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Abstract
PA-X, a fusion protein belonging to influenza A viruses (IAVs), integrating the N-terminal 191 amino acids of PA gene and 
the ribosomal frame-shifting product that lengthens out to 41 or 61 amino acids. Since its discovery in 2012, multiple func-
tions have been attributed to this small protein, including a process, where wide-spread protein synthesis in infected host 
cells is shut down (called host shutoff), and viral replication, polymerase activity, viral-induced cell apoptosis, PA nuclear 
localization, and virulence are modulated. However, many of its proposed functions may be specific to strain, subtype, host, 
or cell line. In this review, we start by describing the well-defined global host-shutoff ability of PA-X and the potential 
mechanisms underlying it. We move on to the role played by PA-X in modulating innate and acquired immune responses 
in the host. We then systematically discuss the role played by PA-X in modulating the virulence of influenza viruses of dif-
ferent subtypes and host origins, and finish with a general overview of the research advances made in identifying the host 
cell partners that interact with PA-X. To uncover possible clues about the differential effects of PA-X in modulating viral 
virulence, we focus on systemically evaluating polymorphisms in PA-X from various viral subtypes and hosts, including 
avian and human H5N1, H5N6, H9N2, and H7N9 viruses. Finally, we conclude with a proposition regarding the possible 
future research directions for this important protein.
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JEV  Japanese encephalitis virus
CCHFV  Crimean-congo hemorrhagic fever virus
HIV  Human immunodeficiency virus
HPAIV  Highly pathogenic avian influenza virus
LPAIV  Low pathogenic avian influenza virus

Introduction

Influenza A virus (IAV) is the most diverse and epidemiologi-
cally significant pathogen associated with severe disease mani-
festations in humans [1]. Wild aquatic birds are the natural res-
ervoirs for IAV, but it can infect a variety of animals, including 
poultry, aquatic animals (e.g., seals, dolphins, and whales) and 
terrestrial mammals (e.g., humans, horses, pigs, mink, cats, 
dogs, and tigers) [2, 3]. Two common mechanisms are used 
by IAV to cross the host barrier and acquire high virulence in 
various animals. One mechanism involves the acquisition of 
adaptive mutations and/or genetic reassortment, a well-known 
strategy used by several pandemic viruses, including H1N1 
(1918 Spanish flu), H2N2 (1957 Asian flu), H3N2 (1968 Hong 
Kong flu), H1N1 (2009 pandemic), and H7N9 (2013 Chinese 
epidemic) [4–8]. Another virulence mechanism is where mul-
tiple viral accessory proteins are encoded on a single gene 
segment. The IAV genome comprises eight negative-sense 
RNA segments that were initially assumed to encode the fol-
lowing ten proteins: polymerase basic proteins 1 (PB1) and 2 
(PB2), polymerase acidic protein (PA), nucleoprotein (NP), 
hemagglutinin (HA), neuraminidase (NA), matrix proteins 1 
(M1) and 2 (M2), and non-structural proteins 1 (NS1) and 2 
(NS2). However, over the past 16 years, another seven novel 
proteins have been gradually discovered, including PB1-F2 
[9], PB1-N40 [10], PA-X [11], M42 [12], NS3 [13], PA-N155, 
and PA-N182 [14]. Among these accessory proteins, PB1-F2 
and PA-X, have been extensively studied and found to share 
some similarities in modulating virulence in IAV.

Here, we review current knowledge on the PA-X protein, 
including the polymorphism characteristics among the differ-
ent virus subtypes and host species, host-shutoff activity, the 
role of PA-X in modulating host innate and adaptive responses, 
the contribution of PA-X to the pathogenesis of IAV, and pro-
vide a summary of known PA-X host partners. Finally, we 
propose several potential research areas that may accelerate 
understanding about the role played by this novel protein 
during influenza virus infections, especially for outbreaks of 
human infections with emerging IAVs, such as H7N9 virus.

Polymorphisms in the PA‑X protein 
from viruses with different subtypes 
and host origins

The PA-X protein is a fusion protein with an N-terminal 191 
amino acid leader sequence originating from PA and a C-ter-
minal region of 61 or 41 codons encoded by an overlapping 
open-reading frame (ORF) (“X-ORF”), which is accessed 
by one ribosomal frame shift in the PA gene (Fig. 1). Based 
on the lineage-specific differences in the distribution of 
X-ORF lengths, two major X-ORF groups have been clas-
sified [11, 15]. About 75% of the isolates have a 61-codon 
X-ORF, which basically covers all host species and HA/NA 
subtypes [15]. The remaining 25% carry the truncated form 
of PA-X, where a 41-codon X-ORF created by nonsense 
mutations occurs mainly at codon 42 [15]. These truncated 
PA-X proteins overwhelmingly come from the 2009 human 
pandemic H1N1 virus, the triple reassortant swine H1N1 
virus (a cluster of classic swine H1N1 viruses), equine 
H7N7, canine H3N8, canine H3N2, and bat influenza virus 
[15]. Of note, it has been shown that the truncated form 
of PA-X evolved convergently in viruses from pigs or dogs 
(H3N2 and H3N8), suggesting that it is associated with the 
adaptation and emergence of influenza virus in these host 
species [15].

