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Abstract In the paper, two existing upgrades of the gradient damage model for the simulations of cracking in
concrete are compared. The damage theory is made nonlocal via a gradient enhancement to overcome the mesh
dependence of simulation results. The implicit gradient model with an averaging equation, where the internal
length parameter is assumed as constant during the strain softening analysis, gives unrealistically broadened
damage zones. The gradient enhancement of the scalar damage model can be improved via a function of an
internal length scale, so an evolution of the gradient activity is postulated during the localization process. Two
different modifications of the averaging equation and respective evolving gradient damage formulations are
presented. Different activity functions are tested to see whether the formation of a too wide damage zone still
occurs. Activating or localizing character of the gradient influence can be introduced and the impact of both
approaches on the numerical results is shown in the paper. The aforementioned variants are implemented and
examined using the benchmarks of tension in a bar and bending of a cantilever beam.

Keywords Regularized media - Gradient damage - Localization - Gradient activity function - Transient
internal length scale - Finite element method

1 Introduction

In the paper, continuum damage mechanics [24] is employed to simulate cracking in concrete. The application
of the model in a local version leads to material softening. It has been known for years, see, for example, [7],
that ill-posedness of the boundary value problem (BVP) and spuriously mesh-sensitive results then occur for
local models. Concrete cracking is simulated as strain localization by means of the narrowest band of finite
elements allowed for the discretization, so a suitable localization limiter is needed, cf. [9]. If softening induces
strain localization, then a regularization method is demanded in the concrete model. Among different higher-
order theories, a gradient operator [2,11,18,30] can be employed in order to ensure objectivity in numerical
modelling of localization phenomena.

Scalar gradient-enhanced damage was firstly derived by Peerlings et al. [32] and then developed by many
authors, see, for example, [1,3,15,27]. The classical equilibrium problem is augmented by an extra averaging
equation for a selected equivalent strain measure. This differential equation with a gradient term is converted
into a weak form simultaneously with the equilibrium equation to derive the finite element (FE) formulation.
The idea of regularization using gradient terms is illustrated in Fig. 1. The gradient activity is represented
by a function which scales the gradient term; in other words, it influences the range of nonlocal interactions.
The gradient damage model in the discretized form involves independent interpolations of the displacement
and the averaged strain measure, so the BVP becomes coupled, see also [41,42]. Since additional degrees of
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Fig. 1 Regularization using gradient enhancement—scheme of transition from equivalent to averaged strain measure

freedom for the averaged strain have to be included in the discretization, the model contains two mentioned
above primary fields. It is also confirmed in [34] that the truly nonlocal character of the BVP is preserved if the
gradient enhancement is introduced in the implicit version. General classification of strain gradient models is
performed in [5,6], and the thermodynamic background of the model is considered for example in [18,26,29].
Gradient damage can be employed not only in the simulations of concrete, but for example to analyse the
softening and localization phenomena observed in: metals [33,47], different composites [17,19,21] or even
biomaterials [46].

In the gradient damage model, the zone of localization is governed by the internal length scale, not by
discretization. In paper [32] this parameter is assumed to be constant; however, it can cause artificially broadened
damage zones. The formation of excessively enlarged zones in damage patterns during the simulation of strain
localization problems has been firstly discussed by Geers [19]. Due to the constant internal length scale in
the conventional gradient damage (CGD) model, it is actually assumed that the averaging procedure remains
the same for all material points during the loading history. As an effect, it provokes nonlocal mapping of the
active damage zone into its expanded vicinity, which is unrealistic effect and a noticeable deficiency of the
CGD model. The internal length treated as a function of the gradient activity has firstly been investigated
also in [19]. In that approach, apart from the averaging equation, one more extra continuity equation for a
damage measure or directly gradient activity is taken into account. It leads to a three field formulation and
more additional degrees of freedom in the FE interpolation. The third interpolated field is added to ensure
stable iteration process during the nonlinear analysis.

Another idea to avoid too wide damage distribution is a combination of local and nonlocal strain measures
in the CGD model. It gives a so-called over-nonlocal formulation [10, 13,16,36,40] or its modification [14].
However, in that approach the internal length parameter still remains constant, so it is not considered in this
paper.

The model presented in [19,20] can be modified according to [39], where the internal length function is
set in the denominator in the averaging equation and two primary fields are maintained in the formulation.
In this paper, it will be called the SVS gradient damage model. Acronym SVSGD is based on names of
the authors of [39]. In that paper, the gradient activity linearly increases with the equivalent strain. Another
averaging equation with evolving length scale is proposed in [35,43]. The damage zone is controlled via a
reduction of the nonlocal interaction. In this paper, it will be called the PS gradient damage model (abbreviation
PSGD). Originally in [35,43] the gradient activity exponentially decreases with damage and the model has
been named by Poh and Sun the localizing gradient damage. Comparison of CGD and PSGD models is broadly
discussed in [38]. Moreover, different methods of mesh adaptation using the PSGD model are shown in [37].
A detailed examination of damage formulations with constant or variable internal lengths in the example of
one-dimensional tensile bar is carefully studied in [23].

In the paper, a description of gradient damage with evolving internal length scale is presented. Based on
the CGD model, derivation of FE formulations for the SVSGD [39] and PSGD [35,43] models is described
in detail in Sect. 2 in order to correctly build in-house code in the FEAP package [44]. Different functions
of gradient activity are illustrated in Sect. 3. The implemented models are examined in Sects. 4 and 5 by the
test of a bar with imperfection under one-dimensional tension and the benchmark of a cantilever beam under
in-plane bending, respectively. Final conclusions are summarized in Sect. 6. Small strains are assumed. Voigt’s
notation (also called matrix—vector notation) is used.
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2 Finite element formulations and their linearization
2.1 Basic equations for scalar damage

The scalar damage model [24] is considered in the paper, where one damage measure «w depends on the damage
history parameter x9. The damage growth function can be defined for instance using the exponential relation
[28]:

K d

ok =1- —Z (1 —a+ae _K°)> (1)

K
where k, is the damage threshold, « is connected with the presence of residual stress when the material stiffness
is lost and 7 sets the rate at which damage increases and decides whether the quasi-brittle material is more or
less ductile. This function resembles the exponential character of uniaxial softening in the experiment of the
tensile fracture in concrete, see [22]. The strain equivalence is postulated [25], and a loading function F dis
described in the strain space:

Fe, k%) =& (e) — &1 )

where € is an equivalent strain measure as a function of the strain tensor €. For example, it can be determined
as the modified von Mises definition [45]:

€ =

(k—DIf 1 <(k—1)1f>2 12k J§

2k(1 —2v) 2k 1—2v (1 +v)? 3)

where If and J5 are the first and second strain invariants, respectively, k is the ratio of compressive strength
f! and tensile strength f/, v is Poisson’s ratio.

