N , nC), hi

m+n−i (z) ≥ mC
}

⊂ {hn+m+1 ≥ (n + m)C + 1, ρ0 ≤ N }.
(3.36)

Therefore,

⋃
x

{
G(x, z, i, N , nC), hi

m+n−i (z) ≥ mC
}

⊂ {hn+m+1 ≥ (n + m)C + 1, ρ0 ≤ N }.

(3.37)

Finally, by (3.35) and (3.37),

P(hn ≥ nC, ρ0 ≤ N )P(hm ≥ mC, ρ0 ≤ N )

≤ 2N (b + 1)nP(hn+m+1 ≥ (n + m)C + 1, ρ0 ≤ N ). (3.38)

Therefore, Lemma 3.3 follows from (3.38). 
�
We let

an = − log P(hn ≥ (T + ε)n, ρ0 ≤ N ). (3.39)
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We may take ε small such that T + ε < 1. By Lemma 3.3, for any n and m

an+m+1 ≤ an + am + log n + N log 2 + log(b + 1). (3.40)

By (3.40) and a standard subadditive argument (see (II.6) in Grimmett [7]), we have
the following lemma.

Lemma 3.4 For c = 2 and any N > 0 and b ≥ 2, there exists 0 ≤ α(N ) < ∞ such
that

lim
n→∞

−1

n
log P(hn ≥ (T + ε)n, ρ0 ≤ N )

= inf
n

{−1

n
log P(hn ≥ (T + ε)n, ρ0 ≤ N )

}
= α(N ).

It follows from the definition and Lemma 3.4 that α(N ) is a non-negative decreasing
sequence in N . Thus, there exists a finite number α ≥ 0 such that

lim
N→∞ α(N ) = α. (3.41)

By (3.41) and Lemma 3.4, for each N ,

α ≤ α(N ) ≤ −1

n
log P(hn ≥ (T + ε)n, ρ0 ≤ N ). (3.42)

On the other hand, note that the walk is transient, so ρ0 < ∞. Thus, for any fixed n,

lim
N→∞

−1

n
log P(hn ≥ (T + ε)n, ρ0 ≤ N ) = −1

n
log P(hn ≥ (T + ε)n) (3.43)

By (3.42) and (3.43),

α ≤ lim inf
n

−1

n
log P(hn ≥ (T + ε)n) (3.44)

Note that for each N ,

lim sup
n

−1

n
log P(hn ≥ (T + ε)n)

≤ lim
n→∞

−1

n
log P(hn ≥ (T + ε)n, ρ0 ≤ N ) = α(N ).

So for each δ > 0 we may take N large such that

lim sup
n

−1

n
log P(hn ≥ (T + ε)n) ≤ α(N ) ≤ α + δ. (3.45)

We summarize (3.44) and (3.45) as the following lemma.
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Lemma 3.5 For c = 2 and any b ≥ 2, there exists a constant α ≥ 0 such that

lim
n→∞

−1

n
log P(hn ≥ (T + ε)n) = α.

4 Proof of Theorem 1

Note that for ε < 1 − T , and for all large n,

(
b

b + 1

)n

≤ P(h(Xi+1) > h(Xi ) for 0 ≤ i ≤ n) ≤ P(h(Xn) ≥ n(T + ε)).

(4.1)

By (4.1),

lim sup
n→∞

−1

n
log P(h(Xn) ≥ n(T + ε)) < ∞. (4.2)

Note also that

P(h(Xn) ≥ n(T + ε))

≤ P(h(Xn) ≥ n(T + ε), hn(N , M) ≥ n(T + ε/2))

+P(h(Xn) − hn(N , M) ≥ nε/2). (4.3)

By Lemmas 2.3 and 2.4, for ε > 0, we select N and M such that

P(h(Xn) ≥ n(T + ε)) ≤ P(hn(N , M) ≥ n(T + ε/2)) + C1 exp(−C2n). (4.4)

For N and M in (4.4), we may require that N ≥ N0 and M ≥ M0 for N0 and M0 in
Lemma 3.2. By (4.4) and Lemma 3.2, there exist Ci = Ci (ε, N , M) for i = 3, 4 such
that

P(h(Xn) ≥ n(T + ε)) ≤ C3 exp(−C4n). (4.5)