Global host‑shutoff activity by the PA‑X 
protein

Influenza virus infection results in a rapid decline of global 
host protein synthesis in infected cells, a process known as 
host shutoff. This process allows the virus to escape host 
innate immune recognition and shut down host antigen pro-
cessing to subvert acquired immunity, enabling it to escape 
host restriction and promote its multiplication and spread. It 
has been shown that multiple mechanisms are related to host 
shutoff in IAV-infected cells. However, recent studies have 
focused on the following three main mechanisms of global 
inhibition of host protein expression by IAV infection: (1) 
blockade of cellular mRNA processing and nuclear export 
by NS1 [16–19]; (2) degradation of host RNA Pol II by 
the viral RNA-dependent RNA polymerase RdRp complex 
(RdRP) [20–22]; and (3) wide-spread host mRNA degrada-
tion by the PA-X protein [11, 23–31]. In this review, we 
focus mainly on the shutoff activity of PA-X protein.

Discovery of host‑shutoff ability by the PA‑X protein

By co-transfecting reporter plasmids that encode 
β-galactosidase or the 1918 NP gene together with the wild 
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type or the PA-X-deficient 1918 PA segment, Jagger et al. 
were the first researchers to discover that PA-X can medi-
ate the suppression of plasmid-driven gene expression [11]. 
Using global transcriptional profiling, they further demon-
strated that down-regulation of PA-X expression leads to 
an accelerated global host response in virus-infected mouse 
lungs, notably inflammatory, apoptotic, and T lymphocyte 
responses [11]. Many later studies have also reported on PA-
X-mediated host-shutoff activity in human H1N1 virus [23, 
26, 27, 29, 32–34], avian H9N2 virus [35], avian H5N1 virus 
[24, 36], equine influenza virus (EIV) and canine influenza 
virus (CIV) of the H3N8 subtype [37], swine H1N2 influ-
enza virus [38], and triple-reassortment (TR) H1N2 swine 
influenza virus (SIV) [39]. Therefore, the universal expres-
sion of PA-X in IAVs and the relatively conservative genetic 
characteristics of the X-ORF suggest that the shutoff ability 
of the PA-X protein may also be a common functionality 
in all influenza virus strains. However, further studies are 
needed to verify this hypothesis in viruses with different 
subtypes and in various host cell lines.

Functional domains of the host‑shutoff activity 
in the PA‑X protein

The previous studies have shown the involvement of the PA 
protein in host-shutoff activity; however, the potential func-
tion domains could only be mapped after PA-X was discov-
ered [11]. The common mechanism used for host-shutoff 

activity, as shared by PA and PA-X, has been ascribed to 
the N-terminal RNA endonuclease domain of these pro-
teins, taking the form of PD(D/E)XK (P107 D108 × 10 E119 
K134) in the nuclease family (Fig. 1) [11, 23, 30, 40, 41]. 
However, over time, other molecular mechanisms also have 
been shown to be involved in this process. Very early on, 
Desmet et al. showed that the N-terminal domain of the PA 
protein is responsible for host shutoff; specifically, helix 4 
(amino acids 85, 86, 91, 100, 114, and 186) and the 51–74 
amino acid flexible loop (Fig. 1) [23]. These researchers 
also found that the PA-X C-terminal sequence also plays 
a role in suppressing expression of the reporter gene [23]. 
Thereafter, two independent studies demonstrated that the 
initial 15 amino acids (positions 192–206) in the PA-X 
C-terminal region are sufficient for the full shutoff activity 
of PA-X and that six basic amino acids (195R, 198K, 199R, 
202K, 203K, and 206K) also play a key role (Fig. 1) [26, 
27]. However, differing significantly from these findings, 
three other studies reported on the contribution made by the 
last 20 C-terminal residues in PA-X-mediated shutoff activ-
ity (Fig. 1). In 2015, Gao et al. reported that amino acids 
covering 233–252 of the PA-X C-terminus also strongly 
suppress gene expression and enhance viral replication and 
virulence in three different strains (human pandemic H1N1 
2009, avian H5N1, and avian H9N2) [32]. Simultaneously, 
Bavagnoli et al. also provided direct evidence that the last 
20 amino acids in the PA-X C-terminal region are important 
for endonuclease activity, and this was assumed to contribute 

Fig. 1  Proposed mechanism 
of PA-X protein formation and 
the functional area in PA-X. 
The PA-X open-reading frame 
encodes either 61 or 41 amino 
acids as indicated. In addition, 
the X-ORF product lies largely 
within a linker region between 
the PA N- and C-terminal 
domains. The frame-shifting 
motif locates in the sequence 
of UCC UUU CGUC , after 
shifting, the sequence changed 
to UUC GUC . Functional 
domains are distinguished by 
shape and color: blue bar (areas 
that important for host-shutoff 
activity) and red ellipse (areas 
that important for endonuclease 
activity)
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to host shutoff by the virus (Fig. 1) [42]. Moreover, unlike 
the specific role played by PA in cutting single-stranded 
(ss)RNA, PA-X is capable of digesting both ssRNA and 
double-stranded (ds)RNA, with a preference for ssRNA 
substrates, such as poly r(A) or poly r(U), which suggests 
that PA-X has a wide-spread degradation ability for vari-
ous host RNAs [42]. Consistent with the results from both 
these studies, by comparing the PA-X proteins from EIV 
and CIV H3N8 viruses, Feng et al. found that position 231 
(Ser) and the C-terminal elongated tail both contribute to 
the stronger host-shutoff ability of EIV PA-X relative to CIV 
PA-X [37]. Collectively, these studies reveal that both the 
N- and C-termini of PA-X contribute to its overall shutoff 
ability. Quite recently, by expressing PA-X in yeast, Oishi 
et al. further mapped 22 new amino acid mutations (includ-
ing sites located in the endonuclease active sites, such as 
P107S, D108N, and E119N) that contribute to a decrease in 
shutoff activity [43]. However, further studies are needed to 
elucidate the potential mechanisms related to host-shutoff 
regulation by these newly identified amino acids.

