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Abstract
Spikes in the membrane potential of neurons comprise the currency of information processing in the brain. The ability of
neurons to convert any information present across their multiple inputs into a significant modification to the pattern of their
emitted spikes depends on the rate at which they emit spikes. If the mean rate is near the neuron’s maximum, or if the rate is
near zero, then changes in the inputs have minimal impact on the neuron’s firing rate. Therefore, a neuron needs to control its
mean rate. Protocols that either dramatically increase or decrease a neuron’s firing rate lead to multiple compensatory changes
that return the neuron’s mean rate toward its prior value. In this primer, first as a summary of our previous work (Cannon
and Miller in J Neurophysiol 116(5):2004–2022, 2016; Cannon and Miller in J Math Neurosci 7(1):1, 2017), we describe the
advantages and disadvantages of having more than one such control mechanism responding to the neuron’s firing rate. We
suggest how problems of two, coexisting, potentially competing mechanisms can be overcome. Key requirements are: (1) the
control be of a distribution of values, which the controlled variable achieves over a fast timescale compared to the timescale
of the control system; (2) at least one of the control mechanisms be nonlinear; and (3) the two control systems are satisfied by
a stable distribution or range of values that can be achieved by the variable. We show examples of functional control systems,
including the previously studied integral feedback controller and new simulations of a “bang–bang” controller, that allow
for compensation when inputs to the system change. Finally, we present new results describing how the underlying signal
processing pathways would produce mechanisms of dual control, as opposed to a single mechanism with two outputs, and
compare the responses of these systems to changes of input statistics.
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1 Introduction

Homeostasis is a common requirement for a diverse range
of biological systems. From the biochemical to the organis-
mal scale, biological processes operate near-optimally under
some conditions, but under other conditions, they fail. These
conditions—such as size, temperature, acidity—are typically
under tight control. The control of these conditions is home-
ostatic, meaning that following perturbations that cause a
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deviation from a target value or range, biological pathways
are engaged to counter that change and return the condition
to equilibrium.

Engineered systems often face similar homeostatic con-
straints to living systems in terms of the need to maintain
properties of the system in a tight range. The field of control
theory describes mathematically how such homeostasis is
achieved. One of the simplest controllers is the integral
feedback controller, which we will describe below as it is
one of the canonical models of feedback control and because
it includes the main processes likely to reside within any
biological control system. In an integral feedback controller,
any deviation from a set-point accumulates over time, and
such accumulation is fed back to the system’s inputs in a
subtractive manner. The circuit for integral feedback control
is shown in Fig. 1, with the corresponding formalism in
Eqs. 1–3.

The controller in Fig. 1 produces feedback, Ifb, by accu-
mulating (integrating over time) the error signal:
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Fig. 1 An integral feedback
controller. In this example of
integral feedback control, the
output, X, changes transiently in
response to changes in external
input, Iext, but thereafter, the
feedback signal, I fb, generated
by the controller continuously
changes the total input, I, until
the output, X, reaches its
target/goal value, Xgoal

τfb
dIfb
dt

� −E � Xgoal − X . (1)

The feedback combines with the external input to the sys-
tem to produce an output, X , according to:

X � F(I ) � F(Iext + Ifb). (2)

While these equations can be simulated easily, the control
of the output, X , can be understood fromEq. 1, which tells us
that the feedbackwill continuously change unless X � Xgoal.
Here, we assume the output increases with input, i.e., F(I )
is a monotonically increasing function, as will be the case
when we consider the specific example of the output being
a firing rate and the input being the total excitatory synaptic
conductance of a neuron. In this case, the fixed point (i.e., the
value of the variable at which the system no longer changes),
X � Xgoal, is stable because dX

dt < 0 when X > X tgt and
dX
dt > 0 when X < X tgt (that is, any deviation causes it to
change back to that value):

τfb
dX

dt
� τfb

dI

dt

dF

dI
� dF

dI

(
Xgoal − X

)
, (3)

where we have substituted first from Eq. 2 then from Eq. 1.

1.1 Homeostasis of neural firing rates

Neural firing rates are homeostatic, but in an unusual sense.
Since variations in neural activity are necessary to convey
information—and such conveyance of information is the rai-
son d’être of neural activity—a homeostatic controller that
enforced a fixed firing rate of a neuron would render the
neuron useless. Rather, a homeostatic controller for neural
activity might need to ensure the average rate, when sampled
over a reasonable period of time, is maintained in a suitable
range. Or, even more preferably, the controller might need to
ensure the neuron’s firing rate varies over a particular range
in order to transmit useful information.

Such behavior is in contrast to typical homeostatic con-
trollers, for which any deviation from the mean is undesir-
able. For example, strong variability in body temperature
would be disastrous for most warm-blooded animals, even if

the mean temperature were maintained. Therefore, we might
expect the control system for neural firing rate to have dif-
ferent properties from that of many other controllers—in
particular, the timescale of feedback can (and should) be a
lot slower than the timescale of variation in firing rates. See
the work of O’Leary and Wyllie (2011) for a more thorough
introduction to the use of control theory for homeostasis of
cellular processes.

