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Abstract The present work provides a definitive answer to the problem of quantify-
ing relaxation to equilibrium of the solution to the spatially homogeneous Boltzmann
equation for Maxwellian molecules. Under really mild conditions on the initial datum
and a weak, physically consistent, angular cutoff hypothesis, our main result (Theo-
rem 1) contains the first precise statement that the total variation distance between the
solution and the limiting Maxwellian distribution admits an upper bound of the form
CeΛbt ,Λb being the least negative eigenvalue of the linearized collision operator and
C a constant depending only on the initial datum. The validity of this quantification
was conjectured, about fifty years ago, by Henry P. McKean. As to the proof of our
results, we have taken as point of reference an analogy between the problem of conver-
gence to equilibrium and the central limit theorem of probability theory, highlighted
by McKean.
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1 Introduction and new results

On the basis of an analogy pointed out by McKean in [50,51], a few years ago we started
a program which aims at studying the long-time behavior of solutions of some kinetic
equations, by means of representations which connect these solutions to probability
laws of certain weighted sums of independent and identically distributed (i.i.d.) random
variables. The discovery of the right representation is comparatively simple for the
solution of the spatially homogeneous one-dimensional Kac equation. This fact has
produced both new results and improvements on the existing ones concerning the Kac
equation. See [3–5,17,32,33,38,39]. Our goal in the present paper is to go back to the
original kinetic model, the spatially homogeneous Boltzmann equation for Maxwellian
molecules (SHBEMM), which had inspired the aforesaid one-dimensional model.
The reason for having deferred its treatment is connected, on the one hand, with the
mathematical complexity of the subject and, on the other hand, with the hope that useful
insights could be derived from the study of simpler allied cases. More specifically, we
discuss here the problem of quantifying the “best” rate of relaxation to equilibrium.
The starting point of the argument is the new probabilistic representation exhibited in
Sect. 1.5 of the present paper.

123



Proof of a McKean conjecture 317

The last part of the program, to be developed in forthcoming papers, is concerned
with the inhomogeneous Boltzmann equation for Maxwellian molecules. Although
the assumption of spatial homogeneity adopted here may seem a strong restriction,
it is nonetheless proving an interesting and inspiring basis for studying qualitative
properties of the complete model.

1.1 The equation

In classical kinetic theory, a gas is thought of as a system of a very large number
N of like particles, described by means of a time-dependent statistical distribution
μ(·, t) on the phase space X × R

3, where X stands for the spatial domain. Then,
for any subset A of X × R

3, μ(A, t) provides an approximation, independent of
N , of the statistical frequency of particles in A, at time t . It is worth noting that
μ(·, t) can be also interpreted, consistently with its statistical meaning, as a genuine
probability distribution (p.d.) by arguing aboutμ(A, t) as probability that the position-
velocity of a randomly selected particle, at time t , belongs to A. See the discussion
in Subsection 2.1 in Chapter 2A of [65]. The basic assumptions for the derivation
of the classical equation which governs the evolution of μ(·, t) are that the gas is
dilute (Boltzmann-Grad limit) and that the particles interact via binary, elastic and
microscopically reversible collisions. Particles which are just about to collide are
viewed as stochastically independent (Boltzmann’s Stosszahlansatz). See [22,23,63]
for a comprehensive treatment. In this work, we also assume spatial homogeneity, so
that the phase space reduces to R

3 and the SHBEMM can be written as

∂

∂t
f (v, t) =

∫

R3

∫

S2

[ f (v∗, t) f (w∗, t) − f (v, t) f (w, t)]

× b

(
w − v
|w − v| · ω

)
uS2(dω)dw (1)

where (v, t) varies in R
3 × (0,+∞), f (·, t) stands for a density function of μ(·, t)

and uS2 for the uniform p.d. (normalized Riemannian measure) on the unit sphere S2,
embedded in R

3. The symbols v∗ and w∗ denote post-collisional velocities which,
according to the conservation laws of momentum and kinetic energy, must satisfy

v + w = v∗ + w∗ and |v|2 + |w|2 = |v∗|2 + |w∗|2.

Throughout the paper, v∗ and w∗ are parametrized according to the ω-representation,
i.e.

v∗ = v + [(w − v) · ω]ω, w∗ = w − [(w − v) · ω]ω

where · denotes the standard scalar product. The angular collision kernel b is a non-
negative measurable function on [−1, 1]. Henceforth, for the sake of mathematical
convenience, it will be assumed that b meets the symmetry condition
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b(x) = b(
√

1 − x2)
|x |√

1 − x2
= b(−x) (2)

for all x in (−1, 1), an assumption which does not reduce the generality of (1), as
explained in Subsection 4.1 of Chapter 2A of [65].1 In presence of a general interac-
tion potential governing the mechanism of binary collisions, b is replaced by a more
complex function called collision kernel. See Section 3 of Chapter 2A of [65]. Maxwell
[49] was the first to study particles which repel each other with a force inversely pro-
portional to the fifth power of their distance, named Maxwellian molecules after him.
In this particular circumstance, the resulting collision kernel turns out to be a specific
function only of w−v

|w−v| · ω, as in (1), with a non-summable singularity near 0. It is
customary, as we do here, to call Maxwellian any collision kernel which is a function
only of w−v

|w−v| ·ω, and to distinguish Maxwellian kernels depending on whether they are
summable or not. The former case corresponds to a SHBEMM with Grad (angular)
cutoff. Without any loss of generality, this condition can be formalized assuming that

1∫

0

b(x) dx = 1 (3)

since any SHBEMM with cutoff can be reduced, via a time-scaling, to a SHBEMM
with a kernel satisfying (3). The case when b is not summable corresponds to a
SHBEMM of the non-cutoff type. We shall confine ourselves to considering the weak
(angular) cutoff, i.e.

1∫

0

xb(x) dx < +∞. (4)

This condition is actually satisfied by the explicit form of b given by Maxwell, namely
the only form of b that has been justified from a physical standpoint.

The first rigorous results on existence and uniqueness, given a probability density
function f0 on R

3 as initial datum, were obtained in [53,67] under the validity of (3).
To discuss this question about the SHBEMM with or without cutoff within a unitary
framework, one needs a reformulation of the problem. Accordingly, the weak version
of (1) used throughout this paper reads

d

dt

∫

R3

ψ(v)μ(dv, t) =
∫

R3

∫

R3

∫

S2

[ψ(v∗)− ψ(v)]

× b

(
w − v
|w − v| · ω

)
uS2(dω)μ(dv, t)μ(dw, t) (5)

whereψ varies in BL(R3), the space of all bounded and Lipschitz-continuous functions
defined on R

3. This formulation enables us to consider any p.d. μ0 on (R3,B(R3))

1 It should be noted that condition (2) is tantamount to assuming that the counterpart of b in the
σ -representation is an even function.
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as initial datum, B(R3) standing for the Borel class on R
3. The term weak solution

designates any family {μ(·, t)}t≥0 of p.d.’s on (R3,B(R3)) such that

(i) μ(·, 0) = μ0(·);
(ii) t �→ ∫

R3 ψ(v)μ(dv, t) belongs to C([0,+∞)) ∩ C1((0,+∞)) for all ψ in
BL(R3);

(iii)
∫
R3 |v|μ(dv, t) < +∞ for all t ≥ 0, if b is not summable but obeys (4);

(iv) μ(·, t) satisfies (5) for all t > 0 and for all ψ in BL(R3).

From now on, the term solution of (1) has to be meant as weak solution, according to
the above definition, of the Cauchy problem with initial datum μ0. Tanaka [61] gave a
rigorous result of existence and uniqueness for weak solutions by probabilistic argu-
ments. The sole assumption required onμ0, only if b is not summable but obeys (4), is
the finiteness of the absolute first moment. Apropos of the uniqueness, see also [62].

It should be recalled that, in the non-cutoff case, existence can be recovered from
the existence of the solution to the SHBEMM with cutoff, via a truncation procedure
originally introduced in [1]. More precisely, given a non-summable b satisfying (4) and
a p.d. μ0 on (R3,B(R3)) with finite first absolute moment, consider the sequence of
collision kernels {[b(x)∧n]/Bn}n≥1, with Bn :=

∫ 1
0 [b(x)∧n]dx . Since [b(x)∧n]/Bn

satisfies (3), one can find the solution μn(·, t) to (1), with b replaced by [b(x)∧n]/Bn

and initial datum μ0. Following [1,31], it can be shown that μn(·, Bnt) converges
weakly as n goes to infinity to some limitμ(·, t), for every t ≥ 0, and thatμ(·, t) turns
out to be the solution to the original Cauchy problem. Recall that a sequence {Pn}n≥1
of p.d.’s on some topological space T, endowed with its Borel σ -algebra, converges
weakly to a p.d. P on the same space if and only if limn→∞

∫
T hdPn =

∫
T hdP , for

every bounded and continuous function h on T. Henceforth, this kind of convergence
will be denoted with Pn ⇒ P .

Apropos of the long-time behavior of μ(·, t), a well-known fact is the macroscopic
conservation of momentum and kinetic energy, i.e.

∫

R3

vμ(dv, t) =
∫

R3

vμ0(dv) and
∫

R3

|v|2μ(dv, t) =
∫

R3

|v|2μ0(dv) (6)

for every t ≥ 0, which hold true when the hypothesis
∫

R3

|v|2μ0(dv) < +∞ (7)

is in force. Section 8 of [61] is a reference also for the non-cutoff case. Another funda-
mental fact is that the equilibrium corresponds to the so-called Maxwellian distribution

γv0,σ 2(dv) = Mv0,σ 2(v)dv =
(

1

2πσ 2

)3/2

exp

{
− 1

2σ 2 |v − v0|2
}

dv (8)

which is characterized by the first two moments v0 = ∫
R3 vμ0(dv) and σ 2 =

1
3

∫
R3 |v − v0|2μ0(dv). Note that γv0,0 stands for the unit mass δv0 at v0. The already

quoted paper [61] proves that, under (4) and (7), μ(·, t)⇒ γv0,σ 2 as t goes to infinity.

123



320 E. Dolera, E. Regazzini

1.2 The conjecture and its motivations

Relaxation to equilibrium of solutions to the Boltzmann equation is at the core of
kinetic theory ever since the works of Boltzmann himself. The importance of accurate
estimates of the rate of convergence is tightly connected with the issue on the physical
value of any convergence statement of Boltzmann-equation solutions w.r.t. the time
scale on which the Boltzmann description may be relevant. See, for example, Section
2 of Chapter 2C of [65]. Within this framework, a first preliminary question arises
apropos of the choice of the topology in which this convergence ought to take place,
keeping in mind that one is dealing with convergence of probability measures (p.m.’s).
In fact, the literature has dealt with a variety of probability metrics, but no doubt the
total variation distance (t.v.d.) continues to be a formidable reference for the study of
relaxation to equilibrium in kinetic models. Recall that, for any pair (α, β) of p.d.’s
on some measurable space (S,S ), such a distance is defined by

dTV(α, β) := sup
B∈S

|α(B)− β(B)|

and that it can be written as

dTV(α, β) = 1

2

∫

S

|p(x)− q(x)|λ(dx)

when λ is any σ -finite measure dominating both α and β, and p, q are probability
density functions w.r.t. λ of α and β, respectively. See Chapter III of [60] for more
information. Once the right metric has been singled out, the problem of convergence to
equilibrium is greatly enhanced by the knowledge of the rate of approach to the limiting
distribution and even more so by a precise bound on the error in approximating the
limit for each fixed instant. To introduce the reader to the essential part of the problem,
we recall that, for an entire class I of initial data μ0, one can prove that

dTV(μ(·, t), γv0,σ 2) ≥ C∗eΛbt (9)

is met with a suitable constant C∗ and

Λb := −2

1∫

0

x2(1 − x2)b(x) dx . (10)

This result can be reached from a well-known statement by Ikenberry and Truesdell
[46], according to which

∣∣∣∣∣∣∣
∫

R3

vαμ(dv, t)−
∫

R3

vαγv0,σ 2(dv)

∣∣∣∣∣∣∣
≤ CαeΛbt (11)
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holds true with suitable constants Cα , for any multi-index α such that
∫
R3 |v||α|μ0(dv)

< +∞. Recently, it has been proved that I contains all the p.d.’s μ0 satisfying∫
R3 eiξ ·vμ0(dv) = ∫

R
ei |ξ |xζ0(dx) for every ξ in R

3, where ζ0 is a symmetric p.d. on
(R,B(R))with non-zero kurtosis coefficient. See [33]. Such being the case, inequality
(9) is conducive to checking whether it is possible to establish also the reverse relation

dTV(μ(·, t), γv0,σ 2) ≤ C∗eΛbt . (12)

Actually, when (9) and (12) are in force simultaneously, Λb can be viewed as the
best rate of exponential convergence of μ(·, t) to equilibrium. The characterization
of the largest class of initial data for which (12) is valid is commonly referred to as
McKean’s conjecture. The reference to McKean is due to the fact that, relative to the
solution μ(·, t) of the well-known Kac’s simplification of the SHBEMM, he was the
first to prove rigorously, in [50], that dTV(μ(·, t), γv0,σ 2) ≤ C

′
eλt holds true with

λ ≈ −0.016 and for a suitable constant C
′
. However, this value of λ is strictly greater

than Λb, equal to −1/4 in the case of Kac’s equation. See [32].
As a completion of the argument, it is interesting to point out the meaning of Λb

w.r.t. the asymptotic behavior of μ(·, t). Besides the important role played in (11),Λb

represents also the least negative eigenvalue of the linearized collision operator

Lb[h](v) :=
∫

R3

∫

S2

[h(v∗)+ h(w∗) − h(v)− h(w)]

× b

(
w − v
|w − v| · ω

)
uS2(dω)γv0,σ 2(dw)

defined on H := L2(R3, γv0,σ 2(dx)). Hilbert [44] was the first to derive this operator
from a linearization of (1) and to highlight the opportunity of choosing the domain H
with a view to carrying out the spectral analysis. In the Hilbert setting, Lb turns out to
be self-adjoint and negative with discrete spectrum and |Λb| represents the spectral
gap. See [28]. Finally, it is worth recalling that Λb arises also in Kac-like derivations
of the SHBEMM [47], based on a stochastic evolution of an N -particle system. See
[15,19].

1.3 A glance at the literature on McKean’s conjecture

The formulation of the Boltzmann H-theorem originated a significant mathematical
research, aimed at studying the convergence to equilibrium in total variation, whose
first rigorous outcomes are in [10,54]. In any case, in spite of the huge literature
on this subject, the number of works which expressly pursued the validation of the
conjecture is small. Essentially, four lines of research have been followed to achieve
the goal, based on: (1) use of contractive functionals or probability metrics; (2) entropy
methods; (3) linearization; (4) central limit theorem. (1) As for the first line of research,
the papers [18,40,56,61,64] are worth mentioning. In particular, Theorem 1.1 in [18]
constitutes the closest result to the McKean conjecture obtained so far. It is valid only
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under (3) and states that, for every ε > 0, there is Cε(μ0, b) such that

dTV(μ(·, t), γv0,σ 2) ≤ Cε(μ0, b)e
(1−ε)Λbt (13)

holds for every t ≥ 0, but this Cε goes to infinity as ε goes to zero. Therefore, the
presence of ε, together with such a behavior of Cε(μ0, b), defeats the hope of extend-
ing (13) to the solution of the SHBEMM of non-cutoff type through the truncation
argument explained in Sect. 1.1: A strong motivation for the pursuit of a bound with
ε = 0 and of a constant C(μ0) depending only onμ0, in the place of Cε(μ0, b). More-
over, (13) has been deduced thanks to rather strong conditions on μ0(dx) = f0(x)dx,
such as finiteness of all absolute moments, Sobolev regularity and finiteness of the
Linnik functional. (2) Entropy methods aim at proving quantitative H-theorems, on the
basis of the seminal ideas introduced in [11,12]. An attempt to improve this strategy,
towards the achievement of the McKean conjecture, was represented by the Cercignani
conjecture which, however, proved to be false in the case of Maxwellian molecules.
See [9,66]. Anyway, quantitative H-theorems are still considered as conducive to the
most powerful strategy to study relaxation to equilibrium in non-homogeneous frame-
works. See [26]. (3) The strategy of the linearization is outlined in [29,42]. It gives
general positive answers to the problem of quantifying the relaxation to equilibrium
only when the solution enters a small neighborhood of the equilibrium itself, so that
the spectral analysis of Lb, as an operator on H, becomes relevant to the study of the
nonlinear problem. It is only recently that, in the case of the homogeneous Boltzmann
equation with hard potentials, the linearization has been used successfully to prove
the conjecture. See [55]. However, the radical difference between the situation of hard
potentials and that of Maxwellian molecules hampers a direct extension of the posi-
tive conclusion from the former to the latter. (4) Finally, the link with the central limit
theorem discovered by McKean in [50,51] has been taken into serious consideration
only recently in [13,14], two works which have strongly inspired and motivated our
program.

1.4 The main result

A precise and complete formulation is encapsulated in the following theorem where
μ̂ stands for the Fourier transform of the p.d. μ on (R3,B(R3)), namely μ̂(ξ) :=∫
R3 eiξ ·vμ(dv) for ξ in R

3.

Theorem 1 Assume that (2) and (4) are in force and that the initial datumμ0 satisfies

m4 :=
∫

R3

|v|4μ0(dv) < +∞ (14)

and |μ̂0(ξ)| = o(|ξ |−p) (|ξ | → +∞) (15)

for some strictly positive p. Then, the solution μ(·, t) meets

dTV(μ(·, t), γv0,σ 2) ≤ C(μ0)e
Λbt (16)
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for every t ≥ 0, where Λb is given by (10) and C(μ0) is a positive constant which
depends only on μ0.

Indications for numerical evaluation of C(μ0) can be derived from specific passages
of the proof, in Sect. 2.2. With reference to the SHBEMM with cutoff, this theorem
represents the first direct validation of the McKean conjecture, without unnecessary
extra-conditions. Moreover, as far as the non-cutoff case is concerned, the same theo-
rem is, at the best of our knowledge, the only existing sharp quantification of the speed
of convergence to equilibrium. A detailed explanation of these points is given in the
following

Remarks

1. The proof of Theorem 1 will be developed, in Sect. 2.2, under the cutoff condition
(3). Indeed, once (16) has been established under (3), one can resort to the truncation
procedure described in Sect. 1.1 to write, for every n in N,

dTV(μn(·, Bnt), γv0,σ 2) ≤ C(μ0) exp

⎧⎨
⎩−2t

1∫

0

x2(1 − x2)[b(x) ∧ n]dx

⎫⎬
⎭ .

Now, the combination of this inequality with

dTV(μ(·, t), γv0,σ 2) ≤ lim inf
n→∞ dTV(μn(·, Bnt), γv0,σ 2)

leads to the desired conclusion.
2. Let us now discuss assumption (14). It is interesting to recall that, under the cutoff

condition, convergence in the total variation metric to the Maxwellian holds under
(7). See [20]. The necessity of this condition, in a cutoff setting, is stated both in
[16] and in Theorem 3 of the present paper. In [20] it is also shown that convergence
to equilibrium, under the sole assumption of finiteness of the second moment ofμ0,
could be arbitrarily slow, whereas the finiteness of the (2+ δ)-th absolute moment,
for some δ > 0, is enough to get exponentially decreasing bounds. Nevertheless,
if δ < 2, these bounds can be worse than that conjectured by McKean. Here is an
example which shows that, even if the tail condition (15) is fulfilled, the desired
bound is not achieved because of “infinitesimal” deviations from hypothesis (14).
Consider the class of initial data μ(q)0 (dv) = f0,q(v)dv with

f0,q(v) = q

4π |v|3+q
1{|v|≥1}

for q in (3, 4). The Fourier transform of this density at ξ is

1 − q

6(q − 2)
|ξ |2 − Γ (1 − q) cos(qπ/2)

1 + q
|ξ |q − q

∑
m≥2

(−1)m |ξ |2m

(2m + 1)!(2m − q)

which meets μ̂(q)0 (ξ) = O(|ξ |−1)when |ξ | goes to infinity. Then,μ(q)0 satisfies (15)
and has finite absolute moment of order (3 + δ) for every δ in (0, q − 3), but has
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infinite absolute fourth moment. Denoting by μ(q)(·, t) the solution of (1) relative
to μ(q)0 , one can mimic the argument explained in [33] to prove that

dTV(μ
(q)(·, t), γ0,σ 2) ≥ Cq exp{−(1 − 2lq(b))t}

holds for every t ≥ 0, where 3σ 2 = q/(q − 2), Cq is a strictly positive constant

independent of b, lq(b) :=
∫ 1

0 (1 − x2)q/2b(x)dx and Λb < −(1 − 2lq(b)) < 0.
3. As far as the tail assumption (15) is concerned, it is worth noting that it is implied

by the finiteness of the Linnik functional, according to Lemma 2.3 in [18]. Also the
relationship between (15) and certain regularity conditions adopted to guarantee
the validity of classical local limit theorems of probability theory are worth noting.
See, for example, Theorem 19.1 in [7].

1.5 A probabilistic representation of the solution

The proof of Theorem 1 relies on a representation of the solution μ(·, t)—already
proposed and studied in [27]—which is valid under the cutoff condition (3). The
motivation for this representation is twofold. On the one hand, it leads us to study
the problem of convergence to equilibrium from the standpoint of the central limit
problem of probability theory. On the other hand, it lends itself to computability of
certain derivatives of the Fourier transform of μ(·, t) involved in the first steps of the
proof of Theorem 1. See, for example, (58) below. It should be mentioned that the
existing representations, essentially based on the Bobylev identity (see Section 3 of
[8]), turn out to be unfit for the aforesaid computations.

In a nutshell, the probabilistic representation at issue states that

μ(B, t) = Et [M(B)] (17)

for every t ≥ 0 and every B in B(R3), where Et is an expectation and M is a random
p.m. connected with a distinguished weighted sum of random vectors, to be defined
below. Here and in the rest of the paper we use the term random p.m. to designate any
measurable function from some measurable space into the space P(R3) of all p.m.’s
on (R3,B(R3)), endowed with the Borel σ -algebra of weak convergence of p.m.’s.
See, e.g., Chapters 11–12 of [48] for further details. Then, to carry out our programme,
it remains to provide the reader with those definitions and preliminary results which
are necessary to understand (17). In this way, we shall present also the core of the
notation used in the rest of the paper.

The starting point is the introduction of the sample space

� := N× T× [0, π ]∞ × (0, 2π)∞ × (R3)∞

where: For any nonempty set X , X∞ stands for the set of all sequences (x1, x2, . . .)

whose elements belong to X ; T := Xn≥1T(n) and T(n) is the (finite) set of all McKean
binary trees with n leaves. We write tn to denote an element of T(n). Then, tn,k indicates
the germination of tn at its k-th leaf, obtained by appending a two-leaved tree to the k-
th leaf of tn . Finally, tln and trn symbolize the two trees, of nl and nr leaves respectively,
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obtained by a split-up of tn . See [13,14,37,50,51] for a more detailed explanation of
these concepts, and [34] for a recent and comprehensive treatment of random trees.

Then, associate with � the σ -algebra

F := 2N ⊗ 2T ⊗B([0, π ]∞)⊗B((0, 2π)∞)⊗B((R3)∞)

where 2X stands for the power set of X and B(X) for the Borel class on X . Define

ν, {τn}n≥1, {φn}n≥1, {ϑn}n≥1, {Vn}n≥1

to be the coordinate random variables of � and, by them, generate the σ -algebras

G := σ (ν, {τn}n≥1, {φn}n≥1
)

H := σ (ν, {τn}n≥1, {φn}n≥1, {ϑn}n≥1
)
.

