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Abstract
There is a considerable body of evidence indicating that chronic adverse experience, especially chronic psychosocial stress/
trauma, represents a major risk factor for the development of many somatic and affective disorders, including inflammatory
bowel disease (IBD) and posttraumatic stress disorder (PTSD). However, the mechanisms underlying the development of chronic
stress-associated disorders are still in large part unknown, and current treatment and prevention strategies lack efficacy and
reliability. A greater understanding of mechanisms involved in the development and persistence of chronic stress-induced
disorders may lead to novel approaches to prevention and treatment of these disorders. In this review, we provide evidence
indicating that increases in immune (re-)activity and inflammation, potentially promoted by a reduced exposure to immunoreg-
ulatory microorganisms (BOld Friends^) in today’s modern society, may be causal factors in mediating the vulnerability to
development and persistence of stress-related pathologies. Moreover, we discuss strategies to increase immunoregulatory pro-
cesses and attenuate inflammation, as for instance contact with immunoregulatory Old Friends, which appears to be a promising
strategy to promote stress resilience and to prevent/treat chronic stress-related disorders.
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Introduction

Chronic psychosocial stress/trauma is a major burden of mod-
ern life and poses a clear risk factor for a plethora of stress-
related somatic and affective disorders [213]. Although the
prevalence of stress-related somatic and affective disorders
has increased over the past decades, the factors contributing

to these increases, especially for stress-associated mental disor-
ders, are far from being fully understood. Currently available
pharmacologic approaches to treatment of stress-associated
mental disorders, such as major depressive disorder, suffer from
important shortcomings, including limited efficacy, delayed on-
set of action, increased relapse risk upon withdrawal, and sig-
nificant side effects that impair quality of life and promote
treatment non-adherence and/or discontinuation [13, 131,
229, 231, 263, 313, 355]. In addition to these shortcomings in
treatment of mental health disorders, there is a recognized need
to develop strategies for their prevention. Thomas Insel, the
former head of the National Institute of Mental Health
(NIMH) commented over a decade ago that, BIn contrast to
researchers in cancer and heart disease who have sought cures
and preventions, biological psychiatrists in both academia and
industry have set their sights on incremental and marketable
advances, such as drugs with fewer adverse effects^ [177].

In this review, we focus on increases in inflammation as a
potential causal factor in the increased prevalence of stress-
related somatic and affective disorders, as proposed by the
BCytokine Theory of Mental Disorders [58, 79, 82, 84],^
and reduced exposures to immunoregulatory microorganisms
as a factor contributing to increases in chronic low-grade in-
flammation, as proposed by the Bbiodiversity^ hypothesis
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[153], Bmissing microbes^ hypothesis [39], or BOld Friends^
hypothesis [238, 351]. Briefly, not only many stress-
associated somatic disorders, but, interestingly, also mental
disorders, are associated with, and at least in part also promot-
ed by, an activated immune status and chronic low-grade in-
flammation [345]. As these disorders are often further char-
acterized by a compromised regulatory T (Treg) cell compart-
ment [230, 373], a failure of immunoregulation might, there-
fore, be involved in promoting an over-reacting of the inflam-
matory stress response and, thus, predisposing an individual to
the development of certain stress-related somatic and mental
disorders. The failure of immunoregulation, in turn, is due in
part to a lack of exposure to immunoregulatory microorgan-
isms with which humans co-evolved. Thus, interventions that
increase immunoregulation and attenuate chronic low-grade
inflammation, i.e., contact with immunoregulatory Old
Friends, might provide a novel and promising strategy to pre-
vent stress-induced immune activation and to promote stress
resilience.

Stress-associated disorders are on the rise

Chronic stress, particularly, chronic psychosocial stress,
poses an acknowledged risk factor for numerous disor-
ders, including: somatic disorders, like cardiovascular dis-
eases [51, 52, 100, 200, 264, 395]; fibromyalgia [9]; bron-
chial asthma [427, 428]; atopic dermatitis [54]; arthritis
[66, 162]; inflammatory bowel disease (IBD) [34, 35,
37, 102, 226, 266, 267, 343, 358]; stomach ulcers [66];
diarrhea and digestive problems [56, 66]; chronic pelvic
and abdominal pain [56, 66]; infections [56, 65, 66, 194];
headaches [56, 66]; impaired wound healing [195, 196,
258]; cancerogenesis [193, 225, 338]; as well as affective
disorders [342], like major depressive disorder [1, 71, 72,
88, 152, 159, 168, 411, 412], anxiety disorders; and
trauma- and stressor-related disorders, such as posttrau-
matic stress disorder (PTSD) and chronic fatigue syn-
drome [158]. While the underlying etiologies of these dis-
eases are not fully understood, epidemiologic data provide
strong evidence of a steady rise in the incidence of many
stress-associated disorders, including allergic diseases,
such as allergic asthma [2], atopic dermatitis [157] and
hay fever/rhinitis [397], and autoimmune diseases, like
multiple sclerosis [135, 324], type 1 diabetes [147], and
Crohn’s disease (CD) [116], in developed countries since
the 1950s [17]. A recent meta-analysis reported rising
incidence rates of Crohn’s disease and ulcerative colitis
(UC), the principal types of inflammatory bowel diseases
(IBD), in newly industrialized countries in Africa, Asia,
and South America, including Brazil and Taiwan, and
stably high incidence rates in North America and Europe
since 1990 [298], suggesting that the degree of

industrialization is positively associated with higher inci-
dence rates of stress- and inflammation-associated disor-
ders, at least until a certain plateau phase is reached. For
comparison, in 2015 and 2016, an estimated 3.1 million
(unadjusted lifetime prevalence of 1.3%) adults in the
USA had at some time received a diagnosis of IBD
[430]. Moreover, while Murray and Lopez in 1996 ranked
typical stress-associated disease entities like cardiovascu-
lar disorders and depression as fifth and fourth, respec-
tively, among the ten leading causes of disability-adjusted
life years (DALYs) for the year 1990, their projected rank
for these disorders for the year 2020 was first and second,
respectively [291]. These estimations are supported by a
study published in 2014 reporting that depression is re-
sponsible worldwide for more Byears lost to disability
(YLDs)^ than any other condition, due to its high preva-
lence and the fact that it lasts for many years [182]. The
increasing individual and socioeconomic burden of mental
disorders is indicated by the fact that the overall Bdays out
of role per year,^ i.e., days in the past year, each respon-
dent reported being totally unable to work or carry out
their other normal daily activities, due to any mental dis-
orders outnumbered those due to any physical disorders
by about 30% in 24 countries that participated in the
World Health Organization (WHO) World Mental Health
(WMH) surveys [10].

In summary, there is significant demand and significant
unmet need for both treatment and prevention of stress-
associated somatic pathologies as well as stress-related anxi-
ety and affective disorders. However, promising strategies
have not yet been delineated.

Stress, inflammation, and mental health:
the cytokine theory of affective disorders

Affective disorders are paralleled by increased
immune system (re)activity

Many, if not all, of the above referenced stress-associated so-
matic [7, 50, 69, 234, 314, 323, 357] and psychiatric disorders,
including PTSD, generalized anxiety disorder (GAD), panic
disorder (PD), phobias (agoraphobia, social phobia, etc.) [142,
277], depression [172, 251, 309], burnout [146, 415], and
chronic fatigue syndrome [44, 346, 384], are accompanied
by an over-(re)active immune system and chronic low-grade
inflammation.

Posttraumatic stress disorder

Trauma- and stressor-related disorders, such as PTSD, are
associated with chronic low-grade inflammation. Emerging
evidence even suggests that inflammation plays a role in
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vulnerability to PTSD, as well as persistence of PTSD symp-
toms. For example, women with childhood abuse-related
PTSD display increased NF-κB pathway activity, which is
positively correlated with PTSD symptom severity, and de-
creased whole blood monocyte glucocorticoid (GC) sensitiv-
ity compared to healthy controls [310]. Moreover, peripheral
blood mononuclear cells (PBMCs) from individuals with a
diagnosis of PTSD show an increased spontaneous and lipo-
polysaccharide (LPS)-induced in vitro secretion of proinflam-
matory cytokines such as interleukin (IL)-6 and IL-1β, when
compared to healthy controls [142]. In line with these find-
ings, military combat-related PTSD in male soldiers is associ-
ated with higher serum levels of proinflammatory cytokines,
even after accounting for depression and early-life trauma
[233]. Study participants with a diagnosis of PTSD also have
a high risk of developing autoimmune disorders, relative to
healthy controls [303], and have exaggerated symptoms of
IBD [55, 303], relative to non-PTSD controls. The association
between elevated C-reactive protein (CRP) and PTSD was
supported in a large general population study, with increased
CRP (> 3 mg/L) found in those with a diagnosis of PTSD,
compared to those without [375]. Besides evidence for an
association between chronic low-grade inflammation and
PTSD, the latter presents as a disorder characterized by de-
creased 24-h average plasma cortisol concentrations (i.e.,
hypocortisolemia), enhanced negative feedback sensitivity of
the HPA axis [87, 223, 262, 288, 431, 432, 435, 436], and
increased acute stress-induced cortisol secretion [87].

Generalized anxiety disorder, PD, and phobias

There is some evidence that anxiety disorders, including
GAD, PD, and phobias, are associated with chronic low-
grade inflammation. Male, but not female, study participants
with a current anxiety disorder, including GAD, PD, social
phobia, or agoraphobia, show increased plasma CRP concen-
tration when compared with healthy controls, based on the
Netherlands Study of Depression and Anxiety [414]. Of note,
immune dysregulation is found especially in persons with a
late-onset anxiety disorder, suggesting the existence of a spe-
cific late-onset anxiety subtype with a distinct etiology [414].
Plasma CRP levels were also increased in children diagnosed
with GAD [68]. Moreover, individuals with agoraphobia had
significantly higher follow-up levels of CRP and tumor necro-
sis factor (TNF; a proinflammatory cytokine), as well as lower
levels of the cardioprotective marker adiponectin, relative to
their non-agoraphobic counterparts [418]. In line with these
findings, median peripheral cytokine levels for 18 of 20 dif-
ferent cytokines were elevated in individuals with PD com-
pared to age- and gender-matched healthy controls, and the
proportion of participants with six or more detectable levels of
the most common proinflammatory cytokines and
chemokines (eotaxin, GM-CSF, interferon [IFN]-α, IL-1α,

IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1
MCP-1] andMIP-1a) was higher in anxiety patients compared
with controls [167]. Plasma TNF and IL-17 concentrations
were higher in cell cultures containing activated T cells from
those with a diagnosis of GAD compared with healthy indi-
viduals, while T helper 1 (Th1) and T helper 2 (Th2) cytokines
were lower in the anxious group compared to the control sub-
jects [409].

