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may be attributed to diagnostic and methodological issues. 
In order to permit a reliable estimation of a possible causal 
link, exposed cohorts should be monitored for renal dis-
ease, as the information from mortality studies is hardly 
reliable in this field.

Keywords Respirable silica · Chronic renal disease · 
Review · Meta-analysis · SMR

Background

Silica and occupational disease

Silica  (SiO2) is the second most abundant mineral in the 
Earth’s crust. It is found in sand, rock, and soil. Workers 
particularly exposed to silica include miners, quarrymen, 
smelters, sandblasters, masons, and ceramic and glass man-
ufacturers. The primary pathway of silica into the human 
body is through the respiratory organs as dust; the exposure 
via skin or digestive tract is negligible.

Exposure to silica has long been known to be associ-
ated with lung diseases, most notably silicosis. In 2009, the 
International Agency for Research on Cancer (IARC) clas-
sified respirable crystalline silica as a human carcinogen 
of group 1 (sufficient evidence) (IARC 2012). But correla-
tions have also been observed between exposure to respir-
able silica and other diseases, like scleroderma, systemic 
lupus erythematodes, rheumatoid arthritis, or ANCA-asso-
ciated vasculitis (Gomez-Puerta et al. 2013).

Case studies of non-malignant renal disease in con-
junction with silica exposure have motivated case–control 
studies and occupational cohort studies targeting chronic 
kidney disease (CKD) and specifically glomerulonephri-
tis (GN). First reviews have been published (Bartsch et al. 
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2004; Stratta et al. 2001). Moreover, NIOSH reviewed 
results on risks for renal diseases in its report on quartz 
dust, but without systematic summary or final evaluation 
(NIOSH 2002).

Etiology of renal disease

In advanced stages, chronic renal disease is characterized 
by concurrent changes in glomeruli, tubuli, blood vessels, 
and interstices (Gross et al. 1996). However, it usually sets 
in with very few symptoms, making epidemiologic research 
on its causes difficult. Globally, the most frequent causes of 
renal disease that can lead to renal failure are considered to 
be inflammations and infections.

In Germany, QuaSi-Niere collects data on dialysis and 
renal transplant patients and has recorded the causes of 
renal disease since 1997 (Frei and Schober-Halstenberg 
2008). Predominant causes are diabetes mellitus and arte-
rial hypertension, which constitute the causes of two-thirds 
of all chronic renal failures, whereas glomerulonephritis 
plays only a minor role. The data also show an increase in 
vascular and diabetic nephropathies probably due to the 
increasing proportion of older and multimorbid patients. 
Another cause for renal damage can be medication; besides 
some antibiotics, nephrotoxic drugs also include non-ste-
roidal analgesics, especially aspirin or phenazone com-
bined with paracetamol, caffeine, codeine, and phenacetin, 
which can induce analgesic nephropathy after long-term 
use (Kuhlmann et al. 1998).

Furthermore, several heavy metals damage the kidney 
by accumulating in the renal cells and blocking metabolic 
processes, primarily in the tubuli, leading to proteinuria and 
necrosis of the tubuli. Proteinuria among workers handling 
cadmium was described for the first time in an alkaline 
battery plant (Friberg 1950). Cadmium was also identified 
as the leading cause of the endemic “itai–itai” disease in 
Japan, which was identified as a sort of osteomalacia com-
bined with proteinuria and glycosuria (Emmerson 1970; 
Tsuchiya 1969). An overview of cadmium as a nephrotoxin 
was given by Järup (Järup 2003).

Among the occupational toxins that cause CKD are also 
mercury (Aymaz et al. 2001; Kazantzis 1970; Miller et al. 
2013; Voitzuk et al. 2014) and lead (Ekong et al. 2006; 
Evans et al. 2010; Lin et al. 2006). But also uranium and 
arsenic impair the renal function in humans (Brugge and 
Buchner 2011; Landrigan et al. 1984; Sabath and Robles-
Osorio 2012; Tchounwou et al. 2003; Zheng et al. 2015); 
recent cohort studies among uranium miners and millers 
support this assumption (Kreuzer et al. 2015; Pinkerton 
et al. 2004; Schubauer-Berigan et al. 2009).

The nature of a possible association of silica with kidney 
damage has not been fully explained. Pathologic changes 
similar to those due to nephrotoxic heavy metals make a 

direct toxic effect plausible; since the detection of anti-
nucleic antibodies, an immunologic process has also been 
discussed (Bartsch et al. 2004; Marquardt and Schäfer 
2003).

Research question

Therefore, the aim of this review is to systematically 
explore the available evidence on the association between 
occupational exposure to respirable silica and the risk 
of renal damage. Outcomes under consideration are 
chronic non-malignant renal diseases with a focus on 
glomerulonephritis.

Materials and methods

Systematic search and evaluation

The review is reported following the PRISMA state-
ment (Moher et al. 2009). Relevant studies were selected 
through a systematic search in MEDLINE for publications 
from 1987 to Jan 15, 2015 as well as reference tracking 
and a hand search. We aimed at epidemiological studies on 
chronic non-malignant renal diseases and, more specifically, 
glomerulonephritis in conjunction with occupational expo-
sure to respirable silica. Both cohort studies and case–con-
trol studies were accepted. Studies investigating cadmium, 
lead, mercury, uranium, or arsenic exposure were excluded. 
Furthermore, studies on asbestos exposure were excluded. 
The first reason for their exclusion was that there are some 
epidemiological studies showing an elevated risk for renal 
cancer with respect to asbestos exposure (Enterline et al. 
1987; Mattioli et al. 2002; Mellemgaard et al. 1994; Selikoff 
et al. 1979). Although the corresponding reviews produced 
contradictory findings (Sali and Boffetta 2000; Smith et al. 
1989), an asbestos-related impairment of the kidney cannot 
be excluded. The second reason was that most studies on 
workers exposed to silica and asbestos reported results on 
asbestos-related cancer and respiratory tract diseases only.

