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Abstract
Main conclusion Methyl-jasmonate induces large increases in p-coumarate linked to arabinoxylan in Brachypodium 
and in abundance of GT61 and BAHD family transcripts consistent with a role in synthesis of this linkage.

Jasmonic acid (JA) signalling is required for many stress responses in plants, inducing large changes in the transcriptome, 
including up-regulation of transcripts associated with lignification. However, less is known about the response to JA of grass 
cell walls and the monocot-specific features of arabinoxylan (AX) synthesis and acylation by ferulic acid (FA) and para-
coumaric acid (pCA). Here, we show that methyl-jasmonate (MeJA) induces moderate increases in FA monomer, > 50% 
increases in FA dimers, and five–sixfold increases in pCA ester-linked to cell walls in Brachypodium callus. Direct meas-
urement of arabinose acylated by pCA (Araf-pCA) indicated that most or all the increase in cell-wall pCA was due to pCA 
ester-linked to AX. Analysis of the RNA-seq transcriptome of the callus response showed that these cell-wall changes were 
accompanied by up-regulation of members of the GT61 and BAHD gene families implicated in AX decoration and acyla-
tion; two BAHD paralogues were among the most up-regulated cell-wall genes (seven and fivefold) after 24 h exposure to 
MeJA. Similar responses to JA of orthologous BAHD and GT61 transcripts are present in the RiceXPro public expression 
data set for rice seedlings, showing that they are not specific to Brachypodium or to callus. The large response of AX-pCA to 
MeJA may, therefore, indicate an important role for this linkage in response of primary cell walls of grasses to JA signalling.
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Abbreviations
AIR  Alcohol-insoluble residue
Araf  Arabinofuranose
AX  Arabinoxylan
BAHD  Superfamily of acyl-coA transferases
DEG  Differentially expressed gene
diFA  Ferulic acid dimer
FA  Ferulic acid

GT  Glycosyltransferase
HCA  Hydroxycinnamic acid
JA  Jasmonic acid
MeJA  Methyl jasmonate
pCA  para-coumaric acid
ROS  Reactive oxygen species

Introduction

Jasmonic acid (JA) is a lipid-derived phytohormone and 
signalling molecule involved in plant development and in 
response to biotic and abiotic stresses. JA orchestrates a 
complex signalling cascade, involving cross-talk with other 
hormones such as ethylene, abscisic acid, and salicylic acid, 
which activates transcription factors controlling defence 
genes, such as protease inhibitors, terpenoids, phytoalexins, 
flavonoid, and sesquiterpenoid biosynthesis enzymes and 
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antifungal proteins (Creelman and Mullet 1995; Avanci et al. 
2010; Wasternack and Hause 2013).

The effects of JA signalling are often studied by the exog-
enous application of methyl–JA (MeJA), which is cleaved 
by MeJA esterase to JA in planta (Wu et al. 2008). Activa-
tion of JA-responsive genes requires conversion of JA to its 
bioactive isoleucine conjugate (JA-Ile). JA-Ile binds to the 
Skp1–Cullin–F-box (SCF)COI1 E3 ubiquitin ligase complex 
triggering the degradation of JAZ transcriptional repressor 
proteins, which normally repress the activity of the MYC2 
transcription factor in the nucleus, resulting in the expres-
sion of JA-responsive genes. This system has been demon-
strated in Arabidopsis (Thines et al. 2007; Chini et al. 2007) 
and has, to some extent, been shown to be conserved in rice 
(Lee et al. 2013). Studies have reported the effects of exog-
enously applied MeJA on global transcription, in both dicots 
and monocots: Pauwels et al. (2008) report that 6-h MeJA 
induced differential expression of 495 genes in cell suspen-
sion cultures of Arabidopsis; Salzman et al. (2005) report 
that MeJA induced and down-regulated expression (> 1.5-
fold) of 2980 and 1842 genes, respectively, in Sorghum; and 
transcriptome response to JA of rice seedlings was profiled 
as part of construction of the public expression database 
RiceXPro (Sato et al. 2013). Transcripts for enzymes in the 
phenylpropanoid pathway (e.g., 4CL, COMT, CCR, CAD, 
and CCoAOMT) leading to the synthesis of monolignols 
were significantly up-regulated by JA in all these studies. 
The mechanism of up-regulation of lignin biosynthetic genes 
in maize is now known to be analogous to that described for 
Arabidopsis above; the maize genes contain cis elements 
that bind to repressors for which degradation is triggered by 
JA signalling (Vélez-Bermúdez et al. 2015). In Arabidopsis 
cell suspension cultures, the increase in lignin biosynthetic 
transcripts was accompanied by a progressive increase in 
cellular monolignol content after MeJA treatment (Pauwels 
et al. 2008). Lignin polymerisation from monolignols is 
dependent on cell-wall class III peroxidases, which gener-
ate reactive oxygen species (ROS) from hydrogen perox-
ide. Peroxidase expression and activity is also known to be 
drastically increased by JA (Almagro et al. 2009). These 
cell-wall-related changes in response to JA do not neces-
sarily result in detectable increases in total lignin, but are 
rather associated with a cessation of growth (Napoleao et al. 
2017), including decreased cell expansion which may be due 
to increased cross-linking of primary cell walls.