Depression

The association between chronic-low grade inflammation and
major depressive disorder has been extensively reviewed [58,
79, 81, 245, 278, 279, 331] and, therefore, we highlight only a
few of the major findings in the current review article. Early
studies from the 1990s already concluded that the established
immune cell profile of depressed patients points towards the
existence of a systemic immune activation [248]. In detail, this
is indicated by a higher number of leukocytes, neutrophils,
monocy t e s , c l a s s I I ma j o r h i s t o compa t i b i l i t y
complex (MHC) HLA-DR, and CD4+CD45RA memory T
cells, as well as increased numbers of IL-2 receptor-bearing
cells in participants diagnosed with depression versus healthy
controls. Individuals withminor andmajor depression without
melancholia further show an increased CD4+/CD8+ ratio,
whereas individuals with major depression with melancholia
show an increased number of CD3+ T cells, CD 19+ B cells,
and CD8+ cytotoxic Tcells. Activation of cellular immunity in
major depression is further corroborated by findings of in-
creased plasma and urinary neopterin concentrations, which
is an accepted marker of activation of cell-mediated immunity
[104, 244]. In another study, Maes and colleagues showed that
individuals with melancholic depression in comparison to
healthy controls exhibit significantly more IL-1β accumula-
tion in culture supernatants of phytohaemagglutinin (PHA)-
stimulated lymphocytes [247], with the soluble IL-2-receptor
(sIL-2R) accumulation reflecting the magnitude of the PHA-
induced lymphocyte stimulation in healthy controls but not in
depressed individuals. Moreover, individuals with major de-
pressive disorder compared to healthy controls exhibit dexa-
methasone non-suppression of lectin-induced blastogenesis
and of IL-1β production. Besides ex vivo IL-1β secretion,
plasma IL-6 [309], IL-1β, TNF, and CRP [278] concentration
and ex vivo IL-6 production in culture supernatants of
mitogen-stimulated peripheral leukocytes [251] are increased
in depressed individuals compared with healthy participants.
Interestingly, a positive correlation between IL-6 in the super-
natants and postdexamethasone cortisol values again suggests
development of GC resistance in depressed individuals.
Further data supporting cardinal features of an inflammatory
response in patients with major depression are reviewed else-
where [245, 278, 279]. Briefly, these include increased cyto-
kine receptor expression, acute phase reactants, chemokines,
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and soluble adhesion molecules in peripheral blood and cere-
brospinal fluid (CSF), as well as elevated expression of a
variety of innate immune genes and proteins, including IL-
1β, IL-6, TNF, TLR3, and TLR4, in postmortem brain sam-
ples from suicide victims that had depression. Moreover, pe-
ripheral blood gene expression profiles are consistent with a
proinflammatory BM1^ macrophage phenotype, and poly-
morphisms in the proinflammatory genes IL-1β, TNF, and
CRP genes have been associated with depression and its re-
sponse to treatment.

Burnout syndrome

Burnout has been defined as a combination of depersonaliza-
tion, emotional exhaustion, and reduced personal accomplish-
ment caused by chronic work stress [259]. Although burnout
is not included in the 5th edition of the Diagnostic and
Statistical Manual of Mental Disorders (DSM-5) [12], some
countries, for example, Sweden, consider burnout syndrome
to be a legitimate justification for sick leave [132]. Besides
reporting more job strain and less social support at work, as
well as higher levels of anxiety, depression, vital exhaustion,
and sleep impairments, female participants with high burnout
manifest higher levels of plasma TNF, but not the anti-
inflammatory cytokine transforming growth factor beta
(TGF-β), independent of confounders including depression
[146]. In line with these data, burnout was also in another
study associated with increased systemic inflammation, indi-
cated by the fact that higher levels of total burnout symptoms
predict higher plasma TNF levels [415] and the fact that indi-
viduals with burnout syndrome have an increased risk to de-
velop cardiovascular pathologies [273].

Chronic fatigue syndrome

Chronic fatigue syndrome is a medical disorder characterized
by Bphysical and mental fatigue exacerbated by physical and
mental effort, as well as subjective cognitive impairment,
disrupted and unrefreshing sleep, and some degree of wide-
spread pain^ [364]. As with burnout syndrome, chronic fa-
tigue syndrome is not included in the DSM-5, and there is
ongoing debate regarding whether it should be considered as
a psychiatric disorder [364]. Longitudinal studies in individ-
uals with stress-related chronic fatigue indicate that a decrease
in both GC and catecholamine sensitivity of immune cells
with ongoing stress is associatedwith self-maintaining inflam-
mation and inflammatory disinhibition under acute stress con-
ditions, which, in turn, lead to fatigue [384]. In detail, in-
creased IL-1 and TNF levels are significantly correlated with
fatigue, sadness, autonomic symptoms, and a flu-like malaise
[252]. Moreover, females diagnosed with chronic fatigue syn-
drome show higher plasma concentrations of IL-1α, IL-1β,
IL-4, IL-5, IL-6, IL-12, and TNF-β, and lower concentrations

of IL-8, IL-13, and IL-15 [123]. In support of a role for innate
immune activation in unexplained fatigue and unwellness,
Raison and colleagues showed in a large population-based
sample that plasma concentrations of CRP, blood leukocyte
numbers, and a combined inflammation factor, which benefits
from the combined predictive values of both variables while
minimizing measurement errors of the single components, are
increased significantly or by trend in individuals with chronic
fatigue syndrome and unwellness symptoms that did not meet
diagnostic criteria for chronic fatigue syndrome (defined as
Binsufficient fatigue^) when compared to healthy controls
[332]. Isolated PBMCs from individuals diagnosed with
chronic fatigue syndrome/myalgic encephalomyelitis, in com-
parison to those from healthy individuals, further secret more
IL-10, IFN-γ, and TNF when stimulated ex vivo with phyto-
hemagglutinin, providing additional support for increased im-
mune (re)activity in chronic fatigue syndrome [49].

Risk factors for mental disorders promote immune
hyperreactivity to psychosocial stress

From an evolutionary perspective, it makes sense that activa-
tion of the innate, rather unspecific and, therefore, fast-acting
immune system has been selected to be an inevitable part of the
classical stress response. Typical stressors faced by animals and
non-human and human primates during evolution were mostly
of a physical nature, acute duration, and comprised of conflicts
among conspecifics related to hierarchy formation or exposure
to various predators, both implying an increased risk of being
injured and, consequently, infected by different pathogenic mi-
croorganisms [279]. Thus, individuals showing an activated
immune status, even before the actual physical injury and path-
ogenic invasion happens, elicited by perceiving a certain situa-
tion psychologically as threatening or dangerous, had an evo-
lutionary benefit and were selected over the past millions of
years [279]. Most stressors faced by humans in the modern
and developed world are exclusively psychosocial nature, lack-
ing any component of physical injury. Thus, although there is
little to no risk of being injured and colonized by pathogens as a
consequence of exposure to most stressors nowadays, psycho-
social stressors activate these evolutionarily conserved patterns
and key inflammatory pathways [285, 378]. Although the
mechanistic details underlying this kind of Bsterile immune
activation^ will be discussed in BThe role of DAMPs,
MAMPs, PAMPs and the inflammasome in stress-induced
Bsterile^ inflammation,^ this response is indicated by marked
increases in circulating levels of proinflammatory cytokines,
such as IL-6, induced by NF-κB signaling in peripheral blood
mononuclear cells (PBMCs) [36, 309, 425]. Interestingly, the
latter is more pronounced in individuals at high risk for devel-
oping affective disorders [159, 187, 308], supporting the hy-
pothesis that mental disorders are not just accompanied by
chronic low-grade inflammation, as outlined in BStress,
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inflammation, and mental health: The cytokine theory of affec-
tive disorders,^ but at least in part also promoted by stress-
induced immune activation.

Early-life adversity

Healthy men and women with a history of childhood maltreat-
ment show greater overall peripheral release of IL-6 during a
standard psychosocial stress challenge (the Trier Social Stress
Test (TSST)), as compared with the control group [61].
Considering how often each human individual faces psychoso-
cial challenges throughout life, it is not surprising that child-
hood maltreatment is an independent, but preventable risk fac-
tor for inflammation in childhood and adulthood, characterized
by increased levels of proinflammatory cytokines and CRP,
fibrinogen, and white blood cells [28, 75, 76, 388].
Interestingly, as non-steroidal anti-inflammatory treatment is
able to prevent delayed effects of maternal separation in rats
[48], it is likely that early pharmacological interventions
targeting inflammation may be effective in preventing the
long-term consequences of early-life adversity in humans.
Independent of facing additional social stressors, spontaneous
production of proinflammatory cytokines in isolated immune
cells was also higher in women with a history of childhood
maltreatment [40]. Three other studies further found exagger-
ated IL-6 responses to ex vivo stimulation of toll-like receptors
3, 4, and 5 in adolescents raised in harsh family environments
[281], in adults raised in low socioeconomic status [282] and in
adolescent girls with early-life adversity [107, 112]. These hu-
man data are in line with work done by our group and others,
demonstrating increased immune (re-)activity [27, 401, 406],
anxiety-related behavior [348, 405], and psychosocial stress
vulnerability [406] in adult rodents exposed to maternal sepa-
ration from postnatal days 1–14, an internationally accepted
animal model for early-life stress/trauma [149, 159, 175, 184,
209, 297, 322, 360, 404, 422].

Low subjective social status

In addition to childhood adversity, lower subjective social sta-
tus (SSS), which reflects where a person positions her- or him-
self on a social ladder in relation to others, goes along with
exaggerated IL-6 responses to TSST exposure [95].
Interestingly, individuals who see themselves as lower in social
standing are also at greater risk for poor health in general [173,
371] and for developing depression in particular [93].
Moreover, healthy young participants who were lower in self-
compassion exhibit significantly greater IL-6 responses when
exposed to the TSST, even when controlling for self-esteem,
depressive symptoms, demographic factors, and distress [47].
In line with these findings, engagement with Cognitively Based
Compassion Training (CBCT) reduced CRP from baseline to
the 6-week time point after assessment in adolescents

participating in a foster care program [311], suggesting that
inflammatory measures relevant to health in adolescents at high
risk for poor adult functioning as a result of significant early-life
adversity can be reduced by increasing their self-compassion.

Adiposity/obesity

Moreover, individuals with higher measures of adiposity ex-
posed to the TSST on two subsequent days showed higher
IL-6 baselines on both study days, as well as sensitization of
IL-6 responses to repeated acute psychosocial stressor exposure
[272]. In contrast, among normal weight individuals, acute psy-
chosocial stress induces an increase in plasma IL-6 [378],
which does not typically habituate but also does not sensitize
to repeated stressor exposure [345, 417]. Obesity is of epidemic
proportions in the USA and in many other parts of the world
and has been shown to be positively associated with various
stress-associated somatic disorders, including cardiovascular
and liver disease, dyslipidemias, certain forms of cancer, in-
flammatory diseases, stroke, and type II diabetes [199, 218,
220, 365, 366], as well as affective disorders, including depres-
sion [91, 240], in the general population.