Potential regulatory mechanism for host shutoff 
in the PA‑X protein

PA-X selectively targets cellular mRNAs while sparing 
viral mRNAs, thereby ensuring successful viral replication 
while defeating an effective anti-viral response in the host. 
The mechanism involved has been partially elucidated 
by Khaperskyy et al. who found that PA-X selectively 
degrades host RNA polymerase II (Pol II)-transcribed 
mRNA by interacting with the host’s 5′->3′ Xrn1 exonu-
clease activity and that PA-X likely operates in the cell 
nucleus [29]. Moreover, the shutoff activity is strongly 
associated with nuclear accumulation of the PA-X pro-
tein, with the process majorly mediated by four conserved 
basic residues (198K, 199R, 202K, and 203K) in X-ORF 
[29]. In addition, unlike herpes simplex virus 1 (HSV-
1) vhs protein [44] and SARS nsp1 protein [45], which 
all selectively degrade translatable RNA polymerase II 
(Pol II) transcripts, PA-X also targets Pol II synthesized 
non-coding RNAs for degradation, highlighting the dis-
tinct features of PA-X in mediating host shutoff. Simi-
larly, Hayashi et al. also found that the first nine amino 
acids are sufficient for nuclear localization and that three 
basic amino acids (195K, 198K, and 199R) are key resi-
dues for host shut off ability and nuclear accumulation in 
PA-X [27]. Therefore, taking the results from the two stud-
ies together, it seems likely that 198K and 199R are the 
crucial residues controlling the localization of PA-X and 
both are correlated with host-shutoff function. However, 
contrasting with the results from the Khaperskyy et al.’s 
study, Hayashi et al. showed that PA-X can degrade mature 
mRNAs synthesized in the nucleus and cytoplasm alike 

and that destruction of mRNA by PA-X in the nucleus was 
more efficient than in the cytoplasm, thereby revealing 
the multiple functional sites of action for PA-X-specific 
mRNA degradation [27].

Concerted effect of PA‑X and NS1 in host shutoff 
and pathogenicity

Another well-characterized host-shutoff mechanism 
employed by IAV is the NS1-mediated blockade of the 
cleavage and polyadenylation specificity factor (CPSF) 
function observed in some strains from humans, which 
is one of the hallmarks of adaptation to humans by IAV 
[16–19]. NS1 is involved in the early nuclear phase of the 
host shutoff, whereas PA-X participates in the late cyto-
plasmic phase of this process [28]. In the nuclear stages, 
another mechanism used by IAV is the cap-snatching 
activity of viral RDRP, which targets host pre-mRNAs 
to supply capped primers for viral transcription [20–22]. 
Early on in the viral infection, these three host-shutoff 
mechanisms act in concert to inhibit the host cell’s abil-
ity to initiate an effective anti-viral response. In the late 
period of the infection, IAV induces host cell apoptosis, 
thereby completely eliminating the ability of the host cell 
to synthesize new proteins for its own use. When con-
sidering the role of NS1 and PA-X in viral pathogenicity 
and host shutoff, it is very interesting to see the combined 
effects of them in modulating viral virulence. Therefore, 
recently, Nogales et al. investigated the interplay of PA-X 
and NS1-mediated host shutoff in viral replication and 
pathogenesis using a temperature-sensitive 2009 pan-
demic H1N1 virus [31]. These researchers found that 
viruses that simultaneously encode PA-X and NS1, or are 
deficient in both proteins, are highly attenuated in vivo, 
suggesting that there is a strict balance between NS1 and 
PA-X proteins during host gene expression regulation, 
viral replication, and pathogenesis. Therefore, it seems 
likely that optimal control of host protein synthesis by 
IAV PA-X and/or NS1 protein contributes to efficient virus 
replication and, consequently, to virulence, a hypothesis 
strengthened by the findings that wide-spread host mRNA 
degradation by PA-X only occurs during the late infection 
stage for IAV [28]. However, additional studies examin-
ing the concerted effect of NS1 and PA-X in inhibiting 
host protein expression in different viral strains need to 
be undertaken to augment our current understanding of 
IAV-associated host shutoff and provide new clues about 
the role played by PA-X in viral replication, pathogenesis, 
and host adaptation.
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Role of PA‑X in modulating the host’s innate 
and acquired immune responses