Finally, to find all relevant studies, the primary search 
string was set to

((glomerulonephritis OR kidney OR renal OR nephritis) 
AND (silica* OR quartz OR sand OR “silicon dioxide” 
OR “silicon compounds”) AND (cohort OR follow-up 
OR longitudinal OR case–control OR case-referent OR 
case-cohort OR case/control)) NOT (asbestos OR cad-
mium OR lead OR mercury OR uranium OR arsenic).

Numerous cohort studies have investigated the association 
between respirable silica exposure and health outcomes such 
as silicosis, non-malignant respiratory disease, or lung can-
cer. These studies frequently reported standardized mortality 
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ratios (SMR) regarding diseases outside of their primary out-
comes. Hence, to also find this kind of cohort studies, a sec-
ondary search string was set to

((silica OR silicosis) AND (cohort OR mortality OR lon-
gitudinal OR follow-up) AND (occupation* OR worker* 
OR miner OR miners)) NOT (asbestos OR cadmium OR 
lead OR mercury OR uranium OR arsenic).

All references were evaluated by two reviewers (JG, AP) 
with title and abstract using the following criteria: Only 
cohort or case–control studies with a human male adult study 
population with quartz dust exposure were selected. Case 
studies, surveys, intervention studies, and studies on children 
or animals or in vitro or in vivo were rejected.

In the next step, full papers were read for selected stud-
ies and studies without information on renal disease were 
discarded. Where several studies on the same cohort existed, 
the most recent one was selected. Case–control studies were 
checked for adequate outcomes. They were discarded if the 
control group contained patients with renal disease.

In many cases, studies were excluded because on closer 
inspection they did not fulfill the inclusion criteria. Where 
the decision merited discussion, we documented the reason 
for exclusion (see Electronic Supplementary Material).

Meta‑analysis

A meta-analysis was conducted for the cohort studies, sepa-
rately for occupational cohorts and cohorts from workers suf-
fering from silicosis which were reported to a silicosis registry. 
Standardized mortality ratios were adjusted for silicosis as a 
competing cause of death (Möhner 2016). Where the number 
of cases had been extrapolated (Marinaccio et al. 2006; Scar-
selli et al. 2011), the actual number of cases was used.

Results were compared and checked for heterogene-
ity. In order to achieve better comparability, similar out-
comes were used. The group ICD-9: 580–589 (Nephritis, 
nephrotic syndrome, and nephrosis) was preferred, but 
some studies provided only data on the whole ICD-chapter 
X (Diseases of the genitourinary system).

Statistical analyses were performed using the statistical 
software package Stata, release 14. The metan command 
was used for meta-analysis (Harris et al. 2008).

Results

Search results

The search in PubMed yielded 1109 publications. Fig-
ure 1 shows the further stages of the study selection. In 

the end, the selection and evaluation procedure yielded the 
following:

•	 10 cohort studies from silicosis registries (Amandus 
et al. 1991; Brown et al. 1997; Ebihara and Kawami 
1998; Forastiere et al. 1989; Marinaccio et al. 2006; 
Ng et al. 1990; Scarselli et al. 2011; Starzynski et al. 
1996; Steenland et al. 2002; Yu et al. 2007),

•	 13 industry-based cohort studies (Birk et al. 2009; 
Björ et al. 2013; Brown and Rushton 2005; Checko-
way et al. 1997; Cherry et al. 2013; Koskela et al. 
1987; McDonald et al. 2005; Morfeld et al. 2005; 
Olsen et al. 2012; Steenland and Brown 1995; Steen-
land and Sanderson 2001; Vacek et al. 2011), and

•	 4 case–control studies (Calvert et al. 2003; Chiazze 
et al. 1999; Steenland et al. 1990; Vupputuri et al. 
2012). The main characteristics of the included stud-
ies are given in Tables 1, 2,  3.

Study characteristics

Industrial cohorts

The industrial cohort studies are rather homogeneous in 
their methodology. While mortality was used as the study 
outcome in most cohort studies, the investigators of two 
of the cohort studies were able to merge their databases 
with an end-stage renal disease (ESRD) registry. Hence, 
they could use incidence of ESRD and particularly GN as 
the study outcome (Steenland et al. 2001, 2002).

The included industrial cohort studies (Table 1) pertain 
to different industries, mainly sand and granite produc-
tion. Many of the studies quantitatively estimated silica 
dust exposure for individual subjects with the aid of job-
exposure matrices (JEM), but in many cases these were 
used only for internal analyses of the risk of lung cancer 
or non-malignant respiratory diseases. In seven studies, 
however, dose–response analyses were performed for 
renal diseases too. Where mentioned, studies with expo-
sures to substances causing renal damage were excluded. 
As the focus of many studies was not on renal disease, 
information on relevant occupational co-exposures with 
respect to kidney is scarce. But for these diseases the use 
of mercury, for example, in gold mining in the Homestake 
Mine in South Dakota (Steenland and Brown 1995) may 
be relevant: The use of mercury there only ended in Dec 
1970, when significant environmental damage was discov-
ered in the region, especially in the waters (US Environ-
mental Protection Agency RV 2007). However, among the 
industrial cohorts, there are several where relatively pure 
silica dust exposure can be assumed (Brown and Rushton 
2005; McDonald et al. 2005; Vacek et al. 2011).