If the standard elasto-damage model is applied, then the stress tensor o is related to the effective stress &
as follows:

o=(1-wo=(01—-w)De “)

where D is the elastic stiffness matrix. Loading/unloading (Kuhn-Tucker) conditions are imposed. The stress
rate ¢ can be derived from Eq. (4):

G=(-w)é—-aé (5)
where the rate of damage w is evaluated as:

do ded dé .
w=—"— —€
dkd dé de

(6)

where:

= (7

E _ |1 during loading (€ = «9)
de 0 forunloading (¢ < k%)

The above derivatives can be denoted in the following way:

do did r  dé
=—— and s = —
did dé de

®)
Finally, the rate constitutive relation is expressed as:
6=[1-w)D—-Lés"] é 9)

The kinematic and equilibrium equations at the material point level are standard. A geometrically linear
problem is considered.
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2.2 Conventional gradient damage (CGD)

It is known that the local approach for the damage model gives in the softening regime a spurious dependency
of the results on the density of the mesh and also on the direction of mesh lines. The problem can be overcome
using different regularization techniques, and in this paper higher-order gradients are applied. A so-called
implicit gradient enhancement [19,32] is employed; hence, an averaging equation with a gradient scaling
factor is adopted:

E—gVie=¢ (10)

For a domain 3, the natural boundary condition is postulated A'TVé = 0 on 33, where N is the outward normal
to the surface of domain 3. Equation (10) leads to a two-field formulation with independent interpolations of
displacements u and averaged strain measure €. In the conventional gradient damage model, the parameter
¢ > 0 remains constant and corresponds to the internal length parameter / in the following way [4]:

1
= _]? 11
¢=3 (11)

In the loading function (2), the local equivalent strain € is replaced by the averaged strain €:
Fle, k%) = € (e) — k! (12)

This type of enhancement is formally equivalent with the nonlocal approach, cf. [9,34]. The model can be
coupled with hardening plasticity defined for the undamaged skeleton of the material and then € in Eq. (4)
is substituted by € = € — €P, where €P is the plastic strain tensor. Further derivation, i.e. discretization,
linearization as well as detailed algorithm for gradient damage plasticity can be found in [12,31]. Moreover,
it is possible to incorporate a crack-closing projection operator in this constitutive model, see, for example,
[48]. The two aspects of the model are not discussed, because they are out of the scope of the paper.

2.3 SVS gradient damage (SVSGD)

It is possible to introduce a variable ¢ which is a function of the gradient activity as first shown in [19].
Originally, nodal values of continuous damage or strain-based gradient activity variable have been interpolated
additionally in the transient gradient damage model [19,20]. As mentioned in the introduction—this approach
leads to a three-field formulation. If in the averaging equation (10) all terms are divided by ¢ [39]:

%-v*:é (13)

then only two primary fields can be preserved similarly to the original version of this model [32]. The weak
form, discretization and linearization are derived below for this modification of the model.

The weak form of equilibrium equation is written multiplying it by a variation of displacement field du
and integrating over 3. After that, Green’s formula and the natural boundary condition are introduced, so the

final form is as follows:
/ SeTg dV = / subdv +f su'tds
B B B

Y Su (14)

where b is the body force vector and ¢ denotes tractions. In an analogical way, Eq. (13) is transformed into a
weak form using a variation of averaged strain de€:

/SESdV—i-/ (vse)T VEdV:/(SEEdV
B @ B B %
v 5é (15)

A two-field formulation emerges when independent interpolations of displacements u# and of the averaged
strain measure € are employed in the semi-discrete linear system as follows:

u=Na and é=hTe (16)
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where N and h contain suitable shape functions. The secondary fields € and Ve can be calculated as:
e=Ba and Ve = gTe (17)

where B = L N and g¥ = VAT. Matrix L consists of differential operators. The variations are, respectively,
interpolated. Equations (14) and (15) in a discretized form are as follows:

8aT/ BTo dv =5an NdeV—i—(SaT/ NTtds (18)
B B B

| i
Se/ <hhT—+ggT)edV=8e/ sy (19)
5 ¢ B ¢

Identities (18) and (19) must hold for any admissible da and §e. Finally, they can be rephrased into the residual
form:

R,:/ BTadV—/NdeV—/ NTtds=0 (20)
B B B
| By
RSVS=/ (hhT—+ggT>edV—/h5dV=0 1)
B @ B @

Tractions and body forces do not depend on deformation.
The BVP is linearized so that equilibrium is obtained at (pseudo-)time step ¢ + At in subsequent iteration
i + 1 based on previous iteration i using a correction as follows:

RUFD _ p®)

i+ar = Rifa, FdAR (22)

In the further consideration, the subscript ¢t + At is skipped. The update is performed at nodal points for the
primary fields:

a™ =a® 1 dg and etV =€) 4 de (23)
and also at integration points for the secondary fields:
€D =D tde and oV =6¢@ 4 do (24)
The residual R4 in Eq. (20) is decomposed according to:
RUTD = RY 1 dR, =0 (25)
The increment dR, depends on two primary fields:

oR JR
dRy = —2da + —2
oa de

The constitutive equation (9) can be written in the incremental form:

de (26)

do=(1—-w?)DBda—G? De? nde (27)

where the following relations are introduced:

dw 1@ [k © .
_ = _ o) qz
de = Bda and dé = h'de (29)

The increment do in Eq. (27) is substituted into the equation for out-of-balance forces as follows:
RY) +dR, = f BToVdv — / NThdv
B B

— | NT¢ds +/ BTde dV =0 (30)
B B
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The relation below is obtained after the transfer of the first three integrals to the right-hand side and rewriting
the equation in a matrix form:

Kooda + Kyede = fo — fO (31)

int

where the definitions of the submatrices and the right-hand side vectors are:

Koo = / BT (1-0®)yDBdV (32)
B
Ky = —/ GOBT D e pTav (33)
B
o = / NThdv + f NTtds (34)
B B
o= / BTo®dv (35)
B
The residuum in Eq. (21) is obtained in this way:
RES = RE G + dRsvs = 0 (36)
where
. 1 . 1 )
@ _ T T (i) ~(i)
R _/<hh—.+gg>e dV—fh—.e dv (37)
SVS B q)(l) B (p(l)

The increments at integration points are also considered for the equivalent strain € and the gradient activity
function ¢:

D — @ £ d¢ and @D =@ 4+ dg (38)
The increment of the equivalent strain can be given as:
9e7® ‘
dé = [_E} de = [s"]") B da (39)
de

In general, it is admitted that the gradient activity ¢ can be linked with the equivalent strain € and/or damage
w,i.e. ¢ = ¢(€, w) = @(€, €); hence, the increment of the gradient activity is:

S . . H
B @) o€ @) dp @) dw @) axcd (@ B
dp = | — — | d — — — | d 40
¢ [ag] de| “Tlow] laed]| |22 ] (40)
Additionally, the following notation is introduced:
. 90 1W ) 90 1@
ar? =[2]" wa arp =[2¢] @

Substituting discretization, de is written as:

dp =dF? [s"]” Bda +dFD GO b de (42)

Similarly to Eq. (25), the increment d Rgys is expressed in the following way:

oR OR
dRsys = SVS g 4 IKsvs

d 43
da de ¢ (43)

Now dRgys is derived as:

1
dRsvs:/ (hhTﬁ +ggT) dedV
B @



Comparison of evolving gradient damage formulations 603

/hhT o_ 1 d]-“g(i)[ ](‘)Bd dv
/hhT oH__ - 1 ]:(l) g(l)the dv
()
/Bhw[ MY Bdadv
/hg(’) 1 ar [s"]” Bda av
5 (w(”)
/h'é(l) d]:(l) g(l) hWlde dV (44)
B (p0)’

Using Eqgs. (37) and (44), the residuum in Eq. (36) is transformed into the matrix form:
(Kea + K2y ®)da + (Ko + K3 )de = fO — f1 (45)

The matrices and vectors in this equation are:

_ 0!
K., _—/ma[s 1" Bav (46)
o dFD ;
KSYS :/ h(—hTe(l)—i—E(’)) < [s"]"Bav (47)
(@)
Kee= [0+ g"av 48)
Do dFD
K5YS =/h(—hTe<'>+€(’>) s GO n"av (49)
B (v®)°
. 1 .
M) Z/h—_gwdv (50)
< s e®
9 =K.e? (51)

Finally, this gradient damage formulation can be assembled as a coupled matrix problem:

Kaa K da (l'é'l) f(l)
|:Kea + KSVS ng + KSVS :| |:de:| |: ;‘x(l) f((zll)m (52)

Actually, it should be pointed out that in practice function ¢ can depend either on equivalent strain € or damage
. This means that if ¢ = ¢(€) then in Eq. (52) K3Y5 # 0 and K5YS = 0, and if ¢ = ¢(w) then K3¥5 =0
and K geVS # 0.

The incremental nodal displacements da and the incremental averaged strain de are solved for in each step.
The standard Newton—Raphson method is employed to search for equilibrium after iterations in succeeding
steps.

2.4 PS gradient damage (PSGD)

In this approach, the system of kinematic, constitutive and equilibrium equations is exact as for the CGD and
SVSGD models presented in the previous subsections. Again, the scalar damage model with one measure w
is assumed. The weak form, discretization and linearization of equilibrium equation are identical to the one
described in Sect. 2.3; thus, Eq. (20) and the coupled problem are still employed in the computations.

The averaging equation for the PS gradient damage model is redefined according to [35,43]:

E—V(pVe)=¢ (53)
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Similarly to Eq. (13), function ¢ is associated with the gradient activity and theoretically can depend on
equivalent strain € and/or damage w. In [35,43] it is a function of material degradation, i.e. ¢ = ¢(w). Eq. (53)
is multiplied by a variation of the averaged strain §€ and integrated by parts in order to obtain the weak form
(after using Green’s formula and homogeneous natural boundary condition):

/866dV+/(V8€)T (pVédV:/(SEEdV
B B B
v 8¢ (54)

Further derivation of averaging equation to the matrix form is analogical as in the previous subsection.
Two fields are again interpolated: displacements u and averaged strain measure €, see Egs. (16) and (17). The
averaging equation is expressed as follows:

8e/hhTedV+8e/ggogTedV:Be/hEdV (55)
B B B
The above equation holds for any admissible §e and can be written in the residual form:
Rpszf(hhT—HpggT)edV—/hédV:O (56)
B B
Linearization is introduced for the averaging equation which is reformulated into a residuum in such manner:
Rf(,i;—l) = RI(,IS) + dRps =0 (57)
The residual for the iteration i is:
RY = / (h BT + @ ggT) eV av — / he®dv (58)
B B

Generalizing the definition of the gradient activity ¢, it can be a two-field function, i.e. ¢ = ¢(€, w) = ¢(a, e),
so that d Rpg is equal to:

JR JR
dRpS = jd(l + j
da de

Taking into account the relations in Egs. (39)—(42), the increment d Rps from Eq. (59) is rewritten as:

de (59)

dRps = f (h hT +¢© g gT> dedV
B
+ f gg"e dF [s"]"” Bdadv
B

—i—/ ggle® dfg) G hTdeav
B

_ / h [s]" Bdadv (60)
B
Finally, the residuum in Eq. (57) is converted into the matrix equation:
(Kea + K%) da+ (Ko + Kb3)de = fO — fO) (61)
The above matrices and vectors are defined as:
Koo = _f h[s"]" Bav (62)
B
k'S = / gg"e dF [s" Bav (63)
B

Kee = / (nh"+¢ gg") av (64)
B
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Fig. 2 Gradientactivity functions ¢ (€) with different values of limiting equivalent strain €y, co = 0.05 mm?, cmax = 18.0mm2,
n=10

18 ‘ s

15 n=05 === __==F I
L2t -7 |
Z ol -
~ o . T =10 ——
S 6 ~ ot i

3 7/ _.--"" n =20 -cecccee |

0 Lefeaneee” - L L

0 0.0005 0.001 0.0015 0.002

€

Fig. 3 Gradient activity functions ¢; (€) with different values of intensity n, cp = 0.05 mm?, cpax = 18.0 mm?, €pay = 0.0015

K = /B gg e dry gV ntdv (65)
ro =f8hg<l'> dv (66)
[P =Keee? (67)

Similarly to the proposal in the previous subsection for the SVS gradient damage model, here function ¢ can
be governed by equivalent strain € and then K5 = 0 and K*> = 0, or by damage w and then K*> = 0 and
KPS =£ 0. Again, the standard Newton-Raphson method is used.