Urban upbringing/living

The reader is kindly directed to BMental disorders^ and
BUpbringing in areas with a wide range of microbial exposure
dampens immune reactivity towards psychosocial stressors,^
in which we detail that urban upbringing/living is paralleled
by both an increased prevalence of mental disorders and an
increased immune activation towards acute psychosocial
stress induced by the TSST.

Chronic psychosocial stress induces chronic immune
activation in healthy individuals

Current knowledge on the effects of chronic psychosocial
stress on chronic low-grade inflammation in humans has been
reviewed in detail recently [345], with a focus on caregiver
stress, work-related stress (including unemployment and
burnout) chronic stress related to low socioeconomic status
(SES), early-life stress induced by childhood adversity and
maltreatment, and self-reported chronic stress. The conclusion
drawn by the author was that current evidence is supportive of
increased markers of systemic inflammation among individ-
uals experiencing chronic psychological or social stress [345].
The most consistent evidence in this respect is coming from
caregiving paradigms and studies relating early-life adversity
or maltreatment to current levels of circulating inflammatory
molecules [345]. In terms of caregiving stress, most studies so
far focused on the effects of family dementia caregiving and
consistently report elevated plasma IL-6 levels [143, 241, 265,
416], whereas increased CRP levels are found in some but not
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all studies [143, 416]. In contrast to Alzheimer’s caregiving,
the experience of caring for a family member suffering from
and being treated for glioblastoma multiforme, the most com-
mon and most aggressive primary brain tumor, resulted in a
profound linear increase in systemic inflammation in the year
after diagnosis, as indexed by CRP, but not IL-6. At the same
time, brain tumor caregivers displayed a linear decline in
mRNA for anti-inflammatory signalingmolecules like nuclear
factor of kappa light polypeptide gene enhancer in B-cells
inhibitor, alpha (I-κBα), and diminished in vitro GC sensitiv-
ity [347]. Their monocytes showed a diminished expression of
transcripts bearing GC response elements (GREs) and a
heightened expression of transcripts with response elements
for NF-κB, as well as a greater production of the inflammatory
cytokine IL-6 during ex vivo LPS stimulation [283, 284].

In terms of early-life stress, childhood maltreatment has
been shown to cause chronic low-grade inflammation, charac-
terized by increased levels of proinflammatory cytokines and
CRP, fibrinogen, and white blood cells [28, 76, 388].
Spontaneous (non-stimulated) production of proinflammatory
cytokines in isolated immune cells was also higher in women
with a history of childhood maltreatment [40]. Besides the
immunoenhancing effects of these severe early-life stressors,
also comparatively mild stressors, such as low childhood SES,
indicated by socioeconomic conditions such as a lack of home
ownership or low parental education, were significant predic-
tors of inflammatory potential in adulthood, as evidenced by
increased expression of inflammatory genes in circulating im-
mune cells [280, 282] and increased plasma IL-6 and CRP
concentrations [312]. In line with the latter and findings report-
ed above for women with a history of childhood maltreatment,
three other studies found exaggerated IL-6 responses to ex vivo
stimulation of toll-like receptors 3, 4, and 5 in adolescents
raised in harsh family environments [281], in adults raised in
low socioeconomic status [282], and in adolescent girls with
early-life adversity [107, 112]. Reports of severe adversity in
the form of documented abuse were further associated with a
73% greater risk of first hospital treatment of asthma and more
frequent asthma-related hospitalizations [144, 216]. Of partic-
ular relevance in the context of the current review is the fact
that psychosocial stress activates peripheral inflammatory
pathways [345, 378] and does so more robustly in people with
histories of early-life abuse and/or neglect [61, 309] who are
also at significantly heightened risk for PTSD development in
response to trauma exposure in adult life [308].

Human data suggesting a causal role
of (stress-induced) immune activation
in the development of stress-associated mental
disorders

Prospective human and mechanistic animal studies (see
BAnimal data suggesting a causal role of stress-induced

immune activation in the development of stress-associated
mental disorders^) strengthen the idea that an exaggerated
immune (re)activity plays a critical role in the development
of mental disorders [192, 201]. For instance, individuals with
inflammatory diseases are three to four times more likely to
experience depression [69, 99, 103, 254, 441]. Moreover, al-
though low-dose intravenous injection of Salmonella abortus
equi endotoxin (0.8 ng/kg body weight) had no effects on
physical sickness symptoms, blood pressure or heart rate, el-
evation of circulating cytokine levels (TNF, soluble TNF re-
ceptors, IL-6, IL-1 receptor antagonist) was positively corre-
lated with endotoxin-induced anxiety levels and depressed
mood and negatively correlated with verbal and non-verbal
memory functions [339]. Thus, a mild stimulation of the pri-
mary host defense has negative effects on emotional and
memory functions, which are probably caused by cytokine
release [339]. In line with this hypothesis, a higher production
of the proinflammatory cytokine IL-1β during ex vivo LPS
stimulation of venous blood samples predicted a greater in-
crease of depressive symptoms, whereas that of its natural
antagonist IL-1ra predicted a smaller increase of depressive
symptoms [399]. Interestingly, although a single infusion of
low-dose endotoxin derived from Escherichia coli (0.8 ng/kg
body weight) in 115 human volunteers (69 females, 46 males)
led to comparable increases in the plasma concentration of the
proinflammatory cytokines TNF and IL-6 in men and women,
the latter showed greater increases in depressed mood and
feelings of social disconnection [287], in line with data show-
ing that women are more likely to develop mood disorders
compared with men [145, 191]. Importantly, Engler and col-
leagues showed in healthy male volunteers that intravenous
administration of low-dose endotoxin (0.8 ng/kg bodyweight)
not only induces a significant increase in peripheral blood
cytokine concentrations of TNF, IL-6, and IL-10 but also re-
sults, with some delay, in a robust and selective increase of IL-
6 in the CSF [113]. The latter was strongly positively associ-
ated with the severity of mood impairment [113], suggesting
that the appearance of depressive symptoms in inflammatory
conditions might be primarily linked to an increase in central
IL-6. The causal role of the immune system in stress-related
mood disorders in general, as well as the prominent role of IL-
6, is supported further by findings showing prospectively that
a Blow IL-6^ synthesizing genotype was associated with sig-
nificantly fewer symptoms of depression during IFN-α and
ribavirin treatment of 98 Caucasian patients, due to chronic
hepatitis C virus infection [53]. Higher levels of the systemic
inflammatory marker IL-6 in childhood are associated with an
increased risk of developing depression and psychosis in
young adulthood [192]. Moreover, data collected within the
framework of the Whitehall II cohort study further indicate
that plasma IL-6 concentrations in mentally healthy partici-
pants are predictive for their likelihood of symptoms of mental
disorder later in life. In detail, compared to participants with
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low IL-6 in 1997, those with high IL-6 had a greater likelihood
of symptoms of mental disorder in 2003 and/or 2008; the
prevalence of new-onset mental disorder in 2003 and/or
2008 was even higher among those who had high IL-6 in
1992, 1997, and 2003 [201].

Besides plasma IL-6, baseline CRP levels also have been
shown to predict development of mental disorders. For in-
stance, higher baseline plasma CRP levels in 267 mentally
healthy mixed sex participants at the age of 85 years preceded
an accelerated increase in depressive symptoms assessed by
the Geriatric Depression Scale in a prospective 5-year follow-
up study. Plasma CRP levels assessed in soldiers prior to war
zone deployment were further predictive for development of
postdeployment PTSD symptomatology, even after adjusting
for differences in baseline PTSD scores, severity of trauma
exposure, and other relevant covariates [114]. Moreover, ge-
netic variability in the CRP gene resulting in increased serum
CRP level was positively associated with PTSD symptom
severity, including that of hyperarousal symptoms, exacerbat-
ed fear-related psychophysiology and PTSD symptom ratings
and diagnosis [402].

The important role of particularly stress-induced immune
activation in the development of mental disorders is suggested
by prospective studies linking acute stress/trauma-induced im-
mune activation with development of mood disorders later in
life. For instance, morning serum IL-6 concentrations, mea-
sured in children within the first 24 h after a motor vehicle
accident, were higher in children that developed PTSD
6 months later, relative to those who did not and those of the
control group, and predicted PTSD development 6 months
later [319]. Of particular importance in this context, psycho-
social stress has been shown repeatedly to activate peripheral
inflammatory pathways [345] and to do so more robustly in
people with histories of early-life abuse and/or neglect [61,
378], who are also at significantly heightened risk for PTSD
development in response to trauma exposure in adult life
[308].

Inflammation as a predictor of antidepressant
response

Evidence suggests that inflammation may be a predictor of
antidepressant response. Cattaneo and colleagues showed in
depressed patients that inflammation status is a major predic-
tor of antidepressant response. In detail, absolute measure-
ments of MIF and IL-1β levels above a certain threshold ac-
curately predict non-responsiveness of these patients to stan-
dard antidepressants, suggesting that it might be possible to
use these cutoffs to direct certain patients towards earlier ac-
cess to a combination of antidepressants and anti-
inflammatory drugs [62]. In line with this hypothesis, anti-
inflammatory drugs, e.g., the anti-TNF antibody, infliximab
[333], or the cyclooxygenase (COX) inhibitor celecoxib [202,

292], have shown some promise in treatment of stress-related
psychiatric disorders. Interestingly, and in support of the latter,
acutely bereaved participants, assessed within 30 days of the
death of their spouse, reported significantly fewer depressive
symptomswhen treated with 81mg of aspirin per day over the
preceding 5 days, compared to bereaved participants receiving
placebo treatment only [185].

Antidepressants normalize systemic cytokine levels

A recent meta-analysis further indicates that there may be a
normalization of overactive inflammatory processes following
standard antidepressant treatment. In detail, pooled effect sizes
indicate a significant decrease in IL-6 and a less pronounced
decrease in CRP after antidepressant treatment [164]. Of note,
although meta-regression in this meta-analysis revealed no
significant association between baseline IL-6 or CRP and
change in depressive symptoms during standard antidepres-
sant therapy, the pattern across the included studies was that
higher baseline IL-6 and CRP were related to larger decreases
in depressive symptoms [164]. Additionally, meta-regression
showed no significant relationship between percentage of in-
dividuals who responded to treatment and inflammatory
marker change; however, at the individual study level, there
was evidence of decreases in IL-6 for treatment responders,
but not treatment non-responders [164, 437].