558 Int Arch Occup Environ Health (2017) 90:555–574

1 3

Silicosis registry cohorts

The ten cohort studies based on information from silico-
sis registries (Table 2) also investigated mainly mortality, 
though one study (Steenland et al. 2002) used registration 
with an ESRD registry as the outcome. In contrast to the 
industrial cohort studies, none of them estimated individual 
exposure to quartz dust. However, high levels of exposure 
are evident from the fact that subjects are drawn from sili-
cosis registries, though allowances for individual suscepti-
bility must be made. Mortality studies were geared toward 
assessing the risk of lung cancer or other respiratory dis-
eases in conjunction with silica dust exposure. Therefore, 
they frequently excluded subjects with known exposure to 
other exposures (e.g., asbestos). However, exposure to lead, 
mercury, cadmium, or other substances known to damage 

the kidney was not discussed; hence, these occupational 
exposures cannot be ruled out.

Many of the studies do not provide information on 
loss to follow-up or missing cause of death; however, 
silicosis patients have a much lower mobility than occu-
pational cohorts and the recognition of silicosis as an 
occupational disease often entitles the patient to regular 
financial benefits. Missing information on loss to follow-
up thus plausibly implies that the authors assume com-
plete information. Similar considerations hold for cause 
of death information: Sweden and Poland have a national 
death index, and in Japan follow-up can be collected via 
the family register “Koseki”, such that complete informa-
tion can be assumed for these three studies. The Italian 
studies, however, report missing cause of death infor-
mation for two to nine percent of the deceased. As the 

Fig. 1  Flow chart of the litera-
ture search

Citations identified from
MEDLINE: n = 1109

Potentially relevant articles to read: n = 177

Exclusion of irrelevant results and studies with co-
exposures: n = 932

Inclusion of additional potentially  
relevant references: n = 16

Full text articles assessed for 
eligibility: n = 193

Studies for the systematic review:
Cohorts of silicotic patients: n = 10

Industrial cohorts: n = 13 
Case-control-studies: n = 4 

Total: n= 27 

Exclusion of irrelevant studies: n = 166
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time of entry into the studies equals the time of patients’ 
silicosis registration, previous renal diseases cannot be 
excluded and may even have led to some patients’ deaths 
before that point.

Case–control studies

The four case–control studies included here are hetero-
geneous in their choice of the outcome as well as in the 
source for selection of cases and controls and in the con-
sideration of potential confounders in the risk assessment 
(Table 3).

The assessment of exposure data may be particularly 
problematic in Calvert et al. (2003), where occupation and 
industry were ascertained from the information given on 
the death certificate. That information only existed for 2/3 
of the subjects and is unreliable: When Bidulescu and col-
leagues examined the agreement between death certificate 
information and self-reported data concerning occupation, 
a complete match was derived only for 32% of deceased; 
coarser categories yielded Cohen’s κ = 0.6 (Bidulescu 
et al. 2007). Nevertheless, a clear positive trend in mor-
tality odds ratios (MORs) with increasing exposure cat-
egory was observed for silicosis, lung cancer, COPD, and 
pulmonary tuberculosis. In the highest exposure category, 
MOR = 30.5 was calculated for silicosis. Hence, this kind 
of exposure information seems to be suitable to roughly 
distinguish between highly and low exposed subjects. In 
contrast, even a negative trend was observed for chronic 
renal failure as well as for GN.

Investigating the influence of silica exposure on the 
risk of CKD development, major risk factors like diabetes 
and hypertension should be taken into account. Hence, an 
adjustment only for age and education as performed by 
Vupputuri and coworkers (Vupputuri et al. 2012) is not 
sufficient if a broad range of diagnoses for CKD are used. 
The descriptive data on cases and controls yield a crude 
OR = 6.22 for a history of diabetes and OR = 3.76 for 
daily use of analgesic. Hence, the actual contribution of 
silica to CKD risk remains unclear.

The study among employees in the fiberglass manufac-
turing industry did not show any noticeable risk increase 
with increasing exposure to respirable silica (Chiazze et al. 
1999). However, the cumulative exposure was much lower 
than in quarrymen, for example. Only 11% of fiberglass 
workers have had a cumulative exposure of more than 
0.5 mg/m3-years. In contrast, the highest quintile of granite 
workers has had a cumulative exposure of more than 6 mg/
m3-years (Vacek et al. 2011). Hence, the cumulative expo-
sure to respirable silica in fiberglass workers might be too 
low to lead to a detectable risk increase.
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Table 2  Cohort studies based on registries of silicotics

References Geographical 
region

Outcome Cohort size Diagnostic 
period for 
silicosis

Follow-up 
period

Total deaths Number of 
observed cases

Effect size 
(95%-CI)

Amandus et al. 
(1991)

North Caro-
lina, USA

Mortality from 
chronic and 
unspecific 
failure of 
kidney 
(ICD8: 
582–584)

760 1940–1983 1940–1983 550 2 1.4 (0.17–5.16)

Brown et al. 
(1997)

Sweden, Den-
mark

Mortality 
from urinary 
diseases

1130 SE: 1965–
1883,

DK: 1977–
1989

SE: 1965–
1989,

DK: 1977-
1990

795 9 1.6 (0.7–3.1)

Ebihara and 
Kawami 
(1998)

Japan Mortality from 
nephritis and 
nephrosis 
(ICD9: 
580–589)

850 1958–1995 1958–1995 599 5 1.13 (0.37–
2.63)

Forastiere 
et al. (1989)

Latium, Italy Mortality from 
genitourinary 
diseases 
(ICD-9: 
580–629)