3 Functions of gradient activity

Function ¢, which is responsible for the character of the gradient activity, can be defined in different ways.
For the CGD model [32], the gradient activity remains constant during the loading process:

0 = Cmax > 0 (68)

The definition of ¢q is introduced for the computations included in this paper, where the parameter cy,x 1S
correlated to the internal length scale / as presented in Eq. (11) [4].

In [39] it is assumed that function ¢ is increasing and equivalent strain € decides about the development
of the damage zone in this manner:

01(8) = {co + (Cmax — €0) <€ni,x>n i,

max (69)

max

My M
IA
™

me

Cmax if € >

where ¢ is the initial length scale squared, cpax—the maximum internal length scale squared, €p.x—the
equivalent strain level at which cpax is reached, and n—the exponent of function ¢; which is called the
intensity of the gradient activity. It is also assumed that ¢y > 0, but reasonably small to preclude extensive
nonlocal effects at the initial step, cf. [39]. The condition cymax > co seems to be obvious, but it should
be written here for completeness. Figure 2 illustrates a linear-constant character of this function (intensity
n = 1.0) depending on parameter €m,x. Diagrams of ¢j(€) shown in Fig. 3 are performed for different rates of
intensity n, while €y5x = 0.0015 remains the same. All parameters are compatible with the data applied in the
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Fig. 5 Gradient activity functions ¢2(w) and ¢3(w) with different values of intensity 7, cmax = 18.0 mm?, R = 0.05

test presented further in Sect. 4.3. The gradient activity function in Eq. (69) represents progressively growing
interactions in the material microstructure. Hence, ¢ (€) has an activating character. The derivative of ¢ with
respect to € is:
d¢p1 n (Cmax — €0) g(n_l)/(gmax)” if € < €max
L i e=e (70)
0é 0 if € > Emax
A next idea suggested in [35,43] is that the gradient activity ¢ is reduced together with the damage growth;
hence, function ¢; and its derivative with respect to w are as follows:

(I —R) exp(—nw)+ R —exp(—n)

@2(w) = Cmax (71)
1 —exp(—n)

@ — e (R—1)n exp(—now) (72)

ow 1 —exp(—n)

where R is the minimum (residual) level of interaction between microprocesses within the localization band,
cmax and n can be determined as in previous definitions. If R = 1, then ¢>(w) = cpax and the CGD model
is restored. If R = 0 and ¢2(w — 0) — 0, then local damage starts to manifest, so for positive R ~ 0
small interactions between microcracks in the fully damaged region are present, see also [43]. Hence, the
character of this function is localizing due to a decreasing of the gradient activity. Figure 4 presents diagrams
of ¢2(w), where intensity n is equal to 3.0 and the level of residual interaction R changes from 0.05 to 0.2.
These parameters are also in accordance with the data used in the test of the tensile bar with imperfection, see
Sect. 4.4.

In this paper, alternative definitions are also decisively verified. For example, function ¢(w) and its corre-
sponding derivative can be connected respectively with cosine and sine functions:

@3(w) = cmax [0.5 (cos(mw™) + 1) (1 — R) + R] (73)
% =0.57 cmax 1 (R — 1) 0™V sin(ro™) (74)
w

Again, for R = 1 the CGD model is retrieved. On the other hand, for R & 0 the model behaves as almost
local in a fully damaged area. The character of function ¢3 is decreasing, similarly to ¢,. Functions ¢»(w)
and ¢3(w) are compared in Fig. 5, where parameter R = (.05 remains unchanged and the rate of the gradient
activity is different because of changed values of intensity n. Again, these parameters are employed in the test
described in Sect. 4.4.
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If parameters cg and cyyx are swapped in function @1, then the gradient activity can also descend, but now
together with the increase of the equivalent strain €:

- \n
04(€) = { Cmax + (€0 — Cmax) (gl::) if € < émax (75)

> €max

My ™

co if

The range of the applicability and the usefulness of the four above functions are discussed in the next section.

4 Test of tensile bar with imperfection
4.1 Specification of test

The simulation of uniaxial tension for a bar with assumed imperfection in the middle is one of the most
basic and typical tests in physically nonlinear mechanics. Strain localization is triggered in a zone where the
specimen is assumed to be made from a weaker material. Therefore, it can be observed how a considered
material model behaves, e.g. whether it is characterized by mesh objectivity or not. For instance, this test was
used for the gradient plasticity model [11,30] or the CGD model [32] just to confirm the presence and the
effectiveness of regularization using the gradient enhancement.

The scheme of the test is depicted in Fig. 6. The configuration with two-dimensional finite elements (FEs)
is computed; however, uniaxial tension without any effects in the second direction is taken into account. The
length of the bar is L = 100 mm, while the length of the imperfection zone, which is here rather a weakened
zone, is Liymp = 10 mm. The elastic constants are Young’s modulus £ = 20,000 MPa and Poisson’s ratio
v = 0.0. According to the data in [11] the uniaxial tensile strength f; = 2 MPa, but in the damage theory
initial threshold «, is needed. It is calculated as the quotient of the tensile strength and Young’s modulus, so
ko = f{/E = 0.0001. The reduction of the damage threshold by 10 % is introduced in the zone between
x = 45 mm and 55 mm. Alternatively, it is also possible to reduce the cross section, but here the width and
the thickness equal 5 mm in the whole bar. Plane stress is assumed. After reaching the peak load, the damage
growth law with the exponential softening relation given in Eq. (1) is selected. The parameters are o« = 0.99
and n = 400 or optionally = 100 for the PSGD model. The value of ¢yax = 18 mm? is intentionally
enlarged. The internal length scale is constant for the CGD model, but cpax denotes either the final or the
initial value of ¢ for the considered models. It is known that the internal length parameter is connected with
the microstructure of the material. For quasi-brittle materials like concrete, this value has been associated with
the maximum aggregate size, see [8]. Here, it corresponds to [ = 6 mm, according to Eq. (11). It should
be emphasized that for the CGD model the width of the expected smeared crack band can be estimated as
2m ]l = 6.28 1 = 37.7 mm, see also [4]. In fact, it covers the entire imperfection zone with an excess, but for
SVSGD and PSGD models the aforementioned estimates are no longer valid, because the gradient activity
becomes function ¢ and changes during the loading process. The detailed data for all cases computed in this
subsection are listed in Table 1. Their order is consistent with the description of the results.