Animal data suggesting a causal role
of stress-induced immune activation
in the development of stress-associated mental
disorders

In line with human studies, studies in laboratory rodents also
clearly show that systemic or central infusion of bacterial en-
dotoxins or proinflammatory cytokines induces Bsickness
behavior^ reminiscent of depressive symptoms. Due to a
plethora of excellent studies by Dantzer and colleagues,
reviewed in detail elsewhere [58, 77–80, 82], it is also quite
well-understood how this is mediated, at least in animals. A
landmark paper, recently been published by Hodes and col-
leagues [165], provides evidence that psychosocial stress-
induced inflammation is causally involved in the development
of anxiety- and negative affective-related responses. In detail,
they have shown that male mice responding with higher plas-
ma IL-6 concentrations to a single acute social defeat exposure
are more vulnerable to developing social deficits when ex-
posed to social defeat repeatedly. In confirmation that these
effects are due to innate differences in immune reactivity and
not to differences in the severity of bite wounds received dur-
ing social defeat, increased blood leukocytes in general, and
monocytes in particular, as well as LPS-induced ex vivo IL-6
secretion predicted enhanced stress vulnerability in stress-
naïve male mice. In confirmation of the critical role of IL-6
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secreted during repeated stressor exposure in mediating stress-
induced social deficits, bone marrow (BM) chimeras generat-
ed by transplanting hematopoietic progenitor cells from stress-
susceptible mice releasing high IL-6, but not chimeras gener-
ated from IL-6 knockout (IL-6−/−) mice, into irradiated recip-
ient mice, showed increased stress vulnerability when repeat-
edly exposed to social defeat. Moreover, anti-IL-6 antibodies
prevented social deficits in vulnerable BM chimeras exposed
to repeated social defeat.

Underlying mechanisms

The role of DAMPs, MAMPs, PAMPs,
and the inflammasome in stress-induced Bsterile^
inflammation

This topic has been covered recently in a number of excellent
reviews [122, 279]. Briefly, the innate immune system en-
gages an array of germline-encoded pattern-recognition recep-
tors (PRRs) to detect invariant microbial motifs and to mount
a fast and unspecific innate immune response. PRRs are thus
expressed by cells at the front line of defense against infection,
including macrophages, monocytes, dendritic cells, neutro-
phils, and epithelial cells, as well as cells of the adaptive im-
mune system [361]. For instance, the extracellular milieu and
the endosomal compartment of phagocytes are scanned by
membrane-bound TLRs and C-type lectins (CTLs) for
pathogen- (PAMP) or commensal microbial (MAMP)-associ-
ated molecular patterns, often resulting in the activation of the
NF-kB and AP-1 transcription factors that drive the produc-
tion of either inactive cytokine precursors, such as pro-IL-1
and pro-IL-18 [274], or active cytokines and chemokines,
such as IL-6, IL-10, and MCP-1. In addition, TLR and CTL
receptor binding has been shown to activate members of the
interferon regulatory transcription factor (irf) family that me-
diate type I IFN-dependent antiviral responses [361]. In con-
trast, the intracellular compartment is sensed by cytosolic
nucleotide-binding oligomerization domain (NOD)-like re-
ceptors (NLRs) [361], which assemble into high-molecular
we igh t , c a spa s e -1 - a c t i v a t i ng p l a t f o rms ca l l ed
Binflammasomes,^ which control maturation and secretion
of important proinflammatory cytokines such as IL-1β and
IL-18 [361, 387] after recognizing pore-forming and cell per-
meable soluble or phagocytosed and endosome/lysosome
damaging particulate or crystalline PAMPs and MAMPs
[274]. Other inflammasome-independent cytokines and
chemokines, such as IL-6 and IL-10, and MCP-1, do not re-
quire posttranslational cleavage by caspase-1 [275]. Like oth-
er caspases, caspase-1 is synthesized as an inactive zymogen
(pro-caspase-1) and becomes proteolytically active only after
controlled dimerization in inflammasomes that are built
around one of several different molecules [387]. PAMPs and

MAMPs that stimulate NLRs can include bacteria-associated
RNA, DNA, pore-forming toxins, and peptidoglycans [274].
Importantly, these NLRs further recognize host-derived dan-
ger-associated molecular patterns (DAMPs), suggesting that
NLRs are general detectors of cellular stress resulting from
sterile trauma, intrinsic metabolic disturbances, or pathogen
infection [274]. Some of the host-derived DAMPs that acti-
vate NLRP3, which is the best-characterized NLR capable of
forming an inflammasome, including hyaluronan, cholesterol
crystals, extracellular ATP, β-amyloid, DNA, heat shock pro-
teins (HSPs), uric acid, hyaluronan and monosodium urate
crystals, high mobility group box 1 (HMGB1), and reactive
oxygen species (ROS) [274, 279, 387], while environmental
DAMPs include asbestos, silica, nanoparticles, skin irritants,
and alum adjuvant. DAMPs can accumulate as a result of
metabolic disorders or may be released upon cellular damage
caused by trauma (i.e., myocardial infarction, thorax trauma,
fracture) and infection, contributing to sterile inflammation
and wound responses, as well as pathogen-associated immune
responses [274].

Besides the directly immunomodulatory hypothalamic–pi-
tuitary–adrenal (HPA) axis and the sympathetic nervous system
(SNS) [45, 96–98, 155, 156, 286, 385, 386, 413], the
inflammasomes represent a crucial immunological interface
between stress and inflammation [279]. Of particular impor-
tance in the context of stress-evoked sterile inflammation
[122, 344] is that psychosocial stress is able to increase both
DAMPs (i.e., Hsp72 and uric acid) and MAMPs [181, 260,
261], which are, as outlined above, both able to drive
inflammasome activation and thus, peripheral cytokine release.
Although the detailed mechanisms are not fully understood, the
DAMPHsp72 has been shown to be systemically released via a
catecholaminergic, but not glucocorticoid-mediated mecha-
nism [122, 180, 181]. A role of MAMPs in stress-induced
immune activation is suggested by the finding that germ-free
(GF) compared with conventionally housed mice lack the well-
known social stress-induced increase in microbicidal activity
and the enhanced cytokine mRNA expression in splenic mac-
rophages when exposed to the social disruption stress (SDR)
paradigm [8]. In line with this hypothesis, colonizing GF mice
with a conventional microbiome rescued typical SDR-induced
increases in splenic macrophage reactivity [8, 19]. Support for a
causal link between stress-induced elevations of systemic
MAMP levels and innate immune activation is further provided
by data showing that treatment of conventionally housed mice
with antibiotics attenuates both the SDR-induced increase in
serum peptidoglycan levels, representing a typical MAMP,
and elevated splenic macrophage reactivity [8]. In another
study, exposure to SDR failed to increase plasma IL-6 and
MCP-1 concentrations in antibiotic-treated mice, while these
cytokine concentrations correlated with stressor-induced
changes in the relative abundances of three bacterial genera
(i.e., Coprococcus, Pseudobutyrivibrio, and Dorea) assessed
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in the cecum [20]. Interestingly, mice exposed to the chronic
subordinate colony housing (CSC) paradigm [73, 133, 134,
334, 368], a preclinically established rodent model for PTSD
[336] (for more information, see Table 1), which promotes
splenocyte activation, as seen following SDR exposure [124,
335], increased also many circulating pro- and anti-
inflammatory cytokines, including IL-1β, IL-6, IL-10, granu-
locyte colony stimulating factor (G-CSF), and MCP-1 [214].
Although we cannot delineate whether the systemic immune
activation seen following CSC exposure is mediated by in-
creased DAMPs or MAMPs, we can exclude involvement of
any kind of PAMPs, as these experiments have been performed
under specific pathogen-free (SPF) conditions [214, 215]. An
interesting study in this context shows that both reducing com-
mensal bacteria using antibiotics and neutralizing LPS using
endotoxin inhibitor (EI) attenuate increases in some
inflammasome-dependent (IL-1β and IL-18), but not
inflammasome-independent (IL-6, IL-10, and MCP-1) inflam-
matory proteins in the blood of male F344 rats exposed to an
acute tail shock stressor [261]. In this context, it is important to
mention that it has been shown in vitro that administration of a
MAMP or DAMP alone is not sufficient for activating the
inflammasome [108, 295]. Only co-administration of both li-
gands is able to activate the inflammasome and start cytokine
production [295]. Thus, it has been hypothesized by Maslanik
and co-workers that DAMPs released during stressor exposure
in vivo likely act as the first signal in stress-evoked cytokine
and chemokine production, underlying the stress-induced re-
lease of the inflammasome-independent cytokines and
chemokines (i.e., IL-6, IL-10, and MCP-1) [261]. Stress-
associated barrier defects and elevations in systemic MAMPs

likely provide the second signal necessary for upregulation of
inflammasome-dependent cytokine production (i.e., IL-1β, IL-
18).

Signaling of peripheral inflammation to the brain

We indicated above that chronic stress can potentially cause
chronic inflammation [32] and that the latter in turn is causally
involved in the development of many chronic stress-related
mental disorders like PTSD and depression, as well as medical
conditions, including burnout syndrome and chronic fatigue
syndrome (see BHuman data suggesting a causal role of
(stress-induced) immune activation in the development of
stress-associated mental disorders^). Nevertheless, given that
the source of such inflammation on the one hand is predom-
inately located at the peripheral and systemic level [32], and
that the CNS on the other hand represents, in large part, an
Bimmune-privileged^ system [136, 236], protected from sur-
rounding immunological responses, the question arises how
peripheral and systemic inflammation is able to reach and to
affect the brain. Intensive research in this field has shown that
the communication of inflammatory signals to the brain oc-
curs via several different pathways. These include the trans-
mission and production of inflammatory mediators at specific
regions of the blood–brain barrier (BBB; humoral route),
cytokine-mediated activation of afferent nerve fibers in the
periphery (neural route), and the trafficking of peripheral im-
mune cells into CNS tissue (cellular route). These pathways
have already been intensively addressed in recent review arti-
cles [79, 83, 84, 279] and are, therefore, only briefly summa-
rized here.