Some of the first measurements of homeostasis in neu-
ral systems indicated that the conductance of excitatory
synapses scaled up or down in compensation when neural
firing rateswere artificially lowered or raised from their base-
line levels (Turrigiano et al. 1998; O’Leary et al. 2010). We
can represent such compensation as an integral feedback con-
trol process in which the feedback multiplicatively scales the
inputs (rather than adds to or subtracts from the input as in
standard controllers—see Fig. 1). The corresponding equa-
tions for a simplified model of neural firing rate, r , are:

τr
dr

dt
� −r + F[gESE(t) + gISI(t) − T ] (4)

and

τg
dgE
dt

� rgoal − r . (5)

Equation 4 indicates how the neuron’s firing rate depends
on time-varying excitatory inputs, SE(t), and inhibitory
inputs, SI(t), via excitatory and inhibitory synaptic conduc-
tance, gE and gI, respectively. The variable, T , represents a
threshold—the amount of input the neuron requires before
significant activity. In response to changes in input, a neu-
ron’s firing rate changes very rapidly, over a timescale on the
order of 10 ms, so the time constant τr , is short and of this
order. On the other hand, the homeostatic response described
by Eq. 5 is much slower, with changes in synaptic conduc-
tance due to a neuron’s firing rate alone requiring at least tens
of minutes and probably several hours to reach measurable
levels. Therefore, the time constant, τg , for these homeostatic
changes is much larger than τr . Equation 5 then represents
an integration of the error signal, where the target rate, rtgt,
represents a fixed point of the system. If the synaptic inputs
vary only slowly compared to τg , then the system will reach
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the fixed point with r � rtgt. When the synaptic inputs are
more rapidly varying—as they are in vivo—then the changes
in excitatory conductance, gE, cannot counteract any rapid,
transient change in firing rate, r . However, the conductance
will, for example, increase more than it will decrease over
time if the rate fluctuates more often, or to a greater extent,
below rather than above the target rate. In this manner, Eq. 5
leads to a control of the mean of the firing rate, r .

2 The benefit of multiple control
mechanisms

A single controller can control a single variable or, more
precisely, a single function (such as themean) of that variable
when it fluctuates. Control of a neuron’s mean firing rate is
important, in simplest terms because each action potential
produced by a neuron costs energy, so excessive activity is
wasteful. On the other hand, a neuron that rarely or never
produces action potentials is taking up resources to function
as a cell but is of minimal value for information processing.

When we consider the number of successive feedforward
connections and, even more importantly, the feedback con-
nections, the need for a control system becomes paramount
(Turrigiano and Nelson 2004). For example, an imbalance
between excitatory and inhibitory feedback connections in
the hippocampus can lead to hyperexcitability (Bateup et al.
2013) and possibly contributes to epilepsy (Badawy et al.
2012).

Yet, as well as maintaining a satisfactory mean level of
activity, neurons must also vary their firing rates to perform
any useful information processing. One can think of neurons
mapping a range of inputs into a range of outputs according
to their firing rate response curves. These curves have par-
ticular regions over which changes in input cause significant
changes in output. Control of the mean firing rate of a neuron
could ensure the mean input falls in the neuron’s responsive
range. However, it may be better to also match the range of
inputs to the entire responsive range of the neuron, so that any
change in input leads to a change in output. To achieve such
responsiveness, a neuron would need to control the variance
of its firing rate, which—as we will see in Sect. 3—requires
cooperation of two controllers (Triesch 2007). Here we focus
on sensory systems, in which the input statistics may not be
known a priori and a neuron’s spikes should contain some
useful information about the current input.

2.1 Mutual information

In order to quantify the above argument, we chose to mea-
sure the mutual information between a simulated neuron’s
input and its output when additional noise is included within
the neuron. We selected ten equally spaced levels of input

current, switching between these levels every 500 ms. By
calculating the mean rate of the neuron and comparing that
to the input current during each period, we assessed howwell
a simulated neuron distinguished between the different levels
of input (for details see Cannon and Miller 2016).

In Fig. 2, we show examples of the neural responses to
such current steps when the synaptic input gain and firing
threshold of the neuron are set to different values. If the neu-
ron is too excitable (upper left) or unexcitable (lower right)
its rate varies little from its maximum saturated value or
from zero, respectively, and information transfer is negli-
gible. However, even under conditions where the mean rate
is reasonable, if synaptic conductance is too small (lower
left), then the neuron is unresponsive. Moreover, if synaptic
conductance is too high (upper right), the neuron has only
two responses—inactive or maximally active—to inputs of
different levels, so the mutual information is not as high as
at its optimum (point D) where intermediate levels of input
can produce differential responses.