In the paper, only FEs with quadratic interpolation of displacements a and linear interpolation of averaged
strain e are employed. This type of interpolation is optimal, since possible oscillations in the distribution
of secondary fields as for example stress variables vanish. However, other C°-continuous shape functions
are sufficient for the approximated fields as shown in [41,42]. Along the specimen, three mesh densities are
adopted. Starting from 80 FEs, each next mesh is doubled in the horizontal direction, thus three discretizations
with 80/160/320 FEs are tested. Mesh convergence study is performed for each model presented in the paper.
Despite the fact that the exponential softening is taken into account, the arc length control is used in order
to assure more stable computations. The loading process is divided into equal incremental steps for further
legible illustration of the evolution of selected variables. Apart from the evolution, the axial stress o, as the
function of the horizontal displacement on the right end of the bar, as shown in Fig. 6, is also monitored. The
value of o, is measured as the force divided by the area of the bar cross section. The value of the displacement
u(L) is actually the elongation of the bar.

4.2 Results for constant gradient activity

First, the solution for the conventional gradient damage (CGD) model is presented. The parameter g9 = cmax =
18 mm? remains constant during the loading process. Figure 7 shows that the stress—displacement diagrams
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Table 1 Computational cases for test of bar with imperfection (in order of appearance in figures)

Acronym Model Typeof ¢ Eq.no. No.of FEs « n Cmax [Mm2 ] co [mm? ] Emax R n
CGD-80 CGD o (68) 80 0.99 400 18

CGD-160 CGD 7 (68) 160 0.99 400 18

CGD-320 CGD @0 (68) 320 0.99 400 18

SVS-80 SVSGD ¢ (€) (69) 80 0.99 400 18 0.05 0.0015 1.0
SVS-160 SVSGD ¢ (€) (69) 160 0.99 400 18 0.05 0.0015 1.0
SVS-320 SVSGD ¢ (€) (69) 320 0.99 400 18 0.05 0.0015 1.0
SVS-80-k0005 SVSGD ¢ (€) (69) 80 0.99 400 18 0.05 0.0005 1.0
SVS-80-k001 SVSGD  ¢;(é) (69) 80 0.99 400 18 0.05 0.0010 1.0
PS1-80 PSGD 1 (€) (69) 80 0.99 400 18 0.05 0.0015 1.0
SVS-80-n05 SVSGD ¢ (€) (69) 80 099 400 18 0.05 0.0015 0.5
SVS-80-n2 SVSGD ¢ (€) (69) 80 0.99 400 18 0.05 0.0015 2.0
PS-80-E PSGD @ (w) (71) 80 0.99 400 18 0.05 3.0
PS-160-E PSGD @2 (w) (71) 160 0.99 400 18 0.05 3.0
PS-320-E PSGD 02 (w) (71) 320 0.99 400 18 0.05 3.0
PS-80-E-RO1 PSGD @ (w) (71) 80 0.99 400 18 0.1 3.0
PS-80-E-R02 PSGD 2 (w) (71) 80 0.99 400 18 02 3.0
PS-80 PSGD 02 (w) (71) 80 0.99 100 18 0.05 3.0
PS-160 PSGD @2 (w) (71) 160 099 100 18 0.05 3.0
PS-320 PSGD 02 (w) (71) 320 0.99 100 18 0.05 3.0
PS-80-n1 PSGD 02 (w) (71) 80 099 100 18 0.05 1.0
PS-80-n5 PSGD w2 (w) (71) 80 0.99 100 18 0.05 5.0
SVS2-80 SVSGD ¢z (w) (71) 80 0.99 100 18 0.05 3.0
PS3-80 PSGD 3 (w) (73) 80 099 100 18 0.05 1.0
PS4-80 PSGD ©4(€) (75) 80 0.99 100 18 0.2 0.0015 1.0
SVS4-80 SVSGD  ¢q4(€) (75) 80 099 100 18 0.2 0.0015 1.0

overlap for the considered cases CGD-80, CGD-160 and CGD-320, i.e. for the meshes with 80, 160 and 320
FEs. It is visible that these results are free from spurious mesh sensitivity and the regularization is effective.
This effect is also confirmed in Fig. 8, where the final distribution of damage w for the CGD model is shown
in a grey scale. The highest values of damage w are marked by black colour. The evolution of averaged strain
€ for case CGD-320 is depicted in Fig. 9a. The averaged strain grows in the middle of the bar. It should be
additionally noticed that in every picture where evolving profiles are drawn, on the horizontal plane in the
range of x = 45 +— 55 mm along the evolution axis the zone of imperfection is marked by grey colour. It is
plotted for better visibility of imaged surfaces for selected variables. A corresponding response is observed
for the damage evolution given in Fig. 9b, but now the problem of unexpected and too wide distribution of w
occurs. It spuriously spreads over more than half of the length of the bar. Although mesh convergence is very
well reproduced, the zone of active damage is significantly broadened in comparison to the averaged strain
distribution.