Table 1 Comparison of patients diagnosed with posttraumatic stress disorder (PTSD; left column) and mice exposed to the chronic subordinate colony
housing (CSC; right column) paradigm

PTSD CSC

Re-experiencing of aversive details of the traumatic event(s) [12] Re-exposure to social defeat [213]

Avoiding of trauma-related external reminders [12] Social deficits towards unfamiliar male conspecifics (SPAT) [213]

Negative cognitions and mood [12] Persisting anxiety (EPM, LDB, OF, OA, EPF, SPAT) [213]

Hyperarousal [12] Increased locomotion and elevated NE [213]

Gastrointestinal pathology [43] Development of spontaneous colitis, aggravated DSS colitis [213]

Basal hypocortisolism [85] Basal hypocorticism [213]

Flattened cortisol rhythm [434] Flattened corticosterone rhythm [213]

Increased DEX suppression of ACTH [433] Increased DEX suppression of FS-induced ACTH [213]

Increased HPA axis response towards novel stressors [87] Increased HPA axis response towards EPF [213]

Reduction in % plasma Treg cells [373, 421, 442] Reduction in % Treg cells in peripheral lymph nodes [213]

Comorbid osteoporosis and increased fracture risk [138, 139] Compromised bone metabolism [125] and regeneration [150]

Chronic low-grade inflammation [142, 233] Systemic immune activation [73, 124, 214]

Comorbid alcohol abuse or dependence [119, 321] Increased ethanol consumption [320]

ACTH adrenocorticotropic hormone, DEX dexamethasone, DSS dextran sulfate sodium, EPF elevated platform, EPM elevated plus-maze, FS forced
swim, HPA hypothalamic–pituitary–adrenal, LDB light–dark box, NE norepinephrine, OA open-arm exposure, OF open-field, SPAT social preference/
avoidance test
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Humoral route

The first indications that inflammatory mediators are able to
functionally act within the CNS came from studies showing
that centrally-injected cytokine receptor antagonists are able to
influence the effects of peripherally-induced inflammation in
rodents [183, 211]. Given the highly selective permeability
properties of the BBB, it was long assumed that cytokines
are only able to pass the BBB at the circumventricular organs
(CVOs), which are brain structures that lack the impermeable
characteristics of the BBB. The latter include the pineal gland,
parapineal organ, vascular organ of the lamina terminalis,
subfornical organ, paraventricular organ, neuropituitary, me-
dian eminence, subcommissural organ, and the area postrema
and the choroid plexus [137]. In support of this theory, lesion
studies in rodents indicated that a disruption of specific parts
of the CVOs dampens fever, induced by peripheral LPS ap-
plication [389], as well as prevents peripheral IL-1β-induced
HPA axis activation [222]. Nevertheless, a direct passage of
cytokines is not the most prominent way of immune-to-brain
communication at the level of the CVOs. The latter seem to
predominantly function as a relay station for signal transduc-
tion of inflammatory signals from the periphery to the CNS.
Similar to processes taking place in the periphery (see BThe
role of DAMPs, MAMPs, PAMPs and the inflammasome in
stress-induced Bsterile^ inflammation^), CVOs comprise of
immunologically active cells that are able to sense PAMPs,
DAMPs, or MAMPs, as well as cytokines, via the expression
of TLRs [210, 328] and receptors for IL-1β [57, 115], TNF
[293], IL-6 [398], and CD14 [208], respectively. Binding of
these receptors in turn results in the production and release of
inflammatory mediators including IL-1β [140], TNF [294],
IL-6 [398], nitric oxide synthase ([426], NO-synthase), as well
as the thermoregulatory [382] and proinflammatory factor
PGE2 [33], into the perivascular compartments. Once these
signaling molecules enter the brain, they can either directly
interact with central non-neuronal immune cells [29, 115] to
induce local inflammatory processes [329] or activate nerve
terminals [383] to influence neural signaling to other brain
regions [383].

In addition, independent of the CVO-mediated route of
signaling, various types of cytokine receptors are also present
on endothelial cells of the BBB [109, 205, 293, 398]. Given
that the BBB endothelium itself can produce different types of
cytokines [22], and also expresses COX-2 in response to sys-
temic immune activation [57], which is involved in PGE2

synthesis and, thus, thermoregulation, it is very likely that
inflammatory signals acting directly at the BBB itself also
contribute to immune-to-brain signaling. In support of the
latter, Banks and colleagues were able to describe the presence
of another CVO-independent route, consisting of selective
cytokine transport systems within the BBB [21]. Since this
discovery, many cytokines, including IL-1β [23, 26], TNF

[148], and IL-6 [24], have been shown to cross the BBB via
specific transporters, whereas other cytokines, like IL-2 or IL-
10, do not have the ability to enter the brain via this route [25,
186]. Moreover, these saturable cytokine transport systems
seem to be specific to closely related cytokines and strongly
differ in the rate of transport [21].

Neural route

Given that inflammation often occurs locally in the periphery,
it cannot always be sensed by the brain via CVO- and/or
BBB-mediated pathways. Thus, it is reasonable that the
CNS is able to receive peripheral inflammatory information
by ways different from the humoral route. In this context,
Watkins and colleagues proposed that sensory inputs of pe-
ripheral afferent fibers can also transmit inflammatory infor-
mation to the brain [253]. This hypothesis is supported by the
finding that rat dorsal root ganglia afferent neurons express
IL-1β receptors [306], and that systemically injected antibod-
ies against IL-1β and TNF are able to reduce the fever re-
sponse to peripherally-injected LPS in rodents [235].
Afferents of the vagus nerve seem to especially be important
in this context, as vagal paraganglia cells are able to bind IL-
1β [141], and peripheral IL-1β administration is able to acti-
vate vagal sensory neurons [110]. The latter are known to
project to the nucleus of the solitary tract, which relays the
information to other autonomic, as well as stress-relevant,
brain regions like the paraventricular nucleus of the hypothal-
amus (PVN), the amygdala, and the bed nucleus of the stria
terminals (BNST) [41, 42], where these sensory inputs in turn
induce an adequate physiological, endocrine [41], and behav-
ioral response [84]. These findings are supported by the fact
that vagotomy prevents fever responses following peripheral
injection of IL-1β [420] and behavioral responses following
peripheral injection of LPS [221]. In addition, although rela-
tively unexplored, sympathetic afferents, afferent fibers that
travel within the sympathetic nerve bundles, with cell bodies
in the dorsal root ganglia are also likely to contribute to relay-
ing signals of peripheral inflammation to the CNS. These af-
ferents have the potential to relay signals from cutaneous and
mucosal surfaces, as well as viscera to the CNS via
spinothalamic, spinoreticular, spinomesencephalic,
spinoparabrachial, spinohypothalamic, spinocervical,
spinovestibular, spinoolivary, and other spinal afferent path-
ways to the CNS [161, 188, 268, 269].

Cellular route

The cellular route of immune-to-brain communication in-
volves the migration of activated peripheral immune cells into
brain tissue. This route has recently been described by Swain
and colleagues, who were able to show that hepatic inflam-
mation [190] in mice is associated with an increased
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infiltration of monocytes to the brain. The mechanism behind
this phenomenon has already been described. Given that brain
microglial cells have shown to produce MCP-1 in response to
systemic elevation of TNF, and that immune-to-brain cell traf-
ficking seems to be abolished in the absence of MCP-1, its
receptor C-C chemokine receptor type-2 (CCR-2), as well as
the TNF-receptor 1 (TNFR1) [74], it is proposed that the pro-
duction of brain-derived MCP-1 in response to high levels of
TNF attracts peripheral leukocytes to migrate into the CNS. In
turn, these immune cells are TNF-positive and are assumed to
activate residing brain macrophages to produce additional
TNF [190]. Of note, psychosocial stress in mice, induced by
repeated social defeat, also results in an influx of monocytes
into the brain [424]. In line with these findings, the latter has
shown to be dependent on the presence of CCR-2 and is as-
sociated with an increase of anxiety-related behavior.

How do inflammatory signals contribute
to the development of mental disorders?

It is commonly accepted that inflammatorymediators can alter
mood and behavior in part by influencing the monoaminergic
neurotransmission in the brain [5, 92]. This has been referred
to as the so-called monoamine deficiency theory and has been
reviewed previously [279]. Briefly, the basis of this concept is
that neuroinflammation causes a general depletion of the neu-
rotransmitters norepinephrine (NE), dopamine (DA), and es-
pecially serotonin (5-hydroxytryptamine; 5-HT). This is me-
diated by proinflammatory cytokines, which are supposed to
influence monoamine metabolism by regulating the activity of
core enzymes involved in the synthesis of NE and DA, as well
as 5-HT. In support of this hypothesis, cytokine-induced oxi-
dative stress [296, 374] has been shown to promote the deg-
radation of tetrahydrobiopterin (BH4). The latter is an impor-
tant co-factor that influences the activity of rate-limiting en-
zymes for DA and NE (tyrosine hydroxylase; TH) as well as
5-HT (tryptophan hydroxylase; TPH) synthesis [296].
Evidence for this mechanism also comes from human data
showing that treatment with IFNα is able to reduce BH4 ac-
tivity and DA availability in the CSF. In line with these find-
ings, these effects are associated with typical symptoms of
depression [121].

Inflammation can also drive the depletion of 5-HT via the
activation of indoleamine-2,3-dioxygenase (IDO), an enzyme
that converts the 5-HT-precursor molecule tryptophan into
kynurenine [249]. This hypothesis is supported by studies
showing that IFNγ and TNF [163, 318, 390, 392], as well
as IL-6 [197], significantly promote IDO activity. In turn,
IDO activation and tryptophan depletion have profound neg-
ative effects on mood. This is underlined by the fact that tryp-
tophan depletion, represented by lower plasma tryptophan
concentration, has repeatedly been reported in individuals
with depression [250, 400], and that an increased serum

kynurenine to tryptophan ratio predicts depressive symptoms
in humans [111]. Moreover, IDO mRNA expression is in-
creased in animals showing sickness behavior, and IDO-
deficient mice do not show depressive-like behavior in re-
sponse to bacterial infection [302]. Of note, proinflammatory
cytokines also have been shown to affect the reuptake of
monoamines [59]. For example, in vitro experiments indicate
that TNF and IL-1β [443] increase the activation of the 5-HT
transporter (SERT). This has been shown to result in a reduced
synaptic abundance of 5-HT, which, in turn, is associated with
depressive-like behavior in mice [444].

Besides alterations in monoamine availability, an increased
synaptic abundance of glutamate (Glu) has also been associ-
ated with both an increased central inflammatory status and
the development of mood disorders [359]. This is indicated by
findings showing that depressive, compared to healthy, indi-
viduals have higher plasma levels of this essential neurotrans-
mitter. This effect can be diminished by antidepressant medi-
cation [207]. Accordingly, glutamatergic neurotransmission
can be affected by central inflammatory processes. For exam-
ple, cytokines reduce the synaptic reuptake of Glu [38] as well
as increase the release of Glu [408] in astrocytes. Of note,
there is also evidence that kynurenine accumulation, as a re-
sult of cytokine-induced tryptophan depletion, contributes to
dysregulation of glutamatergic signaling. The latter is indicat-
ed by the facts that kynurenine is metabolized into the neuro-
toxic metabolite quinolinic acid (QUIN) by locally activated
microglia cells [249] and that QUIN is a potent glutamate
receptor (NMDAR) agonist with the ability to induce a pro-
nounced glutamate release, resulting in excitotoxicity, which
itself further promotes central inflammatory processes [86,
246].