By (4.5), for ε > 0,

0 < lim inf
n→∞

−1

n
log P(h(Xn) ≥ n(T + ε)). (4.6)

It remains for us to show the existence of the limit in Theorem 1. We use a similar
proof in Lemma 3.3 to show it. Let F(x, k, n) be the event that h(Xi ) < n(T + ε) for
i = 1, . . . , k − 1, h(Xk) ≥ n(T + ε) and h(Xk) = x for k ≤ n. Thus,

P(h(Xn) ≥ n(T + ε)) ≤
∑
k≤n

∑
x∈T

P(F(x, k, n)) (4.7)
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Note that F(x, k, n) depends on finite step walks {X0, . . . , Xk}. We need to couple
the remaining walks {Xk+1, Xk+2, . . .} such that k is a cut time.Let Q(x, k) be the
event that Xk = x and {Xt } will stay inside Tx but never returns to x for t > k. Since
the walks are transient, we may let

P(Q(0, 0)) = ν > 0. (4.8)

Let ex denote the edge with vertices x and w for h(w) = h(x) − 1. We know that
Q(x, k) depends on initial weight w(ex , k), and the weights in the edges with the
vertices in Tx , respectively.

Therefore, by the same discussion of (3.23) in Lemma 3.3,

2P(Q(x, k) | F(x, k, n)) ≥
(

b + 2

b

)
P(Q(x, k) | F(x, k, n)) ≥ ν. (4.9)

Thus, by (4.7) and (4.9),

P(h(Xn) ≥ n(T + ε))

≤
∑
x∈T

∑
k≤n

P (F(x, k, n)) P(Q(x, k) | F(x, k, n))

(
b + 2

b

)
ν−1

≤ 2ν−1
∑
k≤n

P

(⋃
x∈T

F(x, k, n) ∩ Q(x, k)

)
. (4.10)

If F(x, k, n) ∩ Q(x, k) occurs, it implies that the walks move to x at k ≤ n with
h(x) ≥ n(T + ε). After that, the walks continue to move inside Tx from x and never
return to x . This implies that k is a cut time and Xk is a cut vertex with h(Xk) ≥
n(T + ε). So for 0 ≤ k ≤ n and for each x ,

F(x, k, n) ∩ Q(x, k) ⊆ {hk ≥ n(T + ε)}. (4.11)

Thus,

⋃
x∈T

F(x, k, n) ∩ Q(x, k) ⊆ {hk ≥ n(T + ε)}. (4.12)

Note that for 0 ≤ k ≤ n,

hk ≤ hn . (4.13)

By (4.10)–(4.13),

P(h(Xn) ≥ n(T + ε)) ≤ 2ν−1nP(hn ≥ n(T + ε)). (4.14)

On the other hand, we suppose that hn ≥ n(T + ε). Note that if τk ≤ n ≤ τk+1,
then by (3.18),
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hn = h
(
Xτk

) ≤ h(Xn). (4.15)

By (4.15),

P(hn ≥ n(T + ε)) ≤ P(h(Xn) ≥ n(T + ε)). (4.16)

Now we are ready to show Theorem 1.

Proof of Theorem 1 Together with (4.14), (4.16), and Lemma 3.5,

lim
n→∞

1

n
log P(h(Xn) ≥ n(T + ε)) = α. (4.17)

By (4.2) and (4.6),

0 < α < ∞. (4.18)

Therefore, Theorem 1 follows from (4.17) and (4.18). 
�

5 Proof of Theorem 2

Similarly, we define the same cut times τi that we defined for the linearly reinforced
random walk. We have

(
τk+1 − τk, h(Yτk+1) − h(Yτk )

)
as an i.i.d. sequence. We can

also follow Durrett et al. [5] Lemmas 7 and 8 to show that there exist Ci for i = 1, 2
such that, for each k ≥ 1,

P(τk+1 − τk ≥ m) ≤ C1 exp(−C2m) (5.1)

and

P(h(Yτk+1) − h(Yτk ) ≥ m) ≤ C1 exp(−C2m). (5.2)

By (5.1) and (5.2), similar to our approach the linearly reinforced random walk, we
set

Sn =
n∑

k=1

(τk − τk−1) and Kn =
n∑

k=1

(
h(Yτk ) − h(Yτk−1)