Now, for every t ≥ 0, consider the unique p.d. Pt on (�,F ) which makes the ran-
dom coordinates stochastically independent, consistently with the following marginal
p.d.’s:

(a)
Pt [ν = n] = e−t (1 − e−t )n−1 (n = 1, 2, . . .) (18)

with the proviso that 00 := 1.
(b) {τn}n≥1 is a Markov sequence driven by

Pt [τ1 = t1] = 1
Pt [τn+1 = tn,k | τn = tn] = 1

n for k = 1, . . . , n
Pt [τn+1 = tn+1 | τn = tn] = 0 if tn+1 �∈ G(tn)

(19)

for every n in N and tn in T(n), where, for a given tn , G(tn) is the subset of
T(n + 1) containing all the germinations of tn .

(c) The elements of {φn}n≥1 are i.i.d. random numbers with p.d.

β(dϕ) := 1

2
b(cosϕ) sin ϕdϕ, (ϕ ∈ [0, π ]). (20)

(d) The elements of {ϑn}n≥1 are i.i.d. with uniform p.d. on (0, 2π), u(0,2π).
(e) The elements of {Vn}n≥1 are i.i.d. with p.d. μ0, the initial datum of the Cauchy

problem relative to (1).

According to the above notation, Et denotes expectation w.r.t. Pt .
A constituent of the representation under study is π := {π j,n | j = 1, . . . , n; n ∈

N}, an array of [−1, 1]-valued random numbers. They are obtained by setting

π j,n := π∗j,n(τn, (φ1, . . . , φn−1)) (21)
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for j = 1, . . . , n and n in N. The π∗j,n’s are functions on T(n)× [0, π ]n−1 defined by
putting π∗1,1 ≡ 1 and, for n ≥ 2,

π∗j,n(tn,ϕ) :=
{
π∗j,nl

(tln,ϕ
l) cosϕn−1 for j = 1, . . . , nl

π∗j−nl ,nr
(trn,ϕ

r ) sin ϕn−1 for j = nl + 1, . . . , n
(22)

for every ϕ = (ϕl ,ϕr , ϕn−1) in [0, π ]n−1, with

ϕl := (ϕ1, . . . , ϕnl−1) and ϕr := (ϕnl , . . . , ϕn−2).

An induction argument shows that

n∑
j=1

π2
j,n = 1 (23)

for every n in N. It is also worth recalling the identity

Et

⎡
⎣ ν∑

j=1

|π j,ν |s
⎤
⎦ = e−(1−2ls (b))t (24)

valid for every t, s > 0, with ls(b) :=
∫ 1

0 (1 − x2)s/2b(x)dx . The original derivation
is in [37] but, for the sake of completeness, we have included its proof in Appendix
A.1. Throughout the paper, A.n designates the n-th subsection of the Appendix. With
a view to the proof of Theorem 1, it is interesting to point out that

− (1 − 2l4(b)) = Λb. (25)

Another constituent of the desired representation is the array O := {O j,n| j =
1, . . . , n; n ∈ N} of random matrices O j,n , taking values in the Lie group SO(3) of
orthogonal matrices with positive determinant, defined by

O j,n := O∗
j,n(τn, (φ1, . . . , φn−1), (ϑ1, . . . , ϑn−1)) (26)

for j = 1, . . . , n and n in N. The O∗
j,n’s are SO(3)-valued functions obtained by

putting O∗
1,1 ≡ Id3×3 and, for n ≥ 2,

O∗
j,n(tn,ϕ, θ) :=

{
Ml(ϕn−1, θn−1)O∗

j,nl
(tln,ϕ

l , θ l) for j = 1, . . . , nl

Mr (ϕn−1, θn−1)O∗
j−nl ,nr

(trn,ϕ
r , θr ) for j = nl + 1, . . . , n

(27)

for every tn in T(n), ϕ in [0, π ]n−1 and θ in (0, 2π)n−1. Here

θ l := (θ1, . . . , θnl−1) and θr := (θnl , . . . , θn−2)
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and, finally,

Ml(ϕ, θ) :=
⎛
⎝− cos θ cosϕ sin θ cos θ sin ϕ
− sin θ cosϕ − cos θ sin θ sin ϕ

sin ϕ 0 cosϕ

⎞
⎠

Mr (ϕ, θ) :=
⎛
⎝ sin θ cos θ sin ϕ − cos θ cosϕ
− cos θ sin θ sin ϕ − sin θ cosϕ

0 cosϕ sin ϕ

⎞
⎠ .

Working out the recursion formula (26) gives

O∗
j,n(tn,ϕ, θ) =

δ j (tn)∏
h=1

Mεh(tn , j)(ϕmh(tn , j), θmh(tn , j)) (28)

where
∏n

h=1 Ah := A1 × · · · × An and δ j (tn) indicates the depth of the j-th leaf of
tn , that is the number of generations separating this leaf from the root (the top node of
the tree). The εh(tn, j)’s take values in {l, r} and, in particular, ε1(tn, j) equals l (r ,
respectively) if j ≤ nl ( j > nl , respectively). Then,

εh(tn, j) :=
{
εh−1(t

l
n, j) for j = 1, . . . , nl

εh−1(t
r
n, j − nl) for j = nl + 1, . . . , n

when h ≥ 2. Each mh belongs to {1, . . . , n − 1} and m1 �= · · · �= mδ j (tn). In fact,
m1(tn, j) := n − 1 for every tn in T(n), j = 1, . . . , n, and

mh(tn, j) :=
{

mh−1(t
l
n, j) for j = 1, . . . , nl

mh−1(t
r
n, j − nl) for j = nl + 1, . . . , n

when h ≥ 2.
Now, choose a non-random measurable function B from S2 onto SO(3) such that

B(u)e3 = u for every u in S2, and define the random functions ψ j,n : S2 → S2

through the relation
ψ j,n(u) := B(u)O j,ne3 (29)

for j = 1, . . . , n and n in N, with e3 := (0, 0, 1)t . It should be noticed that such a B
actually exists and that it cannot be continuous. See, e.g., Chapter 5 of [45].

The central object of our construction is the random sum

S(u) :=
ν∑

j=1

π j,νψ j,ν(u) · V j (30)

whose characteristic function (c.f.) serves the new representation according to
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Theorem 2 Assume that (2)–(3) are in force. Then, the function

M̂(ξ) := Et

[
eiρS(u) | G

]

=
{
μ̂0(ξ) if ν = 1∫
(0,2π)ν−1

[∏ν
j=1 μ̂0

(
ρπ j,νB(u)O∗

j,ν(τν,φ, θ)e3

)]
u⊗ν−1
(0,2π)(dθ) if ν ≥ 2,

(31)

with ξ in R
3\{0}, ρ := |ξ |, u := ξ/|ξ | and φ := (φ1, . . . , φν−1), is the Fourier

transform of a random p.d. on (R3,B(R3)), denoted by M. This M turns out to be
independent of the choice of B, and satisfies (17) for every t ≥ 0 and B in B(R3).

The proof of the theorem is contained in Sect. 2.1. Many relevant properties of M
rely on the analysis of the random function

N̂ (ρ;u) := Et

[
eiρS(u) | H

]
=

ν∏
j=1

μ̂0(ρπ j,νψ j,ν(u)) (32)

which, as a function of ξ , is not c.f. and depends on the choice of B.
One of the merits of representation (17) is that it allows the formulation of a central

limit-like theorem for the asymptotic behavior of the solution of the SHBEMM with
cutoff, condensed in the following

Theorem 3 When (2)–(3) are in force, μ(·, t) converges weakly as t goes to infinity
if and only if (7) holds true. Moreover, in case this condition is satisfied, the limiting
distribution is given by (8).

As already mentioned at the beginning of Remark 2, this theorem is well-known.
In fact, the “if part” was proved in [20,61], while the “only if” part was proved, in a
quite different way, in [16]. What is new is the proof we develop in Sect. 2.3 on the
basis of (17).

2 Proofs

In this section, we present the skeleton of the proofs of Theorems 1, 2 and 3. Some
technical issues are deferred to the Appendix and to [30,31]. We start from the basic
representation formulated in Theorem 2.

2.1 Proof of Theorem 2

When (2)–(3) are in force, recall thatμ(·, t) can be expressed by means of the so-called
Wild-McKean sum [51,67], namely

μ(B, t) =
+∞∑
n=1

e−t (1 − e−t )n−1
∑

tn∈T(n)

pn(tn)Qtn [μ0](B)
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for every t ≥ 0 and B in B(R3). According to McKean, the weights pn(tn) are defined
inductively starting from p1(t1) := 1 and then putting

pn(tn) := 1

n − 1
pnl (t

l
n)pnr (t

r
n) (33)

for every n ≥ 2 and tn in T(n). These pn’s are connected with the p.d. of {τn}n≥1
through the identity

pn(tn) = Pt [τn = tn] (34)

valid for every n in N and tn in T(n). See Appendix A.2 for the proof. As far as the
Qtn ’s are concerned,

Qt1 [μ0] := μ0

Qtn [μ0] := Q
[
Qtl

n
[μ0],Qtr

n
[μ0]

]
for n ≥ 2

where Q is an operator which sends a pair (ζ, η) belonging to P(R3) × P(R3) into
a new element Q[ζ, η] of P(R3) according to the following rule. First, take two
sequences {ζn}n≥1 and {ηn}n≥1 of absolutely continuous p.m.’s such that ζn ⇒ ζ and
ηn ⇒ η, and denote with pn (qn , respectively) the density of ζn (ηn , respectively).
Then, denoting the limit w.r.t. weak convergence by w-lim, put

Q[ζ, η](dv) := w-lim
n→∞ Q[pn, qn](v)dv (35)

where

Q[p, q](v) :=
∫

R3

∫

S2

p(v∗)q(w∗)b
(

w − v
|w − v| · ω

)
uS2(dω) dw.

Note that Q[p, q] = Q[q, p], as a consequence of (2). As shown in [31], the limit in
(35) exists and is independent of the choice of the approximating sequences {ζn}n≥1
and {ηn}n≥1.

To carry on with the proof, consider the Fourier transform and apply the well-known
Bobylev formula, as in [31], to get

Q̂[ζ, η](ξ) =
∫

S2

ζ̂ ((ξ · ω)ω)η̂(ξ − (ξ · ω)ω) b

(
ξ

|ξ | · ω
)

uS2(dω)

for every ξ in R
3\{0}. This, by the change of variable ω = ω(ϕ, θ, ξ ) =

sin ϕ cos θa(u)+ sin ϕ sin θb(u)+ cosϕu, becomes

Q̂[ζ, η](ξ) =
π∫

0

2π∫

0

ζ̂ (ρ cosϕψ l)η̂(ρ sin ϕψr )u(0,2π)(dθ)β(dϕ) (36)
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where ρ = |ξ |, u = ξ/|ξ | and ψ l , ψr are abbreviations for the quantities

ψ l(ϕ, θ,u) := cos θ sin ϕa(u)+ sin θ sin ϕb(u)+ cosϕu
ψr (ϕ, θ,u) := − cos θ cosϕa(u)− sin θ cosϕb(u)+ sin ϕu

(37)

which depend on the choice of the orthonormal basis {a(u),b(u),u} of R
3. The

components of this basis are exactly the columns of the matrix B introduced in (29).
The inner integral in (36), that is

I (ξ , ϕ) :=
{∫ 2π

0 ζ̂ (ρ cosϕψ l)η̂(ρ sin ϕψr )u(0,2π)(dθ) if ξ �= 0

1 if ξ = 0,
(38)

has interesting properties, which are at the basis of the new representation (17).
In particular, I is a measurable function of (ξ , ϕ) independent of the choice of
{a(u),b(u),u}. Moreover, for every fixed ϕ in [0, π ], I (·, ϕ) is the Fourier trans-
form of a p.m. on (R3,B(R3)), say C[ζ, η;ϕ], that is I (ξ , ϕ) = Ĉ[ζ, η;ϕ](ξ) for
every ξ in R

3. The link with Q is given by

Q[ζ, η](B) =
π∫

0

C[ζ, η;ϕ](B)β(dϕ) (39)

for every B in B(R3). The proof of these facts is contained in Appendix A.3. At
this stage, mimicking the iteration procedure developed for Q leads to the following
definition

Ct1 [μ0; ∅] := μ0

Ctn [μ0;ϕ] := C
[
Ctl

n
[μ0;ϕl ], Ctr

n
[μ0;ϕr ];ϕn−1

]
for n ≥ 2

for every tn in T(n) and ϕ in [0, π ]n−1, with the proviso that ϕl (ϕr , respectively) is
void when nl (n − nl , respectively) is equal to one. For every n ≥ 2 and tn in T(n),
the mapping ϕ �→ Ctn [μ0;ϕ] is a random p.m. and

Qtn [μ0](B) =
∫

[0,π ]n−1

Ctn [μ0;ϕ](B)β⊗n−1(dϕ) (40)

holds true for every B in B(R3), as proved in Appendix A.4. In view of this link, the
Wild-McKean sum can be re-written as

e−tμ0(B)+
+∞∑
n=2

e−t (1 − e−t )n−1
∑

tn∈T(n)

pn(tn)

∫

[0,π ]n−1

Ctn [μ0;ϕ](B)β⊗n−1(dϕ)
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which coincides with Et
[Cτν [μ0; (φ1, . . . , φν−1)](B)

]
. Therefore, to show the validity

of (17), it is enough to verify that M(B) = Cτν [μ0; (φ1, . . . , φν−1)](B) for every B
in B(R3) or, equivalently, that

Ĉtn [μ0;ϕ](ξ) =
∫

(0,2π)n−1

⎡
⎣ n∏

j=1

μ̂0

(
ρπ∗j,n(tn,ϕ)q j,n(tn,ϕ, θ ,u)

)⎤⎦ u⊗n−1
(0,2π)(dθ) (41)

=
∫

(0,2π)n−1

⎡
⎣ n∏

j=1

μ̂0

(
ρπ∗j,n(tn,ϕ)B(u)O∗

j,n(tn,ϕ, θ)e3

)⎤⎦u⊗n−1
(0,2π)(dθ)

(42)

hold true for every n ≥ 2, tn in T(n), ϕ in [0, π ]n−1 and ξ �= 0. The q j,n’s are defined
inductively starting from q1,1(t1,∅,∅,u) := u and then putting

q j,n(tn,ϕ, θ ,u)

=
{

q j,nl (t
l
n,ϕ

l , θ l ,ψ l(ϕn−1, θn−1,u)) for j = 1, . . . , nl

q j−nl ,nr (t
r
n,ϕ

r , θr ,ψr (ϕn−1, θn−1,u)) for j=nl + 1, . . . , n
(43)

for every n ≥ 2, tn in T(n), ϕ in [0, π ]n−1 and θ in (0, 2π)n−1.
To prove (41), first consider the case when n = 2 and observe that π∗1,2 = cosϕ1,

π∗2,2 = sin ϕ1, q1,2 = ψ l , q2,2 = ψr . Then, (41) reduces to (38) with ζ = η = μ0.
Next, by mathematical induction, assume n ≥ 3 and combine (38) with the definition
of Ctn to write

Ĉtn [μ0;ϕ](ξ) =
2π∫

0

Ĉtl
n
[μ0;ϕl ](ρ cosϕn−1ψ

l(ϕn−1, θn−1,u))

× Ĉtr
n
[μ0;ϕr ](ρ sin ϕn−1ψ

r (ϕn−1, θn−1,u))u(0,2π)(dθn−1). (44)

Thus, assuming that (41) holds true for every m in {1, . . . , n − 1} and every tree tm in
T(m), deduce

Ĉts
n
[μ0;ϕs](xψ s(ϕn−1, θn−1,u)) =

∫

(0,2π)ns−1

⎧⎨
⎩

ns∏
j=1

μ̂0

[
xπ∗j,ns

(ts
n,ϕ

s)

×q j,ns (t
s
n,ϕ

s, θ s ,ψ s(ϕn−1, θn−1,u))
]⎫⎬
⎭ u

⊗ns−1
(0,2π)(dθ

s)

where (s, x) is (l, ρ cosϕn−1) or (r, ρ sin ϕn−1). To complete the argument, combine
the last two equalities with (22) and (43).

As far as the proof of (42) is concerned, start by noting that q j,2(t2, ϕ, θ,u) equals
B(u)O∗

j,2(t2, ϕ, θ)e3 for j = 1, 2, for every ϕ in [0, π ], θ in (0, 2π) and u in S2,
provided that the basis {a(u),b(u),u} in (37) is formed by the three columns of B(u).
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Then, assume n ≥ 3 and argue by induction starting from (41), definitions (26) and
(43). Whence,

∫

(0,2π)n−1

⎡
⎣ n∏

j=1

μ̂0

(
ρπ∗j,n(tn,ϕ)q j,n(tn,ϕ, θ ,u)

)⎤⎦ u⊗n−1
(0,2π)(dθ)

=
2π∫

0

∫

(0,2π)nl−1

∫

(0,2π)nr−1

Pl
j,n Pr

j,nu
⊗nr−1
(0,2π)(dθ

r )u
⊗nl−1

(0,2π)(dθ
l)u(0,2π)(dθn−1)

(45)

where

Pl
j,n :=

nl∏
j=1

μ̂0

(
ρπ∗j,n(tn,ϕ)B(ψ

l(ϕn−1, θn−1,u))O∗
j,nl
(tln,ϕ

l , θ l)e3

)

and

Pr
j,n :=

n∏
j=nl+1

μ̂0

(
ρπ∗j,n(tn,ϕ)B(ψ

r (ϕn−1, θn−1,u))O∗
j−nl ,nr

(trn,ϕ
r , θr )e3

)
.

For the sake of clarity, the integral
∫
(0,2π)nl−1 (

∫
(0,2π)nr−1 , respectively) in (45) should

not be written if nl = 1 (nr = 1, respectively) since θ l (θr , respectively) corresponds
to the empty set. At this stage, it will be proved that

∫

(0,2π)nl−1

Pl
j,nu

⊗nl−1

(0,2π)(dθ
l)=

∫

(0,2π)nl−1

⎡
⎣ nl∏

j=1

μ̂0

(
ρπ∗j,n(tn,ϕ)B(u)O∗

j,n(tn,ϕ, θ)e3

)⎤⎦

u
⊗nl−1

(0,2π)(dθ
l) (46)

holds for every ρ in R, u in S2, ϕ in [0, π ]n−1 and θn−1 in (0, 2π). If nl = 1, the proof
of (46) reduces to verify that

B(ψ l(ϕn−1, θn−1,u))e3 = ψ l(ϕn−1, θn−1,u) = B(u)Ml(ϕn−1, θn−1)e3.

To proceed, since the third column of B(ψ l(ϕn−1, θn−1,u)) is the same as that of
B(u)Ml(ϕn−1, θn−1), then there exists an orthogonal matrix

R(α) :=
⎛
⎝ cosα − sin α 0

sin α cosα 0
0 0 1

⎞
⎠
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for which B(ψ l(ϕn−1, θn−1,u)) = B(u)Ml(ϕn−1, θn−1)R(α), where α depends only
on ϕn−1, θn−1 and u. Now, note that R(α)Ms(ϕ, θ) = Ms(ϕ, θ + α) is valid for
s = l, r and for every ϕ and θ . Then, when nl ≥ 2, consider the definition of
Pl

j,n , recall (28) and take account that the product R(α)Mε1(tl
n , j)(ϕnl−1, θnl−1) equals

Mε1(tl
n , j)(ϕnl−1, θnl−1 +α). The change of variable θ

′
nl−1 = θnl−1 +α transforms the

LHS of (46) into

∫

(0,2π)nl−1

⎡
⎣ nl∏

j=1

μ̂0

(
ρπ∗j,n(tn,ϕ)B(u)Ml(ϕn−1, θn−1)O

∗
j,nl
(tln,ϕ

l , θ l)e3

)⎤⎦ u
⊗nl−1

(0,2π)(dθ
l)

which, in view of (26), turns out to be the same as the RHS of (46). The proof of (42)
is completed using (45), after noting that an equality similar to (46) can be stated by
changing subscripts and superscripts from l to r , and replacing O∗

j,n with O∗
j+nl ,n

.
Finally, the invariance of M w.r.t. B is equivalent to the invariance of representation

(42) when B(u) is replaced by any matrix B
′
(u) having the same characteristics as

B(u). Anyway, such an equivalence follows from the above reasoning.

2.2 Proof of Theorem 1

In the first place, we recall that the entire proof will be developed under hypotheses
(2)–(3) on b, in view of Remark 1 in Sect. 1.4. Then, we set a few conditions on μ0
to simplify a number of arguments without loss of generality. In this sense, we make
use of (6) to assume, from now on,∫

R3

vμ0(dv) = 0 and
∫

R3

|v|2μ0(dv) = 3 (47)

implying that the limiting Maxwellian is γ := γ0,1. We also assume that the covariance
matrix V = V [μ0] of μ0 is diagonal. In fact, since for any covariance matrix V
there is an orthogonal matrix Q such that QV Qt is diagonal, then μ0 ◦ f −1

Q has a
diagonal covariance matrix, fQ standing for the function x �→ Qx. At this stage, since
dTV(μ(·, t) ◦ f −1

Q , γ ) is equal to dTV(μ(·, t), γ ) for every t , we can prove (16) by

taking μ0 ◦ f −1
Q as initial distribution. Compare [31] for a more detailed explanation.

Hence, we suppose that∫

R3

v2
i μ0(dv) = σ 2

i (i = 1, 2, 3)

∫

R3

viv jμ0(dv) = 0 (1 ≤ i < j ≤ 3)

σ 2
1 + σ 2

2 + σ 2
3 = 3

(48)

are in force. In fact, extra-conditions (47)–(48) yield the following

Proposition 4 Let μ0 satisfy (47)–(48) in addition to the hypotheses of Theorem 1.
Then, there exists a constant λ such that
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|μ̂0(ξ)| ≤
(

λ2

λ2 + |ξ |2
)q

(49)

is valid for every ξ in R
3, with q = 1/(2�2/p�).

Here, �x� indicates the least integer not less than x , while p is the same as in (15).
As to the numerical evaluation of λ, the reader is referred to the proof of the proposition
in Appendix A.5.

As first step of the real proof, an application of (17) yields

dTV(μ(·, t), γ ) = sup
B∈B(R3)

|Et [M(B)] − γ (B)| ≤ Et [dTV(M, γ )].

After introducing the random number

W :=
ν∑

j=1

π4
j,ν (50)

we put
r := 11�2/p� and a∗ := (2r r !)−1 (51)

to define the partition {U,U c} of � by

U := {ν ≤ r} ∪
⎧⎨
⎩

ν∏
j=1

π j,ν = 0

⎫⎬
⎭ ∪ {W ≥ a∗}.

This can be used to write

Et [dTV(M, γ )] = Et [dTV(M, γ );U ] + Et [dTV(M, γ );U c] (52)

where Et [X; S] denotes
∫

S XdPt . The former summand on the right of (52) will be
bounded by utilizing the fact that U has “asymptotically small” probability. As to the
latter, it will be shown that M(·;ω) has nice analytical properties for each ω in U c,
so that a proper bound will be derived from these very same properties. In fact, as
dTV(M, γ ) ≤ 1 entails Et [dTV(M, γ );U ] ≤ Pt (U ), we get

Pt (U ) ≤ Pt {ν ≤ r} + Pt

⎧⎨
⎩

ν∏
j=1

π j,ν = 0

⎫⎬
⎭+ Pt {W ≥ a∗}

≤ re−t + Pt {W ≥ a∗}.