PA‑Xs role in modulating the host’s innate immune 
response

Jagger et al. were the first researchers to show that down-
regulation of PA-X expression markedly elevated the 1918 
H1N1-induced immune response in mouse lungs; specifi-
cally that IFN-γ, CCR5, CD28, IL-7, and IL-15 signaling 
pathways, which are associated with lymphocyte activa-
tion and/or proliferation or other aspects of cell-mediated 
immunity, were enhanced [11]. PA-X also markedly sup-
presses several major histocompatibility complex class 
I-associated genes and activates many integrins and extra-
cellular matrix components [11]. All of these perturbations 
in host response pathways may further affect lymphocyte 
activation and immune cell function, leading to an aberrant 
immune response and subsequent host immunopathology 
[46]. Similarly, using microarray analysis, our previous 
study also found that loss of PA-X expression significantly 
activates the global host response of the H5N1 influenza 
virus in chicken lungs, especially the inflammatory and 
cell death response [24]. Other studies have also shown 
that decreased PA-X expression clearly elevates the host 
innate immune response in mouse lungs infected with 
avian H5N1 virus [36], human 2009 pandemic H1N1 virus 
[33, 34, 36], and in porcine alveolar macrophages (PAM) 
cells infected with swine H1N2 virus [39]. In contrast, 
Gao et al. showed that loss of PA-X expression in H9N2 
virus inhibits proinflammatory cytokine and chemokine 
responses [35]. Elsewhere, by transfecting plasmids 
expressing only PA-X in cell cultures, Feng et al. found 
that PA-X markedly elevated a number of genes, notably, 
innate immune response-related genes, ubiquitin ligases, 
vesicle transport and budding-related genes, and the genes 
associated with protein post-translational modifications in 
the Golgi complex [37]. Therefore, it seems likely that the 
inhibition effect of PA-X on the innate immune response 
is strain-specific or subtype-specific.

PA‑Xs role in modulating the host’s acquired 
immune response

To investigate the effect of PA-X on the humoral immune 
response, Hayashi et al. systematically compared serum 
antibodies from mice infected with wild-type viruses (A/
California/04/09, H1N1, or Cal) and the PA-X-deficient 
Cal PA-XFS virus. They found that the Cal PA-XFS virus 
stimulated more neutralizing antibodies and higher lev-
els of anti-HA and anti-NP antibodies than the wild-type 

virus, suggesting that the shutoff activity of the PA-X pro-
tein may also be involved in dampening down the host’s 
humoral immune response [33].

Other immunomodulatory proteins in influenza 
viruses

Considering the universal role for PA-X in modulating the 
host’s innate and adaptive immune responses, undoubtedly, 
PA-X can be classified as an immunomodulatory protein. 
As mentioned already, NS1 is another well-characterized 
immunomodulatory protein [47–50]. NS1 is a relatively 
small polypeptide with various interesting functions, one of 
which is its ability to antagonize the innate immune response 
by inhibiting the type I interferon system at multiple levels. 
NS1 acts as an antagonist during various stages of the anti-
viral response, including (1) pre-transcriptional inhibition 
of interferon expression by interacting with components of 
the retinoic acid-induced gene protein I (RIG-I) signaling 
axis [47, 51–56], (2) co- and post-transcriptional inhibition 
by limiting host gene expression by blocking the cellular 
pre-mRNAs 3′ end-processing factor CPSF30 [19, 48, 55, 
57–59], and (3) post-translational inhibition of anti-viral 
genes by antagonizing the PKR Ser/Thr kinase [60–64] and 
the OAS RNAse L-pathway activator [62].

IAV also encodes several proteins (PB1-F2, PB2, PA, and 
M2) that have been identified as affecting the host’s innate 
immune response to a certain degree. PB1-F2 blocks the 
IFN response by interacting directly with the components 
(RIG-I/MAVs protein complex) of the interferon pathway 
[65, 66]. PB1-F2 also promotes the inflammatory response 
and contributes to viral virulence and the acquisition of sec-
ondary bacterial infections [67–71]. As for PB2 and PA, 
these two proteins affect host cell protein synthesis by facili-
tating cap snatching from host cell’s mRNAs while indi-
rectly suppressing the host’s anti-viral response [40, 72]. 
However, PB2 also limits IFN-β expression by interfering 
with mitochondrial anti-viral signaling [73], or by inhibiting 
IFN-β promoter activation by regulating RIG-I and inter-
feron beta promoter stimulating factor-1 [74]. Along with 
its cap-snatching activity [40], PA also plays an important 
role in inhibiting host type I IFN signaling [75], as well as 
affecting cytokine production and contributing to virulence 
in H5N1 viruses [76, 77] and in seasonal H3N2 in mice 
[78]. As for the M2 ion channel, it has been shown to acti-
vate inflammasomes by stimulating the NOD-like receptor 
family pyrin domain containing 3 protein [79]. Together, 
these immunomodulatory proteins represent new potential 
targets for the development of next-generation vaccines, 
which could exhibit improved duration of protection and 
protective immunity efficacy; among them, NS1 protein is a 
well-verified example [80–82].
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Role of PA‑X in modulating influenza virus 
virulence in various animal models

Effects of loss of PA‑X expression on virulence 
in influenza virus

After the PA-X protein was discovered in 2012, the role 
played by it in modulating viral virulence has become 
gradually clearer. By generating PA-X-deficient viruses, 
accumulating numbers of studies have defined the impor-
tant role that PA-X plays in modulating viral replication 
and virulence in influenza virus. As shown in Table 1, 
PA-X actively modulates viral pathogenicity in different 
viral subtypes in various animal models, including mice 
[11, 24, 32–35, 83], chickens [24], ducks [24], and pigs 
[38, 39]. In 2012, Jagger et al. were the first group to show 
that loss of PA-X expression increases host inflammatory 
and apoptosis responses and enhances virulence in the 
1918 pandemic H1N1 virus in mice, but exerts no effect 
on viral replication in vitro or in vivo [11]. Next, several 
independent studies revealed that down-regulated PA-X 
expression enhances viral replication, polymerase activity, 
apoptosis, inflammatory response, and H5N1 virulence in 

chickens, ducks, and mice [24, 36, 84]. With the 2009 pan-
demic H1N1 virus, Gao et al. [36] and Hayashi et al. [33] 
showed that loss of PA-X expression increases viral viru-
lence in mice, whereas Leea et al. [34] found that down-
regulation of PA-X expression attenuates viral replication 
and virulence in mice. However, although the absence of 
PA-X in 2009 pandemic H1N1 increased viral pathogenic-
ity in the mice, viral replication became attenuated in both 
cultured human cells and mice [33].

