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Abstract
A growing body of research provides compelling evidence that in rats 50-kHz USVs are a form of expression of positive 
emotions. Context-induced 50-kHz USVs emission is variable among rats, indicating individual differences in contextual 
response bound up with pharmacological reward. The aims of this study were to: extract the most important neurotransmitters 
related to context-induced conditioned 50-kHz USVs response; find biological basis of existing inter-individual differences 
in context-induced conditioned 50-kHz USVs response; create a model of all-to-all neurotransmitters correlations. The data 
collected here confirms that re-exposure to the context of morphine administration after the withdrawal period increases 
the level of 50-kHz USVs and this contextual response is associated with elevated serotonin concentrations in amygdala, 
hippocampus and mPFC and with increased Glu/Gln ratio in nucleus accumbens. The concentration of serotonin increases 
simultaneously in amygdala, nucleus accumbens and hippocampus. Moreover, 5-HT concentration in amygdala is bound 
up with glutamate level in this structure as well as in hippocampus. Furthermore, Glu/Gln ratio in nucleus accumbens has 
strong associations with Glu/Gln ratio simultaneously in VTA, amygdala, striatum and hippocampus. All-to-all-analysis 
indicate that concentration of glutamate in hippocampus is proportional to glutamate in VTA and GABA concentration in 
the hippocampus. We have also demonstrated that Glu/GABA ratio in VTA and amygdala was elevated after post withdrawal 
re-exposure to the pharmacological reward paired context. Presented analysis indicates a strong correlation between sero-
tonergic and glutamatergic systems in context-induced conditioned response. The strength of this co-transmission correlates 
with the number of 50-kHz USVs emitted in response to morphine-paired context.

Keywords Amygdala · Morphine · Reward · Context conditioning · USVs · Ultrasonic vocalization · Incubation of craving · 
Neurochemistry · Machine learning · Serotonin · Glutamate · GABA · Nucleus accumbens · 5-HT · Co-transmission · Inter-
individual differences; · Context-induced · Glu/Gln ratio

Introduction

A modern behavioral tool that most effectively determines 
the emotional states of rats is the registration and analysis of 
ultrasonic vocalizations (USVs). It allows both identifying 

individual differences in processing information about the 
reward as well as reflecting, to a large extent, the level of 
individual motivation. It is well established that rats emit 
two district ultrasonic vocalizations patterns (USVs) related 
to separate emotional tinge: long 22-kHz alarm calls when 
processing negative emotions and 50-kHz when processing 
positive emotions (Panksepp and Burgdorf 2003; Brudzyn-
ski 2013a, b; Burgdorf et  al. 2017). Representations of 
these sounds are also present in rats’ social interactions 
(Knutson et al. 1998; Brudzynski and Pniak 2002; Hamed 
et al. 2009, 2015). The mesolimbic reward system is highly 
involved in the production of 50-kHz ultrasonic vocaliza-
tions (USVs) in rats (Knutson et al. 1999; Burgdorf et al. 
2001, 2007). Large number of studies indicate that the most 
potent pharmacological agent that induces 50-kHz USVs 
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in rats is amphetamine (Burgdorf et al. 2001; Thompson 
et al. 2006; Wang et al. 2008; Ahrens et al. 2009; Wright 
et al. 2010; Brudzynski et al. 2011; Simola et al. 2012; 
Taracha et al. 2012). In a recent study we conducted non-
parametric analysis of neurochemical effects showing that 
re-exposure to amphetamine induces neurochemical changes 
in several brain areas (Hamed et al. 2016). We demonstrated 
that increased concentration of noradrenaline in the nucleus 
accumbens strongly correlated with the number of 50-kHz 
USVs (Hamed et al. 2016). Another set of pharmacological 
experiments demonstrated that noradrenaline related mecha-
nisms are highly involved in 50-kHz USVs emission (Wright 
et al. 2012a). Previous studies have established that intrac-
erebral injection of glutamate may induce 50-kHz USVs, 
suggesting that glutamatergic system is also involved in pro-
duction of these sounds (Fu and Brudzynski 1994; Wintink 
and Brudzynski 2001). Additionally, administration of the 
amphetamine with MK-801 (NMDA antagonist) suppressed 
emission of the 50-kHz USVs compared to amphetamine 
treated animals, suggesting that glutamatergic system may 
be highly engaged in 50-kHz USVs emission (Costa et al. 
2015). Co-administration of those two substances suppressed 
likewise context-induced conditioned 50-kHz USVs when 
animals were re-exposed to the drug-paired chamber (Costa 
et al. 2015). Moreover, there are evidence showing that 
antagonism of 5-HT 2C or the κ-opioid receptors increases 
emission of 50-kHz USVs (Wöhr et al. 2015; Hamed et al. 
2015). Furthermore, agonist of 5-HT2C receptor suppressed 
amphetamine induced sounds in this frequency band (Wöhr 
et al. 2015).

A growing body of research provides compelling evi-
dence that 50-kHz USVs (Fig. 1) are a form of expression 
of positive emotions. However, pharmacological studies 
indicate that processing of positive emotions is not always 

accompanied by the 50-kHz USVs in rats. In case of mor-
phine treatment, higher doses of this addictive drug (10 mg/
kg) decreased the sounds triggered by social interaction 
(Hamed et al. 2015). It has been also demonstrated that 
MDMA, which induces huge arousal (excitation) in humans, 
did not evoke an increase in total number of 50-kHz USVs 
(Sadananda et al. 2012; Simola et al. 2012).