The inequality Pt {ν ≤ r} ≤ re−t follows from (18), while Pt {∏ν
j=1 π j,ν = 0} equals

zero since Pt {∏ν
j=1 π j,ν = 0 | ν, τν} = 0. This claim is obvious on {ν = 1} while, on

{ν ≥ 2},
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Pt

⎧⎨
⎩

ν∏
j=1

π j,ν = 0 | ν, τν
⎫⎬
⎭ ≤

ν−1∑
j=1

Pt {φ j ∈ {0, π/2, π}}

and the RHS is equal to zero since each φ j has an absolutely continuous law. To
complete the evaluation of Pt (U ), it is enough to combine the Markov inequality with
(24)–(25) to get Pt {W ≥ a∗} ≤ (1/a∗) Et [W] = (2r r !) eΛbt . Whence,

Et [dTV(M, γ );U ] ≤ (r + 2r r !)eΛbt . (53)

The argument to deduce a bound for the expectation over U c occupies the rest of
this subsection. It is based on the following multidimensional extension of a result by
Beurling [6].

Proposition 5 Let χ be a finite signed measure on (R3,B(R3)) such that
∫
R3 |x|2|χ |

(dx) < +∞, |χ | standing for the total variation of χ . Then,

sup
B∈B(R3)

|χ(B)| ≤ 2−5/4π−1/2

⎛
⎜⎝

∫

R3

[|χ̂(ξ)|2 + |Δξ χ̂(ξ)|2] dξ

⎞
⎟⎠

1/2

where Δξ denotes the Laplacian operator.

The proof is deferred to Appendix A.6. The applicability of this proposition to
χ = M− γ is made possible by

Proposition 6 If (47) holds and

mh :=
∫

R3

|v|hμ0(dv) < +∞ (54)

for h = 1, . . . , 2k and some integer k ≥ 2, then there are positive constants gh

depending on μ0 only through mh, such that

sup
u∈S2

Et

[
|S(u)|h | H

]
≤ gh (55)

for h = 1, . . . , 2k and any choice of B, Pt -almost surely. Moreover, ρ �→ ∂h

∂ρh M̂(ρu)

exists for every u in S2 and

sup
(ρ,u)∈[0,+∞)×S2

∣∣∣∣ ∂
h

∂ρh
M̂(ρu)

∣∣∣∣ ≤ gh (56)

Pt -almost surely with h = 1, . . . , 2k, which entails∫

R3

|v|2kM(dv) < +∞ (57)

Pt -almost surely and ξ �→ M̂(ξ) ∈ C2k(R3).
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See Appendix A.7 for the proof and the numerical evaluation of the constants gh .
At this stage, Proposition 5 yields

Et [dTV(M, γ );U c] ≤ 2−5/4π−1/2

×Et

⎡
⎢⎣
⎛
⎜⎝

∫

R3

∣∣∣M̂(ξ)− e−|ξ |2/2
∣∣∣2 dξ +

∫

R3

∣∣∣Δξ [M̂(ξ)− e−|ξ |2/2]
∣∣∣2 dξ

⎞
⎟⎠

1/2

;U c

⎤
⎥⎦ .

(58)

To evaluate the integrals on the RHS, we change the variables according to the isometry
i : R

3\{0} → (0,+∞) × S2 defined by i : ξ �→ (|ξ |, ξ/|ξ |). In view of Theorem
3.11, Example 3.23 and Lemma 3.27 in [41], denoting the d-dimensional Lebesgue
measure by L d , integrals w.r.t. L 3(dξ) become integrals w.r.t. 4πρ2L 1⊗uS2(dρdu)
and the standard Laplacian Δξ changes into Δ(ρ,u) := ∂2

∂ρ2 + 2
ρ
∂
∂ρ
+ 1
ρ2ΔS2 , where

ΔS2 stands for the Laplace–Beltrami operator on S2. Now, from |z1 + z2 + z3|2 ≤
3(|z1|2 + |z2|2 + |z3|2), we write

∣∣∣Δ(ρ,u)[M̂(ρu)− e−ρ2/2]
∣∣∣2 ≤ 3

∣∣∣∣ ∂
2

∂ρ2 [M̂(ρu)− e−ρ2/2]
∣∣∣∣
2

+12

ρ2

∣∣∣∣ ∂∂ρ [M̂(ρu)− e−ρ2/2]
∣∣∣∣
2

+ 3

ρ4

∣∣∣ΔS2M̂(ρu)
∣∣∣2

and then we define the random functions

I1(ρ,u) :=
∣∣∣M̂(ρu)− e−ρ2/2

∣∣∣2 + 3

∣∣∣∣ ∂
2

∂ρ2 [M̂(ρu)− e−ρ2/2]
∣∣∣∣
2

+12

ρ2

∣∣∣∣ ∂∂ρ [M̂(ρu)− e−ρ2/2]
∣∣∣∣
2

I2(ρ,u) := 3

ρ4

∣∣∣ΔS2M̂(ρu)
∣∣∣2 .

Hence, for the sum of the two integrals on the RHS of (58) we obtain

∫

R3

∣∣∣M̂(ξ)− e−|ξ |2/2
∣∣∣2 dξ +

∫

R3

∣∣∣Δξ [M̂(ξ)− e−|ξ |2/2]
∣∣∣2 dξ

≤ 4π
∫

(0,R]×S2

(I1(ρ,u)+ I2(ρ,u)) ρ2L 1 ⊗ uS2(dρdu)

+ 4π
∫

(R,+∞)×S2

(I1(ρ,u)+ I2(ρ,u)) ρ2L 1 ⊗ uS2(dρdu) (59)
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where

R := 1

2

(
1

m4W

)1/4

. (60)

In the following sub-subsections we analyze the integrals appearing in (59), calling
inner (outer, respectively) any integral on (0,R] × S2 ((R,+∞)× S2, respectively).

2.2.1 Outer integral of I1(ρ,u)

An application of the inequality |z1 + z2|2 ≤ 2|z1|2 + 2|z2|2 yields

I1(ρ,u) ≤ 2|M̂(ρu)|2 + 2e−ρ2 + 6

∣∣∣∣ ∂
2

∂ρ2 M̂(ρu)

∣∣∣∣
2

+ 6

∣∣∣∣ d2

dρ2 (e
−ρ2/2)

∣∣∣∣
2

+ 24

ρ2

∣∣∣∣ ∂∂ρ M̂(ρu)

∣∣∣∣
2

+ 24

ρ2

∣∣∣∣ d

dρ
(e−ρ2/2)

∣∣∣∣
2

(61)

and a first proposition is given to analyze those summands which contain the Gaussian
c.f..

Proposition 7 Let m, s, k be real numbers such that m ≥ 0, s ≥ 1 and k in N0. Then,
there exists a positive constant c(m, s, k) such that

+∞∫

x

(
dk

dρk
(e−ρ2/2)

)2

ρmdρ ≤ c(m, s, k)x−s

holds for every x > 0.

See Appendix A.8 for the proof and an evaluation of c(m, s, k). At this stage,
applying successively the above statement with (x,m, s, k) = (R, 2, 8, 0), (R, 0, 8, 1)
and (R, 2, 8, 2) gives

+∞∫

R

{
2e−ρ2 + 6

∣∣∣∣ d2

dρ2 (e
−ρ2/2)

∣∣∣∣
2

+ 24

ρ2

∣∣∣∣ d

dρ
(e−ρ2/2)

∣∣∣∣
2
}
ρ2dρ ≤ C1R−8 (62)

with C1 := [2c(2, 8, 0)+ 6c(2, 8, 2)+ 24c(0, 8, 1)].
Then we study those terms on the RHS of (61) which depend on M making use of

the next proposition, whose statement involves the random function

Ψ (ρ) :=
ν∏

j=1

(
λ2

λ2 + ρ2π2
j,ν

)q

(63)

with λ and q as in Proposition 4.
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Proposition 8 If (14)–(15) and (47)–(48) are in force, then

sup
u∈S2

∣∣∣N̂ (ρ;u)
∣∣∣ ≤ Ψ (ρ) (64)

and
sup
u∈S2

∣∣∣M̂(ρu)
∣∣∣ ≤ Ψ (ρ) (65)

hold for every ρ in [0,R], with the exception of a set of Pt -probability zero. Moreover,
there are two non-random polynomials ℘1 and ℘2 of degree 2 and 4 respectively, with
positive coefficients depending only on μ0, such that

sup
u∈S2

∣∣∣∣ ∂
k

∂ρk
N̂ (ρ;u)

∣∣∣∣ ≤ ℘k(ρ)Ψ (ρ) (66)

and

sup
u∈S2

∣∣∣∣ ∂
k

∂ρk
M̂(ρu)

∣∣∣∣ ≤ ℘k(ρ)Ψ (ρ) (67)

hold for k = 1, 2 and every ρ in [0,R], with the exception of a set of Pt -probability
zero.

A complete characterization of ℘1 and ℘2 is given in the course of the proof of this
proposition, in Appendix A.9. For the sake of completeness, we observe that (64) and
(66) hold true for any choice of B in (29).

One of the advantages of the splitting (52) consists in the fact that all the realizations
of Ψ on U c share a property of uniform integrability, as shown in the following

Proposition 9 Over U c, the inequality

ν∏
j=1

(
1 + π2

j,νx2
)
≥ εx2r (68)

is valid for every x > 0, with ε := (2r !)−1 and r given by (51). Therefore,

sup
ω∈U c

+∞∫

x

Ψ s(ρ)ρmdρ ≤ 1

2rqs − m − 1

(
λ2r

ε

)qs

x−2rqs+m+1 (69)

holds true for every x > 0, s > 0 and m < (2rqs − 1).

See Appendix A.10 for the proof. We are now in a position to complete the study
of the outer integral of I1(ρ,u). First, taking into account that 2rq = 11, combination
of (65) with (69) yields

+∞∫

R

|M̂(ρu)|2ρ2dρ ≤
+∞∫

R

Ψ 2(ρ)ρ2dρ ≤ 1

19

(
λ2r

ε

)2q

R−19. (70)
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The applicability of (69) is guaranteed by the fact that, when s = 2 and m = 2, one
has m < 4rq − 1 = 21. Second, since (56), (65) and (68) entail

lim
y→+∞M̂(−yu)

[
∂

∂ρ
M̂(ρu)

]
ρ=y

= 0

on U c, after integrating by parts we get

+∞∫

R

∣∣∣∣ ∂∂ρM̂(ρu)

∣∣∣∣
2

dρ ≤ g1Ψ (R)+ g2

+∞∫

R

Ψ (ρ)dρ.

Thus, (68)–(69) with s = 1 and m = 0 lead to

+∞∫

R

∣∣∣∣ ∂∂ρ M̂(ρu)

∣∣∣∣
2

dρ ≤
(
λ2r

ε

)q

·
⎛
⎝g1R−11 + g2

10
R−10

⎞
⎠ . (71)

To study the last integral, we recall that
∏ν

j=1 π j,ν �= 0 on U c and then combine (65)
with (67)–(68) to prove that

lim
y→+∞ y2

[
∂2

∂ρ2 M̂(ρu) ·
(
∂

∂ρ
M̂(−ρu)

)]
ρ=y

= 0

lim
y→+∞ y2M̂(−yu)

[
∂3

∂ρ3 M̂(ρu)
]
ρ=y

= 0

lim
y→+∞ yM̂(−yu)

[
∂2

∂ρ2 M̂(ρu)
]
ρ=y

= 0.

At this stage, after two integrations by parts, we have

+∞∫

R

∣∣∣∣ ∂
2

∂ρ2 M̂(ρu)

∣∣∣∣
2

ρ2dρ ≤ R2℘1(R)℘2(R)Ψ
2(R)+ (g3R2 + 2g2R)Ψ (R)

+
+∞∫

R

(g4ρ
2 + 4g3ρ + 2g2)Ψ (ρ)dρ

and, in view of Proposition 9, the above RHS is bounded by

(
λ2r

ε

)2q

R−20℘1(R)℘2(R)+
(

g3R2 + 2g2R
)
·
(
λ2r

ε

)q

R−11

+
(
λ2r

ε

)q

·
(

g4

8
R−8 + 4g3

9
R−9 + g2

5
R−10

)
. (72)
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The final bound can be obtained, via the Tonelli theorem, by starting from (61) and
collecting the upper bounds in (62) and (70)–(72). Indeed, these last upper bounds are
independent of u and are expressed as sums of powers of R, of order less than or equal
to −8. Therefore, recalling (60) and the inequality W ≤ 1, we obtain

4π
∫

(R,+∞)×S2

I1(ρ,u)ρ2L 1 ⊗ uS2(dρdu) ≤ C∗,r W2 (73)

with

C∗,r := 4π

⎧⎨
⎩28C1m

2
4 +

(
λ2r

ε

)2q

·
(

1

19
220m

19/4
4

+ 6 · 220m5
4℘1(2

−1m
−1/4
4 )℘2(2

−1m
−1/4
4 )

)
+
(
λ2r

ε

)q

·
(

6 · 25m2
4g4

+26

3
29m

9/4
4 g3 + 78

5
210m

5/2
4 g2 + 24 · 211m

11/4
4 g1

) ⎫⎬
⎭ .

2.2.2 Outer integral of I2(ρ,u)

As first step, we use the Tonelli theorem to write the outer integral of I2(ρ,u) as

lim
y→+∞

y∫

R

3

ρ2

⎛
⎜⎝

∫

S2

∣∣∣ΔS2M̂(ρu)
∣∣∣2 uS2(du)

⎞
⎟⎠ dρ. (74)

Then, we apply Theorem 3.16 in [41] to obtain

∫

S2

∣∣∣ΔS2M̂(ρu)
∣∣∣2 uS2(du) =

∫

S2

M̂(−ρu)Δ2
S2M̂(ρu)uS2(du)

which, by virtue of (65), yields

∫

S2

∣∣∣ΔS2M̂(ρu)
∣∣∣2 uS2(du) ≤ Ψ (ρ) sup

u∈S2

∣∣∣Δ2
S2M̂(ρu)

∣∣∣ . (75)

At this stage, to handle the computations involving the Laplace–Beltrami operator, we
define the following plane domains

D1 = D3 := {(u, v) ∈ R
2 | (u − π/2)2/(5π)2 + (v − π)2/(11π)2 < (1/12)2}

D2 = D4 := {(u, v) ∈ R
2 | (u − π/2)2/(5π)2 + v2/(11π)2 < (1/12)2}
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along with the parametrizations

hk : Dk � (u, v) �→ (cos v sin u, sin v sin u, cos u) ∈ R
3 k = 1, 2

hk : Dk � (u, v) �→ (cos u, cos v sin u, sin v sin u) ∈ R
3 k = 3, 4

(76)

to form the atlasAon S2 composed by the charts�k := hk(Dk) ⊂ S2 for k = 1, . . . , 4.
Then, Δ2

S2 can be expressed in local coordinates as

Δ2
(u,v) = ∂uuuu + 2 cot u∂uuu − sin−2 u∂uu + sin−2 u cot u∂u + sin−4 u∂vvvv

−2 sin−4 u(2 − sin2 u)∂vv + 6 sin−2 u cot u∂uvv + 2 sin−2 u∂uuvv

by virtue of (3.84) in [41], and hence

sup
u∈S2

∣∣∣Δ2
S2M̂(ρu)

∣∣∣ = sup
k∈{1,...,4}

sup
(u,v)∈Dk

∣∣∣Δ2
(u,v)M̂(ρhk(u, v))

∣∣∣
≤ Δ

∑
1≤|α|≤4

sup
k∈{1,...,4}

sup
(u,v)∈Dk

∣∣∣∂αM̂(ρhk(u, v))
∣∣∣ (77)

whereα indicates the multi-index (α1, α2), ∂α stands for the partial derivative ∂α1+α2

∂uα1∂vα2 ,

and Δ = 4(2 +√
3)2(6 +√

3) is the maximum absolute value of the coefficients of
Δ2
(u,v). To study ∂α M̂(ρhk(u, v)) we resort to the multi-dimensional Faà di Bruno

formula stated and proved in [25]. Therefore, taking into account that |∂α hk(u, v)| ≤ 1
for every multi-index α, we have

∣∣∣∂α M̂(ρhk(u, v))
∣∣∣ ≤

|α|∑
h=1

|α|∑
l=1

ah,l(α)Mlρ
h (78)

where the ah,l ’s are constants specified in [25], and Ml :=
∫
R3 |v|lM(dv). At this

stage, (74)–(75) and (77)–(78) yield

∫

(R,+∞)×S2

I2(ρ,u)ρ2L 1 ⊗ uS2(dρdu)

≤ 3Δ
∑

1≤|α|≤4

|α|∑
h=1

|α|∑
l=1

ah,l(α)Ml

+∞∫

R

Ψ (ρ)ρh−2dρ.

Moreover, the Lyapunov inequality gives Ml ≤ M
l/4
4 for l in [0, 4] and then, from

(56), we get M4 ≤ 3
∑3

i=1

(
limρ→0

∂4

∂ρ4 M̂(ρei )
)
≤ 9g4. Now, an application of

(69) with s = 1 and m = h − 2, combined with (60), leads to

4π
∫

(R,+∞)×S2

I2(ρ,u)ρ2L 1 ⊗ uS2(dρdu) ≤ C∗,sW2 (79)
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with

C∗,s := 12πΔ

(
λ2r

ε

)q ∑
1≤|α|≤4

|α|∑
h=1

|α|∑
l=1

ah,l(α)(9g4)
l/4 1

12 − h
(2m

1/4
4 )12−h .

2.2.3 Inner integral of I1(ρ,u)

The analysis is essentially based on certain new Berry–Esseen-type inequalities pre-
sented in [30], after observing the analogy between ρ �→ M̂(ρu) and the c.f. ϕn(t)
therein. Indeed, for any u in S2 and for every choice of B in (29), each realization of
N̂ (ρ;u), as a function of ρ, coincides with the c.f. of a weighted sum of independent
random numbers, according to (32). Moreover, the definition of R in (60) corresponds
to the upper bound τ appearing in the Berry–Esseen-type inequalities proved in [30].
To implement the aforesaid inequalities within the present framework, it is worth
introducing the following entities

T (u) :=
⎧⎨
⎩

ν∑
j=1

π2
j,νψ

t
j,ν(u)V [μ0]ψ j,ν(u) ≤ 1/3

⎫⎬
⎭ (80)

M(m)
j,n (u) := Et

[(
V j · ψ j,n(u)

)m ∣∣ G
]

(81)

X(u) :=
ν∑

j=1

π2
j,ν |M(2)

j,ν(u)− 1| (82)

Y(u) :=
ν∑

j=1

∣∣π3
j,νM

(3)
j,ν(u)

∣∣ (83)

Z(u) := Et

⎡
⎢⎣
⎡
⎣ ν∑

j=1

π2
j,νψ

t
j,ν(u)V [μ0]ψ j,ν(u)− 1

⎤
⎦

2 ∣∣ G

⎤
⎥⎦ (84)

where T (u) belongs to H . With this new notation at hand, the Berry–Esseen-type
inequality can be re-written as

∣∣∣∣ ∂
l

∂ρl

[
M̂(ρu)− e−ρ2/2

]∣∣∣∣ ≤ Et

[∣∣∣∣ ∂
l

∂ρl
N̂ (ρ;u)

∣∣∣∣ 1T (u) | G
]
+ u2,l(ρ)X(u)

+ u3,l(ρ)Y(u)+ u4,l(ρ)m4W + vl(ρ)Z(u)

for l = 0, 1, 2, ρ in [0,R] and u in S2, u2,l , u3,l , u4,l , vl being non-random rapidly
decreasing continuous functions depending only on μ0. See [30] for their definition.
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The above inequality yields

R∫

0

∣∣∣ ∂
l

∂ρl

[
M̂(ρu)− e−ρ2/2

] ∣∣∣2ρmdρ

≤ 5

R∫

0

(
Et

[∣∣∣∣ ∂
l

∂ρl
N̂ (ρ;u)

∣∣∣∣ 1T (u) | G
])2

ρmdρ + 5X2(u)

+∞∫

0

u2
2,l(ρ)ρ

mdρ

+5Y2(u)

+∞∫

0

u2
3,l(ρ)ρ

mdρ + 5m2
4W2

+∞∫

0

u2
4,l(ρ)ρ

mdρ

+ 5Z2(u)

+∞∫

0

v2
l (ρ)ρ

mdρ (85)

for l = 0, 1, 2, m ≥ 0 and u in S2. The integrals uh,l,m := ∫ +∞
0 u2

h,l(ρ)ρ
mdρ and

vl,m := ∫ +∞
0 v2

l (ρ)ρ
mdρ are finite and depend only on μ0 for h = 2, 3, 4, l = 0, 1, 2

and m ≥ 0. As to the above conditional expectation, we have

Et [1T (u) | G ] = Pt [T (u) | G ]

≤ Pt

⎡
⎣
⎧⎨
⎩
∣∣∣∣∣∣
ν∑

j=1

π2
j,νψ

t
j,ν(u)V [μ0]ψ j,ν(u)− 1

∣∣∣∣∣∣ ≥ 1/3

⎫⎬
⎭ | G

⎤
⎦ ≤ 9Z(u)

(86)

the latter inequality following from the conditional Markov inequality. Now, we
apply (64) and (66) and, after observing that the upper bounds provided therein are
G -measurable, we obtain

R∫

0

(
Et

[∣∣∣N̂ (ρ;u)
∣∣∣ 1T (u) | G

])2
ρmdρ ≤ 81Z2(u)

+∞∫

0

Ψ 2(ρ)ρmdρ (87)

R∫

0

(
Et

[∣∣∣∣ ∂
l

∂ρl
N̂ (ρ;u)

∣∣∣∣ 1T (u) | G
])2

ρmdρ ≤ 81Z2(u)

+∞∫

0

℘2
l (ρ)Ψ

2(ρ)ρmdρ

(88)

for l = 1, 2 and any m in [0, 13). In addition, by virtue of Proposition 9, the integrals
zm := ∫ +∞

0 Ψ 2(ρ)ρmdρ and wl,m := ∫ +∞
0 ℘2

l (ρ)Ψ
2(ρ)ρmdρ are finite and depend

only on μ0 when ω varies in U c. Coming back to the integral of interest, the Tonelli
theorem can be applied to write
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∫

(0,R]×S2

I1(ρ,u)ρ2L 1 ⊗ uS2(dρdu) =
∫

S2

⎛
⎝

R∫

0

I1(ρ,u)ρ2dρ

⎞
⎠ uS2(du).