In commelinid monocotyledons, including the major 
grass cereal crops wheat, rice, and maize, cell walls con-
tain xylan with abundant arabinofuranose decorations (ara-
binoxylan; AX). which can be acylated on the O-5 posi-
tion by hydroxycinnamic acids (HCAs) ferulic acid (FA) 
or para-coumaric acid (pCA). AX-FA oxidatively couples 
to form dimers and/or cross-links to lignin in the presence 
of ROS (Ralph et al. 1995), whereas the role of AX-pCA is 

less clear as it participates much less in cross-links (Ralph 
2010). Despite the importance of FA and pCA in the grass 
cell wall, the mechanism by which these phenolic acids 
become ester-linked to AX remains unclear. We predicted 
that a clade of genes within the BAHD superfamily of acyl-
coA transferases would contain the genes responsible for 
feruloylation of AX (Mitchell et al. 2007). Subsequently, 
other groups have shown that some of these genes actually 
add pCA [PMT; (Withers et al. 2012; Petrik et al. 2014; 
Sibout et al. 2016)] or FA [FMT; (Karlen et al. 2016)] to 
monolignols. However, there is strong evidence that one of 
the genes in this clade, OsAT10, is responsible for acyla-
tion of AX with pCA in rice as specific up-regulation of 
this gene increased Araf-pCA fivefold (Bartley et al. 2013). 
RNAi suppression of other genes in this clade resulted in 
decreased cell-wall FA (nearly all of which is likely to be 
AX-FA) (Piston et al. 2010; Buanafina et al. 2016) with the 
strongest effect resulting from suppression of a gene we call 
SvBAHD01 in Setaria viridis (de Souza et al. 2018). Genes 
within glycosyl transferase family 61 (GT61) are responsible 
for the addition of three-linked Araf on AX (Anders et al. 
2012) and a knock-out mutant for a GT61 gene xax1 had 
severely decreased wall-bound FA and pCA (Chiniquy et al. 
2012). Since BAHD proteins are localised in the cytosol, 
where the donor molecule for arabinosylation of AX, UDP-
Araf, is synthesised (Konishi et al. 2007; Rautengarten et al. 
2011), one model is that BAHD proteins are responsible 
for the addition of HCA ester-linked to this donor molecule 
before it is transported into the Golgi, where XAX1 protein 
mediates the addition of Araf-HCA onto AX (Buanafina 
2009; Molinari et al. 2013). This model is not universally 
accepted; Chiniquy et al. (2012) interpreted their data dif-
ferently and the existence of the putative UDP-Araf-HCA 
intermediate has not been reported. Nevertheless, there is 
extensive circumstantial evidence for the involvement of 
these BAHD and GT61 genes in the addition of HCA to AX 
(Mitchell et al. 2007; Bartley et al. 2013; Buanafina et al. 
2016; de Souza et al. 2018).

Evidence from the public expression database RiceXPro 
shows that several genes in the BAHD and GT61 candidate 
clades have dramatically increased expression in response 
to JA in rice seedlings grown hydroponically (Sato et al. 
2013). We hypothesised that this increased expression would 
result in increased abundance of AX-FA and/or AX-pCA in 
cell walls. Recently, it has been shown that treatment with 
MeJA does induce small, but significantly increases in cell-
wall FA and pCA in leaves of Brachypodium distachyon 
(Brachypodium) (Napoleao et al. 2017) and we have similar 
findings (L. S. Hyde, unpublished). However, leaves contain 
a complex mix of primary and secondary cell walls that con-
tain both Araf-pCA and lignin-pCA. Therefore, we chose to 
examine the effects of MeJA on primary cell-wall compo-
sition in Brachypodium callus as a more tractable system.
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Materials and methods

Callus growth and harvesting

Brachypodium distachyon (L.) P. Beauv. callus was gener-
ated and sub-cultured as previously described (Vogel and 
Hill 2008). Tissue was harvested directly into liquid nitro-
gen and ground to a fine powder using a Spex SamplePrep 
Freezer/Mill, or by hand using a pestle and mortar. Tissue 
was stored at − 80 °C for RNA extraction or freeze-dried for 
cell-wall composition analyses.

Methyl‑jasmonate treatment

Experiment 1: sub-cultured callus was transferred onto 
plates of callus initiation media [CIM; 4.43-g/l LS salts, 
30-g/l sucrose, 0.6-mg/l  CuSO4, 2.5-mg/ml 2,4-D, 0.2% 
(w/v) Phytagel™, pH 5.8] containing 1-, 5-, 10-, 50-, and 
100-µM MeJA (in ethanol) and a mock control (ethanol). 
Nine calli per plate (plate = 1 biological replicate) with three 
biological replicates per treatment.

Experiment 2: as experiment 1, except 16 calli per plate 
(plate = 1 biological replicate) with four biological replicates 
per treatment.

Experiment 3: Brachypodium calli were transferred onto 
plates of CIM containing 50-µM MeJA (in ethanol), or etha-
nol as a mock control. Samples were taken at 24 and 48 h, 
and 4 and 8 days. Three plates of 36 calli per plate were 
pooled per treatment, per timepoint and four biological rep-
licates were analysed. Additional replicates were generated 
to measure the proportion of ester-linked HCA in the pellet 
and supernatant fractions after mild acid hydrolysis and were 
harvested after 7 days of MeJA treatment.

Experiment 4: Brachypodium calli were treated with 
50-µM MeJA as in Expt. 3, except that the same callus was 
divided and transferred to control and MeJA plates in a 
paired design that better corrects for variation between the 
original calli.