Interestingly, Gao et al. [35] reported that loss of PA-X 
expression in the H9N2 virus decreased its virulence in mice 
while exerting no effect on its replication. In swine influenza 
virus, Gong et al. [83] found that down-regulation of PA-X 
expression in swine H1N1 virus enhanced the activity of 
viral polymerase in mammalian cells as well as viral replica-
tion and virulence in mice. However, Xu et al. [39] showed 
that loss of PA-X expression decreased viral replication in 
PK15, PAM cells, and pigs, and also dampened the virulence 
of swine H1N2 virus in these animals.

Thus, these studies clearly suggest that the effects of 
PA-X on viral replication and virulence are strain or host 
specific. Considering the concerted role for PA-X and NS1 
in blockading host gene expression [28, 31], we envis-
age that the precise impact of PA-X on viral growth and 

Table 1  Effects of loss of PA-X expression on influenza A virus pathogenicity

– Not carried out

Virus subtypes Replication RNP activity Apoptosis Inflammatory PA accumulation Virulence

H1N1(1918 pdm) Have no effect in 
MDCK, eggs and 
mice [11]

–, [11] Increase in mice 
[11]

Increase in mice 
[11]

–, [11] Increase in mice 
[11]

H5N1(avian) Increase in various 
mammalian and 
avian cells, and 
in mice, chickens, 
ducks [24, 35, 
84]

Increase in 293T, 
CEF, DEF cells 
[24, 35, 84]

Increase in CEF, 
DEF, MDCK and 
A549 cells [24, 
35, 84]

Increase in chick-
ens, ducks and 
mice [24, 35, 84]

Increase in MDCK 
cells [35, 84) and 
A549 cells (35]

Increase in mice, 
chickens, ducks 
[24, 35, 84]

H1N1(2009 pdm) Increase in A549 
cells and mice 
[35]; decrease 
in Calu-3 cells 
and mice [33]; 
decrease in 
MDCK, A549 
and mice [34]

Increase in 293T 
cells [35]; 
decrease in 293T 
cells [34]

Increase in A549 
cells [33–35]

Increase in mice 
[35]

Increase in A549 
cells [35]

Increase in 
mice [33, 35]; 
decrease in mice 
[34]

H9N2 (avian) Have no effect in 
MDCK and A549 
cells, decrease in 
mice [36]

–, [36] Decrease in A549 
cells [36]

Decrease in mice 
[36]

–, [36] Decrease in mice 
[36]

H1N1 (swine) Increase in MDCK, 
A549 cells and 
mice [83]

Increase in 293T 
cells [83]

–, [83] –, [83] –, [83] Increase in mice 
[83]

H1N2 (swine) Decrease in PK15, 
PAM cells and 
pigs [39]

–, [39] –, [39] Increase in PAM 
cells[39]

–, [39] Decrease in pigs 
[39]
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pathogenicity may vary among different viral strains, 
depending on the specificity and activity of the NS1 protein 
in each strain.

Effects of the C‑terminal 20 amino acids of PA‑X 
on the pathogenicity of influenza virus

The X-ORF from the PA-X protein generally contains 
either 61 or 41 amino acids. The majority of IAV strains 
have a full-length 61-codon X-ORF, while around 25% of 
them (e.g., 2009 human pandemic H1N1 virus, and triple 
reassortant swine H1N1 viruses) carry a truncated form of 
PA-X, which contains the 41-codon X-ORF [15]. To inves-
tigate the biological significance of the length of PA-X in 
influenza virus infections, Gao et al. constructed a series 
of recombinant viruses carrying full or truncated versions 
of PA-X based on pandemic 2009 H1N1, avian H5N1 and 
H9N2 viruses and systemically compared their replication 
and pathogenicity profiles in mice. The results suggested 
that the last 233–252 amino acids increased viral replication 
and virulence, strengthened the viral-induced inflammatory 
response and apoptosis, and elevated the host-shutoff ability 
by the PA-X protein [32]. Using a molecular evolutionary 
approach, Xu et al. found that before 1985, all swine influ-
enza viruses (SIVs) possessed full-length PA-X [85]. How-
ever, subsequently, the truncated forms of PA-X were con-
tinuously detected in SIVs and they gradually replaced the 
full-length PA-X to become the dominant PA-X phenotype 
in SIVs. To further explore the potential role of PA-X trun-
cation in the adaptation of influenza virus to pigs, Xu et al. 
constructed PA-X-lengthened viruses based on the genetic 
backbone of an H1N2 SIV strain that encodes a truncated 
PA-X, and assessed their biological characteristics. In con-
trast to the Gao et al.’s study, Xu et al. found that compared 
with the whole length PA-X, SIV with truncated PA-X had 
higher pathogenicity and enhanced viral replication and 
transmissibility in pigs, and exerted a stronger inhibitory 
effect on IFN-I mRNA expression. Therefore, it seems likely 
that truncation of PA-X in SIV contributes to its adaptation 
in pigs, suggesting that an association between PA-X length 
and host specificity exists.