In the canonical conviction, dopaminergic reward system, 
originating from ventral tegmental area (VTA) is crucial for 
reward processing (Schultz et al. 1997; Dayan and Balleine 
2002; Cohen et al. 2012; Lammel et al. 2012). The latest 
reports have shown that another structure—dorsal raphe 
might be equally treated as a key structure in reward pro-
cessing and reward expectation (Luo et al. 2015, 2016; Li 
et al. 2016; Matthews et al. 2016; Qi et al. 2014). In mice 
with dopamine deficiency SSRIs (selective serotonin reup-
take inhibitors) have produced robust conditioned place 
preference. This indicates that serotonin or serotonin-related 
mechanisms may mediate reward in the absence of dopa-
mine (Hnasko et al. 2007).

It is well known that addictive drugs like morphine affect 
numerous neurochemical pathways, including those related 
to the reward system (Koob 1992). Morphine as MOR 
(µ-opioid) agonist has been shown to increase dopamine 
transmission via mechanisms of decreasing the release of 
GABA onto dopamine neurons in the VTA (Johnson and 
North 1992).

Acute administration of high doses of morphine (over 
1.0 mg/kg) inhibited or did not evoke 50-kHz USVs (Nagai 
et al. 2004; Wright et al. 2012b; Simola et al. 2012; Hamed 
et al. 2012). Our previous studies showed that when mor-
phine was administered for 14 days (once a day), an increase 
in the number of USVs episodes, recorded after drug injec-
tion, was observed on the 14th day as compared to the 1st 

Fig. 1  An example of 50-kHz ultrasonic vocalization episodes
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and the 7th day (Hamed et al. 2012). Additionally, we have 
demonstrated that morphine-treated rats emitted much more 
ultrasonic vocalization in 50-kHz band in response to the 
context of morphine administration after withdrawal period 
compared to the same measurement before withdrawal 
period (Hamed et al. 2012). The neurochemical cause of this 
behavioral phenomenon still remains unknown. Moreover, 
several studies have shown that 50-kHz USVs are emitted 
during anticipation of the natural, pharmacological reward 
or even rewarding electrical brain stimulation (Burgdorf 
et al. 2000; Knutson et al. 1999; Opiol et al. 2015; Buck 
et al. 2014; Hamed et al. 2012). Simultaneously, existence 
of individual differences in the emission of 50-kHz USVs 
between rats further complicates the interpretation of behav-
ioral data. Nevertheless, the fact that there are individual 
differences in the emission of the 50-kHz USVs allows us 
to explore neurochemical differences in structures related to 
reward processing, enabling us to explore biological basis 
of that phenomenon.

Taking into account that morphine pre-treated rats emit-
ted much more context-induced 50-kHz USVs on the chal-
lenge day (after 14 day withdrawal period) and the aforemen-
tioned literature facts about pharmacological modifications 
of 50-kHz USVs we conducted non-parametric analysis 
between concentrations of neurochemical compounds in 
several brain structures (see “Materials and methods”) with 
the level of context-induced conditioned 50-kHz USVs. We 
hypothesized that the 50-kHz USVs emission could have 
separate neurochemical background in different behavioral 
paradigms as well as some common neurochemical mecha-
nisms reflected in examined neurotransmitters correlations.

The aims of this study were to: (1) extract the most 
important neurotransmitters that are bound up with con-
text-induced conditioned 50-kHz USVs related with phar-
macological reward; (2) find biological basis of occurring 
inter-individual differences in context-induced conditioned 
50-kHz USVs response; (3) create a model of all-to-all neu-
rotransmitters correlations.

Materials and methods

Animals

Adult male Sprague–Dawley rats (n = 38; 180 ± 20 g) were 
used in the experiment. The animals were purchased from 
a licensed breeder (the Polish Academy of Science Medical 
Research Center, Warsaw, Poland). The animals were housed 
in standard laboratory conditions under 12 h:12 h light:dark 
cycles (lights on at 7 a.m.) at a constant temperature 
(21 ± 2 °C) and 70% humidity. The rats had free access to 
food and water. The experiments were performed in accord-
ance with the European Communities Council Directive of 

24 November 1986 (86/609 EEC). The Local Committee 
for Animal Care and Use of Warsaw Medical University 
approved all experimental procedures using animal subjects.

Experimental procedure

Groups of five animals were housed in acrylic cages (cage 
size: 54 cm × 34 cm × 21 cm) for 2 weeks. Morphine in dose 
10.0 mg/kg (s.c.) was administered repeatedly to the experi-
mental groups. Morphine and saline were administered in 
testing cages in a group of four animals for each cage. The 
testing room was significantly different than home cage 
room, both in the lighting conditions and in the arrange-
ment of spatial cues that were constant throughout the whole 
experiment. The testing room was situated in a remote part 
of the laboratory. In Morph-D14 group, 13 injections were 
administered once a day. In the Morph-D28 group morphine 
was administered once a day for 14 days (10 mg/kg s.c). 
Saline solution was administered repeatedly (1.0 ml/kg) 
to control groups (Saline-D14 and) in the same manner as 
morphine in morphine treated rats. All animals were kept 
for 30 min in the testing box after each saline or morphine 
injection.

On day 14, Morph-D14 group and control Saline-D14 
group were exposed to the context of drug administration, 
and the ultrasonic vocalizations were recorded for 20 min. 
Immediately after 20 min of USVs recording session rats 
from Morph-D14 and Saline-D14 groups were decapi-
tated. On day 14, 30 min after last injection Morph-D28 
and Saline-D28 group were left undisturbed (in their home 
cages), whilst they were subjected to 2-week withdrawal 
period. On day 28, the rats were re-exposed to the context of 
morphine/saline administration and ultrasonic vocalization 
was recorded for 20 min. Immediately after 20 min of USVs 
recording session rats from Morph-D28 and Saline-D28 
groups were decapitated (Fig. 2). The USVs were recorded 
in a dark room with a dim red light [30 W bulb 1.5 m above 
the acrylic cage (size: 54 cm × 34 cm × 21 cm)]. The USVs 
response to the context was measured separately for each rat. 
To avoid the influence of scent marks from other animals on 
the behavior of subsequently tested rats, cages were cleaned 
with a 70% ethanol solution after each recorded session. 
Brain tissues were frozen in dry ice-cold isopentane, and 
stored at − 70 °C for neurochemical analysis.