Biochemical analyses

Experiment 1: phenolic acid content was quantified as previ-
ously described and expressed on a dry weight basis (Pellny 
et al. 2012).

Experiment 2: phenolic acid content was quantified as 
above. For all other analyses, destarched alcohol-insoluble 
residue (AIR) was extracted from three biological replicates 
per treatment. Tissue (20–50 mg) was washed successively 
with phenol, chloroform:methanol (2:1, v/v), and etha-
nol. The resulting pellet was air-dried for 2 h. Starch was 
removed using a method slightly modified from (Harholt 

et al. 2006). The AIR pellet was suspended in 10-mM potas-
sium phosphate buffer, pH 6.5, 1-mM  CaCl2, 0.05% (w/v) 
 NaN3, preheated to 95 °C. After 30 s, 1 unit/ml α-amylase 
(Bacillus lichenformis, Sigma-Aldrich) was added and sam-
ples were incubated at 85 °C for 15 min. The destarched AIR 
was collected by centrifugation (> 10,000g, 20 min), washed 
thrice with ethanol and dried at 60 °C under vacuum. Matrix 
monosaccharides were analysed as previously described 
(Jones et al. 2003) and the remaining pellet was using to 
quantify cellulose using a method modified from Viles and 
Silverman (1949): the pellet was washed with water once 
and with acetone thrice. Cellulose was hydrolysed in 72% 
(w/v) aqueous sulphuric acid at room temperature for 4 h, 
and in 3.2% (w/v) aqueous sulfuric acid at 120 °C, for 4 h. 
After centrifugation, 40 µl of the supernatant was diluted 
with 360-µl water and added to 800-µl sulfuric acid contain-
ing 2-mg/ml anthrone reagent. Samples were heated at 80 °C 
for 30 min. Absorbance was read at 620 nm and compared 
to the absorbance of glucose standards.

Experiment 3: AIR was prepared as described by Gou-
bet et al. (2009), except tissue (100 mg) was prepared by 
hand grinding in liquid nitrogen and was freeze-dried. AIR 
was destarched following a method slightly modified from 
Englyst et al. (1994). AIR (10 ± 0.20 mg) was suspended 
in 0.1-M sodium acetate buffer, pH 5.2, with 1.25% (v/v) 
α-amylase (Bacillus lichenformis, Sigma-Aldrich) and 
incubated at 85 °C, for 1 h, with shaking. Pullulanase (5 µl, 
Bacillus acidopullulyticus, Sigma-Aldrich) was added and 
incubated at 50 °C for 30 min, with shaking. Polysaccha-
rides were precipitated in 1.3-ml cold ethanol for 1 h on 
ice, pelleted by centrifugation (10,000g, 4 °C, 10 min), and 
washed thrice in 70% (v/v) aqueous ethanol. The pellet was 
dried at 40 °C under vacuum. Destarched AIR was analysed 
for phenolic acid composition, matrix monosaccharides, and 
cellulose as above, and acetyl bromide lignin as previously 
described by Foster et al. (2010) and results expressed per 
unit destarched AIR. Quantification of HCA content of the 
pellet and supernatant fractions after mild acidolysis was by 
incubation of dried AIR t in 0.6-ml 0.05-M trifluoroacetic 
acid (TFA) at 100 °C for 4 h, with shaking. Samples were 
centrifuged (10,000g, 10 min) and 500-µl supernatant and 
the pellet, after three washes with water, were dried under 
vacuum at 40 °C. Internal standard and 2-M NaOH were 
added and phenolic acids were extracted and analysed as 
above.

Experiment 4: AIR was prepared by washing Brachypo-
dium callus in 80% (v/v) aqueous ethanol as described by 
Pellny et al. (2012). The pellet was subsequently washed 
in CHCl3:MeOH (3:2) and dried for 16 h at 60 °C with tube 
lids open. Total cell-wall-bound phenolic acid measure-
ments were as described above. Quantification of Ara-HCA 
and HCA released by mild acidolysis was by incubation 
of dried AIR in 1.2-ml 0.05-M trifluoroacetic acid (TFA) 
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at 100 °C for 2 h, with shaking. Samples were centrifuged 
(14,000g, 10 min) and two aliquots of 500-µl supernatant 
were freeze-dried. Internal standard and 2-M NaOH was 
added to one aliquot of supernatant, and phenolic acids 
were extracted and analysed as above. The other aliquot of 
supernatant was analysed for Ara-HCA content using the 
LC–MS method described in (de Souza et al. 2018) except 
that here, quantification was achieved from the ion count 
of the multiple-reaction monitoring (MRM) rather than the 
associated UV absorbance peak (as there were overlapping 
UV absorbance peaks in these samples). We previously iso-
lated fractions of Ara-HCA and quantified HCA in these (de 
Souza et al. 2018); from ion counts of Ara-HCA MRMs for 
these, we were able to estimate conversion factors from ion 
counts to HCA amounts under our conditions.