While the results presented here are produced with a fir-
ing rate model neuron (Eq. 4), similar behavior arises from
a voltage-based spiking-neuron model (Cannon and Miller
2016).

2.2 Tuning an integrator in a neural circuit

Mutual information simply indicates how much information
about an input can be obtained from an output, so is really a
measure of information transfer. In the brain, however, neural
circuits must do more than transfer information in their sen-
sory inputs. Rather, brains must allow us to combine separate
sources of information overmultiple timescales and calculate
a desired response. Of the many computations required for
such neural processing, one that is particularly amenable to
study in the context of fine-tuning is the integration of inputs
across time.

Neural integrators have been studied in the context of gaze
control (Goldman et al. 2002, 2003; Seung 1996; Seung et al.
2000a), short-term memory of a continuous quantity (called
parametric working memory) (Romo et al. 1999;Miller et al.
2003;Machens et al. 2005;Miller andWang 2006), and deci-
sion making (Huk and Shadlen 2005; Miller and Katz 2010,
2013; Wong et al. 2007; Wong and Wang 2006; Wang 2002,
2008). An important property of an integrator is that tran-
sient inputs shift the activity of the integrator (up or down
depending on whether the input is positive or negative) but
the history of inputs accumulates and remains when the input
is removed.

Since neural activity decays on a rapid timescale (for
example the time constant due to a neuron’s membrane
capacitance is on the order of 10 ms) one question has been
how to extend the timescale of information decay by up to
100-fold so that behavior on the one-second timescale can be
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Fig. 2 Maximization of mutual information between a neuron’s inputs
and response requires tuning of two parameters. A–D The response,
using four different parameter sets, of a firing rate model with sig-
moidal output curves in response to synaptic inputs, x(t), which change
every 500 ms to produce input current, I (t) � gx(t), and firing rate,
r(t) � 1/

[
1 + eT−I (t)

]
+ η(t) where η(t) is zero mean, white noise

with standard deviation 0.1. A Low threshold and high gain result in
a high firing rate that varies little with changes in synaptic input. B
Low threshold and low gain produce an unvarying response at slightly

lower rate. C High threshold and high gain produce a response which
samples extreme high and low rates more than intermediate rates. D
At the optimal threshold and gain, the neural response more faithfully
follows changes in the inputs to produce greatest mutual information.
Center:Mutual information (MI) as a function of threshold and synaptic
strength has a broad optimum that nevertheless requires control of the
two parameters. Values of MI are given by the color scale and measured
in natural logarithm units, or nats, rather than bits. This figure is based
on Fig. 4 of our earlier work (Cannon and Miller 2016)

explained. In a neural circuit with excitatory feedback, the
timescale can be increased by a factor that depends on the
extent of fine-tuning (Seung et al. 2000a, b). For example, if
we assume a linear model of neural activity and feedback:

τr
dr

dt
� −r + gE · SE − T (6)

with synaptic input dependent on the presynaptic firing rate
of the same cells as well as external input, SE � αr + Sin,
then the dynamics can be rewritten as (Seung 1996; Seung
et al. 2000b)

dr

dt
� − r

τr/(1 − αgE)
+
gESin − T

τr
. (7)

The effective timeconstant inEq. 7 is τr/(1 − αgE),which
extends to infinity in the limit αgE � 1. When αgE < 1, the
firing rate converge to a fixed point, and when αgE > 1, the
firing rate increases without bound. In the limit of αgE �
1, the firing rate will represent a perfect integration of the
input, Sin, so long as the threshold is also controlled, such
that T � 0. That is, in the space of possible values of gE and
T , only a single point corresponds to a perfect integrator, so
a dual-control system would be essential for this point to be
reached and integration produced in such a feedback circuit.

3 The problem of competing controllers

When two controllers monitor the same signal, a problem
of competition can arise. Each controller has its own set-
point. If the signal is fixed at the set-point of one controller,
it will produce a constant error signal to the second controller,
causing the second controller to ramp up its feedback until
the error for the second controller is removed. However, as
the second controller ramps up its feedback so as to shift
the signal, the first controller receives an error signal and
ramps up its own feedback so as to return the signal to its
own set-point. Such a competitive tug-o-war between the
two controllers produces “wind-up” (see Figs. 3B4, B5, and
4B4,B5),whereby each controller’s feedback increasesmore
and more until some biophysical maximum is reached (not
depicted in the figure panels) and the system no longer acts as
an integral feedback controller. Such a situation is manifestly
undesirable.