Drugs

Morphine hydrochloride (Polfa, Poland) was dissolved in 
0.9% isotonic saline. Morphine was administered in dose of 
10.0 mg/kg (1.0 ml/kg; s.c.). Saline was used as a control 
vehicle (1 ml/kg).
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Apparatus and USVs recordings

All subtypes of 50 kHz rat calls were recorded using an 
UltraSoundGate Condenser Microphone CM16 (Avi-
soft Bioacoustics, Berlin, Germany) that was positioned 
25–30 cm above the floor of the cage. This microphone 
was sensitive to frequencies of 15–180 kHz with a flat 
frequency response (± 6 dB) between 25 and 140 kHz. It 
was connected to an amplifier (custom-made) that had the 
following parameters: a voltage gain of 16 V/V (12 dB), 
a frequency response of ± 0.1 dB, a range of 30 Hz to 
120 kHz, and an input impedance of 600Ω. The signal 
was then transferred through a 120 kHz anti-aliasing fil-
ter (custom-made). The filtered sounds were sent to a 
PCI-703-16A data acquisition board (Eagle Technology, 
USA). This board was a 14-bit 400-kHz analogue input 
and analogue output board for PCI-based systems. The 
recorded data were processed using the RAT-REC PRO 
5.0 software (custom-made). The signals were processed 
through a fast Fourier-transformation (1024, Hamming 
window) and displayed as color spectrograms. Each sig-
nal was manually marked with the section label included 
in the automated parameter measurement. Various param-
eters were determined automatically, including the num-
ber of USV calls, the total calling time (s), the mean call 
length (s), the frequency bandwidth (kHz), the number 
of gaps, the mean gap length (s), and the mean peak fre-
quency (kHz). Only the number of calls is included as a 
main parameter in the results presented here. Taking into 
account that dopaminergic system plays role in the pro-
cessing of both appetitive and aversive states (Bromberg-
Martin et al. 2010; Zweifel et al. 2011; Lammel et al. 
2011a, b), we have analyzed FFT spectrograms in whole 
recorded frequency spectrum (10–130 kHz) to evaluate 

occurrence not only “50-kHz appetitive”, but also “22-
kHz aversive” calls. Detailed analysis of the FFT spec-
trograms showed the absence of 22-kHz (alarm calls) in 
presented model.

HPLC analysis of monoamines

Frozen brains were cut into slices (− 20 °C) in a cryostat. 
The following structures were dissected: prefrontal cortex 
(3.7–3.2 mm anterior to the bregma); nucleus accumbens 
(NAcc) and caudate putamen (CPu) (1.70–1.0 mm ante-
rior to the bregma); hippocampus and amygdala (− 2.80 to 
− 3.60 mm posterior to the bregma); and ventral tegmen-
tal area (− 5.80 to − 6.30 mm posterior to the  bregma) 
based on the rat brain atlas of Paxinos and Watson (1998). 
Tissue samples were weighed and homogenized for 30 s 
in 15 volumes of ice-cold 0.2 M perchloric acid, which 
contained dihydroxybenzylamine as an internal stand-
ard. The homogenates were then centrifuged at 26,900g 
for 8 min at 4 °C. The supernatants were then filtered 
through 0.45-μm pore filters and stored at − 70 °C until 
analyzed for noradrenaline (NA), 3-methoxy-4-hydroxy-
phenylglycol (MHPG), dopamine (DA), 3,4-dihydroxy-
phenylacetic acid (DOPAC), homovanillic acid (HVA), 
3-methoxytyramine (3-MT), serotonin (5-HT) and 
5-hydroxyindoleacetic acid (5-HIAA) using HPLC, as 
described by Kaneda et al. (1986), with minor modifica-
tions (Szyndler et al. 2010). The concentrations of NA, 
MHPG, DA, DOPAC, 3-MT, HVA, 5-HT and 5-HIAA 
were calculated as ng/g of brain tissue. Additionally, to 
approximate their turnover, the following concentration 
ratios were computed: 3-MT to DA, DOPAC to DA, HVA 
to DA, 5-HIAA to 5-HT and MHPG to NA.

Morph-D14 daily morphine administra�on (13 days)

Saline-D14 daily saline administra�on (13 days)

Morph-D28 daily morphine administra�on (14 days)

Saline-D28 daily saline administra�on (14 days)

D14

Decapita�on a�er exposure to drug-paired
context; 20 min USVs recording session

Decapita�on a�er re-exposure to drug-
paired context (post-withdrawal);        
20 min USVs recording session

D28

Withdrawal period (14 days)

Fig. 2  Diagram of the experiment
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HPLC analysis of amino acids

The brain levels of the amino acids were determined using 
HPLC method, coupled to an electrochemical detection, 
as described previously (Szyndler et al. 2008). Briefly, the 
compounds were eluted isocratically with the mobile phase 
delivered at 0.7 ml/min, using a Shimadzu Class LC-10ADvp 
pump. An electrochemical detector with a flow-through cell 
(Intro-Antec Leyden) linked to the Shimadzu Class VP Inte-
grator SCL-10 Avp was used. A high-density glass carbon-
working electrode (Antec) was used at + 0.85 V. A Rheodyne 
injection valve with 20-µl sample loops was used to manually 
inject the samples. The preparation of the mobile phase and 
the derivatizing agents was based on the slightly modified 
method of Rowley et al. (1995; Szyndler et al. 2008). The con-
centrations of GABA, alanine, taurine, glutamine and gluta-
mate were calculated in µmol/g of tissue. Similarly as in case 
of monoamines, ratios of the glutamate concentration to both 
glutamine and GABA were also computed and investigated.