RNA sequencing

RNA was extracted from 32 samples generated in Expt. 3 (2 
treatments × 4 timepoints × 4 reps) as previously described 
by Chang et al. (1993). RNA sequencing was performed on 
an Ion Proton™ System. Libraries were made using the Ion 
Total RNA-Seq Kit v2, and templates were prepared using 
the Ion PI™ Template OT2 200 Kit V2 and were sequenced 
using the Ion PI™ Sequencing 200 Kit v2 with an Ion PI™ 
Chip Kit v2. All sequencing equipment and reagents were 
from Thermo Fisher Scientific and used following the man-
ufacturer’s instructions. Sequencing reads were analysed 
on the Galaxy platform (Giardine et al. 2005). Reads were 
mapped to the Brachypodium distachyon v3.1 reference tran-
scriptome from Phytozome 11.0 (Goodstein et al. 2012) with 
one representative splice variant per gene. Comparison with 
an earlier reference Genebuild 2010-02-Brachy 1.2 showed 
that the transcript for candidate gene BdBAHD04, BRA-
DI2G33980.1 was replaced by a transcript from the opposite 
strand, Bradi2g33977.1 in v3. However, the strand-specific 
Ion Torrent reads all mapped to the strand in the v1.2 gene 
model, hence, the Bradi2g33977.1 sequence in the v3.1 
reference was manually replaced with BRADI2G33980.1, 
and this was used for all results reported here. Reads less 
than 30 bp were removed using the Trimmomatic tool, and 
the remainder mapped to the reference transcriptome with 
BWA-MEM, and percentage mapped reads were obtained 
using Flagstat. Mapped reads were quantified using eXpress, 
and tables of effective counts and FPKM (fragments per 
kilobase of transcript per million mapped reads) were cre-
ated using Merge eXpress. For global analysis, ANOVA was 
applied on effective counts, performed in RStudio using the 
EdgeR package, taking account of the four biological rep-
licates per sample. This analysis tested for the main effects 
and interaction between the two factors treatment and time, 
at the P = < 0.05 significance level corrected for multiple 
testing using Benjamini–Hochberg false-discovery rate, after 

filtering for genes with counts per million > 1 in three sam-
ples or more. For cell-wall genes analysis, a set of 492 cell-
wall genes listed in Table S4 were identified from their gene 
families using characteristic domains identified in Ensembl 
Plants or from genes listed in Plant Metabolic Network 
database (PMN) for the phenylpropanoid pathway; Arabi-
dopsis and rice orthologues from Ensembl Plants were used 
to check gene family assignment using TAIR and CAZy. 
ANOVA was performed as above on only these genes to 
determine differentially expressed cell-wall genes.

Results

Effect of MeJA concentration

We investigated the effect of increasing concentrations of 
MeJA (1–100 µM) on Brachypodium callus cell walls after 
17-day treatment; the highest MeJA concentrations noticea-
bly slowed callus growth (Fig. S1). Bound hydroxycinnamic 
acid content was increased by MeJA treatment in two experi-
ments (Fig. 1); significant increases were observed for pCA, 
and FA monomer in Expt. 2 even at 1-µM MeJA (P < 0.05 
for all) with maximal increases for pCA, and FA monomer 
and dimers observed at 50 or 100 µM. Bound pCA showed 
the largest increases relative to control, of five–ninefold 
at 100-µM MeJA (P < 0.001), whereas the increase in FA 
monomer was 42% (P < 0.01) and increase in FA dimers 
was 76–350% (P < 0.01). We analysed cell-wall sugars from 
Expt. 2 (Fig. 2). At concentrations of MeJA of 10 µM and 
above, cellulosic glucose and galactose were increased com-
pared to control samples. At 50- and 100-µM MeJA, arab-
inose and xylose were significantly (P < 0.05, LSD) greater 
than control as a proportion of alcohol-insoluble residue 
(AIR). No statistically significant change was observed in 
hemicellulosic glucose, mannose, galacturonic acid, or glu-
curonic acid.

Time course of MeJA effects: cell‑wall composition

We investigated the effects of treatment with 50-µM MeJA 
on Brachypodium callus sampled at 24 and 48 h, and 4 
and 8 days in two experiments. In the first of these (Expt. 
3), we compared cell-wall composition and the RNA-seq 
transcriptome; in Expt. 4, we examined effects on cell-wall 
hydroxycinnamate in more detail. For these experiments, we 
express cell-wall composition as a proportion of cell-wall 
fraction (AIR or destarched AIR); in fact, the proportion 
of callus dry weight (DW) present as AIR (40–42%) and as 
destarched AIR (19–22%) was not altered by MeJA treat-
ment (Table S1), so the relative effects of MeJA expressed 
per unit DW (Fig. 1) or per unit AIR (Figs. 2, 3, 4) are 
comparable.
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Bound pCA accumulated rapidly in Brachypodium cal-
lus when treated with 50-µM MeJA (Fig. 3); pCA was 50% 
greater than the control samples after 24 h (P < 0.05, LSD), 
and continued to accumulate, increasing significantly to two-
fold greater than the control by day 8 of treatment (P < 0.05, 
LSD). There was a significant main effect of MeJA over 
time on wall-bound FA monomer (P = 0.03, F test), although 
this effect was small; MeJA-treated samples remained 5–9% 
greater than the control over 1–8-day treatment. We found 
significantly (P = 0.018, F test) greater total wall-bound FA 
dimers in MeJA-treated samples (Fig. 3c).

Individual FA dimers (diFAs) showed similar rela-
tive responses to any of the MeJA treatments in the four 
experiments (Table S2). This contrasts with markedly dif-
fering responses of different diFA dimers to suppression of 
SvBAHD01 gene Setaria viridis (de Souza et al. 2018).

We also determined monosaccharide composition of the 
cell-wall fraction (destarched AIR) in Expt. 3 (Fig. 4). The 
only consistent, significant effect of 50-µM MeJA treat-
ment was a decrease in hemicellulosic glucose, presumably 
(1,3;1,4)-β-glucan (P = 0.016, F test). There was no signifi-
cant effect on hemicellulose associated xylose, arabinose, 
galactose, galacturonic acid, mannose or glucuronic acid, 
or in cellulosic glucose.