4.3 Results for increasing gradient activity

A next portion of the results is made for the SVS gradient damage (SVSGD) model, but the PSGD model,
where function ¢ (€) is used, is also presented here for one case. It should be emphasized that for this function
the gradient activity at first increases and later becomes constant, regardless of the used model. Figure 10
depicts the stress—elongation diagram for cases SVS-80, SVS-160, SVS-320 and CGD-320 for comparison.
As for the CGD model, these three cases correspond to the three applied discretizations. The paths run the
same way, but the peak is slightly lower than for the case CGD-320. It is connected with the fact that the
gradient activity develops together with the loading process and for more advanced stage of softening, i.e.
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Fig. 8 Final distribution of damage w for CGD model. Three discretizations—80, 160 and 320 elements
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Fig. 12 Evolution of averaged strain, damage and gradient activity for case SVS-320
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Fig. 15 Final damage profiles—constant versus increasing gradient activity

when u(L) =~ 0.03 mm, they start to coincide and later retain a similar character. Mesh sensitivity study is also
illustrated in Fig. 11 where the final distribution of damage w is illustrated. Apart from mesh objectivity, it
can also be seen that the damage zone is much narrower in comparison to the distribution for the CGD model.
The evolution of averaged strain measure € for the SVSGD model and 320 FEs is shown in Fig. 12a. It is
noticeable that the width of the zone where averaged strains are active is thinner than in the case of the CGD
model, cf. Fig. 9a. A similar effect is visible if the damage distribution is analysed, see Fig. 12b. In fact, for
advanced states damage occupies less than half of the bar, cf. Fig. 9b. For the SVSGD model, the gradient
activity function ¢ (€) increases from initial ¢cg = 0.05 mm? to final Cmax = 18 mm? when €max reaches
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Fig. 17 Damage evolution for SVSGD model. Influence of intensity for gradient activity: an = 0.5and bn = 2.0

0.0015, i.e. 15 k. For n = 1 this growth is linear. Figure 12c presents the evolution of the gradient activity for
SVS-320, which grows in the localized zone as well as in its close neighbourhood.

In Fig. 13 there are the stress—displacement diagrams for cases SVS-80-k0005, SVS-80-k001, SVS-80 and
additionally PS1-80. Now only the mesh with 80 FEs is employed. This comparison shows the influence of
gradient activity on the solution for different values of the limit equivalent strain €y,x. The applied functions
¢1(€) are presented in Fig. 2. In case SVS-80-k0005: €pax = 0.0005 = 5 ko, for SVS-80-k001: €nax =
0.001 = 10 ko and case SVS-80 is as for case SVS-320. The peak loads for the diagrams of the SVSGD
model in Fig. 13 become higher when the value of the limiting equivalent strain €y, gets smaller. It is clear
that the model approaches to the standard gradient damage when €y« is diminished. For case PS1-80 the
same parameters as for SVS-80 are adopted, so €nax = 0.0015 = 15 k,, but here the PS gradient damage
model is applied instead of the SVSGD model. Hence, matrix K'> is activated in the system of equations, in
a similar fashion as the incorporation of K E;’S in the SVSGD model, cf. Egs. (52) and (61). The solution for
PS1-80 gives a slightly lower softening diagram in comparison to SVS-80. The damage evolution for cases
SVS-80-k0005, SVS-80-k001 and PS1-80 is illustrated in Fig. 14. The zone of damage @ becomes wider with
simultaneously decreasing value of €y, see in turn Figs. 12b, 14b, a. Summarizing, an optimal value of the
maximum equivalent strain €y,,x should be possibly large. On the other hand, the danger of instabilities together
with oscillations or even divergence of the computations can appear. It is possible if the rate of increase of ¢
is too small. Damage distributions at the final instant for cases SVS-80, PS1-80 and additionally for CGD-80
are compared in Fig. 15. It is seen that w for case PS1-80 tends to a broader active zone than for SVS-80. It is
also confirmed when the evolution given in Fig. 14c for PS1-80 and in Fig. 12b for SVS-320 is considered. It
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Fig. 18 Stress—displacement diagrams for PS gradient damage (PSGD) with n = 400—mesh-independent results
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Fig. 19 Final distribution of damage w for PSGD model with n = 400. Mesh objectivity study—80, 160 and 320 FEs

means that the application of ¢;(€) in the PSGD model is possible and can be accepted, but it does not work
in a more effective way than the SVSGD model to reduce the width of the active damage zone stronger.

The next comparison concerns the character of function ¢;(€). Figure 3 explains that the power 7 in
Eq. (69) decides how the gradient activity increases to cpax. As mentioned before, a linear growth is given
for intensity n = 1.0, so its rate is constant. If n = 0.5 in ¢;(€), then the increase of the gradient activity
is fast at the beginning of the loading process and slows down later. For n = 2.0 a quadratic character of
@1 (€) is set; therefore, the effect of the gradient activity accelerates with the development of localization. The
stress—elongation diagrams in Fig. 16 are prepared for the above cases, namely for: SVS-80-n05—intensity
n = 0.5, SVS-80—intensity n = 1.0, and SVS-80-n2—intensity n = 2.0. Again, the discretization with 80
FEs is applied. It can be seen that the distinction between cases SVS-80-n05 and SVS-80 is almost negligible.
The diagram for case SVS-80-n2 differs from the others. A problem with numerical instabilities occurs for
it just after the onset of damage. Similar issues have also been observed in [19] for the so-called failure-
based transient—-gradient damage formulation. As mentioned in the previous paragraph if an increase of the
gradient activity is too slow and strain softening arises rather as a local phenomenon, instabilities during the
computations can happen. Figure 17 shows the damage evolution for cases SVS-80-n05 and SVS-80-n2. If
intensity n is equal to 0.5, then the developing damage zone is wider than for case SVS-320, cf. Fig. 12b. On
the other hand, in case SVS-80-n2 damage w evolves in a quite promising way, but due to possible numerical
instabilities it is not further taken into account.

4.4 Results for decreasing gradient activity

In this subsection, cases, where the gradient activity is reduced during the loading process, are analysed. The
computations are performed mainly using function ¢;(w) and the PS gradient damage (PSGD) model, but
other available options are also taken into account in order to show the outcome of employment of different
functions (see Sect. 3) and models.