Since the inner integral on the RHS has already been studied, it remains to explain
how it depends on u. For this, a fundamental role is played by B, which appears in the
RHS of (85) through the random variables X, Y and Z. Apropos of this, it should be
recalled that the so-called hairy ball theorem—see, e.g., Chapter 5 of [45]—asserts
that a function B, meeting the properties specified to write (29), cannot be continuous
everywhere. Nevertheless, we know that the definition of M is independent of the
choice of B. We take advantage of this fact to overcome the aforesaid drawback by
splitting S2 into the charts �k introduced in the previous subsection and by choosing
for each �k a specific B, say Bk , smooth on �k . This possibility is guaranteed by
the fact that S2\�k contains at least two antipodal points. We now have, by (85) and
(87)–(88),

4π
∫

(0,R]×S2

I1(ρ,u)ρ2L 1 ⊗ uS2(dρdu) ≤ B2

4∑
k=1

∫

�k

X2
k(u)uS2(du)

+B3

4∑
k=1

∫

�k

Y2
k(u)uS2(du)+ B4m

2
4W2

+B5

4∑
k=1

∫

�k

Z2
k(u)uS2(du) (89)

where Xk , Yk , Zk are the same as in (82)–(84) respectively, with B = Bk and

B2 := 20π [u2,0,2 + 12u2,1,0 + 3u2,2,2]
B3 := 20π [u3,0,2 + 12u3,1,0 + 3u3,2,2]
B4 := 80π [u4,0,2 + 12u4,1,0 + 3u4,2,2]
B5 := 1620π [z2 + 12w1,0 + 3w2,2] + 20π [v0,2 + 12v1,0 + 3v2,2].

2.2.4 Inner integral of I2(ρ,u)

With reference to (59), the integral at issue is analyzed by splitting S2 into the charts
�k defined in Sect. 2.2.2. On the basis of considerations made apropos of B at the end
of the previous sub-subsection, here we choose the Bk’s as follows:

Bk(hk(u, v)) :=
⎛
⎝ sin v cos v cos u cos v sin u
− cos v sin v cos u sin v sin u

0 − sin u cos u

⎞
⎠ (90)

for k = 1, 2 and
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Bk(hk(u, v)) :=
⎛
⎝ 0 − sin u cos u

sin v cos v cos u cos v sin u
− cos v sin v cos u sin v sin u

⎞
⎠ (91)

for k = 3, 4. Then, equality M̂(ρu) = Et [N̂ (ρ;u) | G ], in combination with the
definition of T (u) in (80), produces this upper bound for |ΔS2M̂(ρu)|2:

2
(
Et

[∣∣∣ΔS2N̂k(ρ;u)
∣∣∣1Tk (u) | G

])2 + 2
∣∣∣Et

[
ΔS2N̂k(ρ;u)1Tk (u)c | G

]∣∣∣2 (92)

for every u in�k , where Nk and Tk(u) are the same as N and T (u), respectively, with
B = Bk . To bound the former summand we make use of the following

Proposition 10 Assume that the tail condition (15) is in force together with the
moment assumptions (14) and (47)–(48). Then, there exists a non-random polyno-
mial ℘L of degree 6, with positive coefficients which depend only on μ0, such that

sup
k∈{1,...,4}

sup
u∈�k

∣∣∣ΔS2N̂k(ρ;u)
∣∣∣ ≤ ρ2℘L(ρ)Ψ (ρ) (93)

holds for every ρ in [0,R], with the exception of a set of Pt -probability zero.

The proof is deferred to Appendix A.9, where ℘L is given explicitly. At this stage,
we note that the upper bound in (93) is G -measurable and, afterwards, we apply (86)
to obtain

∫

(0,R]×�k

1

ρ2

(
Et

[∣∣∣ΔS2N̂k(ρ;u)
∣∣∣1Tk (u) | G

])2
L 1 ⊗ uS2(dρdu)

≤
∫

(0,R]×�k

1

ρ2 ρ
4℘2

L(ρ)Ψ
2(ρ)Pt [T (u) | G ]2L 1 ⊗ uS2(dρdu)

≤ 81

+∞∫

0

ρ2℘2
L(ρ)Ψ

2(ρ)dρ ·
∫

�k

Z2
k(u)uS2(du). (94)

If we consider the random variable
∫ +∞

0 ρ2℘2
L(ρ)Ψ

2(ρ)dρ on U c, then Proposition
9 can be used to conclude that this random variable is bounded by the constant JL :=∫ 1

0 ρ
2℘2

L(ρ)dρ +
(
λ2r

ε

)2q ∫ +∞
1 ρ−20℘2

L(ρ)dρ.

In the final part of this sub-subsection we provide an upper bound for the latter
summand in the RHS of (92), by means of the following statement which involves
new random quantities such as

XL(u) :=
ν∑

j=1

π2
j,ν |ΔS2 M(2)

j,ν(u)| (95)
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YL(u) :=
ν∑

j=1

∣∣∣π3
j,νΔS2 M(3)

j,ν(u)
∣∣∣ (96)

ZG(u) := Et

⎡
⎢⎣
∣∣∣∣∣∣

∣∣∣∣∣∣
ν∑

j=1

π2
j,ν∇S2

(
ψ t

j,ν(u)V [μ0]ψ j,ν(u)
)∣∣∣∣∣∣

∣∣∣∣∣∣
2

S2

| G
⎤
⎥⎦ (97)

ZL(u) := Et

⎡
⎢⎣
⎡
⎣ ν∑

j=1

π2
j,νΔS2

(
ψ t

j,ν(u)V [μ0]ψ j,ν(u)
)⎤⎦

2

| G
⎤
⎥⎦ (98)

where the M(m)
j,n (u)’s are the same as in (81), ∇S2 is the Riemannian gradient on S2

and || · ||S2 the Riemannian length.

Proposition 11 Let the moment assumptions (14) and (47)–(48) be in force. Then, for
every k = 1, . . . , 4, there exist (non-random) rapidly decreasing continuous functions
z1, . . . , z6, depending only on μ0, such that

∣∣∣Et

[(
ΔS2N̂k(ρ;u)

)
1Tk (u)c | G

]∣∣∣
≤ ρ2

[
z1(ρ)W + z2(ρ)XL ,k(u)+ z3(ρ)YL ,k(u)

+ z4(ρ)Zk(u)+ z5(ρ)ZG,k(u)+ z6(ρ)ZL ,k(u)
]

(99)

holds for every u in �k and ρ in [0,R], with the exception of a set of Pt -probability
zero. XL ,k , YL ,k , Zk , ZG,k and ZL ,k are defined as in (95)–(98) and (84) with Bk in
place of B.

For the proof and the definition of the zi ’s see Appendix A.11. Now, a straightfor-
ward application of the above proposition yields

∫

(0,R]×�k

1

ρ2

∣∣∣Et

[(
ΔS2N̂k(ρ;u)

)
1Tk (u)c | G

]∣∣∣2 L 1 ⊗ uS2(dρdu)

≤ B1,LW2 + B2,L

∫

�k

X2
L ,k(u)uS2(du)+ B3,L

∫

�k

Y2
L ,k(u)uS2(du)

+ B4,L

∫

�k

Z2
k(u)uS2(du)+ B5,L

∫

�k

Z2
G,k(u)uS2(du)

+ B6,L

∫

�k

Z2
L ,k(u)uS2(du) (100)

where Bi,L := 6
∫ +∞

0 z2
i (ρ)ρ

2dρ for i = 1, . . . , 6.
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The final bound is achieved by collecting inequalities (92), (94) and (100), according
to

4π
∫

(0,R]×S2

I2(ρ,u)ρ2L 1 ⊗ uS2(dρdu)

≤ 96πB1,LW2 + 24π
4∑

k=1

⎧⎪⎨
⎪⎩B2,L

∫

�k

X2
L ,k(u)uS2(du)

+ B3,L

∫

�k

Y2
L ,k(u)uS2(du)+ (B4,L + 81JL)

∫
�k

Z2
k(u)uS2(du)

+ B5,L

∫

�k

Z2
G,k(u)uS2(du)+ B6,L

∫

�k

Z2
L ,k(u)uS2(du)

⎫⎪⎬
⎪⎭ . (101)

2.2.5 The final step

With a view to bounding the RHS of (58), we use the ultimate results of Sects. 2.2.1–
2.2.4, encapsulated in (73), (79), (89) and (101) respectively, to write

⎛
⎜⎝

∫

R3

∣∣M̂(ξ)− e−|ξ |2/2
∣∣2dξ +

∫

R3

∣∣Δξ [M̂(ξ)− e−|ξ |2/2]∣∣2dξ

⎞
⎟⎠

1/2

1U c

≤ (C∗,r + C∗,s + B4m2
4 + 96πB1,L )

1/2W

+
4∑

k=1

⎧⎪⎪⎨
⎪⎪⎩

B
1/2
2

⎛
⎜⎝

∫

�k

X2
k(u)uS2 (du)

⎞
⎟⎠

1/2

+√
24πB

1/2
2,L

⎛
⎜⎝

∫

�k

X2
L ,k(u)uS2 (du)

⎞
⎟⎠

1/2

+ B
1/2
3

⎛
⎜⎝

∫

�k

Y2
k(u)uS2 (du)

⎞
⎟⎠

1/2

+√
24πB

1/2
3,L

⎛
⎜⎝

∫

�k

Y2
L ,k(u)uS2 (du)

⎞
⎟⎠

1/2

+[B5 + 24π(B4,L + 81JL )]1/2
⎛
⎜⎝

∫

�k

Z2
k(u)uS2 (du)

⎞
⎟⎠

1/2

+√
24πB

1/2
5,L

⎛
⎜⎝

∫

�k

Z2
G,k(u)uS2 (du)

⎞
⎟⎠

1/2

+√
24πB

1/2
6,L

⎛
⎜⎝

∫

�k

Z2
L ,k(u)uS2 (du)

⎞
⎟⎠

1/2
⎫⎪⎪⎬
⎪⎪⎭
. (102)
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Then, we proceed by taking expectation of both sides of (102). Apropos of this
computation it is worth noting that, if μ0 meets the additional conditions

σ1 = σ2 = σ3 = 1∫

R3

xαμ0(dx) = 0 for every multi-index α with |α| = 3,

then M(2)
j,n ≡ 1 and M(3)

j,n ≡ 0, implying that all random variables in the RHS of

(102) vanish, except for W. Since Et [W] = eΛbt in view of (24)–(25), the proof of
Theorem 1 would be complete. Let us carry on with the computation of the aforesaid
expectations to show they all admit an upper bound like CeΛbt , even under the original
more general conditions.

As for the random variables Xk and XL ,k , a key role is played by the identity

M(2)
j,n(u)− 1 =

(
3∑

s=1

σ 2
s (u

2
s − 1/3)

)
· ζ j,n (103)

valid for j = 1, . . . , n, n in N and u in S2, independently of the choice of B in (29).
The ζ j,n’s are given by

ζ j,n := ζ ∗j,n(τn, (φ1, . . . , φn−1)) (104)

and the ζ ∗j,n’s are defined on T(n)×[0, π ]n−1 as follows. Put ζ ∗1,1 ≡ 1 and, for n ≥ 2,

ζ ∗j,n(tn,ϕ) :=
{
ζ ∗j,nl

(tln,ϕ
l) · ( 3

2 cos2 ϕn−1 − 1
2 ) for j = 1, . . . , nl

ζ ∗j−nl ,nr
(trn,ϕ

r ) · ( 3
2 sin2 ϕn−1 − 1

2 ) for j = nl + 1, . . . , n
(105)

for every ϕ in [0, π ]n−1. The reader is referred to Appendix A.12 for the proof of
(103). Combination of (103) with (82) and (95) yields Xk(u) =

∣∣∑3
s=1 σ

2
s (u

2
s −

1/3)
∣∣ ·∑ν

j=1 π
2
j,ν |ζ j,ν | and XL ,k(u) =

∣∣∑3
s=1 σ

2
s ΔS2(u2

s )
∣∣ ·∑ν

j=1 π
2
j,ν |ζ j,ν | for k =

1, . . . , 4. Whence,

⎛
⎜⎝

∫

�k

X2
k(u)uS2(du)

⎞
⎟⎠

1/2

= Xk

ν∑
j=1

π2
j,ν |ζ j,ν |

⎛
⎜⎝

∫

�k

X2
L ,k(u)uS2(du)

⎞
⎟⎠

1/2

= XL ,k

ν∑
j=1

π2
j,ν |ζ j,ν |
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where

Xk :=
⎛
⎜⎝

∫

�k

[
3∑

s=1

σ 2
s (u

2
s − 1/3)

]2

uS2(du)

⎞
⎟⎠

1/2

XL ,k :=
⎛
⎜⎝

∫

�k

[
3∑

s=1

σ 2
s ΔS2(u2

s )

]2

uS2(du)

⎞
⎟⎠

1/2

are constants. At this stage, it is worth noticing that

Et

⎛
⎝ ν∑

j=1

π2
j,ν |ζ j,ν |

⎞
⎠ = e−(1− f (b))t (106)

holds for every t ≥ 0, with f (b) := ∫ π
0 sin2 ϕ

∣∣ 3
2 sin2 ϕ − 1

2

∣∣ β(dϕ). See Appendix
A.1. Then, we combine the inequality sin2 ϕ

∣∣ 3
2 sin2 ϕ− 1

2

∣∣+cos2 ϕ
∣∣ 3

2 cos2 ϕ− 1
2

∣∣ ≤
sin4 ϕ + cos4 ϕ with (2) to show that Λb ≥ −(1 − f (b)), i.e. the RHS in (106)
approaches zero faster than eΛbt as t goes to infinity. Therefore, we can conclude that

Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

X2
k(u)uS2(du)

⎞
⎟⎠

1/2⎤
⎥⎦ = Xke−(1− f (b))t (107)

Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

X2
L ,k(u)uS2(du)

⎞
⎟⎠

1/2⎤
⎥⎦ = XL ,ke−(1− f (b))t . (108)

As for the random variables Yk and YL ,k are concerned, we write

M(3)
j,n(u) = Et

[(
V j · ψ j,n(u)

)3 − 3

5
L3 · ψ j,n(u)

∣∣ G

]
+ 3

5
L3 · Et

[
ψ j,n(u)

∣∣ G
]

(109)
with L3 := ∫

R3 |v|2vμ0(dv). Now, the analog of (103) is given by the couple of
identities

Et

[(
V j · ψ j,n(u)

)3 − 3

5
L3 · ψ j,n(u)

∣∣ G

]
= l3(u)η j,n (110)

Et
[
ψ j,n(u)

∣∣ G
] = uπ j,n (111)

valid for j = 1, . . . , n, n in N and u in S2, independently of the choice of B in (29),
and for l3(u) :=

∫
R3 [(u · v)3 − 3

5 |v|2(u · v)]μ0(dv). The η j,n’s are given by

η j,n := η∗j,n(τn, (φ1, . . . , φn−1)) (112)
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while the η∗j,n’s are defined on T(n) × [0, π ]n−1 as follows. Put η∗1,1 ≡ 1 and, for
n ≥ 2,

η∗j,n(tn,ϕ) :=
⎧⎨
⎩
η∗j,nl

(tln,ϕ
l) · ( 5

2 cos2 ϕn−1 − 3
2 ) cosϕn−1 for j = 1, . . . , nl

η∗j−nl ,nr
(trn,ϕ

r ) · ( 5
2 sin2 ϕn−1 − 3

2 ) sin ϕn−1 for j = nl + 1, . . . , n

(113)

for every ϕ in [0, π ]n−1. The reader is referred to Appendix A.12 for the proof of
(110)–(111). Combination of (109)–(111) with (83) and (96) entails Yk(u) ≤ |l3(u)| ·∑ν

j=1 |π3
j,νη j,ν |+ 3

5 |L3·u|W and YL ,k(u) ≤ |ΔS2l3(u)|·∑ν
j=1 |π3

j,νη j,ν |+ 3
5 |ΔS2(L3·

u)|W for k = 1, . . . , 4. By elementary inequalities we obtain⎛
⎜⎝

∫

�k

Y2
k(u)uS2(du)

⎞
⎟⎠

1/2

≤ Y
(1)
k

ν∑
j=1

|π3
j,νη j,ν | + Y

(2)
k W

⎛
⎜⎝

∫

�k

Y2
L ,k(u)uS2(du)

⎞
⎟⎠

1/2

≤ Y
(1)
L ,k

ν∑
j=1

|π3
j,νη j,ν | + Y

(2)
L ,kW

where

Y
(1)
k :=

⎛
⎜⎝2

∫

�k

|l3(u)|2uS2(du)

⎞
⎟⎠

1/2

Y
(2)
k :=

⎛
⎜⎝18

25

∫

�k

|L3 · u|2uS2(du)

⎞
⎟⎠

1/2

Y
(1)
L ,k :=

⎛
⎜⎝2

∫

�k

|ΔS2l3(u)|2uS2(du)

⎞
⎟⎠

1/2

Y
(2)
L ,k :=

⎛
⎜⎝18

25

∫

�k

|ΔS2(L3 · u)|2uS2(du)

⎞
⎟⎠

1/2

are constants. At this stage, to compute the expectation in the above inequalities, it is
worth highlighting that the identity

Et

⎛
⎝ ν∑

j=1

|π3
j,νη j,ν |

⎞
⎠ = e−(1−g(b))t (114)
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holds for every t ≥ 0, with g(b) := ∫ π
0 sin4 ϕ

∣∣ 5
2 sin2 ϕ− 3

2

∣∣ β(dϕ). See Appendix A.1.
Now, we combine the inequality sin4 ϕ

∣∣ 5
2 sin2 ϕ − 3

2

∣∣ + cos4 ϕ
∣∣ 5

2 cos2 ϕ − 3
2

∣∣ ≤
sin4 ϕ + cos4 ϕ with (2) to show that Λb ≥ −(1− g(b)), which says that the RHS in
(114) approaches zero faster than eΛbt as t goes to infinity. Relations (109)–(114)
lead to

Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

Y2
k(u)uS2(du)

⎞
⎟⎠

1/2⎤
⎥⎦ ≤ Y

(1)
k e−(1−g(b))t + Y

(2)
k eΛbt (115)

Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

Y2
L ,k(u)uS2(du)

⎞
⎟⎠

1/2⎤
⎥⎦ ≤ Y

(1)
L ,ke−(1−g(b))t + Y

(2)
L ,keΛbt . (116)

It remains only to deal with the expectations involving Z, ZG and ZL . Unfortunately,
unlike the X’s and the Y’s, it is not possible to write the random variables Z, ZG and
ZL as product of a given function of u by some other random variable independent
of u and “contracting” in some sense. Nevertheless, such a contraction property can
be found on the integrals of the Z’s over �k . Accordingly, we show that the expec-
tations of the last three random variables in (102) admit bounds like CeΛbt with C
depending only on μ0. To prove this, we apply the Jensen inequality and exploit (48)
to get

∣∣∣∣∣∣
ν∑

j=1

π2
j,νψ

t
j,ν;k(u)V [μ0]ψ j,ν;k(u)− 1

∣∣∣∣∣∣
2

≤
3∑

s=1

σ 2
s

3
S2

k,s (117)

∣∣∣∣∣∣

∣∣∣∣∣∣
ν∑

j=1

π2
j,ν∇S2

(
ψ t

j,ν;k(u)V [μ0]ψ j,ν;k(u)
)∣∣∣∣∣∣

∣∣∣∣∣∣
2

S2

≤
3∑

s=1

σ 2
s

3

∣∣∣∣∇S2 Sk,s
∣∣∣∣2

S2 (118)

∣∣∣∣∣∣
ν∑

j=1

π2
j,νΔS2

(
ψ t

j,ν;k(u)V [μ0]ψ j,ν;k(u)
)∣∣∣∣∣∣

2

≤
3∑

s=1

σ 2
s

3

∣∣ΔS2 Sk,s
∣∣2 (119)

where ψ j,n;k is the analog of (29) when B is replaced by Bk , ψ j,n;k,s denotes its s-th
component and Sk,s := ∑ν

j=1 π
2
j,ν

(
3ψ2

j,ν;k,s − 1
)
. Whence, by a further application

of Jensen’s inequality and of an obvious inequality concerning the square root of a
sum,

⎛
⎜⎝

∫

�k

Z2
k(u)duS2

⎞
⎟⎠

1/2

≤
√

3

3

3∑
s=1

σs

⎛
⎜⎝

∫

�k

{
Et

[
S2

k,s | G
]}2

duS2

⎞
⎟⎠

1/2
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⎛
⎜⎝

∫

�k

Z2
G,k(u)duS2

⎞
⎟⎠

1/2

≤
√

3

3

3∑
s=1

σs

⎛
⎜⎝

∫

�k

{
Et

[∣∣∣
∣∣∣∇S2 Sk,s

∣∣∣
∣∣∣2
S2
| G

]}2

duS2

⎞
⎟⎠

1/2

⎛
⎜⎝

∫

�k

Z2
L ,k(u)duS2

⎞
⎟⎠

1/2

≤
√

3

3

3∑
s=1

σs

⎛
⎜⎝

∫

�k

{
Et

[∣∣∣ΔS2 Sk,s

∣∣∣2 | G
]}2

duS2

⎞
⎟⎠

1/2

.

Both the square roots and the squares after the brackets constitute an obstacle for the
interchange of the integral with the expectation Et and for the consequent application
of useful properties of conditional expectation. To overcome this difficulty, we resort
to the imbedding of the Sobolev space W1,1(�k) into L2(�k). See, e.g., Chapter 2
of [2]. Taking the same constants A1(0) and K (2, 1) as in Theorem 2.28 therein, we
write

Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

{
Et

[∣∣DSk,s
∣∣2 | G

]}2
uS2(du)

⎞
⎟⎠

1/2⎤
⎥⎦≤ A1(0)Et

⎡
⎢⎣
∫

�k

∣∣DSk,s
∣∣2 uS2(du)

⎤
⎥⎦

+K (2, 1)Et

⎡
⎢⎣
∫

�k

∣∣∣
∣∣∣∇S2Et

[∣∣DSk,s
∣∣2 | G

]∣∣∣
∣∣∣
S2

uS2(du)

⎤
⎥⎦ (120)

where D can be Id, ∇S2 , ΔS2 , and
∣∣DSk,s

∣∣ is to be interpreted in accordance with the
meaning of D . To work out the last term in the above inequality, we use (5.1.25) in
[60] to say that∣∣∣

∣∣∣∇S2Et

[∣∣DSk,s
∣∣2 | G ]∣∣∣

∣∣∣
S2

≤ Et

[∣∣∣
∣∣∣∇S2

(∣∣DSk,s
∣∣2)∣∣∣

∣∣∣
S2
| G

]
(121)

holds true Pt -almost surely. Moreover, when D is Id or ΔS2 , the Leibnitz rule for the
gradient entails ∣∣∣

∣∣∣∇S2
(∣∣DSk,s

∣∣2)∣∣∣
∣∣∣
S2

≤ ∣∣DSk,s
∣∣2 +

∣∣∣
∣∣∣∇S2

(
DSk,s

)∣∣∣
∣∣∣2
S2
. (122)

When D is ∇S2 , the definition of the Hessian as symmetric bilinear form leads to

〈∇S2(||∇S2 Sk,s ||2S2), V 〉 = 2〈DV∇S2 Sk,s,∇S2 Sk,s〉
= 2HessS2 [Sk,s](∇S2 Sk,s, V )

for every vector field V , D standing for the Levi-Civita connection. See Exercise 11
in Chapter 6 of [21]. Whence,

||∇S2(||∇S2 Sk,s ||2S2) ||S2 ≤ 2 ||HessS2 [Sk,s] ||∗||∇S2 Sk,s ||S2

≤ ||HessS2 [Sk,s] ||2∗ + ||∇S2 Sk,s ||2S2 (123)

where || · ||∗ denotes the L2-norm of the Hessian given by || HessS2 [Sk,s] ||2∗ :=∑
i j [HessS2 [Sk,s](Vi , Vj )]2 for some orthonormal basis {V1, V2} of vector fields. At
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this stage, it comes in useful to emphasize the fact that, in view of (121)–(123), the
latter summand in (120) can be bounded by a sum of terms sharing the same structure
of the former summand. Then, to provide an effective bound for the RHS of (120) it
is enough to prove that

Et

⎡
⎢⎣
∫

�k

∣∣∣D ′
Sk,s

∣∣∣2 uS2(du)

⎤
⎥⎦ ≤ ck(D

′
)eΛbt (124)

holds for some suitable constant c(D
′
), D

′
being one of the following operators: Id,

∇S2 , ΔS2 , ∇S2ΔS2 , HessS2 . For the proof of (124), cf. Appendix A.13. Now, we are
in a position to write explicit bounds for the last three terms in (102), which read

Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

Z2
k(u)uS2(du)

⎞
⎟⎠

1/2⎤
⎥⎦ ≤ ZkeΛbt (125)

Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

Z2
G,k(u)uS2(du)

⎞
⎟⎠

1/2⎤
⎥⎦ ≤ Z G,keΛbt (126)

Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

Z2
L ,k(u)uS2(du)

⎞
⎟⎠

1/2⎤
⎥⎦ ≤ Z L ,keΛbt (127)

with

Zk =
√

3

3

(
3∑

s=1

σs

)
[A1(0)ck(Id)+ K (2, 1)(ck(Id)+ ck(∇S2))]

Z G,k =
√

3

3

(
3∑

s=1

σs

)
[A1(0)ck(∇S2)+ K (2, 1)(ck(HessS2)+ ck(∇S2))]

Z L ,k =
√

3

3

(
3∑

s=1

σs

)
[A1(0)ck(ΔS2)+ K (2, 1)(ck(ΔS2)+ ck(∇S2ΔS2))].