In Expt. 3, we found that lignin content of destarched 
AIR did not show a consistent trend with MeJA treatment 
but had significantly (P < 0.05) greater lignin at 8 days than 
controls (Fig. 4b). We also analysed lignin in Expt. 4, and 
found that whilst no individual timepoint was significantly 
different, overall, there was a significant increase (P < 0.05) 
in MeJA-treated relative to controls (Fig. 5f).

The pCA ester-linked to cell walls in grasses is made 
up of both pCA ester-linked to lignin and that ester-linked 
to AX, with lignin-pCA being the more abundant form in 
most tissues (Petrik et al. 2014; de Souza et al. 2018). To 
find which form is increased by MeJA, we used mild acid-
olysis to release sugar-linked HCA from AIR. Application 
of this treatment to plant tissues results in most lignin-pCA 
being left in the pellet; we found only a small proportion 
of ester-linked pCA in the pellet fraction from these callus 
samples (Table S3) suggesting that most of it is present as 
AX-pCA. However, there was a possibility that lignin-pCA 
in callus differs from plant tissues and is solubilised by mild 
acidolysis. We addressed this in Expt. 4 using our method for 
analysing Ara-HCA (de Souza et al. 2018), where we found 
that Araf-pCA was increased by MeJA treatment (Fig. 5d) 
showing that AX-pCA increases in response to MeJA. We 
found similar relative increases in Araf-pCA (Fig. 5d) to that 
for total ester-linked pCA (Fig. 5a). There are losses inherent 
in the mild acidolysis treatment, and correlating Araf-pCA 
to total pCA across all samples, we recovered about 33% as 
Araf-pCA (Fig. 5g). We found a similar proportion of total 
ester-linked FA monomer present as Araf-FA (Fig. 5h) and 

Fig. 1  Effect of 17-day treatment with increasing concentrations 
of MeJA on bound pCA and FA monomer and dimers ± SE, in two 
experiments (n = 3 Expt. 1, n = 4 Expt. 2). FA dimers are the sum 
of diF8-8′, diF8-5′, diF8-5′ benzofuran, diF5-5′ and diF8-O-4′. Sig-
nificance of differences from control level are indicated, where 
these are greater than maximum LSD from ANOVA of all data with 
*(P < 0.05), **(P < 0.01), ***(P < 0.001)
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a similar proportion of ester-linked FA in the pellet fraction 
after mild acidolysis (Table S3). Since all FA released by 
saponification are expected to come from AX-FA, this sug-
gests that all, or nearly all, the pCA released by saponifica-
tion in the callus samples come from AX-pCA.

Time course of MeJA effects: RNA‑seq transcriptome

The transcriptome of samples from Expt. 3 (callus treated 
with 50 µM of MeJA for 24 and 48 h, and 4 and 8 days) 
was analysed by RNA-seq. We obtained an average of 6.8 
million reads per sample of which 93% mapped to the refer-
ence. A multidimensional scaling factor (MDS) plot showed 
that MeJA treatment had a large effect on the variation in 
the transcriptome between samples, whereas time resolved 
the variation to a much lesser extent; replicates all grouped 
according to MeJA treatment on the MDS plot (Fig. S2). 
Differentially expressed genes (DEGs) were defined as those 
with significant effects of treatment, time, or treatment:time 
interaction at P < 0.05 with Benjamini–Hochberg false-
discovery rate correction. Out of a total of 5695 DEGs 
(Table S4), 4508 were induced by the MeJA treatment fac-
tor, 1270 DEGs for the time factor, and only 170 genes that 

showed an interaction effect between treatment and time, 
with some overlap between these gene sets (Fig. S3). Within 
the treatment DEGs, 2034 genes were up-regulated and 1985 
genes were down-regulated at every timepoint.

We examined transcript abundance from a set of 483 
genes identified as putatively encoding enzymes for syn-
thesising cell-wall constituents or cell-wall proteins 
(Table S5). Forty of these cell-wall-synthesis genes were 
significantly up-regulated and twenty-two down-regulated 
in response to 50-µM MeJA; only one of these was also 
significantly affected by time and none showed a significant 
time:treatment interaction, so all cell-wall genes were stably 
affected by MeJA during the 8-day time course. The high 
level of replication (n = 4) and relative simplicity of effect 
give us good statistical power, so any effect of MeJA > = 1.4-
fold was highly significant. The up-regulated set of 40 DEGs 
included genes from glycosyl transferase families (GT) 
GT2, GT4R, GT8, GT31, GT61, GT64, GT65, and GT77, 
genes from the BAHD clade and phenylpropanoid pathway 
genes (Table 1). Apart from one cinnamoyl-coA reductase 
(CCR) gene, the most up-regulated transcripts at the 24-h 
timepoint were two BAHD paralogs (Bradi2g04980, Bra-
di2g04990) within the Clade that we previously identified 

Fig. 2  Monosaccharide concentrations ± SE in the hemicellulose frac-
tion (xylose, arabinose, glucose, galactose, mannose, galacturonic 
acid, and glucuronic acid) and glucose in the cellulose fraction of 
destarched alcohol-insoluble residue (AIR) in Brachypodium callus 

after 17-day treatment with varying concentrations of methyl-jas-
monate (1, 5, 10, 50, and 100 µM, Expt. 2, n = 4). * indicates signifi-
cant difference from control level (P < 0.05)
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as having a possible role in AX feruloylation (Mitchell et al. 
2007). Other highly up-regulated transcripts (> twofold at 
24 h) include another member of this BAHD Clade (Bra-
di2g33980), putatively encoding phenylpropanoid pathway 
enzymes (4CL, HCT, CCR), and members of the GT61, 
GT77, and GT31 families. More moderately up-regulated 
(> = 1.4-fold, < twofold at 24 h) genes include other BAHD 
and GT61 candidates and genes implicated in xylan back-
bone synthesis and cellulose synthesis (Table 1).