Now the presentation is divided into two parts—according to two different values of parameter 1 defined
in Eq. (1). The first part includes the numerical analysis for the PSGD model with n = 400 as for CGD and
SVSGD models. Figure 18 depicts the stress—extension diagrams for three cases: PS-80-E, PS-160-E and PS-
320-E. The diagram CGD-320 is recalled for comparison. As previously, 80, 160 or 320 FEs are used. Next,
parameters R = 0.05 and n = 3.0 are introduced for function > (w) defined in Eq. (71) in the PSGD model.
It is clearly visible that for this model, in spite of identical « = 0.99 and n = 400 as for CGD and SVSGD
models and the same cmax = 18.0 mm?, the slope of equilibrium paths drastically differs in the softening
phase in comparison to the solution for the previous models. After the localization progress, a similar level of
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Fig. 20 Evolution of averaged strain, damage and gradient activity for case PS-320-E

the residual stress o, is attained four times faster for the PSGD model than for the CGD model. For instance,
values of o, when u(L) = 0.04 mm for PSGD and when final u(L) > 0.15 mm for CGD are close. It
should be mentioned that the diagrams for the PSGD model overlap. Mesh objectivity is also noticeable for
the subsequent presented results. Moreover, it is visible in Fig. 19 that the zone of damage w — 1.0 marked
by the black colour is much narrower than for the previous models. Figure 20a illustrates the averaged strain
evolution for case PS-320-E. Again, the zone of nonzero strains is much thinner than for the previous models,
but the maximum value in the peak is more or less doubled. Corresponding profiles of damage evolution are
given in Fig. 20b. In fact, for the cases considered here with n = 400 the localization zone is the narrowest
one among all the results presented in this numerical example. However, it seems that the range of the support
for the damage band is similar to the SVSGD model (cf. Figs. 20b and 12b). In other words, nonzero damage
appears in a similar region, but its intensity via its shape is essentially different. The curves for the PSGD
model look like a bell-shaped function, while for the SVSGD model those curves rather have a cup-shaped
form. It is known that for the SVSGD and PSGD models the character of the gradient activity is different.
In the PSGD model, ¢2(w) governs the solution and it can be even said that this function creates an inverted
image of damage evolution, as shown in Fig. 20c. The range of values changes from cpax = 18 mm? to almost
zero according to the definition of residual interactions determined by the parameter R.

The stress—displacement diagrams in Fig. 21 depict the solution influenced by various minimum levels
of interaction between microcracks in the vicinity of strain localization. The 80 FEs mesh is applied. The
parameters for exponential softening are as previously: « = 0.99 and n = 400. The power n for function
@2 (w) equals 3.0. The following cases are compared: PS-80-E-R02 where R = 0.2, PS-80-E-R0O1 for R = 0.1
and PS-80-E for R = 0.05. The slope of softening branches presented in Fig. 21 changes for different R. The
smaller the value of this parameter is the more localized response occurs using the PSGD model. Figure 20b,
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Fig. 23 Stress—displacement diagrams for PSGD model with = 100—mesh sensitivity study

22a, b shows the damage evolution depending on the minimum interaction level. The damaged zone becomes
wider and wider for larger R.

Next, the results for the PSGD model with n = 100 are discussed. The fourfold decrease in the value of
this parameter causes the response to be more ductile using the exponential damage growth law. Parameters
o =0.99, R =0.05,n = 3.0 and ¢pax = 18.0 mm? are maintained. The stress—elongation diagrams given
in Fig. 23 are plotted for three cases of FE discretization: PS-80-80 elements, PS-160-160 elements and
PS-320-320 elements. It is visible that the differences in the diagrams are negligible. The case CGD-320 is
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Fig. 25 Evolution of averaged strain, damage and gradient activity for case PS-320

recalled to show that the equilibrium paths for the PSGD model are able to replicate the diagram for the CGD
model by controlling the parameter 1. The change of ; results in a somewhat broader zone of damage w, cf.
the distributions in Fig. 24 with the ones depicted in Fig. 19 for n = 400. Furthermore, mesh objectivity is
noticed again. The averaged strain evolution plot in Fig. 25a is similar to the case where n = 400 in the PSGD
model. However, the maximum averaged strain measure reaches 0.06 for » = 100. The damage evolution in
Fig. 25b exhibits a slightly broader damage zone in comparison to these demonstrated in Fig. 20b, but the issue
of artificially wide damaged zone is overcome, cf. also Fig. 9b. For completeness, the evolution of gradient
activity function ¢, (w) is depicted in Fig. 25¢ for case PS-320 and it demonstrates that the so-called localizing
process, i.e. the effect of vanishing interactions, is present in the middle, but the zone of gradient activity is
slightly wider in comparison to the case where n = 400.

The rate of decrease of the gradient activity for this benchmark is verified in Figs. 26 and 27. The mesh
is divided into 80 FEs. The data are the same apart from intensity n which is varied. The case PS-80 is taken
from the previous analysis. For the case PS-80-n1, the power n equals 1.0, for the case PS-80-n5—n = 5.0.
Function ¢, (w) with different intensities of the decreasing effect is shown in Fig. 5. Additionally, the case
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Fig. 26 Stress—displacement diagrams—influence of intensity n for gradient activity
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SVS2-80 is taken into account. The same parameters as for PS-80 are adopted, i.e. R = 0.05 and n = 3.0,
but now the SVSGD model is combined with function ¢ (@), so as a consequence K5 is nonzero in the
coupled matrix problem in a similar way as the presence of K SES in the formulation of the PSGD model, cf.
Egs. (52) and (61). The diagrams in Fig. 26 indicate that for this test the intensity » almost does not influence the
equilibrium paths—they differ only in the initial phase of material softening. On the other hand, the influence
in the damage evolution is observable. The support of the damage zone narrows with increasing value of n,
see Figs. 27a, 25b and 27b. The damage evolution for the case SVS2-80 in Fig. 27¢ looks rather like for the
case PS-80-n1 than for the case PS-320. It means that a combination of the SVSGD model with the localized
gradient activity defined by function ¢, (w) is possible, but not optimal. The above remark is also confirmed
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Fig. 29 Stress—displacement diagrams for alternative gradient activity functions

in Fig. 28, where damage distributions for the final stage are confronted. The case CGD-80 should be treated
as a reference. It is observed that damage w is larger than 0.99 is in the same part inside the weakened zone
for each considered case, i.e. PS-80-E, PS-80 and SVS2-80. On the other hand, among those three cases, the
widest distribution is obtained for SVS2-80.