To conclude, we gather (24)–(25), (107)–(108), (115)–(116), (125)–(127) and we
resort to (58) and (102) to obtain

Et [dTV(M, γ );U c] ≤ 2−5/4π−1/2C(U c)eΛbt

with

C(U c) := (C∗,r + C∗,s + B4m
2
4 + 96πB1,L)

1/2

+
4∑

k=1

{
B

1/2
2 Xk +

√
24πB

1/2
2,LXL ,k + B

1/2
3 (Y

(1)
k + Y

(2)
k )
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+√24π B
1/2
3,L(Y

(1)
L ,k + Y

(2)
L ,k)+ [B5 + 24π(B4,L + 81JL)]1/2 Zk

+√24π B
1/2
5,L Z G,k +

√
24π B

1/2
6,L Z L ,k

}
.

Finally, we recall (52) and combine the last inequality with (53).

2.3 Proof of Theorem 3

Without any loss of generality, we prove the sufficiency of (7) for the weak convergence
to the Maxwellian distribution, under extra-conditions (47)–(48) and

max
i=1,2,3

|σ 2
i − 1| ≤

√
42 + δ2

21 + δ2 δ (128)

with δ := −Λb/16. This last assumption is not restrictive since the Cauchy problem
associated with (1) is autonomous and maxi=1,2,3

∣∣ ∫
R3 v

2
i μ(dv, t) − 1

∣∣ approaches
zero as t goes to infinity. See [29,31,46]. The argument proceeds, as in Section 9.1 of
[24], on the basis of the Lévy continuity theorem. Therefore, fix ξ �= 0 and write

∣∣μ̂(ξ , t)− γ̂ (ξ)∣∣ ≤ Et

∣∣∣N̂ (ρ;u)− e−T 2ρ2/2
∣∣∣ +

∣∣∣Et

[
e−T 2ρ2/2

]
− e−ρ2/2

∣∣∣ (129)

where ρ = |ξ |, u = ξ/|ξ | and T 2 :=∑ν
j=1 π

2
j,νψ

t
j,ν(u)V [μ0]ψ j,ν(u). As to the first

summand in (129), use (6)–(7) in Section 9.1 of [24] to obtain

∣∣∣N̂ (ρ;u)− e−T 2ρ2/2
∣∣∣ ≤ ρ2

ν∑
j=1

π2
j,ν

∫

A j (ε)

(ψ j,ν(u) · v)2μ0(dv)+ ε|T |3ρ3

+1

8
T 4ρ4

max1≤ j≤ν π2
j,νψ

t
j,ν(u)V [μ0]ψ j,ν(u)

T 2 (130)

with ε > 0 and A j (ε) := {v ∈ R
3
∣∣ |π j,ν(ψ j,ν(u) · v)| ≥ ε|T |} for j = 1, . . . , ν.

Then, one has σ 2∗ := min{σ 2
1 , σ

2
2 , σ

2
3 } ≤ T 2 ≤ 3 and

1

8
T 2ρ4 max

1≤ j≤ν π
2
j,νψ

t
j,ν(u)V [μ0]ψ j,ν(u) ≤

9

8
ρ4π2

o (131)

with πo := max1≤ j≤ν |π j,ν |. Put M(y) := ∫
{|v|≥1/y} |v|2μ0(dv) for y > 0 and note

that M is a monotonically increasing bounded function satisfying limy↓0 M(y) = 0.
Moreover, from

A j (ε) ⊂
{

v ∈ R
3
∣∣ πo|ψ j,ν(u) · v| ≥ εσ∗

}
⊂
{

v ∈ R
3
∣∣ πo · |v| ≥ εσ∗

}
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one can conclude that

ν∑
j=1

π2
j,ν

∫

A j (ε)

(ψ j,ν(u) · v)2μ0(dv) ≤ M

(
πo

εσ∗

)
(132)

holds true for every strictly positive ε. At this stage, take ε = √
πo and combine

(130)–(132) to get

∣∣∣N̂ (ρ;u)− e−T 2ρ2/2
∣∣∣ ≤ M

(√
πo

σ∗

)
ρ2 +√

27πoρ
3 + 9

8
π2

oρ
4. (133)

To complete the analysis of the first summand in the RHS of (129), one shows that the
expectation of the RHS of (133) approaches zero as t goes to infinity, for every ρ in
[0,+∞). Indeed, for any monotonically increasing bounded function g : (0,∞)→
(0,∞) satisfying limx↓0 g(x) = 0, one has

Et [g(πo)] = Et [g(πo)1{πo ≤ e−zt }] + Et [g(πo)1{πo > e−zt }]
≤ g(e−zt )+ sup

x∈(0,∞)
g(x) · Et [π4

o ]e4zt

for every z in (0,∞). By virtue of (24)–(25), Et [π4
o ] ≤ eΛbt and, after choosing

z = −Λb/8, one obtains limt→+∞ Et [g(πo)] = 0. This argument, applied with

g(x) = M
(√

x
σ∗

)
ρ2+√27xρ3+ 9

8 x2ρ4, leads to the desired result. As far as the latter

summand in (129) is concerned, a plain application of (17) implies that Et [e−T 2ρ2/2]
can be thought of as the Fourier transform of the solution of (1) when the initial datum

coincides with
∏3

i=1
1

σi
√

2π
exp{− v2

i
2σ 2

i
}dvi , where the σi ’s have been fixed initially.

Now, in view of (128), this initial datum belongs to a convenient neighborhood of the
equilibrium γ—according to Theorem 1.1 in [29]—so that

sup
ρ∈R

∣∣Et exp{−T 2ρ2/2} − exp{−ρ2/2}∣∣ ≤ C∗e
1
2Λbt

holds true for every t ≥ 0 with the same C∗ as in the above-quoted theorem.
As to the necessity of (7), suppose that μ(·, t) converges weakly to some limit as t

goes to infinity. Following a technique developed in [35], the argument starts with the
introduction of the random vector

W = (
ν, {τn}n≥1, {φn}n≥1, {ϑn}n≥1,λ,Λ,U

)

defined on (�,F ). To explain the three right-most symbols above, one fixes an arbi-
trary point u0 in S2 and defines:

(i) λ := {λ1(·), . . . , λν(·), δ0(·), δ0(·), . . . } to be the sequence of random p.d.’s on
(R,B(R)) such that λ̂ j (ξ) := μ̂0(ξπ j,νψ j,ν(u0)), for j = 1, . . . , ν and ξ in R.
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(ii) Λ to be the random p.d. on (R,B(R)) obtained as convolution of all elements
of λ, i.e. Λ = λ1 ∗ · · · ∗ λν .

(iii) U := {U1,U2, . . . } to be the sequence of random numbers defined by Uk :=
max1≤ j≤ν λ j

([− 1
k ,

1
k

]c
)

for every k in N.

To grasp the usefulness of W , one can note that its components are the essential ingre-
dients of the central limit problem for independent uniformly asymptotically negligible
summands. See Sections 16.6-9 of [36]. Apropos of the negligibility condition, it is
easy to prove that limt→+∞ Pt [Uk > α] = 0 holds for every k in N and for every α in
(0,+∞). In fact, the inclusion {v ∈ R

3
∣∣ |π j,νψ j,ν · v| ≥ 1/k} ⊂ {v ∈ R

3
∣∣ |π j,νv| ≥

1/k} entails

{Uk > α} ⊂
{[

max
1≤ j≤ν μ0{v ∈ R

3
∣∣ |π j,νv| ≥ 1/k}

]
≥ α

}
.

To conclude, apply the argument used to prove Lemma 2 in [38]. Now, think of the
range of W as a subset of

S := N× T× [0, π ]∞ × [0, 2π ]∞ × (P(R))∞ × P(R)× [0, 1]∞

where: N := {1, 2, . . . ,+∞} and T are the one-point compactifications of N and T,
respectively; R := [−∞,+∞]; P(X) is the space of all p.d.’s on X . Here, P(R) is
metrized, consistently with the topology of weak convergence, in such a way that it
turns out to be a separable, compact and complete metric space. Cf. Section 6.II of [57].
Then, S is a separable, compact and complete metric space w.r.t. the product topology
and so the family of probability distributions {Pt ◦ W−1}t≥0 is tight. This implies
that any sequence {Ptm ◦ W−1}m≥1, when tm strictly increases to infinity, contains a
subsequence {Ql}l≥1, with Ql := Ptml

◦W−1, which converges weakly to a p.d. Q. It
is worth noting that, thanks to the weak convergence of μ(·, t), Q is supported by

{+∞} × T× [0, π ]∞ × [0, 2π ]∞ × {δ0}∞ × P(R)× {0}∞.

This claim can be verified by recalling Lemma 3 in [38]. Since S is Polish, one can now
invoke the Skorokhod representation theorem (see Theorem 4.30 in [48]). Therefore,
there are a probability space (�̃, F̃ , P̃) and S-valued random elements on it, say
W̃l =

(
ν̃l , {τ̃n,l}n≥1, {φ̃n,l}n≥1, {ϑ̃n,l}n≥1, λ̃l , Λ̃l , Ũl

)
and W̃∞, which have respective

p.d.’s Ql and Q, for every l in N. Moreover, for every ω̃ in �̃, one has W̃l(ω̃)→ W̃∞(ω̃)
(in the metric of S) as l goes to infinity, which entails

ν̃l →+∞, Ũl → {0, 0, . . . }
λ̃l ⇒ {δ0, δ0, . . . }, Λ̃l ⇒ Λ̃∞

(134)

Λ̃∞ being an element of P(R). The distributional properties of W̃l imply that Λ̃l is
the convolution of the elements of λ̃l , and that Ũk,l coincides with max1≤ j≤ν̃l λ̃ j,l([− 1

k ,
1
k

]c
)

for every k in N, P̃-almost surely. For convenience, denote with q(s) the
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symmetrized form of the p.d. q, i.e. ˆq(s)(·) := |q̂(·)|2. Now, (134) entails Λ̃(s)l ⇒ Λ̃
(s)∞

for every ω̃ in �̃ and the combination of this fact with Theorem 24 in Chapter 16 of
[36] yields

+∞ > σ 2(ω̃) := lim
ε↓0

lim
l→∞

ν̃l (ω̃)∑
j=1

∫

[−ε,ε]
x2λ̃

(s)
j (dx; ω̃) (135)

with the exception of a set of points ω̃ of P̃-probability 0. The final argument is split
into the following steps. First,

ν̃l∑
j=1

∫

[−ε,ε]
x2λ̃

(s)
j (dx) =

ν̃l∑
j=1

π̃2
j,ν̃l

∫

R3

(ψ̃ j,ν̃l
· v)21{|π̃ j,ν̃l ψ̃ j,ν̃l

· v| ≤ ε}μ(s)0 (dv)

≥
ν̃l∑

j=1

π̃2
j,ν̃l

3∑
i=1

ψ̃2
j,ν̃l ;i

∫

{π̃l,o|v|≤ε}
v2

i μ
(s)
0 (dv) (136)

where the π̃ ’s and ψ̃’s denote the counterparts, in the Skorokhod representation, of
the π ’s and ψ(u0)’s, π̃l,o := max1≤ j≤ν̃l |π̃ j,ν̃l | and the inequality is a consequence of
the inclusion {v ∈ R

3
∣∣ |π̃ j,ν̃l ψ̃ j,ν̃l

· v| ≤ ε} ⊃ {v ∈ R
3
∣∣ π̃l,o|v| ≤ ε}. Second, define

d = d(ω̃; j, l) to be an element of {1, 2, 3} for which ψ̃2
j,ν̃l ;d = max1≤i≤3 ψ̃

2
j,ν̃l ;i .

Note that ψ̃2
j,ν̃l ;d must be greater than 1/3 since ψ̃ j,ν̃l

belongs to S2, for every ω̃ in �̃,
l in N and j = 1, . . . , ν̃l . Then,

ν̃l∑
j=1

π̃2
j,ν̃l

3∑
i=1

ψ̃2
j,ν̃l ;i

∫

{π̃l,o|v|≤ε}
v2

i μ
(s)
0 (dv) ≥

ν̃l∑
j=1

π̃2
j,ν̃l
ψ̃2

j,ν̃l ;d
∫

{π̃l,o|v|≤ε}
v2

dμ
(s)
0 (dv)

≥ 1

3

ν̃l∑
j=1

π̃2
j,ν̃l

∫

{π̃l,o|v|≤ε}
v2

dμ
(s)
0 (dv)

= 1

3

3∑
h=1

s̃h,l

∫

{π̃l,o|v|≤ε}
v2

hμ
(s)
0 (dv)

where s̃h,l denotes the sum of those π̃2
j,ν̃l

for which d(ω̃; j, l) = h. At this stage,
observe that π̃l,o goes to zero with probability one as l goes to infinity, in view of
Lemma 1 in [38]. Since

∑3
h=1 s̃h,l = 1 with probability one, there are some ω̃ and h,

say ω̃∗ and h∗, such that π̃l,o(ω̃∗)→ 0 and liml s̃h∗,l(ω̃∗) is strictly positive. Then,

σ 2(ω̃∗) ≥ lim
ε↓0

lim
l→∞

1

3

3∑
h=1

s̃h,l(ω̃∗)
∫

{π̃l,o(ω̃∗)|v|≤ε}
v2

hμ
(s)
0 (dv)
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≥ 1

3
lim

r→∞

∫

{|v|≤r}
v2

h∗μ
(s)
0 (dv) · lim

l→∞ s̃h∗,l(ω̃∗)

which shows that the h∗-th marginal ofμ(s)0 —and hence also the h∗-th marginal ofμ0—
has finite second moment. To complete the proof, observe that h∗ can be determined
independently of μ0 and that weak convergence of μ(·, t) entails weak convergence
of μ(·, t) ◦ f −1

Q , fQ being the map v �→ Qv and Q an orthogonal matrix. Hence,

since μ(·, t) ◦ f −1
Q turns out to be the solution of (1) with initial datum μ0 ◦ f −1

Q

(cf. [31]), the above argument can be used to prove that
∫
R3 v

2
h∗μ0 ◦ f −1

Q (dv) is
finite, where h∗ is invariant w.r.t. Q and μ0. At the end, choose fQ firstly equal to
(v1, v2, v3) �→ (v2, v3, v1) and, then, equal to (v1, v2, v3) �→ (v3, v1, v2) to complete
the proof.
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Appendix A

Gathered here are the proofs of unproved propositions and formulas scattered through-
out Sects. 1 and 2.

A.1 Proof of (24), (106) and (114)

Fix s > 0 and define

A(s)1 (ν, τν) := Et

⎛
⎝ ν∑

j=1

|π j,ν |s
∣∣ ν, τν

⎞
⎠

A2(ν, τν) := Et

⎛
⎝ ν∑

j=1

π2
j,ν |ζ j,ν |

∣∣ ν, τν
⎞
⎠

A3(ν, τν) := Et

⎛
⎝ ν∑

j=1

|π3
j,νη j,ν |

∣∣ ν, τν
⎞
⎠ .

These functions satisfy the relations

A(1, t1) = 1

A(n, tn) = α[A(nl , t
l
n)+ A(nr , t

r
n)] if n ≥ 2

(137)

for every n in N, tn in T(n) and for some suitable constant α. This claim is checked
for each of them, following a common scheme of reasoning. First, A(s)1 (1, t1) =
A2(1, t1) = A3(1, t1) = 1 holds by definition. Then, to obtain the latter identity in
(137) as regards A(s)1 , utilize (22) in the equality
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A(s)1 (n, tn) =
∫

[0,π ]n−1

n∑
j=1

|π∗j,n(tn,ϕ)|sβ⊗n−1(dϕ).

Thus, α = ∫ π
0 | cosϕ|sβ(dϕ) = ∫ π

0 | sin ϕ|sβ(dϕ) = ls(b), where the validity of the
exchange of cos with sin is a consequence of (2). As to A2, use (22) and (105) in

A2(n, tn) =
∫

[0,π ]n−1

n∑
j=1

|π∗j,n(tn,ϕ)|2|ζ ∗j,n(tn,ϕ)|β⊗n−1(dϕ)

to show that A2 satisfies the latter identity in (137) with α = f (b). Passing to A3,
consider (22) and (113) in conjunction with

A3(n, tn) =
∫

[0,π ]n−1

n∑
j=1

|π∗j,n(tn,ϕ)|3|η∗j,n(tn,ϕ)|β⊗n−1(dϕ)

to verify that A3 meets the latter identity in (137) with α = g(b).
At this stage, since δ j (t

l
n)+1 = δ j (tn) for j = 1, . . . , nl and δ j (t

r
n)+1 = δ j+nl (tn)

for j = 1, . . . , nr , an induction argument yields A(n, tn) = ∑n
j=1 α

δ j (tn), where δ j

is the depth defined in Sect. 1.5. By the concept of germination explained in Sect. 1.5,
δ j (tn,k) = δ j (tn) + δ j,k + δ j,k+1 for j = 1, . . . , k + 1, with δr,s standing for the
Kronecker delta, and δ j (tn,k) = δ j+1(tn) for j = k + 2, . . . , n. Then, the specific
form of A(n, tn) shows that

1

n

n∑
k=1

A(n + 1, tn,k) =
(

1 + 2α − 1

n

)
A(n, tn) (138)

holds for every n in N and tn in T(n). Now, since Et [A(n + 1, τn+1) | τn = tn] =∑n
k=1 A(n + 1, tn,k)Pt [τn+1 = tn,k | τn = tn], (19) and (138) imply that an :=

Et [A(n, τn)] satisfies a1 = 1 and an+1 = (
1 + 2α−1

n

)
an for every n in N. Hence,

if (1 − 2α) does not belong to N, an = Γ (n+2α−1)
Γ (n)Γ (2α) for every n in N. Otherwise,

if (1 − 2α) = m, then an = (−1)n+1
(m−1

n−1

)
for n = 1, . . . ,m and an = 0 for

n > m. Finally, note that the expectations in (24), (106) and (114) coincide with
Et [A(s)1 ], Et [A2] and Et [A3] respectively, and that Et [A(ν, τν) | ν] = aν , in view of
the stochastic independence of ν and {τn}n≥1. Therefore, conclude by observing that
Et [aν] =∑∞

n=1 ane−t (1 − e−t )n−1 = e−(1−2α)t .

A.2 Probability law of {τn}n≥1

The aim is to show that the coefficient pn(tn) in the Wild-McKean sum is equal to
Pt [τn = tn] for every n. Proceeding by mathematical induction, observe that the
assertion is trivially true for n = 1, 2. To treat the case n ≥ 3, introduce the symbol
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P(tn) to denote the subset of T(n − 1) of the trees which are able to produce tn by
germination. Whence,

Pt [τn = tn] =
∑

sn−1∈P(tn)

Pt [τn = tn | τn−1 = sn−1] Pt [τn−1 = sn−1]

= 1

n − 1

∑
sn−1∈P(tn)

Pt [τn−1 = sn−1] = 1

n − 1

∑
sn−1∈P(tn)

pn−1(sn−1)

the last equality being valid thanks to the inductive hypothesis. Now,

∑
sn−1∈P(tn)

pn−1(sn−1) =
∑

sn−1∈P(tn)

sl
n−1=tl

n

pn−1(sn−1) +
∑

sn−1∈P(tn)
sr

n−1=tr
n

pn−1(sn−1)

and, by (33), the RHS turns out to be equal to

1

n − 2

⎡
⎢⎢⎢⎣pnl (t

l
n)

∑
sn−1∈P(tn)

sl
n−1=tl

n

pnr−1(s
r
n−1) + pnr (t

r
n)

∑
sn−1∈P(tn)
sr

n−1=tr
n

pnl−1(s
l
n−1)

⎤
⎥⎥⎥⎦ .

At this stage, observe that

∑
sn−1∈P(tn)

sl
n−1=tl

n

pnr−1(s
r
n−1) =

∑
snr−1∈P(tr

n)

pnr−1(snr−1)

= (nr − 1)
∑

snr−1∈P(tr
n)

Pt [τnr−1 = snr−1]Pt [τnr = trn | τnr−1 = snr−1]

= (nr − 1)Pt [τnr = trn] = (nr − 1)pnr (t
r
n)

and that the same procedure yields
∑

sn−1∈P(tn)
sr

n−1=tr
n

pnl−1(s
l
n−1) = (nl − 1)pnl (t

l
n). To

complete the proof it is enough to combine the previous equations and to recall that
n = nl + nr .

A.3 A few interesting characteristics of C[ζ, η;ϕ]

The first point concerns the invariance of (38) w.r.t. the choice of {a(u),b(u),u}.
Fix ξ �= 0 and let {a(u),b(u),u} and {a′(u),b′

(u),u} be distinct positive bases.
Then, write ψ l and ψr in (37) with {a′(u),b′

(u),u} in the place of {a(u),b(u),u}.
Since there exists some θ∗ in [0, 2π) such that a

′ = cos θ∗a − sin θ∗b and b
′ =

sin θ∗a + cos θ∗b, the change of basis gives
ψ l(ϕ, θ,u) = cos(θ − θ∗) sin ϕa(u)+ sin(θ − θ∗) sin ϕb(u)+ cosϕu
ψr (ϕ, θ,u) = − cos(θ − θ∗) cosϕa(u)− sin(θ − θ∗) cosϕb(u)+ sin ϕu.
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After substituting these expressions in (38), the desired conclusion follows from an
obvious change of variable.