Host factors that interact with the PA‑X 
protein

To facilitate viral infection and replication, viral proteins 
in IAV need to constantly interact with an array of cellular 
proteins and hijack the host pathways at the helm of cellular 
responses. Considering the essential role played by PA-X in 
modulating host responses and viral virulence, it is crucial 
to identify the host proteins interacting with PA-X to gain 
better understanding of how PA-X recruits the host cellular 

machinery for these functions. Using affinity purification 
and mass spectrometry and a high confidence threshold, 
Li et al. identified a total of 56 unique proteins physically 
interacting with PA-X from H5N1 virus in chicken cells 
[86]. Functional analysis of these proteins revealed the sig-
nificant enrichment of biological processes, such as those 
associated with mitochondria and lipid transport, nucleo-
some assembly, and RNA processing. In addition, among 
the PA-X-interacting partners that were identified, GNB2L1, 
YWHAE, RPS20, RPS13, ARF1, and RPLP0 were anno-
tated in the Gene Ontology term ‘poly (A) RNA binding’. 
APOA1, ATP5B, NCL, NPM1, Thy1, and WDR1 were 
also reported to contribute to various types of viral infec-
tions. For example, APOA1 in hepatitis B virus (HBV) [87] 
and hepatitis C virus [88], ATP5B in HSV-1 [89]; NCL in 
influenza virus [90–93], dengue virus [94], parainfluenza 
virus type 3 [95], respiratory syncytial virus [96], Japanese 
encephalitis virus [97], Crimean-Congo hemorrhagic fever 
virus [98] and HIV [99, 100]; NPM1 in HIV [101], Thy1 
in HBV [102], and WDR1 in Sendai virus [103]. However, 
this study only preliminarily described the proteins interact-
ing with the PA-X protein overall in a chicken cell model, 
and further studies are needed to verify their interactions 
with PA-X and to investigate the underlying biological sig-
nificance and mechanisms for these interactions. Moreover, 
to understand the potential molecular mechanism for PA-
X-associated functioning in various hosts, it is also very 
important to investigate the host’s interactome with PA-X 
in mammalian cells overall, such as in human or mouse cells.

Polymorphism in PA‑X in influenza viruses 
as a threat to public health

AIVs with various HA subtypes (e.g., H1, H2, H3, H4, H5, 
H6, H7, H9, H10, and H11) have been circulating in domes-
tic poultry in China [104]. Among them, currently, H5N1, 
H5N6, H9N2, and H7N9 AIVs are the most prevalent sub-
types in many Chinese regions [105, 106]. It is noteworthy 
that all these subtypes not only cause substantial economic 
losses to poultry farming but also pose a potential threat to 
public health [106–112]. To find potential clues about the 
various effects of PA-X on the modulation of viral viru-
lence, we systematically analyzed the PA-X polymorphisms 
in four prevalent AIV subtypes. To do this, we thoroughly 
compared all the available PA-X sequences from the Influ-
enza Research Database (https ://www.fludb .org/brc/home.
spg?decor ator=influ enza) and the Global Initiative on 
Sharing Avian Influenza Data (GISAID) (https ://www.gisai 
d.org/). Differences in the PA-X sequence in various hosts, 
and in avian and human isolates were separately analyzed. 
Specifically, the strains from 75 human H5N1, 589 avian 
H5N1, 19 human H5N6, 651 avian H5N6, 9 human H9N2, 

https://www.fludb.org/brc/home.spg?decorator=influenza
https://www.fludb.org/brc/home.spg?decorator=influenza
https://www.gisaid.org/
https://www.gisaid.org/
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917 avian H9N2, 813 human H7N9, and 437 avian H7N9 
were included. Overall, we found that all of the viruses ana-
lyzed carry 61 amino acids in the X-ORF of their PA-X 
genes, and no clear-cut, host-specific genetic characteris-
tics were identified in the avian and human isolates for all 
subtypes (Tables 2, 3). Next, we further analyzed the spe-
cific amino acid variations in the PA-X gene. As shown in 
Table 2, in the N-terminal of the PA-X gene, a total of 16 
amino acid variations were identified in the different sub-
types, including 20A, 27D, 37A, 57R, 58G, 61I, 63V, 68P, 
70A, 94I, 96N, 100V, 101D, 115N, 129I, and 142K. Interest-
ingly, the RNA endonuclease domain (P107 D108 × 10 E119 
K134) was highly conserved among all the viral subtypes 
(Fig. 1) [40, 41]. Moreover, the helix 4 region (amino acids 
85, 86, 91, 100, 114, and 186), which is important for the 
shutoff activity of the PA-X protein, is also relatively con-
served (Fig. 1) [23], except for residue 100 (especially in the 

H7N9 influenza virus). Of note, the 51–74 amino acid motif 
in the PA-X protein, which is associated with host-shutoff 
ability [23], is highly variable and includes 57R, 58G, 61I, 
63V, 68P, and 70A.