However, the problemofwind-up can be avoided if certain
conditions hold. Two necessary conditions are: (1) The sig-
nal fluctuates on a rapid timescale compared to the timescale
of feedback control, and (2) feedback from the controllers
is based on different functions of the signal, at most one of
which is linear. The first condition allows the controllers to
act upon the distribution of values attained by the signal,
rather than a single value. The second condition ensures the
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Fig. 3 Cooperation or
competition between two
integral feedback controllers. A
Simulation of Eqs. 4, 8, and 9,
in a functioning dual-control
system with rgoal(T ) � 10 Hz,
rgoal(g) � 15 Hz,
τT � τg � 500 s, with
sigmoidal firing rate curve,
F[gESE(t) − T ] � F[X ] �

rmax
1+exp(−X/σ)

with rmax � 100
Hz and σ � 20. B An equivalent
simulation, but with
rgoal(T ) � 15 Hz and
rgoal(g) � 10 Hz, while all other
parameters are unchanged,
produces wind-up to
non-physiological levels. A1,
B1 Input current that transitions
between four different
distributions. A2, B2 Mean
firing rate and A3, B3 variance
in firing rate in response to the
inputs of A1, B1. A4, B4
Compensatory changes in
synaptic conductance and A5,
B5 intrinsic threshold of the
neuron. Notice in B4 and B5
that neither conductance nor
threshold ever stabilize, so
depict the phenomenon of
wind-up. Code used to produce
this figure is available as
quad_lin_control.m

controllers are fixing different moments or different com-
binations of moments of that distribution (see also Triesch
2007). We will show later that two additional conditions
must be satisfied when there are two controllers, one to
ensure that the target distribution has nonnegative moments
and the other to ensure the targets correspond to stable
rather than unstable fixed points (Cannon and Miller 2016,
2017).

3.1 A simple dual-control model

To understand how two controllers can cooperate, consider
a system with one controller whose feedback is based on the
integral of the signal and a second controller whose feedback
is based on the integral of the square of the signal (Triesch
2007). For example, when neural firing rate is controlled,
these controllers would respond according to:

τT
dT

dt
� r − rgoal(T ) (8)

and

τg
dgE
dt

� r2goal(g) − r2. (9)

The first controller (Eq. 8) adjusts the neuron’s threshold
to ensure its mean firing rate satisfies < r >� rgoal(T ).
In practice, such control of intrinsic excitability (Desai et al.
1999) could be based on adjustment of the number of sodium
and/or potassium channels implanted in the membrane of the
soma near the axon hillock where spikes are generated. The
second controller (Eq. 9) adjusts synaptic conductance to
ensure that the neuron’s mean-squared firing rate satisfies
< r2 >� r2goal(g). In practice, such control could be based
on adjustment of the number or type of glutamate receptors
in the postsynaptic density.

By combining Eqs. 8 and 9, we see that both the mean
and the variance of the firing rate are set by such a dual-
control system, with Var(r) �< r2 > − < r2 >�
r2goal(g) −r2goal(T ). Since the variance of any distribution must
be positive, we straight away see the condition on the two
target rates, r2goal(g) > r2goal(T ), or (since any rate must be
positive) rgoal(g) > rgoal(T ) (see Fig. 3).
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Fig. 4 Firing rate control by a
dual bang–bang controller. A
Mean and variance of firing rate
recover to original values
following changes in inputs and
stable compensatory changes in
conductance and threshold.
Parameters are rstep(T ) � 1,
rstep(g) � 15, pT � 0.5,
pg � 0.1. B Wind-up in a
similar system—while rate
appears to be controlled, the
conductance and threshold are
continually increasing, to
non-physiological levels.
Parameters are rstep(T ) � 1,
rstep(g) � 15, pT � 0.1,
pg � 0.5. A1, B1 Input current
that transitions between four
different distributions. A2, B2
Mean firing rate and A3, B3
variance in firing rate in
response to the inputs of A1,
B1. A4, B4 Compensatory
changes in synaptic conductance
and A5, B5 intrinsic threshold
of the neuron. Notice in B4 and
B5 that neither conductance nor
threshold ever stabilize, so
depict the phenomenon of
wind-up. Firing rate model of
the neuron is identical to that of
Fig. 3. Code used to produce
this figure is available as
dual_bang_bang.m

At first sight, an alternative control system is possible,
with dgE

dt linearly dependent on the rate and dT
dt following

a quadratic dependence, so long as the opposite condition
is satisfied, rgoal(T ) > rgoal(g). Indeed, such a control sys-
tem with the synaptic conductance and threshold controllers
flipped, does possess a fixed point with allowable firing rate
variance greater than zero. However, the flipped control sys-
tem turns out to be unstable. The instability arises because
synaptic conductance scales the variance of firing rates while
the threshold scales only the mean (This can be seen from
Eq. 6, where the inputs are multiplied by gE and a multi-
plicative factor changes the variance, while the threshold is
subtracted so has no impact on the variance). In a situation in
which the firing rate variance is too high, but the mean is too
low, the neuron should decrease the synaptic conductance and
decrease the threshold to approach the fixed point determined
by the target rates.However, in the flipped system, if themean
rate is too low then synaptic conductance would increase,
while the variance being too high might cause a concomitant
increase in threshold. Therefore, theflipped controller adjusts

the system’s parameters in the opposite direction needed to
reach the fixed point. Simulations and mathematical analysis
of the stability of fixed points verify this intuition (Cannon
and Miller 2017).