952 1946–1984 1969–1984 607 9 1.0 (0.46–1.9)

Marinaccio 
et al. (2006)

Tuscany, Italy Mortality from 
nephritis, 
nephrotic 
syndrome, 
and nephro-
sis

14,929 1946–1979 1980–1999 8521 65 0.94 (0.73–
1.20)

Ng et al. 
(1990)

Hongkong Mortality from 
genitourinary 
diseases 
(ICD9: 
580–629)

1419 1965–1981 1980–1986 356 2 0.49 (0.06–
1.77)

Scarselli et al. 
(2011)

Latium, Italy Mortality from 
nephritis, 
nephrotic 
syndrome, 
and nephro-
sis (ICD9: 
580–589)

2034 1943–1986 1997–2006 1258 12 1.06 (0.55–
1.86)

Starzynski 
et al. (1996)

Poland Mortality from 
nephritis, 
nephrotic 
syndrome, 
and nephro-
sis (ICD9: 
580–589)

11,935 1970–1985 1970–1991 3141 33 1.22 (0.84–
1.71)

Steenland et al. 
(2002)

USA (a) Registra-
tion of ESRD

(b) glomerular 
nephropathy

1328 1984–1998 1984–1998 764 (a) 9
(b) 2

(a) 1.67 
(0.76–3.17)

(b) 4.19 
(0.50–15.13)

Yu et al. 
(2007)

Hong Kong Mortality from 
kidney dis-
ease (ICD9: 
584–586)

2789 1981–1998 1981–1999 853 3 0.27 (0.05–
0.78)
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Meta‑analysis

While most mortality studies reported cases for the 
group ICD-9: 580-589 (nephritis, nephrotic syndrome, 
and nephrosis), some only provided information on the 
whole ICD-chapter X (diseases of the genitourinary sys-
tem). From the few studies reporting both the group and 
the chapter mortality, it emerged that renal diseases con-
stitute about 2/3 of cases in the chapter. Assuming that 
this proportion is constant, 1/3 of the observed and the 
expected cases were subtracted for those studies (Björ 
et al. 2013; Brown and Rushton 2005; Checkoway et al. 
1997; Forastiere et al. 1989), forming the basis for com-
parative analyses of the industrial cohort studies and the 
silicosis registry cohort studies.

Meta‑analysis of silicosis registry cohorts

The meta-analysis of the ten studies based on cohorts of 
silicotics applying a model with random effects yielded 
an overall SMR = 1.28 (95% CI 1.01–1.62), adjusted for 
competing risk of silicosis (Fig. 2). The proportion of varia-
tion in the SMRs due to heterogeneity between studies was 
27.9%, based on  I2. Here the Polish study was divided into 
two groups: in coal mining and other underground work, 
the SMR was close to the mean, while outside this industry 

it was almost twice as high, i.e., the ratio between the two 
SMRs was calculated to be 1.93 (95% CI 0.91–4.07).

Meta‑analysis of industrial cohort studies

The combined analysis of the industry-based cohorts 
resulted in SMR = 1.52 (95% CI 1.16–1.98) (Fig. 3). How-
ever, the pronounced heterogeneity between these studies, 
leading to I2 = 70.5%, required the use of a random effects 
model.

For the five sand and granite industry cohorts, the com-
bined SMR (random effects model) was 1.59 (95% CI 
0.91–2.78) with I2 = 75.0%.

For the three pottery cohorts, the combined SMR (ran-
dom effects model) was 2.15 (95% CI 1.13–4.08) with 
I2 = 72.6%.

The two cohort studies from (coal and iron ore) min-
ing industries had a combined SMR of 0.99 (95% CI 
0.78–1.25).

The combined SMR of the two cohorts from gold min-
ing was 1.51 (95% CI 1.07–2.12).

Dose–response analyses

In six of the industrial cohort studies, dose–response 
analyses were conducted for cumulative quartz dust 

Fig. 2  Meta-analysis of cohort studies on silicotics
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exposure and renal disease. The results are heterogene-
ous: The study of US gold miners and one of the studies 
on sand workers (Steenland and Brown 1995; Steenland 
et al. 2001) showed significant positive dose–response 
associations between cumulative dust exposure and risk 
of renal disease mortality. The other four studies, how-
ever, did not find an increased risk for increased cumula-
tive exposure (Cherry et al. 2013; McDonald et al. 2005; 
Olsen et al. 2012; Vacek et al. 2011). In one of them 
(McDonald et al. 2005), risk estimates for the higher 
exposure categories were as low as 0.2, though the nega-
tive trend could not be statistically verified owing to the 
small number of cases.

ESRD studies and GN sub‑analyses

Glomerulonephritis as an outcome was considered in 
the industrial studies (Cherry et al. 2013; Steenland and 
Brown 1995; Steenland et al. 2001), reporting SIRs of 3.02 
(n = 6), 4.24 (n = 5), and 3.85 (n = 7), in one silicosis 
registry study (Steenland et al. 2002) with an SIR of 2.65 
(n = 4), and in three case–control studies (Calvert et al. 
2003; Steenland et al. 1990; Vupputuri et al. 2012), report-
ing ORs of 1.67, 1, and 1.13 for silica dust exposure.

Discussion

In recent decades, the focus of epidemiological studies 
on the health effects of silica was on cancer, especially on 
lung cancer, and on non-malignant respiratory diseases. 
First studies with a focus on the relationship between sil-
ica and non-malignant renal diseases were published only 
in the last quarter of the 20th century (Thun et al. 1982). 
The lack of information on possibly confounding fac-
tors for non-malignant renal diseases in the publications 
resulting from the late start of investigations concerning 
a possibly causal relationship is one of the reasons why 
this review emphasizes a more thorough discussion of 
various bias sources specific to the research question.