The microbiome–gut–brain axis

According to recent findings, the ratio of bacterial to eukary-
otic cells in the human body is approximately 1:1 [363],
resulting in an overall microbial mass comparable to the
weight of the human brain [379, 380]. It is, therefore, not
surprising that the microbial composition of the gut, which
comprises the majority of commensal microorganisms [363],
is thought to influence the immunology, physiology, and be-
havior of the host organism. In line with this hypothesis, an
increasing number of studies have shown that host–
microbiome communication occurs in a bidirectional manner
using a number of different signaling mechanisms [70]. These
include the production of neuroactive microbial metabolites
and short-chain fatty acids (SCFAs), vagus-to-brain commu-
nication, tryptophan metabolism, and immune system activa-
tion [70]. Many previous studies and reviews have already
focused on these specific mechanisms of gut–brain communi-
cation [60, 70, 101, 127, 128, 380]; however, it is the purpose

Pflugers Arch - Eur J Physiol (2019) 471:237–269 247



of this review to focus on the effects of the microbiome on the
inflammatory status of the host.

The mammalian immune system has adapted to tolerate
commensal bacteria and to distinguish them from potentially
pathogenic organisms [391]. A healthy gut microbial compo-
sition protects from the invasion of pathogens but also con-
tributes to the regulation of immune system activity [239,
353]. For example, GF mice display a pronounced downreg-
ulation of genes related to immune activity [381] and poor
epithelial barrier function [169]. But how are commensal bac-
teria able to communicate with the host immune system?
Microbes in large part mediate their immunomodulatory ef-
fects by influencing the activity and maturation of immune
cells [429]. Rodent studies have provided evidence that colo-
nizing GF mice with commensal bacteria resulted in the in-
duction of Treg cells and the production of IL-10 [243].
Interestingly, colonization with a single bacterial strain is suf-
ficient to increase Treg expression to levels observed in spe-
cific pathogen-free mice [307, 362]. Similarly, treatment with
the probiotic bacterium Bifidobacterium infantis promotes the
proliferation of Treg cells in mice [304] and results in an
increased production of IL-10 in humans [203]. In contrast,
colonization with segmented filamentous bacteria (SFB) in-
creases the abundance of Th17 cells that express IL-17 and IL-
22 [178], whereas Bacteroides fragilis has shown to promote
Th1 responses in rodents, respectively [270]. Of note, gut
microbes can also promote immune cell proliferation by stim-
ulating cytokine production in intestinal epithelial cells. The
latter is indicated by the finding that exposure to mouse cecal
content in vitro induces epithelial cells to produce TGF-β
[16], which is known to promote Treg induction [171].

Although the detailed underlying mechanisms are still un-
known, an accumulating number of studies indicate that com-
mensal microbes prime the host immune system via the pre-
sentation of MAMPs, like bacterial polysaccharides, which
are recognized via TLR-signaling by host immune cells.
Polysaccharide A, for instance, promotes T cell expansion
via TLR2 activation [63, 270] and is associated with the de-
velopment of IL-10-producing Treg cells in mice colonized
with Bacteroides fragilis [63, 271]. In line with these findings,
daily oral administration of the probiotic Bifidobacterium
breve for 3 months has been shown to have similar effects in
rodents [63, 179]. However, besides MAMPs, microbial me-
tabolites like SCFA (e.g., acetate, propionate, and butyrate
[410]), as well as bile acids or choline, significantly influence
host immune activity. In vitro studies, for instance, indicate
that butyrate not only directly facilitates the differentiation of
naive CD4+ T cells into Treg cells [15] but also indirectly
promotes the proliferation of Treg cells by stimulating IL-10
production by dendritic cells and macrophages [369].
Moreover, butyrate and other SCFAs promote Treg prolifera-
tion by inducing TGF-β production from gut epithelial cells
[16]. Butyrate, acetate, and propionate also have been shown

to reduce the expression of LPS-stimulated TNF in human
neutrophil cells in vitro, as well as to reduce the expression
of IL-6 in mouse colon organo-cultures [393]. In addition, bile
acids not only promote innate host defense by the expression
of antimicrobial genes [176] but are also able to directly in-
hibit bacterial overgrowth within the intestinal tract [166]. The
health-promoting essential nutrient choline has been shown to
have anti-nociceptive effects, reduce TNF expression in a
mouse model for postoperative pain [354], and is able to mod-
ulate immune function in neonatal rats [227].

Commensal bacteria further play an important role in
the production and metabolism of gut-derived tryptophan
and 5-HT, which have both been implicated in the regula-
tion of healthy innate and adaptive immune responses [18,
256]. Because of that, tryptophan metabolism has also
been suggested to significantly contribute to microbial–
host immune communication. For example, evidence for
the latter comes from studies showing that GF mice display
increased systemic levels of tryptophan and highly reduced
5-HT levels when compared to conventionally housed
mice [423]. Moreover, colonizing GF mice with commen-
sal bacteria results in significantly decreased tryptophan
levels in the blood [64]. Mechanistically, microbiota can
directly modify tryptophan metabolism via de novo syn-
thesis of 5-HT [394]. The microbiota can also metabolize
tryptophan into a number of bacterially derived indole me-
tabolites that act at the aryl hydrocarbon receptor, resulting
in immunoregulation and protection of the mucosa from
damage [6, 217, 238]. Furthermore, microbial-derived
SCFA is able to indirectly promote the production of 5-
HT from epithelial cells in the gut [340].

All of the abovementioned findings suggest that a
healthy commensal microbiome is an important determi-
nant of proper host immune function. Accordingly, alter-
ations of the gut microbial composition can have detrimen-
tal effects on host immunity. Besides factors like diet [370],
age [255], and pharmaceuticals [212], one highly potent
disruptor of the intestinal bacterial community is chronic
stress. This is indicated by rodent studies showing that
early-life stressors like the maternal separation paradigm
[305], and chronic stressors in adulthood like the CSC and
SDR models, result in pronounced alterations of the intesti-
nal microbiota, as well as an increased vulnerability for
inflammation [20, 215, 337, 406]. Moreover, human studies
have found that various stress-related inflammatory disor-
ders like IBD [89] and PTSD [160] are associated with
changes in the composition of the gut microbiome. The in-
flammatory and disease-promoting potential of an un-
healthy intestinal microbiome is further elucidated by stud-
ies showing that specific symptoms associated with inflam-
matory and stress-related disorders can be transmitted
employing fecal transplantation (FT). More specifically,
colonizing GF mice with the gut microbiota of IBD patients
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results in an increase in barrier dysfunction and innate im-
mune activation in recipient mice [90]. Furthermore, oral
FT from depressed patients is able induce depressive-like
behavior in rats pretreated with antibiotics [189]. In line
with these findings, colonizing GF mice with the
microbiome of another mouse strain via oral gavage results
in the transfer of strain-specific behavioral characteristics
including exploratory behavior [31, 67].

Why do some individuals show hyperinflammation:
the role of Treg cells

Given that PTSD [373] and depression [230] are associated
with decreased CD4+CD25+FoxP3+ Treg cell numbers,
one hypothesis is that a failure of immunoregulation pro-
motes an over-reacting of the inflammatory response to
trauma or stressful life events, and thus, predisposes those
individuals to the development of stress-related disorders
in general, and PTSD and depression in particular. In line
with the hypothesis that a compromised Treg cell compart-
ment might be critically involved in the promotion of a
dysregulated and chronically activated inflammatory im-
mune response, and in turn, the development of stress-
associated disorders, the tricyclic antidepressant, desipra-
mine, increases the number of Treg cells in a mouse model
of allergic rhinitis (AR). The latter is characterized by
sneezing, nasal scratching, and increased numbers of eo-
sinophils in the nasal mucosa, ovalbumin (OVA)-specific
IgE serum antibodies, increased concentrations of IFN-γ
and IL-4 in the nasal lavage fluid, and IL-17+ splenocytes,
while splenic Treg cells are reduced [441]. Patients suffer-
ing from AR have a higher incidence of anxiety, depres-
sion, and sleep disorders than the general population [99,
441] and, in severe cases of AR, are even at higher risk for
committing suicide [325]. The importance of antidepres-
sant therapy in AR has been increasingly recognized [99,
441]. Evidence for an immunoregulatory role of Treg cells
and for a dysregulated and overshooting immune system in
individuals with a compromised Treg cell function is pro-
vided both by human and animal studies. For instance,
Foxp3 mutant mice develop an intense multiorgan inflam-
matory response associated with allergic airway inflamma-
tion, hyperimmunoglobulinemia E, eosinophilia, and dys-
regulated Th1 and Th2 cytokine production in the absence
of overt Th2 skewing [232]. Importantly, Foxp3 mutations
also underlie a homologous autoimmune lymphoprolifera-
tive disorder in human subjects, termed immune dysregu-
lation polyendocrinopathy enteropathy–X-linked syn-
drome (IPEX) or X-linked autoimmunity–allergic dysreg-
ulation syndrome [30, 232]. In line with these data, a de-
fective suppressor function of human CD4+CD25+ Treg
cells has been reported in autoimmune polyglandular syn-
drome (APS) type II, characterized by multiple endocrine

diseases initiated by an autoimmune process in the same
patient [206].

Immunoregulatory approaches to promote
stress/trauma resilience

The rationale behind immunoregulatory approaches
to promote stress/trauma resilience

If immunodysregulation and subsequent chronic low-grade
inflammation are risk factors for development of stress-
related psychiatric disorders, including PTSD, pretreatment
with an immunoregulatory agent would be expected to be
protective. In line with this hypothesis, anti-inflammatory
drugs, e.g., the anti-TNF antibody, infliximab [333], or the
cyclooxygenase inhibitor celecoxib [202, 292], have shown
some promise in treatment of stress-related psychiatric disor-
ders. Recent findings also suggest that inflammation status is a
major predictor of antidepressant response, with high levels of
inflammatory biomarkers predisposing to non-responsiveness
to standard anti-depressants [62]. However, anti-inflammatory
approaches to treatment of stress-related psychiatric disorders
are inherently limited due to the complexity of the inflamma-
tory response, which involves many diverse mediators and
signaling cascades. A more effective approach would be to
activate the body’s own immunoregulatory mechanisms,
which are able to comprehensively suppress unnecessary in-
flammation mediated by diverse signaling pathways. This
strategy has the added benefit of being targeted and potentially
being long-lasting, as activation of the body’s own immuno-
regulatory mechanisms can persist for weeks or months, and
under certain conditions [352]. The half-life of newly differ-
entiated Treg cells in mice is estimated to be 27 days [94].