To prove the measurability of (ξ , ϕ) �→ I (ξ , ϕ), resort to Proposition 9 in Section
9.3 of [36], so that it is enough to verify the continuity of ϕ �→ I (ξ , ϕ) for each
fixed ξ and the measurability of ξ �→ I (ξ , ϕ) for each fixed ϕ. The former claim
follows from the form of the dependence on ϕ in (37)–(38). To verify the latter, one
can show that also ξ �→ I (ξ , ϕ) is continuous for each fixed ϕ. Continuity at ξ = 0
can be derived from the relation |ψ l | = |ψr | = 1 and an ensuing application of the
dominated convergence theorem. To check continuity at ξ∗ �= 0, take a sequence
{ξn}n≥1 converging to ξ∗ and observe that |ξn| → |ξ∗| and un := ξn/|ξn| → u∗ :=
ξ∗/|ξ∗|. Fix a small open neighborhood�(u∗) ⊂ S2 of u∗ in such a way that S2\�(u∗)
contains at least two antipodal points. In view of the first part of this appendix, choose
a distinguished basis in such a way that the restrictions of u �→ a(u) and u �→
b(u) to �(u∗) vary with continuity. As a consequence, ψ l(ϕ, θ,un) converges to
ψ l(ϕ, θ,u∗) and ψr (ϕ, θ,un) converges to ψr (ϕ, θ,u∗) for every ϕ in [0, π ] and
θ in (0, 2π), and the convergence of I (ξn, ϕ) to I (ξ∗, ϕ) follows again from the
dominated convergence theorem. To show that ξ �→ I (ξ , ϕ) is a c.f. for every ϕ in
[0, π ], resort to the multivariate version of the Bochner characterization. See Exercise
3.1.9 in [60]. The only point that requires some care is positivity. If this property
were not in force, one could find a positive integer N , two N -vectors (ω1, . . . , ωN )

and (ξ1, . . . , ξ N ) in C
N and (R3)N respectively, and some ϕ∗ in [0, π ] in such a

way that
∑N

j=1
∑N

k=1 ω jωk I (ξ j − ξ k, ϕ
∗) < 0. Note that the LHS of this inequality

is a real number since I (−ξ , ϕ) = I (ξ , ϕ) for any ξ and ϕ. Hence, by continuity
of ϕ �→ I (ξ , ϕ), there exists an open interval J in [0, π ] containing ϕ∗ such that
ϕ �→∑N

j=1
∑N

k=1 ω jωk I (ξ j −ξ k, ϕ) is strictly negative on J . Now, choose a specific

b∗ for which the resulting p.m. in (20), sayβ∗, is supported by J . By construction, L :=∫ π
0

∑N
j=1

∑N
k=1 ω jωk I (ξ j − ξ k, ϕ)β∗(dϕ) is a strictly negative number, a fact which

immediately leads to a contradiction. Indeed, denote by Q∗[ζ, η] the RHS of (35) when
b∗ replaces b in the definition of Q[p, q]. Observe that Q∗[ζ, η] is in any case a p.m.
even if b∗ does not meet (2). Now, L must be equal to

∑N
j=1

∑N
k=1 ω jωkQ̂∗[ζ, η](ξ j−

ξ k), thanks to (36), and this quantity must be non-negative, from the Bochner criterion
again.

To prove (39), start by verifying that ϕ �→ C[ζ, η;ϕ] is measurable, which is
tantamount to checking that ϕ �→ C[ζ, η;ϕ](K ) is measurable for every K =
X3

i=1(−∞, xi ], in view of Lemma 1.40 of [48]. To this aim, fix such a K and use
the Fubini theorem to show that

(a,b, c, ϕ) �→
(

1

2π

)3 c∫

−c

c∫

−c

c∫

−c

[
3∏

m=1

e−iξmam − e−iξm bm

iξm

]
Ĉ[ζ, η;ϕ](ξ)dξ

is measurable, since (ξ , ϕ) �→ Ĉ[ζ, η;ϕ](ξ) does. To complete the argument,
invoke the inversion formula and note that C[ζ, η;ϕ](K ) is equal to the limit of
the above expression as c ↑ +∞, am ↓ −∞ and bm ↓ xm for m = 1, 2, 3.
This paves the way for writing the integral in (39), and the equality therein
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follows from (36) and (38) in view of the injectivity of the Fourier-transform
operator.

A.4 Proof of (40)

The first step is to show that ϕ �→ Ctn [μ0;ϕ] is measurable as a map from [0, π ]n−1

into P(R3). Mimicking the argument in the last part of A.3, it suffices to verify the
measurability of (ξ ,ϕ) �→ Ĉtn [μ0;ϕ](ξ) by means of Proposition 9 in Section 9.3 of
[36]. On the one hand, the function ξ �→ Ĉtn [μ0;ϕ](ξ) is continuous for every fixed
ϕ. On the other hand, measurability of ϕ �→ Ĉtn [μ0;ϕ](ξ), for every fixed ξ , can be
proved by induction. When n = 1, Ĉt1[μ0; ∅](ξ) is independent of ϕ and the claim is
obvious. When n ≥ 2, it suffices to recall (44) and to exploit the inductive hypothesis.
To conclude, the equality

Q̂tn [μ0](ξ) =
∫

[0,π ]n−1

Ĉtn [μ0;ϕ](ξ)β⊗n−1(dϕ) (139)

for n = 2, 3, . . . will be proved by mathematical induction. First, when n = 2, (139)
is valid since it coincides with (36). When n ≥ 3, combine the definition of Qtn with
(36) to obtain

Q̂tn [μ0](ξ) =
π∫

0

2π∫

0

Q̂tl
n
[μ0](ρ cosϕψ l)Q̂tr

n
[μ0](ρ sin ϕψr )u(0,2π)(dθ)β(dϕ)

and the argument is completed by invoking the inductive hypothesis, the definition of
Ctn and (36). Therefore, (139) entails (40) in view of the injectivity of the Fourier-
transform operator.

A.5 Proof of Proposition 4

Put k := �2/p� with p as in (15) and consider the random vector S = (S1, S2, S3) :=∑2k
j=1(−1) j V j , whose c.f. φ is given by φ(ξ) = |μ̂0(ξ)|2k . The assumptions (47)–

(48) plainly entail Et [S] = 0, Et
[
Si S j

] = 0 for i �= j , and Et
[
S2

i

] = 2kσ 2
i for

i = 1, 2, 3. Note also that σ 2
i > 0 for i = 1, 2, 3 as a consequence of (15). Moreover,

thanks to the Lyapunov inequality, Et
[|S|3] ≤ (2k)3m3. Now, standard arguments

explained, e.g., in Section 8.4 of [24] show that

φ(ξ) ≤ 1 − kσ 2∗ |ξ |2 +
(2k)3m3

6
|ξ |3

with σ 2∗ := min{σ 2
1 , σ

2
2 , σ

2
3 }. Thus, φ(ξ) ≤ 1 − k

2σ
2∗ |ξ |2 whenever |ξ | ≤

(3σ 2∗ )/(8k2m3), and elementary algebra entails 1 − k
2σ

2∗ |ξ |2 ≤ λ2

λ2+|ξ |2 for every
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ξ , provided that λ2 ≥ 2/kσ 2∗ . Now, (15) gives |φ(ξ)| ≤ L|ξ |−4 for every ξ �= 0, with

L := (supξ∈R3 |ξ |p|μ̂0(ξ)|)4/p, and again some algebra entails L|ξ |−4 ≤ λ2

λ2+|ξ |2 if

|ξ |2 ≥ B(λ) := (L +√
L2 + 4Lλ4)/(2λ2). Note that B(λ) ≤ 2

√
L holds true when

λ2 ≥ (2√L)/3. At this stage, choosing any λ satisfying λ2 ≥ max{2/kσ 2∗ , (2
√

L)/3}
yields

|φ(ξ)| ≤ λ2

λ2 + |ξ |2 (140)

for every ξ such that either |ξ | ≤ (3σ 2∗ )/(8k2m3) or |ξ |2 ≥ 2
√

L . Therefore, the proof
is completed if (4L)1/4 ≤ (3σ 2∗ )/(8k2m3). Otherwise, if (4L)1/4 > (3σ 2∗ )/(8k2m3),
define

M := sup
{(3σ 2∗ )/(8k2m3)≤|ξ |≤(4L)1/4}

|φ(ξ)|

and resort to Corollary 2 in Section 8.4 of [24] to state that M < 1. Then, (140) holds
true also when (3σ 2∗ )/(8k2m3) ≤ |ξ | ≤ (4L)1/4 if M ≤ inf(3σ 2∗ )/(8k2m3)≤|ξ |≤(4L)1/4(

λ2

λ2+|ξ |2
)

, the last inequality being equivalent toλ2 ≤ 2
√

L M/(1−M). In conclusion,

taking

λ2 := max{2/kσ 2∗ , (2
√

L)/3, 2
√

L M/(1 − M)}

leads to state that (140) is valid for every ξ , and (49) follows.

A.6 Proof of Proposition 5

Initially, suppose that χ(dx) = f (x)dx for some f in L1(R3). Therefore, Δχ̂(ξ) =∫
R3 |x|2 f (x)eix·ξdx and then, by the Plancherel identity,

∫

R3

| f (x)|2(1 + |x|4)dx =
(

1

2π

)3 ∫

R3

[
|χ̂ (ξ)|2 + |Δχ̂(ξ)|2

]
dξ .

Now, note that |χ |(R3) = ∫
R3 | f (x)|dx and apply the Cauchy-Schwartz inequality to

get

∫

R3

| f (x)|dx ≤
⎛
⎜⎝

∫

R3

dx
1 + |x|4

⎞
⎟⎠

1/2

·
⎛
⎜⎝

∫

R3

| f (x)|2(1 + |x|4) dx

⎞
⎟⎠

1/2

123



364 E. Dolera, E. Regazzini

where
∫
R3

dx
1+|x|4 =

√
2π2. For a general χ , consider the convolution χε of χ with the

Gaussian distribution of zero mean and covariance matrix ε2I. Since χε is absolutely
continuous, the first part of the proof gives

|χε |(R3) ≤ 2−5/4π−1/2

⎛
⎜⎝

∫

R3

[
|χ̂ε(ξ)|2 + |Δχ̂ε(ξ)|2

]
dξ

⎞
⎟⎠

1/2

and thereby, taking account of |χ |(R3) ≤ lim infε↓0 |χε |(R3) and letting ε ↓ 0,

|χ |(R3) ≤ 2−5/4π−1/2

⎛
⎜⎝

∫

R3

[
|χ̂ (ξ)|2 + |Δχ̂(ξ)|2

]
dξ

⎞
⎟⎠

1/2

.

To complete the argument, observe that supB∈B(R3) |χ(B)| ≤ |χ |(R3).

A.7 Proof of Proposition 6

Taking account of (47), note that

Et

[
(S(u))2 | H

]
=

ν∑
j=1

π2
j,νEt

[
(V j · ψ j,ν(u))

2 | H
]
≤ m2

with m2 = 3. The equality emanates by virtue of the stochastic independence of
the V j ’s while the inequality follows from the combination of the Cauchy-Schwartz
inequality with (23) and the identity |ψ j,n(u)| = 1. Thus, (55) holds true for h = 2
with g2 = m2. The case h = 1 can be derived from the case h = 2 thanks to the
conditional Lyapunov inequality after putting g1 = √

g2. When h ≥ 3, an inequality
due to Rosenthal (see Section 2.3 in [58]) yields

Et

[
|S(u)|h | H

]
≤ c(h)

⎧⎨
⎩

ν∑
j=1

Et

[
|π j,νV j · ψ j,ν(u)|h | H

]

+
⎛
⎝ ν∑

j=1

Et

[
|π j,νV j · ψ j,ν(u)|2 | H

]⎞⎠
h/2

⎫⎪⎬
⎪⎭

where c(h) is a positive constant depending only on h. An additional application of
the Cauchy–Schwartz inequality, combined with (23) and |ψ j,n(u)| = 1, gives

Et

[
|S(u)|h | H

]
≤c(h)

⎧⎪⎨
⎪⎩mh

ν∑
j=1

|π j,ν |h+
⎛
⎝m2

ν∑
j=1

π2
j,ν

⎞
⎠

h/2
⎫⎪⎬
⎪⎭≤c(h)

{
mh+m

h/2
2

}
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which entails (55) with gh = c(h){mh + m
h/2
2 }. Now, ∂h

∂ρh N (ρ;u) exists and is uni-

formly bounded by gh , for h = 1, . . . , 2k. Then, since M̂(ρu) = Et [N̂ (ρ;u) | G ]
and the interchanging of the derivative with the expectation is here valid, one gets (56).
Finally, taking u = ei in (56) yields

∫
R3 v

2k
i M(dv) < +∞ for i = 1, 2, 3 which, in

turn, entails (57).

A.8 Proof of Proposition 7

The definition of the k-th Hermite polynomial shows that dk

dρk e−ρ2/2 = 2−k/2 Hk

(
ρ√
2

)

e−ρ2/2 for every k in N0 and ρ in R. See, for example, (1) in Section 2.IV of [59].
Moreover, according to (92) therein,

Hk

(
ρ√
2

)
= k!

[k/2]∑
h=0

(−1)k+h

h!(k − 2h)! (
√

2ρ)k−2h

where [n] stands for the integral part of n, and hence

+∞∫

x

(
dk

dρk
e−ρ2/2

)2

ρmdρ =
[k/2]∑
h=0

[k/2]∑
l=0

γk,h,l

+∞∫

x

ρm+2(k−h−l)e−ρ2
dρ

withγk,h,l := (−2)−h−l (k!)2
h!l!(k−2h)!(k−2l)! . Now, take account of the following elementary inequal-

ities:
∫ +∞

x e−ρ2/2dρ ≤ 1
x e−x2/2 for x > 0, and ρt e−ρ2/2 ≤ (t/e)t/2 for ρ ≥ 0 and

t ≥ 0, with the proviso that 00 := 1 when t = 0. Whence,

+∞∫

x

(
dk

dρk
e−ρ2/2

)2

ρmdρ

≤
[k/2]∑
h=0

[k/2]∑
l=0

|γk,h,l |
(

m + 2(k − h − l)

e

)m/2+k−h−l 1

x
e−x2/2

≤ c(m, s, k)x−s

with c(m, s, k) :=∑[k/2]
h=0

∑[k/2]
l=0 |γk,h,l |

(
m+2(k−h−l)

e

)m/2+k−h−l ( s−1
e

)(s−1)/2
.

A.9 Proof of Propositions 8 and 10

The main task is to prove (64), (66) and (93). The remaining inequalities (65) and (67)
can be derived by interchanging derivative with expectation in the equality M̂(ρu) =
Et [N̂ (ρ;u) | G ], since Ψ (ρ) is a G -measurable random variable for every fixed ρ.
To start, (64) follows from the combination of (32), (49) and (63), upon recalling that
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|ψ j,ν | = 1. With a view to proving (66) and (93), it is worth noting that 0 ≤ ρ ≤ R
entails supu∈S2

∣∣μ̂0(ρπ j,νψ j,ν(u)) − 1
∣∣ ≤ 19/128 for j = 1, . . . , ν and for every

choice of B in (29), as shown in [30]. This paves the way for considering the principal
value of the logarithm and then for writing

N̂ (ρ;u) = exp

⎧⎨
⎩

ν∑
j=1

Log[μ̂0(ρπ j,νψ j,ν(u))]
⎫⎬
⎭ . (141)

The next step concerns the computation of certain derivatives of N̂ (ρ;u) by means
of the above identity. To this aim, the system of coordinates introduced in Sect. 2.2.2
comes now in useful. Then, for k = 1, . . . , 4,

∂

∂x
N̂ (ρ;hk(u, v)) = N̂ (ρ;hk(u, v))

ν∑
j=1

∂

∂x
Log[μ̂0(ρπ j,νψ j,ν(hk(u, v)))] (142)

∂2

∂x2 N̂ (ρ;hk(u, v))= N̂ (ρ;hk(u, v))

⎧⎪⎨
⎪⎩

⎛
⎝ ν∑

j=1

∂

∂x
Log[μ̂0(ρπ j,νψ j,ν(hk(u, v)))]

⎞
⎠

2

+
ν∑

j=1

∂2

∂x2 Log[μ̂0(ρπ j,νψ j,ν(hk(u, v)))]
⎫⎬
⎭ (143)

where x can be ρ, u or v. To bound each of these products, use (64) as far as N̂ (ρ;hk)

is concerned, and proceed with the detailed computation of bounds for the derivatives
of the logarithms. As a starting point for all these calculations, consider the following
equalities from [30]:

μ̂0(ρπ j,νψ j,ν(u)) = 1 − 1

2
ρ2π2

j,ν

∫

R3

[ψ j,ν(u) · v]2μ0(dv)

− i

3!ρ
3π3

j,ν

∫

R3

[ψ j,ν(u) · v]3μ0(dv)+ R j (ρ,u) (144)

and

Log[μ̂0(ρπ j,νψ j,ν(u))] = −1

2
ρ2π2

j,ν

∫

R3

[ψ j,ν(u) · v]2μ0(dv)

− i

3!ρ
3π3

j,ν

∫

R3

[ψ j,ν(u) · v]3μ0(dv)+ R j (ρ,u)−�(w j (ρ,u))w2
j (ρ,u).

(145)
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Here, w j (ρ,u) := μ̂0(ρπ j,νψ j,ν(u))− 1,

�(z) := z − Log(1 + z)

z2 =
+∞∫

0

⎛
⎝

+∞∫

x

s − x

s
e−sds

⎞
⎠ e−zx dx ("z > −1)

and the remainder R j (ρ,u) can assume one of the following forms:

1

3!ρ
4π4

j,ν

∫

R3

1∫

0

[ψ j,ν(u) · v]4(1 − s)3eiρπ j,ν [ψ j,ν (u)·v]sdsμ0(dv)

= − i

2
ρ3π3

j,ν

∫

R3

1∫

0

[ψ j,ν(u) · v]3(1 − s)2(eiρπ j,ν [ψ j,ν (u)·v]s − 1)dsμ0(dv)

= −ρ2π2
j,ν

∫

R3

1∫

0

[ψ j,ν(u) · v]2(1 − s)

×
(

eiρπ j,ν [ψ j,ν (u)·v]s − 1 − iρπ j,ν[ψ j,ν(u) · v]s
)

dsμ0(dv).

The aim is now to show that
∑ν

j=1
∂l

∂xl Log[μ̂0(ρπ j,νψ j,ν)] admits, for l = 1, 2, an
upper bound presentable as a non-random polynomial in ρ, independent of u.

As far as the derivatives w.r.t. ρ are concerned, for the first two terms on the RHS
of (145) one gets

sup
u∈S2

∣∣∣∣∣∣∣
∂ l

∂ρl

⎡
⎢⎣−1

2
ρ2π2

j,ν

∫

R3

[ψ j,ν · v]2dμ0 − i

3!ρ
3π3

j,ν

∫

R3

[ψ j,ν · v]3dμ0

⎤
⎥⎦
∣∣∣∣∣∣∣

≤ 1

(2 − l)!m2π
2
j,νρ

2−l + 1

(3 − l)!m3|π j,ν |3ρ3−l (146)

for l = 0, 1, 2, thanks to the fact that |ψ j,ν | = 1. Moreover, recall that m2 = 3 in
view of (47). Standard manipulations of the above expressions of R j (ρ,u) lead to

sup
u∈S2

∣∣∣∣ ∂
l

∂ρl
R j (ρ,u)

∣∣∣∣ ≤ cl(R)m4π
4
j,νρ

4−l (147)

for l = 0, 1, 2, with c0(R) = 1/24, c1(R) = 1/6 and c2(R) = 1/3. See [30] for the
details. After recalling (60), this last inequality plainly entails

sup
ρ∈[0,R]

u∈S2

ν∑
j=1

∣∣∣∣ ∂
l

∂ρl
R j (ρ,u)

∣∣∣∣ ≤
(

1

2

)4−l

cl(R)m
l/4
4 . (148)
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As to the last term in (145), one has
∣∣∣∣ ∂∂x

(
�(w j )w

2
j

)∣∣∣∣ ≤ |�′
(w j )| ·

∣∣∣∣ ∂∂x
w j

∣∣∣∣ · |w j |2 + 2|�(w j )| ·
∣∣∣∣ ∂∂x

w j

∣∣∣∣ · |w j | (149)

and ∣∣∣∣ ∂
2

∂x2

(
�(w j )w

2
j

)∣∣∣∣ ≤ |�′′
(w j )| ·

∣∣∣∣ ∂∂x
w j

∣∣∣∣
2

· |w j |2

+ |�′
(w j )|

(
4

∣∣∣∣ ∂∂x
w j

∣∣∣∣
2

· |w j | +
∣∣∣∣ ∂

2

∂x2w j

∣∣∣∣ · |w j |2
)

+ |�(w j )|
(

2

∣∣∣∣ ∂
2

∂x2w j

∣∣∣∣ · |w j | + 2

∣∣∣∣ ∂∂x
w j

∣∣∣∣
2
)
. (150)

Since � is completely monotone, |w j | ≤ 19
128 yields |�(l)(w j )| ≤ |�(l)(− 19

128 )| for
every l in N. Then, combining (144) with (146)–(147) gives

sup
u∈S2

∣∣∣∣ ∂
l

∂ρl
w j (ρ,u)

∣∣∣∣ ≤ 1

(2 − l)!m2π
2
j,νρ

2−l + 1

(3 − l)!m3|π j,ν |3ρ3−l

+ cl(R)m4π
4
j,νρ

4−l (151)

sup
u∈S2

∣∣∣∣ ∂
l

∂ρl
w j (ρ,u)

∣∣∣∣
2

≤ 3

[(2 − l)!]2 m2
2π

4
j,νρ

4−2l + 3

[(3 − l)!]2 m2
3π

6
j,νρ

6−2l

+ 3c2
l (R)m

2
4π

8
j,νρ

8−2l (152)

for l = 0, 1, 2. By virtue of the Lyapunov inequality and Theorem 19 in [43], (152)
entails

sup
ρ∈[0,R]

u∈S2

ν∑
j=1

∣∣∣∣ ∂
l

∂ρl
w j (ρ,u)

∣∣∣∣
2

≤ kl(w)m
l/2
4 (153)

for l = 0, 1, 2, with

kl(w) := 4l−2
[

3

[(2 − l)!]2 +
3

4[(3 − l)!]2 +
3

16
c2

l (R)

]
.

Thus, starting from (142)–(143) and utilizing (146)–(148), (149)–(150) and (153) with
x = ρ, one can define the ℘k’s in (66)–(67) as follows:

℘1(ρ) = 1

2
m3ρ

2 +m2ρ + 1

8
c1(R)m

1/4
4 +

∣∣∣∣�′
(
− 19

128

)∣∣∣∣ k0(w)
√

k1(w)m
1/4
4

+
∣∣∣∣�

(
− 19

128

)∣∣∣∣ ·
[
k0(w)+ k1(w)m

1/2
4

]
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and

℘2(ρ) = ℘2
1 (ρ)+m3ρ +m2 + 1

4
c2(R)m

1/2
4 +

∣∣∣∣�′′
(
− 19

128

)∣∣∣∣ k0(w)k1(w)m
1/2
4

+
∣∣∣∣�′

(
− 19

128

)∣∣∣∣ ·
[
4
√

k0(w)k1(w)m
1/2
4 + k0(w)

√
k2(w)m

1/2
4

]

+
∣∣∣∣�

(
− 19

128

)∣∣∣∣ ·
[
k0(w)+ 2k1(w)m

1/2
4 + k2(w)m4

]
.

This completes the proof of (66), showing also that the bound therein is independent
of the choice of B in (29).