Statistics

All levels of compounds across brain structures and the 
aforementioned level ratios formed a set of 130 descriptors 
of the brain state. One should note, however, that the intro-
duction of ratios has created certain artificial correlations, 
disallowing descriptor independence assumptions.

According to a Shapiro–Wilk test, distributions of 
most (53%) of the predictors analyzed in this study are 
not normally distributed, hence non-parametric statistical 
approaches were predominantly used.

Relations between numerical variables were assessed 
using the Spearman correlation, as it is not only robust to 
non-normality, but can be effectively assessed in terms of 
significance assuming independence as a null hypothesis, 
even exactly for small sample sizes.

On the other hand, relations between numerical and 
binary variables were assessed using the Mann–Whit-
ney–Wilcoxon test.

Still, these tests do not consider possible multivari-
ate associations; to this end, the Boruta machine learning 
method was employed (Kursa and Rudnicki 2010).

It works by iterative fitting of the Random Forest (Brei-
man 2001) model to the data, and extracting variables that 
are significantly more useful for that purpose than shadows, 
design injected into the dataset. When not specified oth-
erwise, Holm–Bonferroni method was used to correct for 
multiple comparisons, and the significance level was set at 
p = 0.05. All computations were performed using R 3.4.1 (R 
Core Team 2017) with the Boruta 5.2.0 (Kursa and Rudnicki 
2010), pspearman 0.3–0 (Savicky 2014) and ranger 0.8.0 
packages (Wright and Ziegler 2017).

Results

The effects of morphine administration 
and withdrawal period on context‑induced 
conditioned 50‑kHz USVs

The effects of morphine and withdrawal period on context-
induced conditioned 50-kHz USVs count has been analyzed 
with a series of 6 Mann–Whitney–Wilcoxon tests, and cor-
rected for multiple comparisons. The only non-significant 
difference between USV counts (number of 50-kHz USVs 
episodes) in experimental groups was observed between 
saline and morphine groups on day 14. Between day 14 
and day 28, the USV count has increased both in saline 
(p = 0.03) and morphine (p = 0.002) groups, while on day 
28 the morphine-treated rats have vocalized more frequently 
than saline-treated (p = 0.02) (Figs. 3, 4).

The correlations between USV counts 
and neurotransmitter levels

Next, the links between USV count and levels or level ratios 
of the analyzed compounds in across brain structures were 
assessed. To this end, Spearman correlation test was used, 
also allowing for extracting the sign of correlation. Addi-
tionally, the Boruta machine learning method was used to 
investigate potential multivariate interactions. Such analysis 
was performed for all rats, as well as in context of morphine- 
and saline-treated group.

The strongest, significant correlations with USV count 
were: with 5-HT level in amygdala, hippocampus (for all 
rats) and medial prefrontal cortex (for morphine group), as 
well as with 5-HIAA in hippocampus (for all rats). Further-
more, we found USV count to be significantly correlated 
with the Glu/Gln ratio in nucleus accumbens for morphine 
group. The raw data behind this interactions are shown on 
Fig. 4. All these results were also confirmed by the Boruta 
analysis, along with a number of lesser interaction, collected 
in Table 1.

The effect of the re‑exposure 
to the morphine‑paired context 
on neurotransmitters levels

Similar analysis was performed to analyze which compounds 
can be linked with context-induced conditioned response. 
This is a classification problem, hence Mann–Whitney–Wil-
coxon test was used instead of Spearman correlation. The 
Boruta method can handle both classification and regression 
problems, so the auxiliary analysis involving this approach 
was performed exactly in the same way as in the previous 
case. Again, contexts of all rats, morphine and saline groups 
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Fig. 3  Observed “50-kHz” 
USV episode counts (number 
of episodes), for the 14th (d14) 
and 28th (d28) day of the 
experiment, and for saline- and 
morphine-injected rats. USV 
count is shown using an inverse 
hyperbolic sine (IHS) scale. 
Bars mark significant differ-
ences according to Mann–Whit-
ney–Wilcoxon test

�

�

�

�
�

��

�

�
�

�
�

�
� ��

�

� �

�

�

�

�
�

��

�

�
�

�
�

�
���

�

��

�

�

�

�
�

��

�

�
�

�
�

�
� ��

�

��

�

�

�

�
�

� �

�

�
�

�
�

�
���

�

� �

�

�

�

�
�

��

�

�
�

�
�

�
� ��

�

��

mPFC −− 5−HT Nacc −− Glu/Gln

Hipp −− 5−HIAA Hipp −− 5−HT Amygdala −− 5−HT

100 200 300 1.4 1.5 1.6 1.7 1.8

200 300 400 150 200 250 300 200 300 400 500 600 700

0
1
2

10
20

100
200

1000

0
1
2

10
20

100
200

1000

0
1
2

10
20

100
200

1000

0
1
2

10
20

100
200

1000

0
1
2

10
20

100
200

1000

Compound level [ng/g tissue]

U
S

V
 c

ou
nt

Day �d14 d28 Injected � �saline morphine

Fig. 4  Relation between USV count (number of 50-kHz USVs episodes) and levels of compounds or level ratios which were significantly cor-
related with it, shown as scatterplots. USV count is shown using IHS scale



3155Brain Structure and Function (2018) 223:3149–3167 

1 3

were investigated separately. Especially, we found positive 
associations between context conditioning and serotonin 
levels in amygdala, hippocampus and mPFC, as well as 
with Glu/Gln ratio in nucleus accumbens, both for all rats 
and only morphine group. The other interesting effects are: 
increase of Glu/GABA ratio in VTA and in amygdala for all 
rats, increased glutamate in amygdala for all rats and only 
for morphine group, decrease of GABA in VTA and mPFC 
for all rats and only for morphine group. The said analysis 
yield numerous significant results, which are summarized 
in Table 2.