Methodological issues

Search strategy

A common procedure for the selection of relevant studies 
for the review is to use the PICOS (participants, interven-
tions, comparisons, outcomes, and study design) frame-
work. It has already been demonstrated that it is usually 
more difficult to find optimal classifiers for the I and O 

Fig. 3  Meta-analysis of industry-based cohort studies
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elements than for the remaining elements (Boudin et al. 
2010). Our first search string is closely based on the 
PICOS framework. The second one, however, has been 
chosen much broader in terms of the outcome variable, 
i.e., using the (general) mortality instead of some more 
detailed classifiers for renal diseases as the underlying 
cause of death. As the focus of many cohort studies was 
not on renal disease but on lung cancer or non-malig-
nant respiratory disease, this approach reduced the risk 
to overlook cohort studies where SMR values for CRD 
appeared only in the tables but not in the abstract. Three 
registry-based and six industry-based cohort studies 
(30% of the primary studies included) were identified by 
the secondary search string only. These numbers under-
line the importance of the modified search strategy.

Publication bias

Related to the searching and finding of studies with CKD 
mortality is the issue of studies actually reporting it. There 
are indeed some large-scale occupational cohort studies not 
reporting mortality due to non-malignant kidney diseases 
(e.g., Chen et al. 2012). The probability of a study reporting 
CKD data may depend on the magnitude of the observed 
association, and thus a publication bias is conceivable.

Validity of the outcome

The primary goal of a study in occupational epidemiology 
is to identify risk factors in the occupational environment 
with an adverse impact on health; most often, the focus is 
on chronic diseases. But for a retrospective cohort study, 
which represents the most frequently used study design in 
this review, the outcome is usually defined on the basis of 
mortality data.

The temporal course from the onset of exposure to death 
can be divided into three phases. The duration of the first 
one, from the onset of exposure until the onset of disease, 
depends primarily on biological mechanisms and, if the 
exposure really has an adverse impact, on the extent of the 
exposure. The duration of the second phase, from the onset 
of disease until its diagnosis, largely depends on the gen-
eral system of medical care, which includes among other 
aspects the health insurance system and occupational health 
screening, and also on the patient himself. The third phase 
is present only if the diagnosis is stated during the patient’s 
lifetime. The duration of this last phase, from diagnosis 
until death, is substantially driven by the severity of the dis-
ease and the medical care provided.

Etiological studies in occupational epidemiology aim 
at analyzing the impact of occupational exposures on 
the duration of the first phase only. Unfortunately, the 
individual time of disease onset is not known for most 

chronic diseases. Therefore, in general the time span 
between the time of first exposure and diagnosis (inci-
dence data), i.e., the sum of phases one and two, should 
be analyzed.

For a retrospective mortality cohort study, the analy-
sis is complicated by the additional variability of phase 
three: Up to a couple of years or even decades can elapse 
between diagnosis and death for diseases with a reason-
ably good prognosis, such as CKD. Go and colleagues 
have shown that patient’s survival is strongly correlated 
with the glomerular filtration rate at time of diagnosis 
(Go et al. 2004). Therefore, a periodically performed 
occupational health screening can help detect the dis-
ease already in an early, sometimes even in its preclinical 
stage by laboratory parameters, such as serum creatinine. 
Screening and diagnosis in the preclinical stage may have 
entailed an increase of the standardized incidence ratios 
(SIRs) for the occupational cohorts if the screening was 
not performed in the same manner in the reference pop-
ulation. On the other hand, an early diagnosis usually 
improves patient’s survival and, hence, reduces the SMR 
in mortality studies.

A further problem of using mortality data instead of 
incidence data is that the required population-based ref-
erence rates for the calculation of SMR are often avail-
able for the underlying cause of death only. Hence, the 
cause-specific incidence for the cause under investiga-
tion may be seriously underestimated, depending on the 
fatality rate of the disease, i.e., the larger the time span 
between first diagnosis and death, the lower the probabil-
ity that the disease is assumed to be the underlying cause 
of death.

A much better approximation for the incidence can be 
achieved if the complete information from death certifi-
cates of study subjects is available as well as the multi-
ple cause of death reference data (Steenland et al. 1992). 
From those death certificates, where nephritis, nephrotic 
syndrome, or nephrosis (N00–N07, N17–N19, N25–N27) 
was mentioned, it was documented as the underlying 
cause of death for less than 25%. But the difficulties for 
the analysis of the temporal correlation between exposure 
and outcome are the same as those for using the underly-
ing cause of death as the outcome.

Lastly, when considering cause of death data for popu-
lations occupationally exposed to silica, one must bear 
in mind that an occupational disease such as silicosis 
may entail financial benefits for the dependents of the 
deceased. This may elevate the probability that it will be 
assigned a prominent place on the death certificate, thus 
suppressing other causes. On the other hand, the possibil-
ity of occupational diseases entails a higher probability 
of autopsy, making postmortem diagnoses of renal dis-
ease possible.
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Outcome‑specific sources of bias

CKD does not usually cause symptoms until it reaches an 
advanced stage. At earlier stages, it is usually detected by 
blood and urine tests. According to the 2003–2004 National 
Health and Nutrition Examination Survey, less than 5% of 
patients with stage 1 or 2 CKD and less than 10% with 
stage 3 reported having been diagnosed with CKD; only 
45% of patients with stage 4 were aware of their condi-
tion (Plantinga et al. 2008). Moreover, health insurance 
and access to specialized medical care, i.e., a nephrologist, 
affects the time at which the disease is diagnosed for the 
first time (Ward et al. 2010).