The Old Friends hypothesis/the hygiene
hypothesis/the Bmissing microbes^ hypothesis/the
biodiversity hypothesis

Increased inflammation in urban environments may be
due to impaired immunoregulation, which is thought to
be at least partially dependent on reduced exposure (espe-
cially during early life [242]), to microorganisms with
which mammals co-evolved, as has been proposed by
the biodiversity hypothesis [153], missing microbes hy-
pothesis [39], or Old Friends hypothesis [238, 351],
which all have been evoked to explain the epidemic of
inflammatory disease in urban environments. Throughout
human evolution, the interactions between these ancestral
microbiota and the innate immune system promoted im-
munoregulation, as they were either part of host physiol-
ogy (human microbiota), were harmless but inevitably
contaminating air, food, and water (environmental
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microbiota), or were causing severe tissue damage when
attacked by the host immune system (e.g., helminthic par-
asites) [39, 351]. However, microbial biodiversity and
overall contact with environmental and commensal micro-
organisms that were present during mammalian evolution
and that play a role in setting up regulatory immune path-
ways are progressively diminishing in high-income coun-
tries, particularly in urban areas. The latter is due to san-
itation, drinking water treatment, excessive use of antibi-
otics, changes in diet, feeding of formula milk as a re-
placement for breast milk, increased cesarean section birth
rates, and increased time spent within the built environ-
ment [39, 257, 351, 376]. Of particular interest in this
context is a recent study showing increased innate im-
mune system activation in Hutterite compared with
Amish farm children, and an ameliorating effect of dust
extracts from Amish, but not Hutterite, homes on airway
hyper-reactivity and eosinophilia in a mouse model of
allergic asthma [377]. Living on single-family dairy farms
with regular contact with farm animals in Amish farm
children further goes along with a four and six times low-
er asthma and allergic sensitization prevalence, respec-
tively, compared to living on highly industrialized farms
with little contact with farm animals in Hutterite farm
children [377]. In accordance with this hypothesis, early
exposure to both pets and farm animals is able to reduce
the risk of childhood asthma and other inflammatory dis-
orders [117, 290]. Immigrant studies further suggest that
differential contact with Old Friends, particularly during
early life, accounts for differences in the prevalence of
psychiatric disorders in rural versus urban environments
[351, 352].

Mechanisms underlying induction of Treg by Old
Friends

The induction of Treg by Old Friends undoubtedly involves
diverse, and in some cases, redundant and parallel, mecha-
nisms. Although not an exhaustive list, some of these potential
mechanisms are outlined below.

Tryptophan and bacterially and host-derived tryptophan
metabolites

As mentioned above, bacterially derived tryptophan and di-
verse tryptophan metabolites can have immunoregulatory ef-
fects leading to induction of Treg. For example, the trypto-
phan metabolite melatonin induces Treg via actions on mela-
tonin receptor 1 (MT1) [118]. Probiotic species, such as
Lactobacillus spp., are capable of tryptophan biosynthesis
and metabolism, and they generate tryptophan metabolites
that activate the aryl hydrocarbon receptor (Ahr), resulting in
immunoregulation [438]. Immunoregulatory bacterially-

derived tryptophan metabolites that function as Ahr agonists
include tryptamine, indole-3-acetaldehyde, indole-3-acetic ac-
id, indole-3-aldehyde, and kynurenine [438]. Other bacterially
derived tryptophan metabolites that interact with Ahr
include indole, 3-methyl-indole, indoxyl sulfate, 6-
formylindolo[3,2b]carbazole, and kynurenic acid [440].
Activation of Ahr can induce functional Treg cells that sup-
press inflammation [276, 330]. Specifically, Ahr induces
RORγt+ Tregs [327], consistent with studies discussed above
demonstrating that specific species within the gut microbiota
can induce RORγt+ Tregs and mucosal immune tolerance
[307, 362]. Thus, the microbiota, acting via synthesis of tryp-
tophan and generation of tryptophan metabolites that interact
with Ahr, regulates Treg differentiation in a ligand-specific
manner. Besides these Treg-promoting effects of IDO-
generated tryptophan metabolites, there is evidence
supporting a direct role of IDO expression in DCs to promote
development of a regulatory DC phenotype. In detail, co-
culture of bone marrow-derived DC with stem cells isolated
from adipose tissue (ASC) suppressed DC maturation, as ev-
idenced by low expressions of CD80, CD86, and MHC-II.
Moreover, ASC-treated mature DCs showed higher levels of
expression of TGF-β1, IL-10, and IDO and generated a sig-
nificantly higher percentage of Treg when co-cultured with
naïve CD4+ T cells. Interestingly, the IDO level in ASC-
treated mDCs and Treg induction effects was blocked by the
ASCs pretreated with TGF-β1 siRNAs, but not IL-10
siRNAs [419].

Although these immunoregulatory and thus, stress-
protective effects of IDO activation at first glance are in con-
trast to the above described effects of IDO activation on brain
tryptophan and/or 5-HT depletion and induction of sickness
behavior (see BHow do inflammatory signals contribute to the
development of mental disorders?^) , we hypothesize that the
latter, at least in the acute context, also represents a positive
adaptation increasing an individual’s regenerative capacities
during stress/inflammation. Accordingly, it has recently been
shown that DC expression of IDO represents a potential
mechanism to terminate immune responses [154]. Moreover,
chronic or long-lasting sickness behavior is generally
interpreted as a negative/pathological health consequence of
stress and would be counteracted by IDO-mediated Treg in-
duction. In line with the latter, recent data from Laumet and
co-workers show that resolution of inflammation-induced de-
pression is an active process requiring T lymphocytes acting
via an IL-10-dependent pathway [219].

SCFAs

Short-chain fatty acids (SCFAs), including acetate and propi-
onate, can directly induce colonic Tregs and their function via
activation of G protein-coupled receptor (GPCR) 43, encoded
by the free fatty acid receptor 2 gene (Ffar2) [15, 372]. In
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addition, butyrate acts on DCs to induce Treg through inhibi-
tion of histone deacetylase (HDAC) and may induce epige-
netic changes [439].

Microbial antigens from Old Friends that induce
immunoregulatory responses

Intracellular and cell surface bacterial antigens can induce
immunoregulatory responses, for example, through interac-
tion with the PRR dendritic cell-specific intercellular adhesion
molecule-3-grabbing non-integrin (DC-SIGN). Antigen inter-
action with DC-SIGN can interfere with toll-like receptor-me-
diated inflammatory responses, resulting in decreases in
NF-κB signaling and decreases in proinflammatory cytokine
secretion (i.e., IL-6, TNF, and IL-12), in concert with in-
creases in IL-10 secretion [407]. Activation of DC-SIGN in
DCs, perhaps involving interactions with TLR-2 [204], may
be a common mechanism through which bacterial antigens
derived from the Old Friends induce regulatory DCs, which
can bias T cell differentiation towards a Treg phenotype (for
review of specific antigens derived from Old Friends that can
activate DC-SIGN, see [238]).

Urban versus rural prevalence differences
in stress-associated disorders

Somatic disorders

More than 50% of the world’s population currently lives in
urban areas, projected to rise to 70% by 2050, with 50% of the
urban population living in cities with more than 500,000 res-
idents [396]. Although a lower prevalence of allergies in rural
compared with urban Mongolia has been reported [299], the
prevalence of somatic inflammatory disorders seems to criti-
cally depend rather on the extent of overall contact to micro-
bial products during early years of development than on the
rural–urban environment per se. In other words, a subject’s
exposure to environmental microbial antigens seems to have
a crucial role in the development of tolerance to ubiquitous
allergens found in natural environments [46]. In accordance
with this hypothesis, endotoxin levels in samples of dust from
the child’s mattress were inversely related to the occurrence of
hay fever, atopic asthma, and atopic sensitization [46], an
effect that was independent from whether 6–9-year-old chil-
dren grew up in farming or non-farming households within
rural areas of Germany, Austria, or Switzerland. Of note, cy-
tokine production by leukocytes was also inversely related to
the endotoxin level in the bedding, indicating a marked down-
regulation of immune responses in exposed children. An im-
portant role for regular animal contact in increasing the overall
exposure to environmental antigens and, thus, in promoting
immunoregulation and protection against inflammatory so-
matic disorders is suggested by several studies. For instance,

exposure of children to stables and consumption of farm milk
was associated with lower frequencies of asthma, hay fever,
and atopic sensitization [341], an effect that was more pro-
nounced if exposure happened during the first year of life than
during years 1–5. However, continuous long-term exposure
until the age 5 years was associated with the lowest frequen-
cies of these inflammatory disorders. As outlined in detail
above, living on single-family dairy farmswith regular contact
with farm animals in Amish farm children further goes along
with four and six times lower asthma and allergic sensitization
prevalence, respectively, compared to living on highly indus-
trialized farms with little contact with farm animals in
Hutterite farm children [377]. In accordance with these data,
early exposure to both pets and farm animals is able to reduce
the risk of childhood asthma and other inflammatory disorders
[117, 290]. A protective role of environments that afford a
wide range of microbial exposures, such as traditional farms,
is further supported by the PARSIFAL and the GABRIELA
studies [106]. In both studies, children who lived on farms had
a lower prevalence of asthma and atopy and were exposed to a
greater variety of environmental microorganisms than the
children in the reference group. In turn, diversity of microbial
exposure was inversely related to the risk of asthma and the
presence of certain more circumscribed exposures was also
inversely related to the risk of asthma. Interestingly, similar
effects have been found in studies investigating the associa-
tion between living environment (urban vs. rural) and the de-
velopment of allergies in pet dogs. Hakanen and colleagues,
for instance, showed that, similar to dog owners, dogs also
have a higher prevalence of allergies when living in an overall
urban environment [151]. In line, Lehtimäki et al. found that
both canine skin microbiota and the risk to develop allergies
are decisively shaped by the animal’s living environment and
lifestyle [224].

Mental disorders

Psychiatric disorders are more prevalent in urban versus rural
areas [315, 317, 349, 403]. For instance, many studies have
demonstrated that an urban birth or upbringing increases
schizophrenia risk [228, 289, 316]. Interestingly, Pedersen
and Mortensen in 2001 showed in a population-based cohort
study of 1.89 million people that both the degree of urbaniza-
tion at birth and during upbringing significantly increased the
risk of schizophrenia [315]. A meta-analysis of urban–rural
differences in prevalence of psychiatric disorders, conducted
using data taken from 20 population survey studies published
since 1985, revealed further that pooled total prevalence rates
for psychiatric disorders were found to be significantly higher
in urban areas compared with rural areas [317]. Specific
pooled rates for mood disorders and anxiety disorders were
also significantly higher in urban areas, while rates for sub-
stance use disorders did not show a difference. Adjustment for
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confounders had only limited impact on urban–rural odds ra-
tios, which show that urban–rural differences in prevalence
rates are only partly explained by population characteristics.
In line with these findings, a recent large population-based
cohort study of everyone born in Denmark between 1955
and 2006 revealed that people born in the capital had a higher
incidence for all psychiatric disorders, except intellectual dis-
ability (ICD-10 Bmental retardation^) and behavioral and
emotional disorders with onset in childhood, than people born
in rural areas [403]. Thus, birth in an urban environment is
associated with an increased risk for mental illness in general
and for a broad range of specific psychiatric disorders.
Importantly, in contrast to inflammatory somatic disorders,
less research has been conducted to understand the mecha-
nisms underlying this increased prevalence of stress-
associated psychiatric disorders in urban versus rural areas.