To prove (93), one begins by considering (u, v) in Dk and taking B in (29) equal to
Bk according to (90)–(91). In this way, every map ψ j,ν;k : (u, v) �→ ψ j,ν(hk(u, v)),

and hence the map N̂k : (u, v) �→ N̂ (ρ;hk(u, v)), turns out to belong to C4(Dk)

for k = 1, . . . , 4. Then, one resorts to (142)–(143), with x standing either for u or
v, and uses (64) to bound the common factor N̂k . As to the derivatives w.r.t. x , one
evaluates the expression of ∂l

∂xl [ψ j,ν;k · v]m for l = 1, 2, and applies the Cauchy-

Schwartz inequality. Whence, after recalling (29) and introducing the L2 norm || · ||∗
of matrices, one gets

∣∣∣ ∂
l

∂xl
[ψ j,ν;k · v]m

∣∣∣ ≤ |v|m
l∑

h=1

m!
(m − h)!

∣∣∣∣
∣∣∣∣ ∂

l−h+1

∂xl−h+1 Bk

∣∣∣∣
∣∣∣∣
h

∗
(154)

when l = 1, 2 and m ≥ l. Since || ∂s

∂xs Bk ||∗ ≤
√

3 for every s in N, one has

sup
(u,v)∈Dk

∣∣∣∣∣∣∣
∂ l

∂xl

⎡
⎢⎣−1

2
ρ2π2

j,ν

∫

R3

[ψ j,ν;k · v]2dμ0 − i

3!ρ
3π3

j,ν

∫

R3

[ψ j,ν;k · v]3dμ0

⎤
⎥⎦
∣∣∣∣∣∣∣

≤
(

l∑
h=1

3h/2

)
m2π

2
j,νρ

2 +
(

l∑
h=1

3h/2

(3 − h)!

)
m3|π j,ν |3ρ3 (155)

for l = 1, 2. Then, one proceeds with the study of the derivatives of the third term in
the RHS of (145). As far as the first order derivative is concerned, one resorts to the
second of the expressions of R j , given in the first part of this Appendix, to write

∂

∂x
R j (ρ,hk(u, v)) = − i

2
ρ3π3

j,ν

∫

R3

1∫

0

(1 − s)2
{
(eiρπ j,ν [ψ j,ν;k ·v]s − 1)

×
(
∂

∂x
[ψ j,ν;k · v]3

)
+ [ψ j,ν;k · v]3iρπ j,νs

×
(
∂

∂x
[ψ j,ν;k · v]

)
eiρπ j,ν [ψ j,ν;k ·v]s

}
dsμ0(dv).
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By virtue of (154), one gets

sup
(u,v)∈Dk

∣∣∣∣ ∂∂x
R j (ρ,hk(u, v))

∣∣∣∣ ≤
√

3

6
m4π

4
j,νρ

4 (156)

which, recalling (60), entails

sup
ρ∈[0,R]
(u,v)∈Dk

ν∑
j=1

∣∣∣∣ ∂∂x
R j (ρ,hk(u, v))

∣∣∣∣ ≤
√

3

96
. (157)

To compute the second order derivatives of R j one employs the third of its expressions
to write

∂2

∂x2 R j (ρ,hk(u, v)) = −π2
j,νρ

2
∫

R3

1∫

0

(1 − s)

{
(eiρπ j,ν [ψ j,ν;k ·v]s

−1 − iρπ j,ν[ψ j,ν;k · v]s)
(
∂2

∂x2 [ψ j,ν;k · v]2
)

+2iρπ j,νs (e
iρπ j,ν [ψ j,ν;k ·v]s − 1) ·

(
∂

∂x
[ψ j,ν;k · v]2

)

×
(
∂

∂x
[ψ j,ν;k · v]

)
+ iρπ j,ν[ψ j,ν;k · v]2s

×
[
(eiρπ j,ν [ψ j,ν;k ·v]s − 1) ·

(
∂2

∂x2 [ψ j,ν;k · v]
)

+iρπ j,νs eiρπ j,ν [ψ j,ν;k ·v]s
(
∂

∂x
[ψ j,ν;k · v]

)2
]}

dsμ0(dv).

From (154) and the inequality |eix − ∑N−1
r=1 (i x)r/r !| ≤ |x |N/N ! one obtains the

bound

sup
(u,v)∈Dk

∣∣∣∣ ∂
2

∂x2 R j (ρ,hk(u, v))

∣∣∣∣ ≤
√

3 + 9

6
m4π

4
j,νρ

4 (158)

which, taking account of (60), becomes

sup
ρ∈[0,R]
(u,v)∈Dk

ν∑
j=1

∣∣∣∣ ∂
2

∂x2 R j (ρ,hk(u, v))

∣∣∣∣ ≤
√

3 + 9

96
. (159)

Finally, as to the remaining term in the RHS of (145), one utilizes (149)–(150) with
x = u, v. Then, combining (144) with (155) and (156) gives
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sup
(u,v)∈Dk

∣∣∣∣ ∂∂x
w j

∣∣∣∣ ≤
√

3m2π
2
j,νρ

2 +
√

3

2
m3|π j,ν |3ρ3 +

√
3

6
m4π

4
j,νρ

4 (160)

sup
(u,v)∈Dk

∣∣∣∣ ∂∂x
w j

∣∣∣∣
2

≤ 9m2
2π

4
j,νρ

4 + 9

4
m2

3π
6
j,νρ

6 + 1

4
m2

4π
8
j,νρ

8. (161)

By virtue of the Lyapunov inequality and Theorem 19 in [43], (161) yields

sup
ρ∈[0,R]
(u,v)∈Dk

ν∑
j=1

∣∣∣∣ ∂∂x
w j (ρ,hk(u, v))

∣∣∣∣
2

≤ 613

1024
. (162)

As for the second order derivatives, from the combination of (144) with (155) and
(158) one gets

sup
(u,v)∈Dk

∣∣∣∣ ∂
2

∂x2w j (ρ,hk(u, v))

∣∣∣∣
2

≤ 3

(
2∑

h=1

3h/2

)2

m2
2π

4
j,νρ

4

+3

(
2∑

h=1

3h/2

(3 − h)!

)2

m2
3π

6
j,νρ

6 + 3

(√
3 + 9

6

)2

m2
4π

8
j,νρ

8 (163)

and hence

sup
ρ∈[0,R]
(u,v)∈Dk

ν∑
j=1

∣∣∣∣ ∂
2

∂x2w j (ρ,hk(u, v))

∣∣∣∣
2

≤ W ∗
2 (164)

where

W ∗
2 := 3

16

(
2∑

h=1

3h/2

)2

+ 3

64

(
2∑

h=1

3h/2

(3 − h)!

)2

+ 3

256

(√
3 + 9

6

)2

.

In view of (149), (151), (153), and (162),

sup
(u,v)∈Dk

ν∑
j=1

∣∣∣ ∂
∂x

(
�(w j )w

2
j

) ∣∣∣ ≤
√

613

1024

(
1

2
m2ρ

2 + 1

6
m3|ρ|3 + 1

24
m4ρ

4
)

×
(∣∣∣∣�′

(
− 19

128

)∣∣∣∣
√

k0(w)+ 2

∣∣∣∣�
(
− 19

128

)∣∣∣∣
)

(165)

and, utilizing (145), (155), (156) and (165), one concludes that
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sup
(u,v)∈Dk

ν∑
j=1

∣∣∣∣ ∂∂x
Log[μ̂0(ρπ j,νψ j,ν(hk(u, v)))]

∣∣∣∣ ≤
√

3m2ρ
2 +

√
3

2
m3ρ

3

+
√

3

6
m4ρ

4 +
√

613

1024

(∣∣∣∣�′
(
− 19

128

)∣∣∣∣
√

k0(w)+ 2

∣∣∣∣�
(
− 19

128

)∣∣∣∣
)

×
(

1

2
m2ρ

2 + 1

6
m3ρ

3 + 1

24
m4ρ

4
)

(166)

for ρ in [0,R]. To obtain a bound of the same type for the second derivative, one can
first combine (150), (151), (153) and (161)–(164) to get

sup
(u,v)∈Dk

ν∑
j=1

∣∣∣∣ ∂
2

∂x2

(
�(w j )w

2
j

)∣∣∣∣

≤
[∣∣∣∣�′′

(
− 19

128

)∣∣∣∣ 613

1024

√
k0(w)+

∣∣∣∣�′
(
− 19

128

)∣∣∣∣
(

613

256
+
√

W ∗
2 k0(w)

)

+2

∣∣∣∣�
(
− 19

128

)∣∣∣∣
√

W ∗
2

]
·
(

1

2
m2ρ

2 + 1

6
m3ρ

3 + 1

24
m4ρ

4
)

+2

∣∣∣∣�(− 19

128
)

∣∣∣∣
(

9m2
2ρ

4 + 9

4
m2

3ρ
6 + 1

4
m2

4ρ
8
)

(167)

and, then, utilize (145), (155), (158) and (167), to conclude that

sup
(u,v)∈Dk

ν∑
j=1

∣∣∣∣ ∂
2

∂x2 Log[μ̂0(ρπ j,νψ j,ν(hk(u, v)))]
∣∣∣∣

≤
(

2∑
h=1

3h/2

)
m2ρ

2 +
(

2∑
h=1

3h/2

(3 − h)!

)
m3ρ

3 +
√

3 + 9

6
m4ρ

4

+
[∣∣∣∣�′′

(
− 19

128

)∣∣∣∣ 613

1024

√
k0(w)+

∣∣∣∣�′
(
− 19

128

)∣∣∣∣
(

613

256
+
√

W ∗
2 k0(w)

)

+2

∣∣∣∣�
(
− 19

128

)∣∣∣∣
√

W ∗
2

]
·
(

1

2
m2ρ

2 + 1

6
m3ρ

3 + 1

24
m4ρ

4
)

+2

∣∣∣∣�
(
− 19

128

)∣∣∣∣
(

9m2
2ρ

4 + 9

4
m2

3ρ
6 + 1

4
m2

4ρ
8
)
. (168)

At this stage, one observes that the RHSs of (166) and (168) can be written as
ρ2℘L ,1(ρ) and ρ2℘L ,2(ρ) respectively, for specific non-random polynomials ℘L ,1
and ℘L ,2 with positive coefficients. As final step of the proof, expressingΔS2 in local
coordinates leads to
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sup
u∈�k

|ΔS2N̂k(ρ;u)| ≤ 4(2 +√
3)

× sup
(u,v)∈Dk

(∣∣∣∣ ∂
2

∂u2 N̂ (ρ;hk(u, v))

∣∣∣∣+
∣∣∣∣ ∂∂u

N̂ (ρ;hk(u, v))

∣∣∣∣+
∣∣∣∣ ∂

2

∂v2 N̂ (ρ;hk(u, v))

∣∣∣∣
)

where 4(2 +√
3) = maxu∈[ 1

12π,
11
12π ] max{| cot u|, 1/ sin2 u} and hence

℘L(ρ) = 4(2 +√
3)[2ρ2℘2

L ,1(ρ)+ ℘L ,1(ρ)+ 2℘L ,2(ρ)].

A.10 Proof of Proposition 9

Fix the sample point ω in U c and denote by n the value of ν at ω. Then, designate
the values of π2

1,ν , . . . , π
2
ν,ν at ω by a1, . . . , an respectively, so that each a j belongs

to [0, 1] and
∑n

j=1 a j = 1 in view of (23). The argument continues by resorting to
the following combinatorial tools:

(i) The k-th elementary symmetric function Sk(a1, . . . , an) defined by

Sk(a1, . . . , an) :=
∑

1≤i1<···<ik≤n

ai1 . . . aik

for k in {1, . . . , n}.
(ii) The k-th Newton symmetric function given by

Nk(a1, . . . , an) :=
n∑

j=1

ak
j .

(iii) The group of relations, known as Newton’s identities, which read

kSk =
k∑

j=1

(−1) j+1 N j Sk− j

for k in {1, . . . , n}, with the proviso that S0(a1, . . . , an) := 1.

See Section 1.9 of [52] for details. The way is now paved to prove that, if a∗ ∈ (0, 1),
N1 = 1 and N2 ≤ a∗, then

Sk ≥ 1/k! − 2k−1a∗ (169)

holds for each k in {1, . . . , n}. Proceeding by mathematical induction, when k = 1,
one has S1 = N1 = 1 and (169) follows. When k ≥ 2, combine the Newton identities
with the inductive hypothesis to get

Sk ≥ 1

k
Sk−1 − 1

k

k∑
j=2

N j Sk− j ≥ 1

k! −
1

k

⎛
⎝2k−2a∗ +

k∑
j=2

N j Sk− j

⎞
⎠ .
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At this stage, note that N j ≤ a∗ for each j in {2, . . . , k}. Moreover, thanks to the
multinomial identity (see, e.g., 1.7.2 in [52]), N1 = 1 entails Sm ≤ 1/m! ≤ 1 for each
m in {0, . . . , n}. Hence,

Sk ≥ 1

k! −
1

k
[2k−2 + (k − 1)]a∗

which concludes the proof of (169), after noting that 2k−2+(k−1) ≤ k2k−1 for every
k in N. To complete the proof of (68), observe that ω ∈ U c entails n ≥ r by virtue of
(51), so that

n∏
j=1

(1 + a j x2) =
n∑

k=0

Sk(a1, . . . , an)x
2k ≥ Sr (a1, . . . , an)x

2r .

Finally, recall the relation between r and a∗ given by (51) and apply (169) to obtain

Sr ≥ 1

r ! − 2r−1a∗ = 1

2r ! = ε.

To prove (69), an obvious change of variable entails

+∞∫

x

Ψ s(ρ)ρmdρ = λm+1

+∞∫

x/λ

⎡
⎣ 1∏ν

j=1

(
1 + π2

j,ν y2
)
⎤
⎦

sq

ymdy

and conclude by using (68).

A.11 Proof of Proposition 11

The analysis to be developed is concerned with each of the charts �1, . . . , �4, but it
is of the same kind for all of them. Therefore, even if the notation agrees with that
introduced in A. 9, the subscript k referring to the k-th chart will be dropped. The
computation of the Laplacian in (141) yields

ΔS2N̂ (ρ;u) = N̂ (ρ;u)
{
ΔS2 LogN̂ (ρ;u)+

∣∣∣
∣∣∣∇S2 LogN̂ (ρ;u)

∣∣∣
∣∣∣2
S2

}

for every fixed ρ. It is worth mentioning that here any differential operator D , applied
to the complex-valued function h = f + ig, must be intended as Dh := D f +
iDg and that the scalar product 〈U1 + iU2, V1 + iV2〉 is defined, by linearity, as
〈U1, V1〉−〈U2, V2〉+ i〈U1, V2〉+ i〈U2, V1〉 for the vector fields U1,U2, V1, V2. Now,
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after observing that 1T c = 1 − 1T , one gets

∣∣∣Et

[(
ΔS2N̂

)
1T c | G

]∣∣∣ ≤ Et

[
|N̂ | ·

∣∣∣
∣∣∣
∣∣∣∇S2 LogN̂

∣∣∣
∣∣∣2
S2

∣∣∣1T c | G
]

+ e−ρ2/2
∣∣∣Et

[
ΔS2 LogN̂ | G

] ∣∣∣+ e−ρ2/2Et

[
|ΔS2 LogN̂ |1T | G

]

+Et

[∣∣N̂ − e−ρ2/2
∣∣ · ∣∣ΔS2 LogN̂ ∣∣1T c | G

]
(170)

which represents the starting point for the proof at issue. To bound the term |N̂ |, use
(141), (145), (80), (148) and (153) to write

∣∣N̂ (ρ;u)
∣∣1T (u)c ≤ c(N )e−ρ2/6 (171)

for ρ in [0,R], with c(N ) := exp{ 1
16 c0(R) + |�(− 19

128 )|k0(w)}. As to the term con-
taining the gradient, an application of the triangular inequality in (145) shows that

Et

[∣∣∣∣
∣∣∣
∣∣∣∇S2 LogN̂ (ρ;u)

∣∣∣
∣∣∣2
S2

∣∣∣∣ | G
]
≤ ρ4ZG(u)+ 1

9
ρ6

×Et

⎡
⎢⎣
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
ν∑

j=1

π3
j,ν∇S2

∫

R3

[ψ j,ν(u) · v]3μ0(dv)

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

S2

| G
⎤
⎥⎦+ 4E1 + 4E2 (172)

for (ρ,u) in [0,R]×�, where E1 and E2 are conditional expectations, to be specified
below, involving the remainders R j and �(w j )w

2
j respectively. As to the second

summand, the convexity of the square of the Riemannian length entails

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
ν∑

j=1

π2
j,ν

⎛
⎜⎝π j,ν∇S2

∫

R3

[ψ j,ν · v]3dμ0

⎞
⎟⎠
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

S2

≤ W sup
j,u

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
∇S2

∫

R3

[ψ j,ν · v]3dμ0

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

2

S2

≤ W

⎛
⎜⎝

∫

R3

sup
j,u

||∇S2 [ψ j,ν · v]3 ||S2 dμ0

⎞
⎟⎠

2

.

To evaluate the last integral, recall that ψ j,ν is given by (29) with the proper choice
of B as in (90)–(91), which makes ψ j,ν : � → S2 smooth. Writing the gradient in
coordinates yields

sup
j,u

||∇S2 [ψ j,ν(u) · v]3 ||S2

= sup
j,(u,v)

[
(∂u[ψ j,ν(h(u, v)) · v]3)2 + 1

sin2 u
(∂v[ψ j,ν(h(u, v)) · v]3)2

]1/2

.
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Since 1/ sin2 u ≤ 4(2 +√
3) for every (u, v) in D, (154) leads to⎛

⎜⎝
∫

R3

sup
j=1,...,ν

u∈�
||∇S2 [ψ j,ν(u) · v]3 ||S2 μ0(dv)

⎞
⎟⎠

2

≤ 27(9 + 4
√

3)m2
3.

The terms E1 and E2 in (172) can be derived as uniform bounds w.r.t. u by writing∣∣∣
∣∣∣∇S2 LogN̂ (ρ;u)

∣∣∣
∣∣∣2
S2

in coordinates, according to

E1 := sup
(u,v)

Et

⎡
⎢⎣
⎛
⎝ ν∑

j=1

|∂u R j (ρ,h(u, v))|
⎞
⎠

2

+ 1

sin2 u

⎛
⎝ ν∑

j=1

|∂vR j (ρ,h(u, v))|
⎞
⎠

2

| G
⎤
⎥⎦

E2 := sup
(u,v)

Et

⎡
⎢⎣
⎛
⎝ ν∑

j=1

|∂u�(w j (ρ,h(u, v)))w2
j (ρ,h(u, v))|

⎞
⎠

2

+ 1

sin2 u

⎛
⎝ ν∑

j=1

|∂v�(w j (ρ,h(u, v)))w2
j (ρ,h(u, v))|

⎞
⎠

2

| G
⎤
⎥⎦ .

As for E1, (156) and (157) give

sup
(u,v)

⎡
⎢⎣
⎛
⎝ ν∑

j=1

|∂u R j |
⎞
⎠

2

+ 1

sin2 u

⎛
⎝ ν∑

j=1

|∂vR j |
⎞
⎠

2
⎤
⎥⎦ ≤ 9 + 4

√
3

192
m4Wρ4 (173)

for every ρ in [0,R], the RHS being a G -measurable function. Apropos of E2, start
from (149) and notice that, in view of (153) and the complete monotonicity of �,

(|�′
(w j )| · |w j | + 2|�(w j )|) ≤

(∣∣∣∣�′
(
− 19

128

)∣∣∣∣
√

k0(w)+ 2

∣∣∣∣�
(
− 19

128

)∣∣∣∣
)

holds for every j = 1, . . . , ν, and (ρ,u) in [0,R]×�. Then, by virtue of Lyapunov’s
inequality and Theorem 19 in [43], inequalities (152), with l = 0, (161) and (163)
become

sup
(u,v)∈D

ν∑
j=1

|w j (ρ,h(u, v))|2 ≤ 16k0(w)m4Wρ4 (174)

sup
(u,v)∈D

ν∑
j=1

∣∣∣∣ ∂∂x
w j (ρ,h(u, v))

∣∣∣∣
2

≤ 613

64
m4Wρ4 (175)

sup
(u,v)∈D

ν∑
j=1

∣∣∣∣ ∂
2

∂x2w j (ρ,h(u, v))

∣∣∣∣
2

≤ 16W ∗
2 m4Wρ4 (176)
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respectively. These last inequalities, in combination with (153) and (162), entail

sup
(u,v)

⎡
⎢⎣
⎛
⎝ ν∑

j=1

|∂u�(w j )w
2
j |
⎞
⎠

2

+ 1

sin2 u

⎛
⎝ ν∑

j=1

|∂v�(w j )w
2
j |
⎞
⎠

2
⎤
⎥⎦ ≤ E2m4Wρ4

(177)
for every ρ in [0,R] with

E2 := 4(9 + 4
√

3)

(∣∣∣∣�′
(
− 19

128

)∣∣∣∣
√

k0(w)+ 2

∣∣∣∣�
(
− 19

128

)∣∣∣∣
)2 (

k0(w)+ 613

64

)2

.

This concludes the analysis of the first summand in the RHS of (170), after noting
that the upper bound provided by (177) is G -measurable. To proceed, for notational
simplicity put

A := −1

2

ν∑
j=1

π2
j,ν

⎛
⎜⎝

∫

R3

[ψ j,ν(u) · v]2μ0(dv)− 1

⎞
⎟⎠

B := − 1

3!
ν∑

j=1

π3
j,ν

∫

R3

[ψ j,ν(u) · v]3μ0(dv)

H :=
ν∑

j=1

R j (ρ,u)+
ν∑

j=1

�(w j (ρ,u))w2
j (ρ,u)

so that (141) can be re-written as N̂ = exp{−ρ2/2+ Aρ2 + i Bρ3+ H}. Observe that
Et [A2 | G ] = 1

4 Z(u) and Et [(ΔS2 A)2 | G ] = 1
4 ZL(u) hold by definition, and invoke

(95)–(96) to write

|Et [ΔS2 A | G ]| ≤ 1

2
XL(u)

|Et [ΔS2 B | G ]| ≤ 1

6
YL(u)

for every u in �. To deal with the Laplacian of H , start from the sum of the R j ’s.
After writing the Laplacian in coordinates, the combination of (156) with (158) gives

sup
u∈�

ν∑
j=1

|ΔS2 R j (ρ,u)| ≤ 105 + 53
√

3

6
m4Wρ4. (178)

Analogously, combining (174)–(176) with (153), (162) and (164) yields

sup
u

ν∑
j=1

|ΔS2�(w j (ρ,u))w2
j (ρ,u)| ≤ �(Δ)m4Wρ4 (179)
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with

�(Δ) := 4(2 +√
3)

[
16

√
613

1024

∣∣∣∣�′
(
− 19

128

)∣∣∣∣ k0(w)+ 613

1024

∣∣∣∣�
(
− 19

128

)∣∣∣∣
+16

∣∣∣∣�
(
− 19

128

)∣∣∣∣ k0(w)

]
+ (9 + 4

√
3)

[
613

64

∣∣∣∣�′′
(
− 19

128

)∣∣∣∣ k0(w)

+
∣∣∣∣�′

(
− 19

128

)∣∣∣∣ ·
(

613

16

√
k0(w)+ 16k0(w)

√
W ∗

2

)

+
∣∣∣∣�

(
− 19

128

)∣∣∣∣ ·
(

16W ∗
2 + 16k0(w)+ 613

32

)]
.