Therefore, a considerable lead-time bias can be assumed 
if one compares a cohort of silica-exposed employees to the 
general population. These employees are mostly included 
in a surveillance program for silicosis [cf. (Steenland and 
Brown 1995; Steenland et al. 2001; Turner and Cherry 
2000)] and they periodically undergo a thorough medical 
check-up. Consequently, a possible onset of a CKD can be 
diagnosed much earlier than in the reference population, 
resulting in an overestimation of the SIR.

Other issues of relevance for the estimation of risk 
become apparent in a study on pottery workers (Cherry 
et al. 2013): There, SMRs were computed for two reference 
populations, the national one and the regional one, result-
ing in strong differences in expected numbers. Expected 
numbers for overall mortality, silicosis, and lung cancer 
were much higher based on regional rates (Stoke-on-Trent) 
than based on national rates, indicating that the occupa-
tional exposure to quartz dust was much more common in 
the region than in England and Wales as a whole. There-
fore, assuming that the incidence of CKD is positively 
correlated with exposure to quartz dust, one would also 
expect more cases based on regional rates in comparison to 
national rates. However, the region does not show an excess 
of renal disease: compared with the national mortality data, 
the expected numbers of cases are lower. The region may 
not always have had abundant nephrology health care, in 
fact it was one of the last to be included in the renal registry 
(Ansell et al. 2007); so the low expected numbers may also 
reflect less than optimal diagnostic conditions.

The SMR for renal disease is very high, however. One 
might conclude that even though silica dust did not influ-
ence renal mortality in the region, the cohort may have 
had better renal diagnostics, leading to an elevated SMR. 
Deaths in this cohort of pottery and other silica-exposed 
workers did indeed have regular statutory medical exami-
nation (Turner and Cherry 2000) and very high probability 
of being reported to a coroner for autopsy and adjudgement 
of cause of death (due to the possibility of occupational dis-
ease) (Meiklejohn 1949), which may have contributed con-
siderably to the elevated SMR. Actually, this reasoning is 

confirmed by the study’s internal analysis, which observes 
no association between estimated exposures and renal 
disease.

For a more precise diagnosis of renal disease, such as 
glomerulonephritis (GN), a biopsy is often performed 
in early stages of disease to optimize the treatment. In 
advanced stages, the kidney will often be sclerotic, so that 
a biopsy would show nonspecific fibrotic changes only. 
Therefore, decreased renal size in ESRD is a contraindica-
tion for biopsy. On the other hand, especially for verifying 
the diagnosis such as GN a biopsy is needed (Fuiano et al. 
2000). Hence, the incidence of GN is correlated with the 
biopsy rate in the catchment area (McQuarrie et al. 2009; 
Wirta et al. 2008). The incidence of GN consequently 
depends on pre-ESRD nephrologist care. The data of the 
U.S. Renal Data System clearly show that for patients with-
out pre-ESRD nephrology care the incidence for GN was 
only half of that for patients with nephrology care for more 
than 12 months before ESRD (United States Renal Data 
System 2012). Therefore, a periodical medical check-up 
seems to lead on average to an earlier diagnosis and even to 
an apparent higher incidence for GN in comparison to the 
general population. This kind of diagnostic bias may have 
contributed to the observed higher standardized incidence 
ratio for GN in comparison to other ESRD in the US sand 
worker cohort (Steenland et al. 2001) as well as in the gold 
miner cohort (Steenland and Brown 1995).

Occupational co‑exposures

The selection criteria ensured that cohorts with exposures 
to heavy metals (cadmium, lead, mercury, uranium, arse-
nic), which cause chronic renal disease with at least limited 
evidence, were already excluded, at least if they were men-
tioned in studies’ title, abstract, or keywords. Nevertheless, 
an exposure cannot be excluded categorically.

The industrial cohorts in this review pertain to different 
industries, where co-exposures may be present to different 
degrees. Additionally, one silicosis study (Starzynski et al. 
1996) split the cohort of silicosis patients into four groups: 
coal miners; employees of underground work enterprises 
(drift cutting and shaft construction jobs); metallurgical 
industry and iron and non-ferrous foundry workers; and 
refractory materials, china, ceramics, and quarry workers. 
The separate analysis for underground workers, exposed 
mainly to silica and coal dust, yielded SMR = 1.13 (95% 
CI 0.66–1.81), whereas for the other job groups a signifi-
cantly elevated risk was observed (SMR = 2.18, 95% CI 
1.25–3.54). It can be assumed that rules concerning the 
recognition of occupational diseases as well as other health 
care conditions are identical for both groups. Hence, the 
difference between these two groups in terms of CKD risk 
seems to be related mainly to occupational co-exposures.
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In gold mining, mercury is often used to amalgam-
ate with gold. In the next step, the metal has to be recov-
ered from the amalgam by boiling away the mercury. This 
refining procedure, which is hazardous due to the toxicity 
of mercury vapor, was also used in the gold mines inves-
tigated (Calvert et al. 1997; Reid and Sluis-Cremer 1996; 
Steenland and Brown 1995). Investigators assume that only 
4 and 1% of the employees in the gold mine had the poten-
tial for exposure to lead and mercury, respectively (Calvert 
et al. 1997). The use of mercury in the refining process of 
the mine was not stopped until 1971, after studies of the US 
EPA had shown considerable environmental contamina-
tion by mercury (USEPA 2007). Hence, these co-exposures 
may have contributed to the observed elevated SMRs in the 
gold mining studies.