We further analyzed the genetic variation occurring in 
the C-terminal of the PA-X gene. We found that this region 
contains much higher variation (24.6%) than the N-terminal 
(8.38%). Specific variations occurred in positions 193N, 
194P, 195R, 199R, 204G, 206K, 208Q, 209E, 210P, 213G, 
215P, 218V, 228I, 248K, and 251K (Table 3). Interestingly, 
six conserved, basic amino acids (195R, 198K, 199R, 202K, 
203K, and 206K) (Fig. 1), which were previously identified 
as contributing to host shutoff by the PA-X protein, also 
showed variations [26, 27] (e.g., 195R/K/N/S, 199R/K/T, 
and 206K/R/E/S/I polymorphisms in avian H9N2 viruses, 
199R/K/I variations in avian H5N6 viruses, and 206K/T/
N/I/E polymorphisms in avian H5N1 viruses). It will be 

Table 2  Statistical analysis of the polymorphism at the N-terminal of PA-X gene

a Indicates the original residues
b The number outside the brackets indicates the number of strains that carry certain kind of polymorphism; the number inside the brackets shows 
the variation rates relative to the original residues

Sitesa Number of the analyzed strains and the sequence variation at these  residuesb

Human 
H5N1
(75 strains)

Avian H5N1
(589 strains)

Human 
H5N6
(19 strains)

Avian 
H5N6
(651 
strains)

Human 
H9N2
(9 strains)

Avian H9N2
(917 strains)

Human H7N9
(813 strains)

Avian H7N9
(437 strains)

20A 5T (7%) 51T/1G (9%) 6T(32%) 552T (85%) 1T (11%) 19T (2%) 32T (4%) 5T (1%)
27D 25N/5S 

(40%)
126N/22S/2T/6V/1A 

(27%)
6S(32%) 548S/9N 

(86%)
0% 10N/1K/1S (1%) 1G (0.1%) 0%

37A 0% 1S/1T (0.3%) 12S (63%) 72S/1T 
(11%)

6S (67%) 243A/674S (74%) 813S (100%) 437S (100%)

57R 0% 12Q (2%) 0% 0% 0% 29Q/9K/1L (4%) 45Q (6%) 2Q (0.4%)
58G 10S (13%) 261S/1A (44%) 0% 0% 0% 19S/3N (2%) 0% 0%
61I 2M/5T (9%) 64M/17T/4V/1R/1W 

(15%)
12T (63%) 85T/4M 

(14%)
6T (67%) 691T/2K (75%) 811T (99%) 1A/434T 

(100%)
63V 2I/5A (9%) 39A/26I/14T/2L 

(14%)
12I/6A 

(95%)
554A/74I 

(96%)
6I (67%) 669I/3M/2L/1A (74%) 810I (99%) 437I (100%)

68P 2L (3%) 13Q/1H (2%) 0% 1L/1S 
(0.3%)

0% 11Q/3L/1A (2%) 806P/3L/2T/1S 
(0.7%)

0%

70A 2V (3%) 19V (3%) 0% 47V/1T 
(7%)

6V (67%) 154V/1M/1S/1T (17%) 95V (12%) 35V (8%)

94I 0% 3V/1T/1M/1L (1%) 0% 28V (4%) 0% 5L/2V (0.7%) 4V (0.5%) 0%
96N 0% 4S/1P/1T (1%) 0% 0% 0% 4H/1T (0.5%) 43H (5%) 93H (21%)
100V 2I (3%) 8A/1F/7I/ (3%) 0% 60A/1I 

(9%)
0% 82A/24I (12%) 41I (72%) 181A (41%)

101D 8E/10N 
(24%)

297E/34N/16G/1V 
(59%)

13E (68%) 79E/5G/5N 
(14%)

7E (70%) 870E/13Q/4K/3V 
(97%)

4E (100%) 435E (99%)

115N 2S (3%) 30D/8G/5S/3Y (8%) 0% 14D/3S 
(3%)

0% 23D/8S/8T/1H/1K/1Y 
(5%)

2D/1 (5%) 340N/93S/2D 
(22%)

129I 8T/2V 
(13%)

250T/19V/1A/1L/1M 
(46%)

0% 50T (8%) 0% 17M/5T/1L (3%) 4M/1T (0.6%) 3M/2T (1%)

142K 5R (7%) 51R/28N/1Q (14%) 7R (37%) 529R/21G 
(84%)

0% 52R/10N/1E (7%) 5E/2R (0.9%) 0%
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fascinating to determine whether these genetic variations 
affect the host-shutoff ability and virulence of different viral 
subtypes.

Polymorphism comparisons of the PA‑X 
proteins from different viral subtypes

To determine whether subtype-specific signatures exist in the 
PA-X sequence, we compared the variation rates for specific 
amino acids in PA-X among the different viral subtypes and 
some specific variations were found to be highly enriched 
in certain subtypes (Fig. 2). As shown in Fig. 2a, the varia-
tion rates at positions 37A, 61I, 101D, 193N, 195R, 199R, 
and 228I are higher in the H7N9 and H9N2 subtypes than 
in the H5N1 and H5N6 subtypes. Worth noting is that the 
variation rates were highest in the H7N9 viruses, reaching 

almost 100% in the seven sites (Fig. 2a). However, we also 
noticed that some amino acids (positions 27D, 58G, 129I, 
208Q, 213G, and 215P), were more inclined to show vari-
ation in H5N1 and H5N6 than in H9N2 and H7N9 viruses, 
especially in H5N1 viruses (Fig. 2b). Interestingly, another 
small group of amino acids (20A, 142K, and 251K) showed 
higher variation rates than the other subtypes, particularly 
in avian H5N6 viruses (Fig. 2c). Therefore, based on these 
analyses generally, we found that the pattern of PA-X vari-
ation is very similar between H9N2 and H7N9 subtypes, 
and between H5N1 and H5N6 subtypes. In addition, some 
variations tended to be enriched in specific viral subtypes. 
The implementation of further studies investigating the role 
of PA-X polymorphism in modulating virulence and host-
shutoff activity in different virus subtypes and different virus 
strains will shed further light on the potential mechanisms 
of pathogenicity in IAV.