The results from the combined linear and quadratic con-
trollers can be generalized to arbitrary control functions:

τT
dT

dt
� fT (r) − fT

(
rgoal(T )

)
(10)

and

τg
dgE
dt

� fg
(
rgoal(g)

) − fg(r). (11)

To avoid the need for fine-tuning, the two control func-
tions, fT and fg , should have different curvatures at their
target rates, in which case the function with greater curvature
(strictly its second derivative divided by its first derivative)
should be fg , the one for the synaptic input controller (Can-
non and Miller 2017).
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Indeed, we were able to show that a control system with
these constraints and appropriate target/goal rates could,
from arbitrary initial conditions, adapt its threshold and
synaptic input conductance so as to maximize mutual infor-
mation between a neuron’s activity and its inputs, and to
optimize performance of a neural integrator (Cannon and
Miller 2016). More importantly, following any change in
input statistics, or in the case of the integrator circuit, loss
of 20% of the neurons providing feedback, the control sys-
tem led to recovery of optimal function.

3.2 A“bang–bang” controller

Another example of a feasible system of two controllers is
one in which the controllers respond to different step func-
tions of the signal:

τT
dT

dt
� −pT + H

(
r − rstep(T )

)
(12)

and

τg
dgE
dt

� pg − H
(
r − rstep(g)

)
(13)

where H(x) represents the Heaviside step-function, H(x) �
1 if x ≥ 0 and H(x) � 0 if x < 0.

Such controllers with binary outputs are known as
“bang–bang” controllers. Each controller would be ensur-
ing that the neuron spends a certain fraction or proportion of
its time, pT and pg , with its firing rate above that controller’s
step-point, respectively rstep(T ) and rstep(g).

For two bang–bang controllers to cooperate rather than
compete, the target fraction of time above the higher step-
pointmust be less than the fraction above the lower step-point
(see Fig. 4). Also, as in the previous example, in order for a
systemwith step-controllers to approach a stable equilibrium,
the controller with the higher step-point should be the one
that scales the synaptic conductance rather than the thresh-
old. That is, rstep(g) > rstep(T ) and pT > pg . Indeed, if
we simulate the system with rstep(g) < rstep(T ), the synaptic
input conductance rapidly decreases to zero and the neuron
becomes unresponsive.

While a system of dual bang–bang controllers can be
more robust, they have the disadvantage of lacking a sta-
ble fixed point. For example, from Eq. 13, the excitatory
synaptic conductance is either increasing at a constant rate
of pg/τg when r < rstep(g) or decreasing at a constant
rate of

(
1 − pg

)
/τg when r > rstep(g). For many control

systems, the consequent alternation of switching on then
switching off of different systems is undesirable. However,
a living cell such as a neuron is a dynamic system whose
ion channels and receptors—which determine its synaptic
conductance—are mobile, being replaced and manufactured

unceasingly. Therefore, a bang–bang controller, by simply
switching between two distinct rates either of insertion or
removal of membrane proteins, can be feasibly implemented
with no additional “operational costs” to the cell (O’Leary
et al. 2013, 2014).

4 Underlying processes

4.1 The need for a biochemical integrator

Engineered controllers include, in addition to integral con-
trollers, proportional controllers and derivative controllers,
in which the feedback signal is either proportional to the
system’s output or to its derivative (O’Leary and Wyllie
2011). More commonly, combinations of the three are used.
However, to be at all useful, the proportional and derivative
controllers should respond rapidly compared to the timescale
of signal variations—asdoes, for example, the rapid feedback
from interneurons in many cortical circuits. The observed
slower homeostatic control is more compatible with inte-
gral feedback control, which at heart requires a biochemical
process within the neuron to integrate any error signal (Som-
vanshi et al. 2015).

A biochemical integrator requires a zeroth-order chemical
reaction (O’Leary et al. 2013, 2014). That is, for any product
state of the system to accumulate with the temporal integral
of a reactant—i.e., the signal—the rate of decay of that prod-
uct state should be independent of the amount accumulated.
This can be seen by supposing the opposite was true, so that
in general the rate of production of an accumulated biochem-
ical product state, P , were somemonotonic function, F , of an
input signal, S, and the rate of loss of the accumulated prod-
uct state were a monotonic function, G, of that accumulated
product state:

dP

dt
� F(S) − G(P) (14)

then the steady state would be given by P � G−1[F(S)],
that is a single, fixed value of P results from any given value
of S and no temporal accumulation occurs. Such a response
would be an example of proportional control.

However, if instead the rate of loss of the accumulated
state is constant (at least independent of P) then we have

dP

dt
� F(S) − C (15)

and the amount of P is given by a temporal integral:

P �
∫
[F(S) − C]dt (16)
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whose steady state requires control of the input signal at
S � F−1(C). Therefore, as long as increased accumulation
of P leads to a reduction in F(S), then integral feedback
control is achieved.