The cohorts from the pottery/ceramics industry (Birk 
et al. 2009; Cherry et al. 2013; Olsen et al. 2012) show 
elevated risks of renal diseases, and the SMRs are 1.32 
(for men), 3.5, and 1.76. The Polish silicotics subcohort 
also yields a high SMR of 1.96. However, in the two stud-
ies with dose–response analyses, no significant trend was 
observed. Thus, the elevated risk may have been caused by 
other occupational exposures. For example, one co-expo-
sure that was common in pottery work was lead. Indeed, 
lead poisoning in the glazing of earthenware was a com-
mon adverse health effect among exposed workers in the 
North Staffordshire potteries until the use of lead-contain-
ing glaze was forbidden by special regulations in 1947. 
Since then, a massive reduction of cases of lead poisoning 
was observed (Meiklejohn 1963). The cohort from the pot-
tery industry comprised workers born between 1916 and 
1945 who were hired from 1931 onwards (Cherry et al. 
2013). So at least some of these workers could have been 
exposed to lead up to 20 years in their early working life. 
Given that chronic lead exposure is accumulated in the 
bones, the skeleton could serve as a repository of lead even 
after cessation of the exposure. Accumulated lead could be 
mobilized from this repository in later life by senile oste-
oporosis and target other organs, for example the kidneys 
(Hu et al. 1998). Especially in older people, often suffer-
ing from risk factors like diabetes, hypertension, or chronic 
kidney disease by other causes, the lead mobilized from the 
skeleton could contribute to nephrotoxicity, even at very 
low blood lead levels (Ekong et al. 2006), contributing to 
increased risk of renal disease mortality.

In coal mining, possible co-exposures include, albeit 
at a relatively low level, radon and its daughter products. 
Here, two cohorts from this industry were included (Mor-
feld et al. 2005; Starzynski et al. 1996). The German coal 
miners’ SMR for renal disease was only slightly elevated 
(1.13); the Polish coal workers’ SMR for renal disease 
was 0.94. Should the continuation of the large US (Att-
field and Kuempel 2008) and UK (Miller and MacCalman 

2010) coal miners studies yield similar effect estimates, no 
elevated risk of renal failure needs to be assumed for the 
coal mining industry. Even though the database for iron ore 
miners is much smaller than the one for coal miners, the 
results of the Swedish study (Björ et al. 2013) let us assume 
that this statement applies even to iron ore miners.

The sand and granite industries are the ones where sil-
ica dust exposure is fairly pure. Yet the results from these 
cohorts vary considerably. The studies from the US sand 
industry (McDonald et al. 2005; Steenland et al. 2001) 
report elevated risks (SMR 2.8 and 2.41), while the UK 
sand industry cohorts’ (Brown and Rushton 2005) SMR is 
0.99. The two studies from the granite industry (Koskela 
et al. 1987; Vacek et al. 2011) report SMRs of 0.83 and 
0.99.

Risk of bias

An overview of the risk of bias and the value for evidence 
for each of the studies is shown in Table 4. It should be 
pointed out that the classification is based on the assess-
ment with respect to chronic non-malignant renal diseases 
only. However, in almost all cohort studies the focus was 
on lung cancer and/or chronic obstructive lung diseases. 
Therefore, our assessment does not reflect the quality of the 
study with respect to their primary research question.

Non‑occupational risk factors

Diabetes together with hypertension is the major cause of 
end-stage renal failure worldwide (Atkins 2005). On the 
other hand, these diseases are not only the major risk fac-
tors for CKD but also the major consequences of obesity 
and the metabolic syndrome. Furthermore, epidemiologic 
studies show that obesity and the metabolic syndrome 
are the independent risk factors for CKD. Nevertheless, it 
remains unclear in which way obesity or metabolic syn-
drome could directly harm the kidney (Wahba and Mak 
2007). Discussed possible mechanisms involve inflamma-
tion related to insulin resistance, lipotoxicity, and hemody-
namic effects by physical compression of the kidneys (Hall 
et al. 2014).

Thus, the general time trend in renal disease is con-
nected to increasing incidence of diabetes: In aging popula-
tions, the prevalence of diabetes is rising and thus also the 
prevalence of its complications such as CKD (Menke et al. 
2015).

One of the case–control studies examined the use of 
analgesics, confirming its association with CKD risks 
(Vupputuri et al. 2012). Unfortunately, this factor was not 
accounted for in any of the case–control studies.
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Table 4  Assessment of risk of bias and studies’ value for evidence

Study Bias due to Study power Statistical 
methods

Complete-
ness of the 
reporting

Overall value 
for evidence

Selection Measure-
ment of 
outcome

Exposure 
assessment

Confound-
ing

Missing data

Industrial cohorts

 Birk et al. 
(2009)

** *** *** *** ** ++ +++ +++ ++

 Björ et al. 
(2013)

**** ** *** *** *** +++ +++ ++ +++

 Brown and 
Rushton 
(2005)

**** ** **** *** *** ++ +++ +++ ++

 Checkoway 
et al. 
(1997)

**** ** **** *** *** ++ +++ +++ ++

 Cherry 
et al. 
(2013)

**** *** **** *** **** ++ +++ ++++ +++

 Koskela 
et al. 
(1987)

**** *** ** *** *** + ++ +++ ++

 McDonald 
et al. 
(2005)

**** *** **** *** *** ++ +++ +++ ++

 Morfeld 
et al. 
(2005)

** *** **** *** **** ++ +++ ++++ ++

 Olsen et al. 
(2012)

**** *** **** *** **** ++ +++ ++++ ++

 Reid and 
Sluis-
Cremer 
(1996)

** *** ** ** **** ++ ++ ++ ++

 Steenland 
and 
Brown 
(1995)