Upbringing in areas with a wide range of microbial
exposure dampens immune reactivity towards
psychosocial stressors

As stress-associated somatic and psychiatric disorders are
more prevalent in urban compared with rural areas, or, more
accurately, in environments offering a narrow compared with
a wide range of microbial exposures (see BUrban versus rural
prevalence differences in stress-associated disorders^), and as
individuals at high risk for mental disorders show an exagger-
ated inflammatory response towards psychosocial stressors
(see BRisk factors for mental disorders promote immune hy-
perreactivity to psychosocial stress^), it is likely that upbring-
ing in environments offering a narrow range of microbial con-
tact facilitates immune reactivity towards psychosocial stress,
relative to upbringing in environments offering a wide range
of microbial exposure (hypothesis summarized in Fig. 1). To
test this hypothesis, we recruited young, physically, and emo-
tionally healthy male participants, raised during the first
15 years of life either in a city with more than 100,000 resi-
dents and in the absence of pets (urban) or on a farm keeping
farm animals (rural) and exposed them individually to the
TSST [198]. Pets were excluded for urban participants as they
potently reduce the risk for inflammatory disorders [117], like-
ly by facilitating contact with Old Friends. As predicted, we
showed an increased systemic immune activation in response
to a standardized laboratory social stressor in healthy partici-
pants with an urban upbringing in the absence of pets, relative
to healthy participants with a rural upbringing in the presence
of farm animals, even though questionnaires, plasma cortisol,
and salivary alpha-amylase indicated that the experimental
protocol was more stressful and anxiogenic for the latter. In
detail, urban upbringing in the absence of pets, relative to rural
upbringing in the presence of farm animals, was associated
with a more pronounced increase in the number of PBMCs
and plasma IL-6 concentrations following acute psychosocial

stress induced by the TSST. Moreover, ex vivo cultured
PBMCs from urban participants raised in the absence of ani-
mals secreted more IL-6 in response to the T cell-specific
mitogen concanavalin A (ConA). In turn, anti-inflammatory
IL-10 secretion was suppressed following TSST in urban par-
ticipants raised in the absence of animals, suggesting immu-
noregulatory deficits, relative to rural participants raised in the
presence of animals. As we did not include participants raised
in urban areas in the presence of animals and in rural areas in
the absence of animals, we cannot answer the question wheth-
er the differences in stress-induced immune activation are due
to urban versus rural upbringing per se, or, and according to
Stein and colleagues, this is more likely [377] due to the ab-
sence versus presence of regular animal contact.

Using Old Friends to ameliorate inflammatory
somatic disorders

Immunoregulatory Old Friends have shown promise for im-
proving outcomes in a number of models of inflammatory
somatic disorders, including allergic asthma and autoimmune
disorders (including IBD and type 1 diabetes) (for review, see
[350]). For example, subcutaneous, intranasal, and intragastric
administrations of Mycobacterium vaccae (M. vaccae) have
been reported to attenuate allergic airway inflammation in
mice [170, 174, 445, 446]. Furthermore, these effects have
also been noted to pass down from the mother (after
M. vaccae exposure during pregnancy) to the offspring [3,
4]. Sensitized mice born from mothers exposed to M. vaccae
responded with decreases in IL-5 secretion (associated with
allergic disease) relative to control mice after allergen airway
challenge [4]. In addition to the effects of immunoregulatory
Old Friends, the effects of prebiotics and probiotics on Treg
induction and implications for prevention and treatment of
inflammatory disease have been reviewed recently [105].

Using Old Friends to promote stress/trauma resilience

In addition to the protective effects of various Old Friends
against a plethora of inflammatory somatic disorders, Old
Friends have been further shown to positively affect mood,
stress coping, and fear extinction, as well as to prevent the
negative consequences of chronic psychosocial stress in
humans and/or rodents. In detail, repeated intradermal admin-
istration of a heat-killed preparation of M. vaccae (NCTC
11659), when added to standard cancer chemotherapy, signif-
icantly improved patients’ quality of life without affecting
overall survival times in a non-placebo controlled trial [300,
301]. Patients in the chemotherapy-alone group had greater
deterioration in their Global Health Status score than patients
in the chemotherapy plus M. vaccae group. Moreover, our
own studies show that repeated subcutaneous (s.c.)
preimmunization with heat-killed M. vaccae activates a
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specific subset of serotonergic neurons in the interfascicular
part of the dorsal raphe nucleus (DRI) of mice, which is asso-
ciated with increases in 5-HT metabolism within the ventro-
medial prefrontal cortex and a shift towards proactive stress
coping in the forced swim test [237, 367]. This suggests that
an immune-responsive subpopulation of serotonergic neurons
in the DRI is likely to play an important role in facilitating
active stress coping. In support of this hypothesis,
mesolimbocortical serotonergic systems, particularly those in
the medial prefrontal cortex where we observed effects of
M. vaccae on serotonergic metabolism, are thought to play
an important role in regulation of coping responses and be-
havioral responses to uncontrollable stress [11].
Consequently, dysregulation of DRI serotonergic systems
may contribute to the dysregulation of coping mechanisms
in some stress-related neuropsychiatric disorders, including
major depression. A shift towards proactive stress coping
was further found recently by our group following repeated
s.c administration of a heat-killed preparation ofM. vaccae in
a mouse model of PSTD [337], indicated by decreased sub-
missive behavioral displays, as well as flight and avoiding

behaviors, during an initial encounter with a dominant male
aggressor. To induce this PTSD-like phenotype, the CSC par-
adigm, which is based on the repeated psychosocial traumati-
zation (=social defeat) in combination with chronic subordi-
nation of four male CSC mice towards a dominant resident
male conspecific, was used [336]. Briefly, compared with
single-housed controls (SHC), CSC mice avoid trauma-
related external reminders, indicated by a lack of social pref-
erence towards unfamiliar male mice, and develop a long-
lasting increase in general anxiety-related behavior and alco-
hol consumption/preference, hyperactivity, spontaneous coli-
tis, and an aggravated dextran sulfate sodium (DSS)-induced
colitis. CSC exposure is further associated with basal
hypocorticism, increased dexamethasone suppression of
ACTH, increased HPA axis reactivity towards novel stressors,
and reduced numbers of Treg cells, likely contributing to the
overall increased inflammatory state [336]. Importantly, the
above reported M. vaccae-induced shift towards proactive
stress coping was paralleled by preventive/ameliorating ef-
fects on development of anxiety, social anxiety, spontaneous
colitis, and aggravation of DSS-induced colitis in a mouse

Fig. 1 Hypothetical model illustrating how areas offering a narrow (right
panel) relative to a wide (left panel) range ofmicrobial exposures promote
stress vulnerability and compromise stress resilience. Reduced exposure
to immunoregulatory Old Friends, especially during early life, result in an
exaggerated and long-lasting immune response towards any acute psy-
chosocial stressor (indicated by the flash symbol in the gray arrow) faced

during adulthood, over time resulting in constant immune activation and
chronic low-grade inflammation and, consequently, in the development
of a variety of stress-associated somatic and psychiatric disorders in
which chronic, low-level inflammation is a risk factor. (Photograph on
left side © Xaver Linder)
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model of PTSD [337]. As shown before using a mouse model
of airway inflammation [446], M. vaccae propagated its im-
munoregulatory and, thus, PTSD-protective effects via induc-
tion of Treg cells and IL-10 secretion [337]. The latter was
indicated by the fact that pretreatment with an anti-CD25 an-
tibody, but not pretreatment with a control-antibody,
prevented the stress-protective effects of prior M. vaccae im-
munization. Just recently, we showed that repeated immuni-
zation with heat-killed M. vaccae also enhances between-
session and within-session fear extinction, but not baseline
acoustic startle responses and fear acquisition or expression,
in the fear-potentiated startle (FPS) paradigm in rats, relative
to vehicle-immunized controls [129]. Baseline acoustic startle
is a sensitive measure of generalized anxiety or fear expres-
sion [356], which was also not affected by M. vaccae in the
PTSD mouse study [337]; only psychosocial traumatization
[337] and FPS training-induced [129] anxiety were ameliorat-
ed by prior M. vaccae administration. The facilitating effects
ofM. vaccae on fear extinction are of particular importance, as
trauma-related anxiety and affective disorders, including
PTSD, are characterized as persistent re-experiencing of the
trauma after a traumatic experience. Thus, immunization with
M. vaccae may be beneficial in extinction therapies (i.e., ex-
posure therapy) that are used for reducing fear-related psycho-
pathologies and may reduce the amount of time before bene-
ficial effects of therapy are seen. Finally, recent studies using
M. vaccae have shown that the same immunization protocol
shifts the brain towards an anti-inflammatory phenotype, in-
creasing IL-4 mRNA and protein expression, and upregulat-
ing genes involved in maintaining microglia in a quiescent
state, such as Cd200r1 and Mrc1 [126, 130]. Immunization
with M. vaccae was found to prevent stress-induced
microglial priming and stress-induced exaggeration of
anxiety-like behavior in a model of learned helplessness
[130] and cognitive deficits in a model of postoperative cog-
nitive dysfunction [126]. Together, these studies suggest that
immunization strategies have potential to prevent negative
outcomes associated with stress-induced exaggeration of in-
flammation and neuroinflammation.

Conclusions

Together, the findings reported in this review article may have
implications for the practice of medicine, both from the per-
spectives of prevention and therapeutics. For example, it has
been suggested that urban societies have a dearth of microbial
immunoregulatory inputs during early life [351, 352]. This is
driven not only by lack of exposure to natural environments,
animals, and, thus, to environmental microbes, but also by
eradication of important commensals with immunoregulatory
properties. For example, humans co-evolved with
Helicobacter pylori for tens of thousands of years [257].

H. pylori is immunoregulatory and may confer protection
against allergies, asthma, and inflammatory bowel diseases
[14] but has largely been eradicated from urban populations
within the last 40–50 years [326]. Our data suggest that there
may be a need to replace some of these lost microbial immu-
noregulatory inputs. It remains to be determined if this will be
best accomplished by addition of microbial immunoregulato-
ry inputs to the diet as nutritional supplements, by immuniza-
tion, and/or by increasing contact of especially young children
to environmental microbes. However, there is a lack of ade-
quate empirical data concerning all these questions in humans.
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