Rate of loss of P could be independent of P if the amount
of P saturates an enzyme or any other degradation system
that can cause P to decrease. TheMichaelis–Menten reaction
scheme is an example of such saturating enzymatic kinetics,
whereby the rate of loss would be proportional to P

KM+P ,
which is independent of P so long as P � KM (where
KM is the Michaelis constant for the reaction and depen-
dent on enzymatic binding and dissociation rate constants).
In general, such zeroth-order kinetics arises for many bio-
chemical reactions whose rates are fit as Hill functions with
rate proportional to Pn

Kn
H+P

n with Hill coefficient n, so long as

P � KH.
Finally, the only accumulated quantity in a neuronal feed-

back system could be the number of receptors or channels
in the membrane if the rate of removal of channels is satu-
rated. For example, if proteins in the ubiquitination pathway
are required to internalize and remove channels, and those
proteins are in relatively short supply, then the rate of loss
of channels could be independent of the total number of
channels. In that case, the integrator in the feedback system
would be at the final stage. In particular, when considering
homeostasis of synaptic strength and homeostasis of intrin-
sic excitability, the two processes would unavoidably have
different integrators and should be thought of as different
controllers. The set-point of each type of channel/receptor
would be established by its fixed rate of loss from the mem-
brane (likely to be different for different channels/receptors
in different parts of the cell) being matched by an activity-
dependent rate of insertion.

To understand the impact of the integrator being at these
different points in the pathway, both on the system’s stabil-
ity and its ability to respond to different perturbations of its
inputs, we focused on a general model of the feedback path-
ways based on the work of O’Leary et al (2013, 2014). In this
model, a set of biochemical pathways leads to modification
of synaptic conductance, g, and threshold, T , in response to
a neuron’s firing rate. The corresponding equations are:

dC

dt
� − C

τC
+ r (17)

τK
dK

dt
� −DK (K ) + fK (C) (18)

τmg

dmg

dt
� −Dmg

(
mg

)
+ fmg (K ) (19)

τmT

dmT

dt
� −DmT (mT ) + fmT (K ) (20)

τg
dg

dt
� −Dg(g) + fg

(
mg

)
(21)

τT
dT

dt
� −DT (T ) + fT (mT ), (22)

where we follow the scheme of Fig. 5 and have assumed cal-
cium removal is linear in its concentration, DC (C) � − C

τC
.

In the following sections, we shall implement such a con-
troller.

4.2 The problem of filtering

As we have seen, a homeostatic control system requires
components that can be stable at many different levels. For
example, if a neuron is to raise its excitability (i.e., reduce
its threshold) in response to a reduction in excitatory input it
would need to adjust and then stably maintain a new density
of sodium and/or potassium channels in its soma. Key to the
production of such multi-stable components is an underlying
process whose reverse rate does not depend on the accu-
mulated state. In a biochemical system, this corresponds to
a zeroth-order reaction rate, such as Dg(g) in Eq. 21 and
DT (T ) in Eq. 22 being independent of g and T respectively.

Indeed, in a homeostatic control system, onemight be able
to identify the zeroth-order reaction as the point of integra-
tion and thus the controller in the system. To assess whether
the system has a single homeostatic controller or two such
controllers becomes a question of where in the feedback sys-
tem—i.e., before or after a single feedback signal branches
into twodistinct signaling pathways—the point of integration
arises. For example, at the extreme end, if integration occurs
only at the point of channel insertion and removal—i.e.,
if Dg(g) and DT (T ) were constants—then the control of
synaptic strength must be distinct from the control of intrin-
sic excitability.

However, the stability and utility of dual controllers are
compromised if the integration step is too far removed
from the initial signal. This is because at each step in the
signaling pathway, the initially rapidly fluctuatingfiring-rate-
dependent calcium signal is filtered so that the downstream
fluctuations can be damped. Essentially, if rapid calcium
fluctuations, varying on a timescale of 100 ms, are damped
by processes which allow for variation on a timescale of
10 s, then the 100-fold increase in timescale causes a 10-
fold reduction in the standard deviation (and thus a 100-fold
reduction in the variance) of the downstream signal. Yet,
as we saw in Sect. 2, both the benefit and the stability of
a system with dual controllers rely upon setting a nonzero
variance of the signal being controlled. If that signal is con-
strained to have low variance—by being a filtered version of
a noisy signal—then the constraints on the controller’s set-
points become too tight for wind-up to be avoided and/or the
ability of the two controllers to control the firing rate variance
(which has diminished impact on the signal they can control)
is lost. Therefore, for dual control to be feasible, a method
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Fig. 5 Structure of feedback pathways which lead to homeostatic
changes in excitatory synaptic conductance, g, and firing threshold,
T , for the neuron in response to changes in firing rate, r . Intermedi-
ate variables correspond to calcium concentration (Turrigiano 2008),
C , CaMKIV activation (Joseph and Turrigiano 2017; Ibata et al. 2008;
Goold and Nicoll 2010), K , and mRNA abundance (Ransdell et al.