**** **** **** ** **** ++ +++ +++ ++

 Steenland 
and 
Sander-
son 
(2001)

*** **** **** ** *** ++ +++ +++ +++

 Vacek et al. 
(2011)

**** *** **** *** **** +++ ++++ ++++ +++

Cohorts of silicotics

 Amandus 
et al. 
(1991)

*** *** ** ** *** + +++ +++ ++

 Brown 
et al. 
(1997)

*** ** ** ** *** ++ +++ +++ ++

 Ebihara 
and 
Kawami 
(1998)

*** *** ** ** *** ++ +++ +++ ++
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Glomerulonephritis

The proportion of renal failures caused by glomerulone-
phritis is difficult to estimate due to the diagnostic biases 
discussed above. Especially the lack of histologic infor-
mation on death certificates makes GN difficult to detect. 
Recent data from German mortality statistics estimate it 
to be 1% of all deaths due to non-malignant kidney dis-
eases (Statistisches Bundesamt 2014). Calvert and col-
leagues estimated it to be 4.5% (Calvert et al. 2003). 
Mortality studies are thus not well suited to examine GN. 
Incidence data from ESRD registers show that the pro-
portion of GN in ESRD cases is about 10–20%, strongly 
depending on the prevalence of diabetes and the biopsy 
rate in the region.

The results from the GN studies in this review seem to 
show an increased risk of GN for workers exposed to res-
pirable silica, but the observed numbers are very small and 
the possible biases, which mostly lead to overestimating 
the risk, are considerable. To draw conclusions on such a 
rare and difficult-to-detect outcome is therefore hardly pos-
sible without studies specifically targeting and monitoring 
GN.

Conclusions

In the industrial cohorts, most SMRs are elevated and 
the silicotics cohort studies show the same picture, espe-
cially when using the competing risk-adjusting approach 

Table 4  continued

Study Bias due to Study power Statistical 
methods

Complete-
ness of the 
reporting

Overall value 
for evidence

Selection Measure-
ment of 
outcome

Exposure 
assessment

Confound-
ing

Missing data

 Forastiere 
et al. 
(1989)

*** ** ** ** *** ++ +++ +++ ++

 Marinac-
cio et al. 
(2006)

*** *** ** ** *** +++ +++ +++ +++

 Ng et al. 
(1990)

*** ** ** ** *** + +++ +++ +

 Scarselli 
et al. 
(2011)

*** *** ** ** *** ++ +++ +++ ++

 Starzynski 
et al. 
(1996)

*** *** ** *** **** +++ +++ +++ +++

 Steenland 
et al. 
(1992)

*** **** ** ** *** ++ +++ +++ ++

 Yu et al. 
(2007)

*** *** *** ** *** + +++ +++ +

Case–control studies

 Calvert 
et al. 
(2003)

**** **** ** ** ** ++++ +++ +++ +++

 Chiazze 
et al. 
(1999)

**** **** *** *** *** ++ +++ +++ ++

 Steenland 
et al. 
(1990)

** **** ** *** *** +++ +++ +++ ++

 Vupputuri 
et al. 
(2012)

*** **** ** *** *** ++++ +++ +++ +++

* Critical risk, **** low risk

+ Low, ++++ high
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(Möhner 2016), giving the overall impression that workers 
exposed to respirable silica may indeed be at a higher risk 
of renal disease. However, the heterogeneity between stud-
ies is considerable and the sources of possible biases are 
plentiful.

In the cohort studies, the fact that most often mortal-
ity is the outcome under consideration blurs the incidence 
information. Moreover, in many industries, co-exposures 
that damage the kidney such as mercury or lead cannot be 
excluded; thus, in these cohorts they may have influenced 
the results.

Renal disease, when present, is not always diagnosed, 
so that the incidence of its reporting depends not only on 
the incidence of the disease itself, but also on the probabil-
ity of its diagnosis. This in turn hinges on many external 
factors: the health insurance and health care system—if 
they differ systematically between cohort and reference 
population, then mortality patterns must be diverging. 
Statutory medical examinations of workers are one of the 
reasons for differences in diagnostic probabilities, and a 
probably higher autopsy rate among silica-exposed work-
ers is another.

Therefore, even if the overall SMR for industry-based 
cohort studies as well as for cohorts of silicotics is signifi-
cantly elevated, the higher risk cannot be attributed to res-
pirable silica. Dose–response analyses may give a clearer 
picture. However, in this review, these have heterogeneous 
results and are often based on small numbers of cases; pos-
itive and negative trends are nearly in balance. This result 
is also in line with the results of a recent study on the rela-
tionship between silica exposure and renal disease or serum 
creatinine among silicotics, which was published outside of 
our time-window (Millerick-May et al. 2015).

In order to find the magnitude of a possible associa-
tion, mortality studies are not optimal, even ESRD reg-
istry studies are not; instead, regular monitoring of early 
markers of renal disease such as creatinine should be 
established for a cohort in order to assess the incidence 
of renal disease. The U.S. National Kidney Foundation 
recommends three basic tests to screen for kidney dis-
ease: a quantitative test for protein or albumin in the urine 
(proteinuria), a calculation of glomerular filtration rate 
(GFR) based on a serum creatinine measurement, and a 
blood pressure measurement (National Kidney Founda-
tion 2002). Biopsies could then even ascertain particular 
diagnoses such as GN.

The medical surveillance program developed by the 
U.S. National Industrial Sand Association could in the near 
future provide an ideally suited database for a renewed 
examination of a possible link between exposure to res-
pirable silica and CKD—perhaps even with respect to GN 
(National Industrial Sand Association 2011).
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