Different members of the GT77 and GT31 families are 
among the most down-regulated cell-wall transcripts, along 
with those from GT37 (Table 2). These three GT families 
all contain members that glycosylate cell-wall proteins, as 
well as some involved in pectin decoration. Extensins and 
an expansin are moderately down-regulated, as are some 
CSLA, CSLE, and CSLH family transcripts (Table 2).

Several candidate genes for pCA and FA esterification 
to AX in the BAHD Clade and GT61 families increased 
significantly in response to MeJA (Table 1), whilst others 

did not respond or were not expressed. Due to the high level 
of replication and consistency of response to MeJA across 
timepoints, we were able to detect modest up-regulation 
(1.3–1.9-fold) with a high level of statistical certainty and 
distinguish this from more substantial up-regulation (≥ 2.0-
fold) (Table 1). We summarise these responses to MeJA for 
all the BAHD candidate Clade genes and GT family genes 
in Fig. 6, along with their phylogenetic relationship to genes 
that have evidence on their role.

Our focus here was on cell-wall changes, particularly in 
HCA composition induced by MeJA, rather than to study JA 
signalling in Brachypodium callus. However, the detailed, 
strand-specific RNA-seq transcriptome set that we generated 
can also be mined for this purpose. As well as details of all 
DEGs (Table S4), we have made all raw data available at 
ArrayExpress accession E-MTAB-5413.

Discussion

Response of Brachypodium callus cell wall to MeJA

JA signalling induces a slowing of growth and a priming 
of defence responses. The cell-wall component of these 
responses includes a large increase in transcripts and enzyme 
activities for lignin biosynthesis and for generation of ROS 
which can induce cross-linking of cell-wall components. 
In primary cell walls, increased cross-linking can stop 
cell expansion, and it can strengthen all cell walls against 
attack. The Brachypodium callus used for this study grew 
rapidly (Fig. S1) and the transcriptome analysis showed low 
expression of secondary cell-wall-specific cellulose syn-
thase CESA genes (Bradi2g49912, Bradi3g28350, and Bra-
di4g30540 in Table S5) indicating that very little or no sec-
ondary cell walls were present, although it did contain lignin 
which is consistent with the previous findings (Rancour et al. 
2012). MeJA treatment caused a marked slowing of growth 
and some changes in cell-wall composition. We found some 
changes in lignin amount, but these were small and incon-
sistent (Figs. 4b; 5f); JA treatment does not always induce 
lignin increases in plants (Napoleao et al. 2017), although 
monolignol synthesis was increased in cell cultures (Pauwels 
et al. 2008). No significant changes in polysaccharide com-
position of the cell walls during the 8-day time course were 
induced by 50-µM MeJA except for a decrease in hemicel-
lulosic glucose (Fig. 4); however, 17 days after 50-µM MeJA 
treatment, we also observed significant increases in xylose, 
arabinose, and cellulosic glucose (Fig. 2).

We had hypothesised that AX-pCA and AX-FA would 
be up-regulated in response to MeJA based on transcript 
responses to JA in rice (Sato et  al. 2013). Wall-bound 
pCA increased strongly in MeJA-treated callus, increasing 
five–tenfold after 17 days of treatment with 50-µM MeJA 

Fig. 3  Effect of 1-, 2-, 4-, and 8-day treatment with 50-µM MeJA on 
bound pCA, FA monomer and dimers ± SE in Brachypodium cal-
lus cell walls in Expt. 3 (n = 4). FA dimers are the sum of diF8-8, 
diF8-5, diF8-5 benzofuran, diF5-5, and diF8-O-4. * indicates differ-
ence between control and MeJA is greater than LSD from ANOVA 
(P < 0.05)
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(Fig. 1). In our two time-course experiments, wall-bound 
pCA was significantly greater than the control samples after 
24-h MeJA treatment, and was 70–110% increased after 
8-day treatment (Figs. 3a,5a); as MeJA did not affect the 
amount of arabinose or xylose in the callus cell walls during 
this period, bound pCA per unit AX was similarly increased. 
A smaller increase was observed in FA monomer which was 
significant at 17 days but not during the 8-day time-course 
experiments. FA dimers were increased by MeJA in all 
experiments (Figs. 1, 3, 5) and this effect was seen in all 
individual dimers measured (Table S2). Our direct measure-
ment of Araf-FA and Araf-pCA (Fig. 5d, e) was consistent 
with the assumption that all or nearly-all ester-linked cell-
wall FA and pCA were derived from AX-FA and AX-pCA 
in the callus tissue. Therefore, MeJA induces large increases 
in AX-pCA whilst having only a small effect on AX-FA 
monomer in Brachypodium callus.