2012), m. Equations 17–22 model this feedback scheme, based on
the work of O’Leary et al (2013, 2014). Functions, f , represent for-
ward rates (following horizontal arrows) and the functions, D, represent
degradation rates, one of which should be independent of the degraded
quantity

of maintaining a large variance in the input to the integrator
is necessary. Such variance could be maintained by faithful
transmission (without filtering) of the somatic calciumsignal,
which fluctuates rapidly according to the spike train. Alter-
natively, as we shall investigate in the next section, when
filtering is present, nonlinearities in the signal processing
pathway could boost the variance in the downstream signal.

4.3 The benefit of nonlinearities

The reduction in variability by temporal filtering and result-
ing problems for a dual-control system can be ameliorated
if the signaling pathways produce supralinear downstream
responses. For example, introduction of a cubic or quar-
tic nonlinearity can provide sufficient supralinearity of the
response to allow a downstream signal to fluctuate a lot in
spite of much temporal filtering of the upstream fluctuations
in firing rate. Such a strong supralinearity is not unreason-
able, since, for example, the very first step in most calcium
signaling pathways is the binding of calcium by calmodulin,
which is fully activated when bound to four calcium ions (so
its activation can depend on up to the 4th power of calcium
concentration).

In Fig. 6A we see that inclusion of a cubic supralinearity
allows for the homeostatic feedback system to regain stable
control. [We use cubic rather than quartic, because an early fit
to the activation of a similar calcium calmodulin-dependent
kinase as a function of calcium suggested a coefficient of
three (Abraham et al. 1996)]. The system is shown to adapt
successfully to a 25-fold range of input variance as well as a
10-fold range of mean input current.

Such a dual system performs well over a broad range of
parameters. For example, if we compare performance, as
measured by the correlation between output rate and input
current, of each controller, the dual controller with a cubic

linearity betters the best single controller as a parameter such
as Dg is varied from its minimal value of D2

T (as necessary
to ensure variance is positive) up to twice its minimal value.
Beyond this range, wind-up impacts the dual controller’s per-
formance negatively. However, if the supralinearity is absent,
the dual controller is only optimal and able to avoid wind-up
over a much smaller range, with an increase of 15% beyond
the minimal value sufficient for wind-up to set in and render
its performance worse than the single controller. Figure 7
demonstrates this point, with the value of Dg set at approx-
imately 25% greater than D2

T (Dg � 400, DT � 18), the
same as used in Fig. 6. The absence of the cubic linearity
in CaMKIV activation leads to wind-up in the dual-control
model.

5 Summary and conclusions

In this article, we have considered how two control processes
can cooperate rather than compete when they respond to
the same signal, namely a single neuron’s firing rate. The
presence of separate controllers for excitatory synaptic con-
ductance and intrinsic excitability in neurons allows a neuron
to produce outputs that vary across a desired range and to
compensate for changes in both the variance and the mean
of its inputs. However, when two controllers respond to the
same variable, namely a neuron’s spike train, additional con-
straints are necessary to ensure the two controllers do not
compete and produce “wind-up.” We have shown that the
constraints include two essential features—the controlled
variable should change rapidly compared to the timescale of
the control process, and the controllers should respond non-
linearly to the controlled variable. Moreover, the controller
that has a relatively greater impact on the gain of the sys-
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Fig. 6 Homeostatic response of a biochemical pathway with A two
controllers and B a single controller. Results of simulating the sys-
tem depicted in Fig. 5 with integration produced via concentration-
independent degradation in A at the mRNA/protein expression stage,
or inB at the kinase-activation stage.A1,B1 Input current with four dif-
ferent ranges.A2,B2Mean firing rate andA3,B3 variance in firing rate
in response to the inputs of A1,B1. Response of the single controller (B)
is more rapid than that of the dual controller (A). In this example, since
kinase activation is proportional to the cube of calcium concentration,
it is the cube of the firing rate that is controlled, rather than mean rate

itself. A4, B4) Kinase activation in the dual controller (A) tracks firing
rate, but in the single controller (B) integrates rate so the stable levels
of activation vary over a wide range. A5, B5 Compensatory changes in
synaptic conductance and A6, B6) intrinsic threshold of the neuron are
co-regulated in a single controller (B) so that a rise in threshold (reduced
excitability) always occurs with a reduction in synaptic conductance,
whereas in the dual controller (A), synaptic conductance can increase
when threshold increases (Maffei and Turrigiano 2008). Code used to
produce this figure is available as intracellular_homeostasis.m

tem compared to the firing threshold should have a greater
supralinearity in its response and a higher effective set-point.