The effects within neurotransmitter levels

Based on the results highlighted above and theoretical con-
siderations, four substantial descriptors were selected: 5-HT 
and glutamate levels in amygdala, the ratio of glutamate and 
glutamine levels in nucleus accumbens, finally the levels of 
glutamate in hippocampus. For these, sets of other descrip-
tors that significantly correlated with each of them were iden-
tified. To this end, Spearman correlation-based methodology 
identical to previously used for associations with the USV 
count was applied. All significant correlations with the sero-
tonin level in amygdala are presented in Fig. 5; they include 
positive correlations with 5-HT levels in other structures 
(Nacc, Cpu and hippocampus), serotonin metabolite 5-HIAA 
in amygdala, as well as with the levels of glutamate in both 
amygdala and hippocampus. On the other hand, negative cor-
relations were observed with the levels of taurine, alanine 
and GABA in medial prefrontal cortex. Figure 6 contains 
all the significant correlations with the level of glutamate in 
amygdala; similarly, it was correlated positively with levels 
of 5-HT and glutamine, and negatively with levels of alanine 
and taurine in mPFC. A positive correlation with the level of 

taurine in amygdala was also detected. The correlations of 
Glu/Gln ratio in nucleus accumbens are collected in Fig. 7. 
This set contains positive correlations with the same ratio in 
other structures: amygdala, Cpu, hippocampus and VTA, as 
well as negative with glutamine in mPFC and Cpu; also a 
positive correlation with serotonin and 5-HIAA in amygdala 
was identified. An interesting finding is a correlation between 
Glu/Gln in Nacc and MHPG/NA ratio in Cpu. Finally, all 
significant correlations of Glu levels in hippocampus are 
collected in Fig. 8; they include positive correlations with: 
MHPG/NA ratio in Cpu; GABA, glutamine, taurine level and 
Glu/GABA ratio in hippocampus; glutamate level in VTA, 
serotonin concentration in amygdala.

Intra‑neurotransmitter level correlation structure

Finally, a global, all with all correlation scan was performed. 
To avoid artificial correlations, the ratios were discarded for 

Table 1  The selection of brain compounds which level or level ratio 
is significantly linked with the USV count

“+” denotes positive correlation, “@” association identified with the 
Boruta method

Table 2  The selection of brain compounds which level or level ratio 
is significantly linked with post-withdrawal conditioned response to 
the context

“+” denotes positive correlation, “−” negative, while “@” associa-
tion identified with the Boruta method
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this analysis. It was also performed using Spearman correla-
tion test, although the Benjami Hochberg’s multiple com-
parison correction (FDR) (Benjamini and Hochberg 1995) 
was used. The results of conducted analysis were compiled 
into a graph, nodes of which correspond to compound levels 
across structures, while edges to correlations significant at 
p = 0.03 level. The graph was manually laid out to expose 
relevant coherent structures, and presented in Fig. 9.

Discussion

The data collected here confirms our previous behavioral 
results that re-exposure to the context of morphine admin-
istration after the withdrawal period (day 28) increases the 
level of 50-kHz USVs episodes, compared to day 14 (Fig. 3) 
(Hamed et al. 2012). Context-induced 50-kHz USVs emis-
sion is variable among rats, what indicates individual dif-
ferences in context conditioned response. This kind of gra-
dation allows us to analyze individual differences in brain 
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neurotransmission and understand the basis of occurring 
variations in response to the context.

Interestingly, in control saline group an increase of 
50-kHz USVs was also observed on day 28 compared to 
day 14. One of the reasons might be that both morphine 
and saline were administered in testing cages in a group of 
four animals for each cage (see “Materials and methods”). 
This explanation could suggest that the context conditioned 
response was enhanced by the natural social contact associ-
ated with a different, uncommon environment. Considering 

rewarding effects of morphine reflected by 50-kHz USVs 
emission reported in our previous studies (Hamed et al. 
2012), we can be sure that emitted sounds reflect context-
induced conditioned response related to morphine rewarding 
effects. This kind of behavioral 50-kHz USVs response was 
reported in studies with natural, pharmacological reward or 
even with rewarding electrical brain stimulation (Knutson 
et al. 1999; Burgdorf et al. 2000; Opiol et al. 2015; Buck 
et al. 2014). The level of emitted 50-kHz USVs was over ten 
times higher in morphine-treated group than in saline group 
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and only three of saline control animals produced more than 
hundred USVs episodes (Figs. 3, 4). The starting point of 
our correlations analysis was the level of context conditioned 
response reflected by 50-kHz USVs emission. All further 
consecutive analysis were conducted in the same way in the 
morphine and saline-treated animals (Figs. 4, 5, 6, 7, 8, 9; 
Tables 1, 2).

Nevertheless, the fact that emission of 50-kHz USVs is a 
context-induced conditioned response, it is interesting why 

re-exposure to the drug-paired context did not evoke such 
sounds on day 14 in the same manner as on day 28 (after 
14 day-withdrawal period; Figs. 3, 4). This time-dependent 
differentiation effect of observed behavior may be explained 
by the phenomenon defined as “incubation of drug craving”. 
It was demonstrated in humans that craving may be triggered 
by drug-associated cues and may increase progressively dur-
ing the early days of withdrawal (Gawin and Kleber 1986; 
Abrams et al. 1988; Drummond et al. 1990; George et al. 