Cell‑wall transcript responses to MeJA

Overall, we observed effects on cell-wall transcripts con-
sistent with changes in cell-wall composition induced by 

MeJA. Modest increases in amounts of cellulose and AX 
(Fig. 2) were preceded by increases in CESA and GT43 
transcript abundance (Table 1) and a decrease in hemicel-
lulosic glucose (Figs. 2, 4) was accompanied by a decrease 
in Bradi5g10130 CSLH2 transcript abundance (Table 2). 
CSLH genes encode (1,3;1,4)- β-glucan synthases (Dob-
lin et al. 2009); the most abundantly expressed (1,3;1,4)- 
β-glucan synthase in most barley tissues is CSLF6 (Burton 
et al. 2008), but in Brachypodium callus, this was similarly 
expressed to CSLH2 and unaffected by MeJA.

Our original motivation for studying the response to 
JA in Brachypodium was the large up-regulation of cer-
tain BAHD (OsBAHD02, OsBAHD04) and GT61 genes 
(OsGT61_21) in rice seedlings following JA treatment 
(Sato et al. 2013); we found the same effects here for the 
Brachypodium orthologues of these genes (Fig. S4), show-
ing that the responses are common to both systems. We also 
found three further up-regulated GT61 genes in Brachy-
podium (BdGT61_12, BdG61_15, BdGT61_10), but only 
one orthologue (OsGT61_10) of these was up-regulated in 
rice (Fig. S4). The greatest relative up-regulation shown of 
these, and of all cell-wall genes except for one CCR gene, 

Fig. 4  Effect of 50-µM methyl-jasmonate (MeJA) on cell-wall poly-
saccharide (a, c–i) and lignin (b) composition in Brachypodium 
distachyon callus destarched AIR (alcohol-insoluble residue) after 
1-, 2-, 4-, and 8-day treatment in Expt. 3 (n = 4). Blue and orange 

markers represent control and MeJA samples, respectively. Error 
bars show ± SE. * indicates difference between control and MeJA is 
greater than LSD from ANOVA (P < 0.05)
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were the two paralogs BdBAHD02p1, p2 (Bradi2g04980, 
Bradi2g04990; most likely the result of a recent tandem 
duplication) (Table  1). Interestingly, the orthologue of 
these genes in switchgrass Pavir.Eb00373 is substantially 
down-regulated upon induction of secondary cell-wall asso-
ciated lignification (Rao et al. 2017), perhaps suggesting 
that its role is restricted to primary cell walls. One other 
closely related BAHD, BdBAHD04 (Bradi2g33980) was 
more highly expressed and was also up-regulated by MeJA. 
Three further BAHDs (BdBAHD01, 03, 05) in the clade were 

significantly up-regulated but by less than twofold (Table 1). 
These results and their relationship to other BAHDs with 
evidence of function are summarised in Fig. 6. The ortholog 
of the OsAT10 gene previously implicated to be responsi-
ble for the addition of pCA to AX was not expressed in 
callus. Genes responsible for p-coumarylation of monol-
ignols BdPMT1 and BdPMT2 had, respectively, zero and 
low expression and were not up-regulated by MeJA. The 
orthologue of OsFMT that is putatively responsible for 
feruloylation of monolignol was not expressed. Genes 

Fig. 5  Effect of 50-µM methyl-jasmonate (MeJA) on cell-wall HCA 
(a–c) and lignin (f) content in Brachypodium distachyon callus AIR 
(alcohol-insoluble residue) after 1-, 2-, 4-, and 8-day treatment (Expt. 
4). HCA content released by saponification (a–c) including total FA 
dimer content (c). FA dimers are the sum of diF8-8 aryltetralin, diF8-
8′, diF8-5′, diF8-5′ benzofuran, diF5-5′, and diF8-O-4′ (individual 

diFA data in Table S2). Determination by LC–MS of Ara-HCA con-
jugates released by mild acidolysis (d, e). Relationship between pCA 
and Araf-pCA (g) and FA and Araf-FA (h) content. Points with error 
bars (a–f) show mean ± SE, n = 3; * and ** indicate significant differ-
ence between control and MeJA from paired t test at P < 0.05, 0.01, 
respectively. Points in g, h show individual sample values
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with the strongest evidence for a role in AX feruloylation 
BdBAHD01 and BdAT1 (our BdBAHD05) were moderately 
up-regulated. Therefore, it seems likely that at least one of 
the most up-regulated genes BdBAHD02p1, BdBAHD02p2, 
and/or BdBAHD04 performs the same molecular function as 
OsAT10, and their up-regulation accounts for the large rise 
in AX-pCA observed in response to MeJA. These genes have 
most sequence similarity to BdPMT2 (Fig. 6) which may 

suggest that relatively few amino acid residue changes in 
these enzymes are required to alter the acceptor specificity 
between Araf and monolignol.