If, instead, different controllers respond to distinct enough
signals—for example, if one were to respond to synaptic
input while the other responds to firing rate—then the system
of distinct controllers would be more robust and competi-
tion between set-points avoided. An intriguing case arises
if one control system is based on a single neuron’s firing
rate while another monitors neighborhood activity. In such a
situation, it is again possible for the controllers to compete
since each neuron contributing to neighborhood activity also
has its individual firing rate being controlled. Therefore, for
the system to function, it would be important that neurons’

individual set-points are not incompatible with the set-point
desired for the mean neighborhood activity. In such a situa-
tion, the issues addressed and techniques formulated in this
article are relevant.

Whether a biochemical feedback system acts more as a
single controller or a dual controller depends on whether the
integration step occurs before or after two control pathways
branch from each other. The point of integration can be deter-
mined by whether a variable in the system simply filters the
output firing rate—so eventually returns to its prior level fol-
lowing compensation to a change in inputs—or integrates up
the error and so remains at a distinct new level following a
compensatory process. For example, somatic calcium con-
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Fig. 7 Compromised homeostatic response of a biochemical pathway
with A two controllers and B a single controller. Results of simulat-
ing the system depicted in Figs. 5 and 6, but with linear activation of
CaMKIV. Integration is produced via concentration-independent degra-
dation in A at the mRNA/protein expression stage, or in B at the
kinase-activation stage.A1,B1 Input current with four different ranges.
A2,B2Mean firing rate andA3,B3 variance in firing rate in response to
the inputs of A1,B1. Response of the single controller (B) is more rapid
than that of the dual controller (A). In this example, since kinase acti-
vation is proportional to calcium concentration, the mean rate is well

controlled; however, variance in firing rate is not controlled in either
system.A4, B4Kinase activation in the dual controller (A) tracks firing
rate, but in the single controller (B) integrates rate so the stable levels
of activation vary over a wide range. A5, B5 Compensatory changes
in synaptic conductance and A6, B6 intrinsic threshold. In the dual
controller, panels A5-A6, indicate wind-up, where the synaptic con-
ductance and threshold both increase until the synaptic conductance
remains fixed at its maximum level. Code used to produce this figure is
available as intracellular_homeostasis_lin.m

centration acts as a filter of spikes and indicates spike rate,
so returns to its prior level following a period of disrupted
activity which is then compensated for. On the other hand,
conductance of excitatory synapses would remain elevated
following such compensation. It will be of interest to assess
whether activation of CaMKIV follows more the trajectory
of internal calcium, or of synaptic conductance.

Therefore, to experimentally distinguish a dual-control
system from a single control system with two outputs, it
would be valuable to analyze measurements of the activation
of CaMKIV both during and after homeostatic compensation
from perturbations that change firing rates of neurons. If the
change in firing rates causes a change in CaMKIV levels,
but as firing rates return via cell-internal homeostatic mech-

anisms, so CaMKIV activation returns to baseline, then a
dual-control mechanism is supported. However, if CaMKIV
activation only shiftsmonotonically and remains shifted once
the neuron returns to its prior activity patterns, then CaMKIV
activation has the properties of an integrator for a single con-
trol system.

A second line of experiment that could weigh against a
dual-control system would be observation of correlations
between the abundance of mRNA for synaptic proteins such
as those for AMPA receptor units, which undergo homeo-
static regulation, and the abundanceofmRNAfor the proteins
of homeostatically regulated intrinsic sodium or potassium
channels. Such correlation would be expected in a system
with a single control system in which transcription of these
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distinctmRNAs is co-regulated. For example, lowfiring rates
would increase mRNA abundance for proteins associated
with AMPA receptors and sodium channels while decreas-
ingmRNAabundance for proteins associatedwith potassium
channels. Observation of such correlation between mRNA
abundances (Schulz et al. 2007; Tobin et al. 2009) as well as
conductance values for different intrinsic channels (Goail-
lard et al. 2009) has previously provided strong evidence for
a single controlmechanism underlying these diverse intrinsic
properties (O’Leary et al. 2013).

Intriguingly, in a dual-control system, it is possible to
observe synaptic and intrinsic properties shifting in opposing
direction—for example threshold could increase at the same
time as excitatory synaptic conductance increases (Fig. 6A5,
A6). Observation of such behavior would be evidence for a
dual-control system if other plasticitymechanisms are absent
or already accounted for.

Finally, data arising from protocols in which mean neural
firing rate ismaintained constant, but the statistical properties
of the activity are altered, would provide valuable fodder to
our efforts to understand the underlying control processes.
For example, observations of how the neuron responds to
alternating periods of quiescence and higher frequency firing
while keeping mean rate fixed, as the durations of periods
or the rate of high-frequency firing are altered, would be
illuminating.Homeostasis arising from such protocolswould
not only support a theory of dual mechanisms but would
constrain many of the underlying components of such a dual-
control model.

6 Note

MATLAB codes used to produce indicated figures are
available at https://github.com/primon23/combined_homeo
stasis.
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