�
�

�

�

�

�

�
�

� �

�

�

� �

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�
�

��

�

�

� �

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�
�

� �

�

�

��

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�
�

� �

�

�

��

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�
�

� �

�

�

��

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�
�

� �

�

�

� �

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�
�

��

�

�

��

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�
�

� �

�

�

� �

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�
�

� �

�

�

��

�
�

�
�

�

�

�

�

�

�

�

�
�

�
�

�

�

��

�

�

�

�

�

Hipp −− Glu/Gln Amygdala −− Glu/Gln VTA −− Glu/Gln

Cpu −− Gln Cpu −− MHPG/NA Cpu −− Glu/Gln

Amygdala −− 5−HIAA Amygdala −− 5−HT mPFC −− Gln

2.2 2.4 2.6 2.8 2.0 2.1 2.2 2.3 2.4 2.5 1.4 1.6 1.8 2.0

3.0 3.5 4.0 4.5 5.0 5.5 0.1 0.2 0.3 0.4 0.5 1.6 1.7 1.8 1.9 2.0 2.1

150 200 250 300 350 200 300 400 500 600 700 2.5 3.0 3.5 4.0 4.5
1.4

1.5

1.6

1.7

1.8

1.4

1.5

1.6

1.7

1.8

1.4

1.5

1.6

1.7

1.8

1.4

1.5

1.6

1.7

1.8

1.4

1.5

1.6

1.7

1.8

1.4

1.5

1.6

1.7

1.8

1.4

1.5

1.6

1.7

1.8

1.4

1.5

1.6

1.7

1.8

1.4

1.5

1.6

1.7

1.8

Compound level [ng/g tissue]

N
ac

c 
−

−
 G

lu
/G

ln

Day ��d14 d28 Injected �� ��saline morphine

Fig. 7  Relation between the ratio of glutamate to glutamine level in nucleus accumbens and levels of compounds or level ratios which were sig-
nificantly correlated with it, shown as scatterplots



3159Brain Structure and Function (2018) 223:3149–3167 

1 3

2001; Drummond 2000; Li et al. 2012). In rodents, incuba-
tion of craving has been demonstrated both in drug-treated 
animals (Grimm et al. 2001; Shalev et al. 2001; Shepard 
et al. 2004; Abdolahi et al. 2010) as well as in non-drug 
reward experiments (Grimm et al. 2002). Incubation of crav-
ing involves neuroadaptations in reward and motivation-
related structures (Conrad et al. 2008; Sesack and Grace 
2010; Wolf and Tseng 2012; Lee et al. 2013; Purgianto 
et al. 2013; Ma et al. 2014; Pascoli et al. 2014; Li et al. 

2015; Wolf 2016). It is well known that nucleus accumbens 
is key structure of the limbic system that is highly related 
to reward processing (Berridge 2007; Ikemoto 2007) and 
50-kHz USVs emission (Thompson et al. 2006; Brudzynski 
2013a, b; Hamed et al. 2016).

The present study shows that 50-kHz USVs emission is 
associated with increased serotonin concentrations in amyg-
dala, hippocampus and mPFC and also with elevated Glu/
Gln ratio in nucleus accumbens (Fig. 4; Table 1). Moreover, 
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concentration of serotonin in amygdala is directly propor-
tional with the level of serotonin in nucleus accumbens and 
in hippocampus as well as with concentration of glutamate 
in amygdala and hippocampus (Fig. 5).

It was found that central amygdala (CeA) plays a criti-
cal role in incubation of drug and non-drug reward craving 

(Uejima et al. 2007; Li et al. 2008, 2015). Inhibition of CeA 
neuronal activity reduced incubation of nicotine, cocaine, 
methamphetamine and sucrose craving (Funk et al. 2016; Lu 
et al. 2005, 2007; Uejima et al. 2007; Li et al. 2015). Human 
fMRI studies report that amygdala is the key structure in the 
generation of cue-elicited opioid craving (Langleben et al. 
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2008, 2014; Mei et al. 2010; Li et al. 2012; Murphy et al. 
2017). It was found that GABA-ergic inhibition of neuronal 
activity leads to reduction of behavioral expression of crav-
ing (Li et al. 2015). It was also demonstrated that ethanol 
withdrawal reduced GABA levels in medial prefrontal cortex 
and enhanced glutamate and glutamine levels in NAcc (Hin-
ton et al. 2012). In our study, we found that GABA as well 
as alanine and taurine concentrations in mPFC are inversely 
proportional to the concentration of serotonin in the amyg-
dala (Fig. 5) and the concentration of GABA in mPFC was 
decreased after withdrawal period. These data indicate that 
reduction of GABA-ergic inhibition in mPFC may be one of 
the initiating factors of drug-seeking behavior and expres-
sion of craving reflected by 50-kHz USVs. We have also 
demonstrated for the first time that Glu/GABA ratio in VTA 
and amygdala was elevated after re-exposure to the drug-
paired context on the day 28 compared to day 14 (Table 2).

It was demonstrated in optogenetic studies that silent 
synapse-based reorganization of the amygdala-to-accum-
bens projections plays key role in stability of cocaine crav-
ing and relapse after withdrawal period (Lee et al. 2013). 
Furthermore, it was found that mechanisms related to the 
action of MMP-9 (an important controller of the synap-
tic plasticity of excitatory synapses) in central amygdala 
are crucial in generating a motivation for reward seeking 
(Stefaniuk et al. 2017). An elevated glutamate concentra-
tion in amygdala which correlates with increased seroto-
nin in this structure (Fig. 6), parallels an experiment in 
which the reduction of serotonergic neurotransmission 
in amygdala promoted hyperexcitability of this structure 
by enhancing glutamatergic neurotransmission, in conse-
quence increasing fear related behaviors (Tran et al. 2013). 
It might further indicate that increased concentration of 
serotonin in this structure presented in our study, prevents 
or switches over the arousal from fear expression to appe-
titive arousal related to drug-seeking behavior expressed 
by 50-kHz emission. Further investigations of mentioned 
neurochemicals co-existence in the amygdala have to be 
performed to address this hypothesis. Moreover, ex vivo 
electrophysiological recordings with optogenetic methods 
and pharmacological analysis revealed the existence of the 
5-HT and glutamate co-transmission in basal amygdala 
neurons (Sengupta et al. 2017).