Some GT61 Clade A genes (XAT1, 2 and 3) encode ara-
binosyl transferases (Anders et al. 2012). As outlined above, 
we favour a model, where some GT61 proteins are responsi-
ble for HCA–arabinosyl transfer onto xylan, explaining the 
decreases in bound pCA and FA seen in the xax1 mutant 

Fig. 6  Phylogenetic trees of 
BAHD Clade and GT61 family 
genes indicating effect of MeJA 
treatment on Brachypodium 
genes in callus: ↑↑ up-regulation 
by > twofold, ↑ up-regulation 
by < twofold,—no significant 
change, 0 not expressed (< 1 
FPKM). Outgroups used to root 
trees are in grey blocks. Support 
for topology is shown as per-
centage of 500 bootstrap runs. 
Only sub-clade A (pink block) 
out of BAHD Clade genes (as 
defined Molinari et al. (2013)) 
is shown as sub-clade B genes 
were not expressed. GT61 fam-
ily clades A (yellow) B (green) 
C (grey) are shown (as defined 
Anders et al. (2012)). Named 
genes on tree have evidence 
on their role from [1] Karlen 
et al. (2016) [2] Withers et al. 
(2012) [3] Petrik et al. (2014) 
[4] Sibout et al. (2016) [5] 
Buanafina et al. (2016) [6] de 
Souza et al. (2018) [7] Bartley 
et al. (2013) [8] Voiniciuc et al. 
(2015) [9] Anders et al. (2012) 
[10] Chiniquy et al. (2012)
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(Chiniquy et al. 2012). Neither of the two Brachypodium 
orthologs of XAX1 Bradi1g06560 nor Bradi3g11337 showed 
significant change in gene expression when treated with 
MeJA; however, the closely related Bradi4g27360 was sub-
stantially up-regulated (Table 1; Fig. 6). Three other Clade 
A GT61 genes were up-regulated by twofold or more: Brai-
di2g01380, Bradi2g01387, and Bradi1g34670 (Table 1; 
Fig. 6) and could, therefore, be considered candidates for 
an HCA-Ara addition step. Since both FA and pCA were 
decreased in the xax1 mutant (Chiniquy et al. 2012), it may 
be that GT61-encoded enzymes are not specific for either 
FA-Ara or pCA-Ara. Other GT61 genes in Clades A and 
B that were less up-regulated (< 2.0-fold) show similar 
up-regulation to GT43 genes encoding IRX9 and IRX14 
homologues (Table 1) that are involved in xylan backbone 
synthesis, so may be part of a general increase in AX syn-
thesis (Fig. 2).

Genes in the phenylpropanoid pathway are some of the 
most up-regulated genes in our cell-wall set, although lignin 
was only moderately increased (Figs. 4, 5). The early steps 
in the pathway also generate pCA-CoA and FA-CoA precur-
sors for ester-linked HCAs in the cell wall and other pheno-
lics, but the amounts of these are small compared to lignin. 

This increase in transcripts may, therefore, be more part of 
defence priming allowing rapid lignification in response 
to additional cues. Along with RNAi studies suppressing 
BAHD and GT61 genes resulting in decreased cell-wall 
HCAs discussed above, RNAi suppression of UAM genes 
has also been shown to have this effect (Rancour et al. 2015); 
UAM proteins interconvert UDP-Arap to UDP-Araf and 
are located on the outside of the Golgi (Rautengarten et al. 
2011). UAM transcripts are abundant but not up-regulated 
by MeJA in our system. Possible pathways for cell-wall 
ester-linked HCAs are shown in Fig. 7, highlighting that 
the enzymes for which putatively encoding transcripts are 
up-regulated in Brachypodium callus. In this model, genes 
in the BAHD candidate Clade A (Fig. 6) encode the four 
enzymes which together account for all ester-linked HCA in 
grass cell walls by the addition of pCA or FA to monolignol 
(PMT, FMT) or to Araf (PAT, FAT). In addition to cell-wall 
enzymes, class III peroxidase and laccase enzymes that gen-
erate ROS responsible for oxidative coupling in the cell wall 
are also depicted. Some transcripts for these are massively 
up-regulated in response to MeJA (Table S4); the increased 
FA dimerization that we observed suggests increased oxi-
dative coupling did occur in the cell walls (Figs. 1, 3, 5). It 

Fig. 7  Possible pathways to 
cell wall for ester-linked HCA 
(pCA and FA represented as P 
and F, respectively; P/F denotes 
P or F). X denotes xylosyl and 
A arabinofuranosyl residues 
of AX. Enzymes are shown as 
rectangles coloured accord-
ing to response of putative 
encoding transcripts: grey, not 
expressed; blue, no significant 
response to MeJA, red, up-
regulated by MeJA. Protein 
marked is unknown UDP-
arabinofuranose transporter. 
In this model, BdBAHD01, 
BdBAHD05 encode feruloyl ara-
binosyl transferases (FATs) and 
BdBAHD02p1, BdBAHD02p1, 
BdBAHD03 and BdBAHD04 
could all encode p-coumaroyl 
arabinosyl transferases (PATs) 
or FATs, and any of GT61 
Clade A genes shown in Fig. 6 
could encode xylan hydroxycin-
namoyl arabinosyl transferase 
(XHAT)
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has previously been suggested that pCA in grass cell walls 
(mostly on lignin) acts as an “oxidation catalyst” for S-lignin 
polymerisation by radical transfer (Ralph 2010); perhaps, 
AX-pCA could play a role in facilitating or accelerating 
AX-FA dimerization. This would seem to fit with a general 
picture of the effect of JA signalling on cell walls, where the 
largest responses are often increased cross-linking as part of 
decreased cell expansion and enhanced defence.

Conclusion

Our results show that increased AX-pCA is the largest rela-
tive response to MeJA in cell-wall components measured in 
Brachypodium callus. The accompanying large up-regula-
tion of candidate BAHD and GT61 genes is consistent with a 
role for these in the synthesis of this linkage. Since the callus 
system is amenable to transformation, we plan to investigate 
this by direct manipulation of these genes’ expression.
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