)
. (5.3)

By the law of large numbers,

lim
n→∞

Sn

n
= A and lim

n→∞
Kn

n
= B. (5.4)

With these observations, Theorem 2 can follow from the exact proof of Theorem 1. In
fact, we may not need to truncate τi to τi (N , M) as we did for Theorem 1, since we
can use (5.1) and (5.2) directly. 
�
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6 Proof of Theorem 3

Now we need to estimate P(h(Yn) ≤ n(S − ε)). Let

Ln = max{i, τi ≤ n}

and let

hn =
Ln∑

i=1

(
h

(
Yτi

) − h
(
Yτi−1

))
if Ln ≥ 1 and hn = 0 if Ln = 0. (6.1)

By (1.7), (5.3), and an argument similar to (3.6), we have

B

A
= S. (6.2)

Since hn ≤ h(Yn), by (5.1)

P(h(Yn) ≤ n(S − εB))

≤ P(hn ≤ n(S − εB))

≤ P

( Ln∑
i=1

(
h

(
Yτi

) − h
(
Yτi−1

)) ≤ n(S − εB

)
+ P(τ1 > n)

≤ P

( Ln∑
i=1

(
h

(
Yτi

) − h
(
Yτi−1

)) ≤ n(S − εB

)
+ C1 exp(−C2n). (6.3)

We split

P

( Ln∑
i=1

(h(Yτi ) − h(Yτi−1)) ≤ n(S − εB)

)

≤ P

( Ln∑
i=1

(h(Yτi ) − h(Yτi−1)) ≤ n(S − εB), Ln ≥ n(SB−1 − ε/2)

)

+P
(

Ln < n(SB−1 − ε/2)
)

= I + I I.

We estimate I and I I separately:

I = P

( Ln∑
i=1

(h(Yτi ) − h(Yτi−1)) ≤ n(S − εB), Ln ≥ n(SB−1 − ε/2)

)

≤ P

⎛
⎝n(SB−1−ε/2)∑

i=1

(h(Yτi ) − h(Yτi−1)) ≤ n(S − εB)

⎞
⎠ . (6.4)
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Note that

E

⎛
⎝n(SB−1−ε/2)∑

i=1

(h(Yτi ) − h(Yτi−1))

⎞
⎠ = n(S − εB/2). (6.5)

Note also that by (5.2), {h(Yτi ) − h(Yτi−1)} is an i.i.d. sequence with an exponential
tail for k ≥ 2, so by Lemma 2.2 there exist Ci = Ci (ε, B) for i = 3, 4 such that

I ≤ C3 exp(−C4n). (6.6)

Also, by (6.2),

I I = P
(

Ln < n(SB−1 − ε/2)
)

= P

⎛
⎝n(SB−1−ε/2)∑

i=1

(τi − τi−1) ≥ n

⎞
⎠

= P

⎛
⎝n(A−1−ε/2)∑

i=1

(τi − τi−1) ≥ n

⎞
⎠ .

Note that

E
n(A−1−ε/2)∑

i=1

(τi − τi−1) = n(1 − ε A/2). (6.7)

Note also that by (5.1), {τi − τi−1} is an i.i.d. sequence with an exponential tail for
k ≥ 2, so by Lemma 2.2, there exist Ci = Ci (ε, B) for i = 5, 6 such that

I I ≤ C5 exp(−C6n). (6.8)

Together with (6.3), (6.4), (6.6), and (6.8), there exist Ci = Ci (c, ε, B) for i = 7, 8
such that

P(h(Yn) ≤ n(S − ε)) ≤ C7 exp(−C8n). (6.9)

From (6.9),

0 < lim inf
−1

n
log P(h(Yn) ≤ n(S − ε)). (6.10)

If the walks repeatedly move in the edge connecting the origin in n times, we have the
probability Cn for a positive constant C = C(b). Thus, for ε < S and for all large n,

Cn ≤ P(h(Yn) ≤ 1) ≤ P(h(Yn) ≤ n(S − ε)). (6.11)
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So for ε < S,

lim sup
−1

n
log P(h(Yn) ≤ n(S − ε)) < ∞. (6.12)

Therefore, Theorem 3 follows from (6.10) and (6.12). 
�
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