The very nature of the conditioned place preference is 
attributed to activation of the reward system and its asso-
ciation with information on the surrounding space during 
training sessions. This information in the hippocampus is 
represented by a subset of spatially tuned neurons called 
place cells (Hollup et al. 2001). The hippocampus and its 
inputs have been implicated in memory formation, includ-
ing reward-related memory (Scoville and Milner 1957; 
Lisman and Grace 2005; Hernández-Rabaza et al. 2008; 
Bunzeck et al. 2011). Furthermore, it was demonstrated that 

a projection from area CA3 of dorsal hippocampus to ventral 
tegmental area (VTA) mediated relations between context 
and reward (Luo et al. 2011). Ntamati and Luscher identified 
and characterized a projection from VTA that releases both 
glutamate and GABA near the granule cells of hippocampal 
DG (Ntamati and Lüscher 2016).

We found that the level of serotonin in amygdala is 
directly proportional to the concentration of glutamate in 
amygdala and hippocampus as well as to the level of seroto-
nin in nucleus accumbens and in the hippocampus (Fig. 5). 
Additionally, all-to-all analysis indicate that concentration 
of glutamate in hippocampus is directly proportional to glu-
tamate level in VTA and GABA concentration in the hip-
pocampus (Figs. 8, 9).

There are potent structural interconnectivities and 
functional relationships between nucleus accumbens 
(Nacc), amygdala and hippocampus. Nucleus accum-
bens integrates cortical and limbic glutamatergic inputs 
arising from basolateral amygdala (BLA), hippocampal 
ventral subiculum (vSub) and prefrontal cortex (PFC) 
(Phillipson and Griffiths 1985; Groenewegen et al. 1987; 
McDonald 1991; Shinonaga et al. 1994; Johnson et al. 
1994; O’Donnell and Grace 1995; Petrovich et al. 1996; 
Friedman et al. 2002; French and Totterdell 2003; Sesack 
and Grace 2010; Gill and Grace 2011; Britt et al. 2012).

It is well known that the amygdala is a structure involved 
in expression of the emotion and in learned emotional 
behaviors (LeDoux 2000). Previous studies have established 
that the BLA is involved in affective response and the vSub 
in context dependency (Gill and Grace 2011). Optogenetic 
studies revealed that selective activation of BLA, but not 
mPFC, glutamatergic inputs to the NAcc promotes moti-
vated behavioral responding (Stuber et al. 2011). On the 
other hand, photostimulation of each of the different afferent 
pathways (vHipp, mPFC, BLA axons) to the NAcc rein-
forced instrumental behavior (Britt et al. 2012). Britt and 
colleagues suggested that the specific pathway releasing glu-
tamate is not as important as the amount of glutamate that is 
released (Britt et al. 2012). Anatomical and functional inter-
connectivity of the amygdala and hippocampus has been 
demonstrated in a number of studies (Mello et al. 1992a, b; 
Maren and Fanselow 1995; Ikegaya et al. 1994, 1996a, b; 
Akirav and Richter-Levin 1999; Nakao et al. 2004).

We did not detect correlative association of glutamate 
level between hippocampus and amygdala, but we found 
strong relation between glutamate concentration in hip-
pocampus and the serotonin level in amygdala (Figs. 8, 
9). Considering the fact that the hippocampus is strictly 
involved in spatial memory formation, we can suppose that, 
after or during activation of hippocampus-VTA loop the 
hippocampus sends glutamatergic signal to the amygdala 
to amplify the serotonergic signaling. Then, 5-HT augmen-
tation may initiate or support the glutamatergic signaling 
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in amygdala. These processes might have a strong impact 
on the 50-kHz USVs expression of emotions reflected in 
neurochemical changes in Glu/Gln ratio in Nacc. Under-
standing the sequence of activation of the neurochemical 
signaling between interacting structures requires further 
research using electrophysiological, optogenetic or voltam-
metric methodology.

Obtained neurochemical data confirms the contribution 
of amygdala, nucleus accumbens and hippocampus to spa-
tial memory formation and memory processing bound up 
with enhanced emotional states (arousal) triggered by an 
appetitive conditioned context (Hall et al. 2001; Ito et al. 
2006, 2008). Taking into account the strong serotoninergic 
response simultaneously in amygdala, nucleus accumbens, 
mPFC and hippocampus in processing context conditioned 
response, based on literature reports, it is reasonable to 
assume that the structure responsible for this increased levels 
of 5-HT was dorsal raphe. This structure represents one of 
the most sensitive reward sites in the brain (Yi Li et al. 2016; 
Luo et al. 2015, 2016; Matthews et al. 2016; Qi et al. 2014). 
It has been shown that the nucleus accumbens receives sero-
tonin and non-serotonin inputs from dorsal raphe nucleus 
(Van Bockstaele and Pickel 1993; Brown and Molliver 
2000). Unfortunately, because we did not expect such strong 
serotonin response in case of 50-kHz USVs emission, we did 
not analyze concentrations of the neurochemical compounds 
in dorsal raphe.