Table 3  Statistical analysis of the polymorphism at the C-terminal of PA-X gene

a Indicates the original residues
b The number outside the brackets indicates the number of strains that carry certain kind of polymorphism; the number inside the brackets shows 
the variation rates relative to the original residues

Sitesa Number of the analyzed strains and the sequence variation at these  residuesb

Human H5N1
(75 strains)

Avian H5N1
(589 strains)

Human 
H5N6 (19 
strains)

Avian H5N6
(651 strains)

Human H9N2
(9 strains)

Avian H9N2
(917 strains)

Human H7N9
(813 strains)

Avian H7N9
(437 strains)

193N 2S (3%) 140S/1T/1C 
(24%)

13S (68%) 92S (14%) 7S (78%) 793S/8R (87%) 813S (100%) 437S (100%)

194P 2L (3%) 49L/5Q (9%) 0% 5L (0.8%) 0% 92L/21Q/6R 
(13%)

398L/10Q (50%) 156L/8Q (38%)

195R 2K (3%) 12K (2%) 12K (63%) 92K (14%) 6K (67%) 670K/1N/1S 
(73%)

813K (100%) 437K (100%)

199R 2K (3%) 51K (9%) 12K (63%) 81K/1I (14%) 6K (67%) 672K/1T (73%) 811K (99%) 437K (100%)
204G 25D/6N/2S 

(44%)
235N/4S/1A 

(79%)
13D (68%) 97D/7N (16%) 9D (100%) 907D/1N (99%) 797D/1G/13N/2Y 

(100%)
437D (100%)

206K 0% 4T/1N/1I/1E 
(1%)

0% 2I/8R (2%) 0% 16R/2E/1S/1I 
(2%)

3R (0.4%) 1R (0.2%)

208Q 8L/2K (13%) 232L/1K/4P 
(39%)

0% 2K (0.3%) 0% 5H/5K/3L/1P 
(2%)

1E/3R (0.5%) 0%

209E 0% 4G/1V (0.8%) 5G (26%) 12G (2%) 1G (11%) 35G/5A/1Q/1V 
(4%)

30A/2G/3K/1V 
(4%)

2A (0.5%)

210P 1L (1%) 12L/2T/1S/17Q 
(5%)

0% 11L/8Q (3%) 0% 89Q/35L/1S 
(14%)

12Q (1%) 1Q (0.2%)

213G 10D/2Y (16%) 2A/1N/213D 
(37%)

0% 4D/3S (1%) 0% 19S/4C/3D 
(3%)

0% 0%

215P 13L/4Q (23%) 17Q/1R/1S/78L 
(16%)

6L (32%) 553L (85%) 1L (11%) 51L/3Q/1A 
(0.6%)

8L (1%) 1L (0.2%)

218V 4A (6%) 88A (15%) 0% 4A (0.6%) 0% 73A (8%) 0% 1A (0.2%)
228I 8T/2V (13%) 354T/7N (61%) 13T (68%) 98T (15%) 1P/8T (100%) 896T/3A/1N 

(98%)
813T (100%) 437T (100%)

248K 0% 1I/1Q/7R/1T 
(2%)

5R (26%) 63R (10%) 0% 130R (14%) 530R (65%) 181R (41%)

251K 5R (7%) 76R (13%) 6R (32%) 555R (85%) 0% 11R/1E/2M 
(2%)

0% 0%
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Future prospects

To ensure efficient translation of viral mRNAs while con-
straining host protein expression, IAV employs multiple 
host-shutoff mechanisms. The PA-X protein is a bona fide 
host-shutoff endonuclease with host-specific RNA destroy-
ing ability. Although accumulating evidence confirms that 
PA-X-associated host shutoff is related to viral adaptation 
and pathogenesis, the underlying mechanisms involved 
remain largely obscure. Further studies to characterize the 
biogenesis, characteristics, and mechanism of PA-X shut-
off in different viral strains and various hosts should help 
us to unravel the complexity of the influenza virus–host-
shutoff mechanisms. Moreover, although a strong connec-
tion has been established between PA-X accumulation and 
host-shutoff activity, further studies are needed to determine 
whether the C-terminal of PA-X causes nuclear accumula-
tion through its interactions with other nuclear localization 

signal-containing proteins or whether it contains a functional 
NLS. Focus should also turn to elucidating the functional 
differences between the PA-X proteins from different cir-
culating influenza strains, such as H7N9 AIV. Currently, 
low pathogenic avian influenza (LPAI) and high pathogenic 
avian influenza (HPAI) H7N9 viruses co-circulate in poul-
try. Therefore, it will also be very interesting to see whether 
the PA-X protein elicits similar effects for LPAI and HPAI 
H7N9 viruses in terms of modulating viral virulence and 
host responses in avian species and mammals. Finally, the 
essential role for PA-X in modulating viral replication and 
host innate immune and adaptive responses makes it highly 
feasible to explore PA-X as a target for drug development 
and vaccine design in influenza viruses.
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