Hence, the second summand in the RHS of (170) admits the following bound:

e−ρ2/2
∣∣∣Et

[
ΔS2 LogN̂ (ρ;u) | G

]∣∣∣ ≤ 1

2
ρ2e−ρ2/2XL(u)

+1

6
ρ3e−ρ2/2YL(u)+

(
105 + 53

√
3

6
+�(Δ)

)
ρ4e−ρ2/2m4W (180)

for every (ρ,u) in [0,R]×�. Apropos of the third summand in the RHS of (170), recall
from A.9 that supu |ΔS2 LogN̂ | ≤ ρ2℘L(ρ) holds for every ρ in [0,R]. Therefore, in
view of (86), one has

e−ρ2/2Et

[
|ΔS2 LogN̂ (ρ,u)|1T | G

]
≤ 9e−ρ2/2ρ2℘L(ρ)Z(u). (181)

To deal with the last summand in the RHS of (170), a bound for
∣∣N̂ − e−ρ2/2

∣∣ can be
derived from the elementary inequalities |eix − 1| ≤ |x | and |ez − 1| ≤ |z|e|z|, valid
for every x in R and z in C, respectively. Whence, one gets

∣∣N̂ − e−ρ2/2
∣∣1T (u)c ≤ e−ρ2/6

(
|H |e|H | + |B|ρ3 + |A|ρ2

)

which, in turn, yields

∣∣N̂ − e−ρ2/2
∣∣ · ∣∣ΔS2 LogN̂ ∣∣1T (u)c ≤ e−ρ2/6

(
|H |e|H |ρ2℘L(ρ)+ |BΔS2 A|ρ5

+|BΔS2 B|ρ6 + |BΔS2 H |ρ3 + |AΔS2 A|ρ4 + |AΔS2 B|ρ5 + |AΔS2 H |ρ2
)
.

(182)

At this stage, note that supu |A| ≤ 1
2 (1+m2), supu |B| ≤ 1

6m3 and supu e|H | ≤ c(N )
for every ρ in [0,R], in view of (148) and (153). Thus, taking account of (147), (174)
and (178)–(179) gives

(
|H |e|H |ρ2℘L(ρ)+ |BΔS2 H |ρ3 + |AΔS2 H |ρ2

)
≤ ρ2℘H (ρ)m4W (183)
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with

℘H (ρ) := c(N )

(
c0(R)+ 16

∣∣∣∣�
(
− 19

128

)∣∣∣∣ k0(w)

)
ρ4℘L(ρ)

+
(

105 + 53
√

3

6
+�(Δ)

)
·
(

1

6
m3ρ

5 + 1

2
(1 +m2)ρ

4
)
.

For the remaining terms in (182), take the conditional expectation and write

Et

[
|BΔS2 A|ρ5 + |BΔS2 B|ρ6 + |AΔS2 A|ρ4 + |AΔS2 B|ρ5 | G

]

≤ 1

2

{
Et [(B2 + (ΔS2 B)2) | G ] · (ρ5 + ρ6)+ 1

4
(Z(u)+ ZL(u)) · (ρ4 + ρ5)

}
.

(184)

Then, an application of the Lyapunov inequality shows that

B2 ≤ 1

36
m2

3W (185)

(ΔS2 B)2 ≤ 1

36

⎛
⎜⎝

∫

R3

sup
j=1,...,ν

u∈�
|ΔS2 [ψ j,ν(u) · v]3|μ0(dv)

⎞
⎟⎠

2

W (186)

the two RHSs being G -measurable. To evaluate the integral in (186), it is enough to
write the Laplacian w.r.t. the coordinates (u, v) and to recall that max{1/ sin2 u, 1/
| cot u|} ≤ 4(2 +√

3) for every (u, v) in D, so that (154) leads to

∫

R3

sup
j=1,...,ν

u∈�
|ΔS2 [ψ j,ν(u) · v]3|μ0(dv) ≤ (234 + 123

√
3)m3.

There are now all the elements to complete the proof of Proposition 11 by setting, in
view of (170)–(173), (177) and (180)–(186),

z1(ρ) := c(N )e−ρ2/6

[
3(9 + 4

√
3)m2

3ρ
4 + 9 + 4

√
3

48
m4ρ

2 + 4E2m4ρ
2

]

+
(

105 + 53
√

3

6
+�(Δ)

)
m4ρ

2e−ρ2/2 +m4℘H (ρ)e
−ρ2/6

+1 + (234 + 123
√

3)2

72
m2

3(ρ
3 + ρ4)e−ρ2/6
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and

z2(ρ) := 1

2
e−ρ2/2

z3(ρ) := 1

6
ρe−ρ2/2

z4(ρ) := 9℘L(ρ)e
−ρ2/2 + 1

8
(ρ2 + ρ3)e−ρ2/6

z5(ρ) := c(N )ρ2e−ρ2/6

z6(ρ) := 1

8
(ρ2 + ρ3)e−ρ2/6.

A.12 Proof of (103) and (110)–(111)

The identities at issue are proved by induction on n. They hold true for n = 1 in view
of the following remarks. As to (103), it suffices to observe that ζ1,1 ≡ 1,ψ1,1(u) = u
and to exploit (47)–(48). Identity (110) holds thanks to η1,1 ≡ 1, ψ1,1(u) = u and the
definition of l3(u). As far as (111) is concerned, it is enough to observe that π1,1 ≡ 1
and ψ1,1(u) = u. When n ≥ 2, one has to verify the identities

∫

(0,2π)n−1

[(
B(u)O∗

j,n(tn,ϕ, θ)e3 · es

)2 − 1

3

]
u⊗n−1
(0,2π)(dθ) =

(
(u · es)

2 − 1

3

)
ζ ∗j,n(tn,ϕ),

∫

(0,2π)n−1

∫

R3

[(
B(u)O∗

j,n(tn,ϕ, θ)e3 · v
)3 − 3

5
|v|2

(
B(u)O∗

j,n(tn,ϕ, θ)e3 · v
)]

u⊗n−1
(0,2π)(dθ)μ0(dv) = l3(u)η∗j,n(tn,ϕ),∫

(0,2π)n−1

(
B(u)O∗

j,n(tn,ϕ, θ)e3 · es

)
u⊗n−1
(0,2π)(dθ) = (u · es)π

∗
j,n(tn,ϕ)

for every s = 1, 2, 3, tn in T(n), ϕ in [0, π ]n−1, u in S2 and every choice of B as in
(29). After recalling the definition of the k-th Legendre polynomial Pk , all the above
equalities can be deduced from the common formula

∫

(0,2π)n−1

Pk

(
B(u)O∗

j,n(tn,ϕ, θ)e3 · ξ
)

u⊗n−1
(0,2π)(dθ) = Pk(u · ξ) f (k)j,n (tn,ϕ). (187)

Here, ξ denotes any unit vector while, for any k in N, f (k)1,1 (t1,∅) ≡ 1 and

f (k)j,n (tn,ϕ) :=
⎧⎨
⎩

f (k)j,nl
(tln,ϕ

l)Pk(cosϕn−1) for j = 1, . . . , nl

f (k)j−nl ,nr
(trn,ϕ

r )Pk(sin ϕn−1) for j = nl + 1, . . . , n.
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It is worth noting that f (1)j,n = π∗j,n , f (2)j,n = ζ ∗j,n and f (3)j,n = η∗j,n . Now, in view of the
same argument used in Sect. 2.1 to verify that (41) and (42) are equal, one gets

∫

(0,2π)n−1

[
B(u)O∗

j,n(tn,ϕ, θ)e3 · ξ
]m

dθ =
∫

(0,2π)n−1

[
q j,n(tn,ϕ, θ ,u) · ξ

]m dθ

for any unit vector ξ and m in N, which implies that the LHS of (187) can be written
as
∫
(0,2π)n−1 Pk(q j,n(tn,ϕ, θ ,u) · ξ)u⊗n−1

(0,2π)(dθ). Taking j in {1, . . . , nl}, (43) and the
inductive hypothesis yield

∫

(0,2π)n−1

Pk(q j,n(tn,ϕ, θ ,u) · ξ)u⊗n−1
(0,2π)(dθ)

=
∫

(0,2π)

∫

(0,2π)nl−1

Pk(q j,nl (t
l
n,ϕ

l , θ l ,ψ l(ϕn−1, θn−1,u)) · ξ)

u
⊗nl−1

(0,2π)(dθ
l)u(0,2π)(dθn−1)

= f (k)j,nl
(tln,ϕ

l)

∫

(0,2π)

Pk(ψ
l(ϕn−1, θn−1,u) · ξ)u(0,2π)(dθn−1).

Then, one can write ξ as cosβ sin αa(u) + sin β sin αb(u) + cosαu for a suitable
(α, β) in [0, π ] × [0, 2π), so that ψ l · ξ = sin ϕ sin α cos(θ −β)+ cosϕ cosα. Then,
in view of the well-known addition theorem for the Legendre polynomials (see, e.g.,
(VII’) on page 268 of [59]),

∫

(0,2π)

Pk(ψ
l(ϕn−1, θn−1,u) · ξ)u(0,2π)(dθn−1) = Pk(u · ξ)Pk(cosϕn−1)

which completes the proof of (187) for j ≤ nl , thanks to the definition of f (k)j,n . The
proof is completed by applying, mutatis mutandis, this very same argument to the case
j > nl .

A.13 Proof of (124)

The main aim is to find a recursive inequality—reminiscent of (138)—for the condi-
tional expectation

Aλ(ν, τν; k, s) := Et

⎡
⎢⎣
⎛
⎜⎝

∫

�k

∣∣D ′
Sk,s

∣∣2uS2(du)− λ
ν∑

j=1

π4
j,ν

⎞
⎟⎠ ∣∣ ν, τν

⎤
⎥⎦

where λ is a positive parameter. For the sake of notational simplicity, the following
devices will be adopted: Omission of the asterisks appearing in (22) and (27); removal
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of indices (k, s) in Aλ(ν, τν; k, s) and of the subscript k in�k and Bk ; introduction of
the symbolsϕ, θ ,ϕ, θ to indicate (ϕ1, . . . , ϕn), (θ1, . . . , θn), (ϕ1, . . . , ϕn−1), (θ1, . . . ,

θn−1) respectively. In this notation one can write

Aλ(n + 1, tn,k) =
∫

[0,π ]n

∫

(0,2π)n

∫

�

∣∣∣∣D ′
n+1∑
j=1

π2
j,n+1(tn,k,ϕ)

[
3

(
B(u)

×O j,n+1(tn,k,ϕ, θ)e3 · es

)2

− 1

]∣∣∣∣
2

uS2(du)u⊗n
(0,2π)(dθ)β

⊗n (dϕ)

−λ
∫

[0,π ]n

⎡
⎣n+1∑

j=1

π4
j,n+1(tn,k,ϕ)

⎤
⎦β⊗n (dϕ). (188)

The concept of germination explained in Sect. 1.5 is used to express the π ’s and the
O’s relative to tn,k in terms of the π ’s and the O’s associated with tn according to

π j,n+1(tn,k,ϕ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π j,n(tn,  [tn, k]ϕ) for j < k

πk,n(tn,  [tn, k]ϕ) cosϕh for j = k

πk,n(tn,  [tn, k]ϕ) sin ϕh for j = k + 1

π j−1,n(tn,  [tn, k]ϕ) for j > k + 1

(189)

and

O j,n+1(tn,k,ϕ, θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

O j,n
(
tn,  [tn, k]ϕ,  [tn, k]θ

)
for j < k

Ok,n
(
tn,  [tn, k]ϕ,  [tn, k]θ

)
Ml(ϕh, θh) for j = k

Ok,n
(
tn,  [tn, k]ϕ,  [tn, k]θ

)
Mr (ϕh, θh) for j = k + 1

O j−1,n
(
tn,  [tn, k]ϕ,  [tn, k]θ

)
for j > k + 1

(190)

where  [tn, k] : {1, . . . , n − 1} → {1, . . . , n} is an injection depending on tn and k,
while h is the element of {1, . . . , n} excluded from the range of  [tn, k]. If k = 1 (n,
respectively) the first line (the last line, respectively) in (189)–(190) must be omitted.
Therefore, the terms in (188) become

n+1∑
j=1

π2
j,n+1(tn,k,ϕ)

[
3
(

B(u)O j,n+1(tn,k,ϕ, θ)e3 · es

)2 − 1
]

=
n∑

j=1

π2
j,n(tn,  [tn, k]ϕ)

[
3
(

B(u)O j,n(tn,  [tn, k]ϕ,  [tn, k]θ)e3 · es

)2 − 1
]

−3π2
k,n(tn,  [tn, k]ϕ)

(
B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)e3 · es

)2

+3 cos2 ϕhπ
2
k,n(tn,  [tn, k]ϕ)

(
B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)
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×Ml(ϕh, θh)e3 · es

)2 + 3 sin2 ϕhπ
2
k,n(tn,  [tn, k]ϕ)

×
(

B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)Mr (ϕh, θh)e3 · es

)2
(191)

and

n+1∑
j=1

π4
j,n+1(tn,k,ϕ) =

n∑
j=1

π4
j,n(tn,  [tn, k]ϕ)

−2 cos2 ϕh sin2 ϕhπ
4
k,n(tn,  [tn, k]ϕ). (192)

At this stage, apply the operator D
′
to the RHS of (191) and then consider the square

of the corresponding norm. With a view to this application, it is useful to introduce the
symbol • to indicate: The product when D

′
is either Id orΔS2 ; the scalar product when

D
′

is either ∇S2 or ∇S2ΔS2 and, when D
′

is the Hessian, for any pair of symmetric
2-forms (ω1, ω2), ω1 •ω2 stands for

∑
i j ω1(Vi , Vj )ω2(Vi , Vj ) where {V1, V2} is any

orthonormal basis of vector fields. This procedure leads to the sum of the following
three terms

T 1 :=
∣∣∣

n∑
j=1

π2
j,n(tn,  [tn, k]ϕ)D ′[

3
(

B(u)O j,n(tn,  [tn, k]ϕ,  [tn, k]θ)e3 · es

)2−1
]∣∣∣2

T 2 :=6

{ n∑
j=1

π2
j,n(tn,  [tn, k]ϕ)D ′[

3
(

B(u)O j,n(tn,  [tn, k]ϕ,  [tn, k]θ)e3 · es

)2−1
]}

•π2
k,n(tn,  [tn, k]ϕ) ·

{
− D

′(
B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)e3 · es

)2

+ cos2 ϕhD
′(

B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)Ml(ϕh, θh)e3 · es

)2

+ sin2 ϕhD
′(

B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)Mr (ϕh, θh)e3 · es

)2}

T 3 := π4
k,n(tn,  [tn, k]ϕ) ·

∣∣∣− D
′(

B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)e3 · es

)2

+ cos2 ϕhD
′(

B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)Ml(ϕh, θh)e3 · es

)2

+ sin2 ϕhD
′(

B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)Mr (ϕh, θh)e3 · es

)2∣∣∣2.

Following (188), one has to consider the integral
∫
[0,π ]n

∫
(0,2π)n

∫
�

of T 1, T 2 and T 3
respectively, as well as the integral

∫
[0,π ]n of the RHS of (192). Then, observe that
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∫

[0,π ]n

∫

(0,2π)n

∫

�

(T 1)uS2(du)u⊗n
(0,2π)(dθ)β

⊗n (dϕ)

−λ
∫

[0,π ]n

⎡
⎣ n∑

j=1

π4
j,n(tn,  [tn, k]ϕ)

⎤
⎦β⊗n (dϕ) = Aλ(n, tn) (193)

holds since the measures u⊗n
(0,2π) and β⊗n are exchangeable, i.e. invariant under per-

mutation of the coordinates. As to the integral of T 2, it is worth remarking that T 2
depends on (ϕh, θh) only through cos2 ϕh , sin2 ϕh , Ml(ϕh, θh) and Mr (ϕh, θh). There-
fore, since • behaves like the scalar product, one is led to consider the integral

2π∫

0

(
B(u)Ok,n(tn,  [tn, k]ϕ,  [tn, k]θ)Me(ϕh, θh)e3 · es

)2
u(0,2π)(dθh)

which, after putting ξ := (BOk,n)
t es , becomes

2π∫

0

(
Ml(ϕh, θh) e3 · ξ

)2
u(0,2π)(dθh) = 1

2
sin2 ϕh +

(
1 − 3

2
sin2 ϕh

)
ξ2

3

when e = l and

2π∫

0

(
Mr (ϕh, θh) e3 · ξ

)2
u(0,2π)(dθh) = 1

2
cos2 ϕh +

(
1 − 3

2
cos2 ϕh

)
ξ2

3

when e = r . At this stage, the identities

−ξ2
3 + cos2 ϕh sin2 ϕh + cos2 ϕh

(
1 − 3

2
sin2 ϕh

)
ξ2

3

+ sin2 ϕh

(
1 − 3

2
cos2 ϕh

)
ξ2

3 = − cos2 ϕh sin2 ϕh(3ξ
2
3 − 1)

and
∫ π

0 (−6 cos2 ϕh sin2 ϕh)β(dϕh) = 3Λb show that

n∑
k=1

∫

[0,π ]n

∫

(0,2π)n

∫

�

(T 2)uS2(du)u⊗n
(0,2π)(dθ)β

⊗n (dϕ)

= 3Λb

∫

[0,π ]n

∫

(0,2π)n

∫

�

(T 1)uS2(du)u⊗n
(0,2π)(dθ)β

⊗n (dϕ).
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Whence, thanks to (193), one gets

n∑
k=1

∫

[0,π ]n

∫

(0,2π)n

∫

�

(T 2)uS2(du)u⊗n
(0,2π)(dθ)β

⊗n (dϕ)

= 3ΛbAλ(n, tn)+ 3λΛb

∫

[0,π ]n−1

⎡
⎣ n∑

j=1

π4
j,n(tn,ϕ)

⎤
⎦β⊗n−1(dϕ). (194)

Moreover, for the term −2 cos2 ϕh sin2 ϕhπ
4
k,n(tn,  [tn, k]ϕ) in (192), one has

−λ
n∑

k=1

∫

[0,π ]n
(−2 cos2 ϕh sin2 ϕh)π

4
k,n(tn,  [tn, k]ϕ)β⊗n (dϕ)

= −λΛb

∫

[0,π ]n−1

⎡
⎣ n∑

j=1

π4
j,n(tn,ϕ)

⎤
⎦β⊗n−1(dϕ). (195)

Combining (193)–(195) yields

1

n

n∑
k=1

Aλ(n+1, tn,k)=
(

1+ 3Λb

n

)
Aλ(n, tn)+ 2λΛb

n

∫

[0,π ]n−1

⎡
⎣ n∑

j=1

π4
j,n(tn,ϕ)

⎤
⎦β⊗n−1(dϕ)

+ 1

n

n∑
k=1

∫

[0,π ]n

∫

(0,2π)n

∫

�

(T 3)uS2 (du)u⊗n
(0,2π)(dθ)β

⊗n (dϕ). (196)

Then, it remains to consider the term containing T 3 by showing that there exists a
value λ0 = λ0(D

′
) such that

2λΛb

∫

[0,π ]n−1

⎡
⎣ n∑

j=1

π4
j,n(tn,ϕ)

⎤
⎦β⊗n−1(dϕ)

+
n∑

k=1

∫

[0,π ]n

∫

(0,2π)n

∫

�

(T 3)uS2(du)u⊗n
(0,2π)(dθ)β

⊗n (dϕ) ≤ 0 (197)

for every λ ≥ λ0, n ≥ 2, tn in T(n) and s = 1, 2, 3. In fact, the LHS can be written as

n∑
k=1

∫

[0,π ]n
π4

k,n(tn,  [tn, k]ϕ)
{

2λΛb +
∫

(0,2π)n

∫

�

cos2 ϕh sin2 ϕh

∣∣∣D ′[
et

sB(u)Ok,n
(
tn,  [tn, k]ϕ,  [tn, k]θ

)
K(ϕh, θh)

×Ok,n
(
tn,  [tn, k]ϕ,  [tn, k]θ

)t B(u)t es
]∣∣∣2uS2(du)u⊗n

(0,2π)(dθ)

}
β⊗n (dϕ)
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where

K(ϕ, θ) :=
⎛
⎝ 2 cos2 θ cosϕ sin ϕ 2 cos θ sin θ cosϕ sin ϕ cos θ(cos2 ϕ − sin2 ϕ)

2 cos θ sin θ cosϕ sin ϕ 2 sin2 θ cosϕ sin ϕ sin θ(cos2 ϕ − sin2 ϕ)

cos θ(cos2 ϕ − sin2 ϕ) sin θ(cos2 ϕ − sin2 ϕ) −2 cosϕ sin ϕ

⎞
⎠ .

Then, after putting R = (ri j )i j := Ok,nKOt
k,n and f (s)i j (u) :=

(
es · B(u)ei

)(
es ·

B(u)e j
)
, one notes that

∣∣∣∣∣∣D
′ ∑

i j

ri j f (s)i j (u)

∣∣∣∣∣∣
2

≤ 9
∑

i j

|ri j |2
∣∣D ′

f (s)i j (u)
∣∣2

and that maxi j |ri j |2 ≤ ||Ok,n ||4∗ · ||K ||2∗≤ 36. Whence,

n∑
k=1

∫

[0,π ]n
π4

k,n(tn,  [tn, k]ϕ)

⎧⎪⎨
⎪⎩2λΛb +

∫

(0,2π)n

∫

�

cos2 ϕh sin2 ϕh

∣∣∣D ′[
et

sB(u)Ok,n
(
tn,  [tn, k]ϕ,  [tn, k]θ

)
K(ϕh, θh)

×Ok,n
(
tn,  [tn, k]ϕ,  [tn, k]θ

)t B(u)t es
]∣∣∣2uS2(du)u⊗n

(0,2π)(dθ)

⎫⎪⎬
⎪⎭β

⊗n (dϕ)

≤
n∑

k=1

∫

[0,π ]n
π4

k,n(tn,  [tn, k]ϕ)

×
⎧⎨
⎩2λΛb + 324 cos2 ϕh sin2 ϕh

∫

�

∑
i j

∣∣D ′
f (s)i j (u)

∣∣2uS2(du)

⎫⎬
⎭β⊗n (dϕ)

and the RHS is zero when λ = λ0(D
′
) := 81

∫
�

∑
i j

∣∣D ′
f (s)i j (u)

∣∣2uS2(du), thanks to

the fact that
∫ π

0 cos2 ϕh sin2 ϕhβ(dϕh) = − 1
2Λb. Therefore, in view of (196)–(197),

1

n

n∑
k=1

Aλ0(n + 1, tn,k) ≤
(

1 + 3Λb

n

)
Aλ0(n, tn)

holds for any n ≥ 2. This inequality entails aλ0(n + 1) ≤ (1 + 3Λb
n )aλ0(n), where

aλ(ν) := Et

[
Aλ(ν, τν)

∣∣ ν]. At this stage, the same argument developed in A.1 shows

that

aλ0(n) ≤
2aλ0(2)

2 + 3Λb
· Γ (n + 3Λb)

Γ (n)Γ (2 + 3Λb)
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holds for every n ≥ 2, since 2 + 3Λb > 0 for any choice of b satisfying (2)–(3).
Whence,

Et

⎡
⎢⎣
∫

�k

∣∣D ′
Sk,s

∣∣2uS2(du)

⎤
⎥⎦ ≤ aλ0(1)e

−t + aλ0(2)e
−t e(1+3Λb)t − 1

1 + 3Λb
+ λ0eΛbt

is valid for every t ≥ 0 with the proviso that e(1+3Λb)t−1
1+3Λb

:= t when Λb = −1/3,
concluding the proof.
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