Rewards such as food, sucrose, social interaction or sex 
rapidly activate serotonin neurons in dorsal raphe (Yi Li 
et al. 2016). It was also demonstrated that dorsal raphe neu-
rons encode reward via serotonin and glutamate (Liu et al. 
2014). It is well known that SSRIs affecting the seroton-
ergic system have been used extensively in the treatment 
of psychiatric disorders over past 20 years. In the studies 
using microdialysis methods, acute treatment with citalo-
pram increased extracellular serotonin concentration in the 
central amygdala to 175% (Bosker et al. 2001) of basal level 
and in the ventral hippocampus citalopram increased sero-
tonin to 325% of the basal level (Cremers et al. 2000). It is 
also interesting that studies on dopamine-deficient mice have 
demonstrated that dopamine is not required for morphine-
induced reward as measured by conditioned place prefer-
ence (Hnasko et al. 2005), which indicates that dopaminergic 
mesolimbic system is not crucial for reward processing and 
acquisition. Hnasko et al. (2007) demonstrated that in mice 
with dopamine deficiency the fluoxetine at dose of 5.0 mg/kg 
produced robust conditioned place preference. This indicate 
that serotonin may mediate reward in the absence of dopa-
mine (Hnasko et al. 2007).

It is well known that glutamate is the primary excita-
tory neurotransmitter in the nervous system (Sladeczek 
et al. 1985). Biochemical studies demonstrate that astro-
cytic glutamine plays a crucial role in sustaining excitatory 

neurotransmission (Hertz 1979; Tani et al. 2014). Given the 
presence of the physiological glutamate–glutamine cycle 
(Hertz 1979; Scofield and Kalivas 2014; Tani et al. 2014) we 
have analyzed the correlation of behavioral and biochemical 
data with Glu/Gln ratio in all examined structures. Analysis 
of another neurotransmitter/metabolite ratios were also done 
(see “Statistics”).

We have shown for the first time that the number of USVs 
episodes strongly correlates with Glu/Gln ratio in nucleus 
accumbens (Fig.  4) and the increased Glu/Gln ratio in 
nucleus accumbens has strong associations with Glu/Gln 
ratio simultaneously in VTA, amygdala, CPu and hippocam-
pus (Fig. 7). This parameter also positively correlates with 
concentrations of serotonin and its metabolite 5-HIAA in 
amygdala as well as with MHPG/NA ratio in CPu (Fig. 7). 
Increased levels of Glu/Gln ratio in amygdala presented in 
our study is interesting in light of data from electrochemi-
cal studies, which indicate that glutamate concentration in 
basolateral amygdala is transiently elevated by reward-pre-
dictive stimuli (Malvaez et al. 2015). Moreover, previous 
studies showed that blockade of the glia selective glutamate 
reuptake in the amygdala and in VTA induced depressive-
like effects, including anhedonic symptoms manifested in 
reduced social interactions and reduced sensitivity to reward 
(Herberg and Rose 1990; Lee et al. 2007; Bechtholt-Gompf 
et al. 2010; John et al. 2012). It was also demonstrated that 
dentate gyrus of the hippocampus was the main structure 
responsible for this effect and impaired spatial memory was 
related to observed anhedonic symptoms (Bechtholt-Gompf 
et al. 2010). Furthermore, it was reported that decreased 
levels of astrocytic glutamate transporter occurred in animal 
models of depression (Zink et al. 2010). It is worth men-
tioning that the most commonly used anti-depressive drug 
fluoxetine (selective inhibitor of the serotoninergic trans-
porter) induced astrocytic glutamate transporter expression 
in hippocampus, amygdala and retrosplenial granular cortex 
(Zink et al. 2011).

Thus, the relationship between the emission of 50-kHz 
USVs and the neurochemical changes that occur after re-
exposure to morphine-paired context, indicates strong sero-
toninergic response in amygdala, hippocampus and mPFC 
enhanced with increased glutamatergic activity in nucleus 
accumbens. Most of the studies considering ‘incubation 
craving’ were carried out with more than 2 weeks of with-
drawal period. Nevertheless, the time-dependent differentia-
tion of behavioral response presented in our study indicate 
that context-induced 50-kHz USVs emission might be a 
new tool for reflecting individual differences in incubation 
of craving. Presented analysis indicates a strong correlation 
between serotonergic and glutamatergic systems in context-
induced conditioned response. The strength of this co-trans-
mission correlates with the number of 50-kHz USVs emitted 
in response to the reward context.
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Limitation of the study

The limitation of the procedure is the lack of control in 
another environment that was not paired with morphine con-
ditioning. This kind of neutral environment control would 
exclude chance that 50-kHz USVs might be reflection of 
incubation of craving triggered without drug-associated spa-
tial cues and the 50-kHz USVs emission might be permanent 
after 14 days of withdrawal period. Nevertheless, context-
induced conditioning USVs was not observed in the first 
seconds of testing session and these sounds were intensify-
ing with the time spent in the testing cage, probably after 
acquisition spatial cues.

Another limitation of our study is that the analysis of 
neurotransmitters concentration was performed post mor-
tem, so there was a time lag between measurement of USV 
and measurement of neurochemical changes in the brain. 
However, animals were decapitated immediately after testing 
session and brain tissue of each animal was isolated strictly 
after that. It is well known that the advantage of the in vivo 
technique (voltammetry or microdialysis) is that it enables 
tracking of changes in the extracellular concentrations of 
neurotransmitters over time; however, monitoring is gener-
ally limited to changes in a single structure. The ex vivo 
method enables the analysis of not only the extracellular 
concentration but also the total concentration of neurotrans-
mitters and their metabolites in several brain structures. 
According to our knowledge, there is no technological pos-
sibility to analyze concentration of many neurotransmitters 
and their metabolites in several structures in vivo in freely 
moving rats.
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