The last part of this subsection is devoted to the brief presentation of the results where alternative gradient
activity functions are used, namely ¢3(w) and ¢4(€). Both of them also have a decreasing character. Figure 29
presents the stress—extension diagrams. In the case PS3-80, cosine function ¢3(w) with R = 0.05andn = 1.0
is adopted, see Fig. 5. For cases PS4-80 and SVS4-80, linear-constant function ¢4(€) is determined via initial
Cmax = 18 mm?, then decreasing until residual ¢ = 0.2 mm? for €max = 0.0015 and further constant small ¢ is
held. This function has a localized character opposite to ¢ (€). In Fig. 29 the diagram for PS3-80 is comparable
with the case PS-80-n1, but the damage zone in the evolution plotted in Fig. 30a significantly broadens at the
bottom, cf. Fig. 27a. The usage of that function is possible and gives better response than for the CGD model,
but the ability to reproduce a relatively thin damaged region is questionable. Hence, a good selection of the
gradient activity function can be crucial for the effectiveness of the solution. This aspect is briefly discussed in
the next subsection. Finally, diagrams for PS4-80 and SVS4-80 show unstable equilibrium paths, despite the
fact that the arc length method is applied in the computations. Material degradation demonstrated in Figs. 30b,
¢ evolves as much wider even in confrontation with the CGD model. Function ¢4(€) is inacceptable in both
(SVSGD and PSGD) models.

4.5 Summary of test

Summarizing the test of the bar with imperfection defined by the weakened zone, the CGD model produces
damage distribution with unrealistically broad crack band in the middle.

The selection of the gradient activity function influences significantly in the width and the shape of the
damage distribution. Focusing on the results for the PSGD model for which all the functions have been
employed, Fig. 31 shows damage w along the bar for the final state. The following cases are chosen: CGD-
80—¢o = cmax, PS1-80—¢ (€), PS-80—¢; (w), PS3-80—¢3(w) and PS4-80—¢4(€). Functions of gradient
activity are discussed in Sect. 3. It is seen that the results for cases CGD-80 and PS4-80 are the worst, because
the zone of damage is too broad. The other cases could be adopted; however, the range of the support on axis
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Fig. 31 Diagrams of final damage profiles—different gradient activity functions using PSGD model

x along the bar for damage distribution (0 < w < 0.2) is very wide for case PS3-80. This range is similar to
case CGD-80, where ¢ is constant. It follows from the slow decrease of the gradient activity at the beginning
of the degradation process in the bar. The onset of the damage growth for cases PS1-80 and PS-80 is the same,
i.e. it starts in the range x € [32.0, 68.0] mm, but the shape is different. The profile of w for ¢;(€) reminds
a cup upside-down (see also the results for the SVSGD model), while the profile of w for ¢ (w) is rather
bell-shaped. The most efficient response is obtained for PS-80. Moreover, because function ¢ (w) has the
decreasing (localizing) character, it seems to be more adequate to simulate cracking phenomena in concrete
than ¢ (€).
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Fig. 33 Results for conventional gradient damage (CGD) model, n = 300

Generally, the problem of too wide damage zone is overcome using both SVSGD or PSGD models. The
comparisons presented in this section confirm that it is preferred to use the PSGD model with function ¢; (w).
However, the SVSGD model with function ¢;(€) is also considered in the example presented in Sect. 5 for
completeness of the study.

5 Numerical analysis of bending in cantilever beam
5.1 Data setup

The benchmark of a cantilever beam is now analysed to show not only different efficiency in regularization
of the models, but also to verify whether a good representation of damage distribution is reproduced. The
vertical force is exerted along the left edge under deformation control of all vertical degrees of freedom. The
clamped edge on the right is fully constrained. Hence, the cracked area is expected at the bottom on this side.
The employed FE mesh B with boundary conditions is depicted in Fig. 32. Furthermore, the dimensions of
the domain are also given. The thickness of the beam is 50 mm. Two or three additional discretizations are
used to study mesh sensitivity. All meshes are refined near the constrained edge, where damage is expected.
The part of the domain with coarse mesh A or fine mesh C is illustrated further with the results. Moreover,
additional more refined mesh D is also used in two cases for the PSGD model. As in the previous test quadratic
interpolation of the displacements u and linear interpolation of the averaged strain measure € is used and 2 x 2
Gauss integration is adopted. The dimensions of the smallest FE, total number of nodes and total number of
FEs for the applied meshes are as follows: mesh A—5 mm x 6.25 mm, 635 nodes, 192 FEs, mesh B—2.5 mm
x 2.5 mm, 2443 nodes, 780 FEs and mesh C—1.25 mm x 1.25 mm, 9371 nodes, 3060 FEs. The characteristics
of additionally refined mesh D are: smallest element size 0.625 mm x 0.625 mm, 34389 nodes and 11340
FEs.

The elastic constants are the same for each model: Young’s modulus £ = 40,000 N/mm? and Poisson’s
ratio v = 0.0. The following common data for gradient damage are employed: when the degradation process
starts threshold «, is 0.000075 (tensile strength of concrete f; = 3 MPa), equivalent strain measure € is
determined by modified von Mises in Eq. (3) with ratio k¥ = 10, the (maximum) internal length parameter
corresponding to ¢ax = 8 mm? and the exponential relation given in Eq. (1) is taken into account to describe
the damage growth. Parameters « = 0.92 and n = 300 for exponential softening have been primarily adjusted
in [31]. The simulation of four-point bending test for the notched beam using the gradient damage—plasticity
model has been compared there with the experiment [22]. Next, these values of « and 1 have been inherited for
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Fig. 36 Results for PSGD model, n =75, R =0.01,n = 1.0

the computations performed in [48] to present the crack closing effect in the cantilever beam under reversed
loading. Moreover, they have also been used in [39] for the notched beam benchmark in four-point bending
in order to address the SVS gradient damage (SVSGD) model. More material model data are given when the
results are presented for individual models. It should only be emphasized here, based on the previous test for
the bar with imperfection, that the rate of damage growth for the PS gradient damage (PSGD) model should
be reduced, so n = 75 is introduced.

5.2 Discussion of results

The results of this test for the local damage model, where the constitutive relation is determined only by
Eq. (9) without any regularization within the material model description, can be found in [48]. Spuriously
mesh-sensitive damage patterns as well as different load-carrying capacities for each discretization are shown
there.

For the CGD model, no additional data are required—all the needed parameters are specified above.
Function ¢g is actually defined as constant, see Eq. (68). The solution obtained for this model is depicted in
Fig. 33. It is visible that the equilibrium paths in Fig. 33a are almost identical for each mesh. Crack patterns
in Fig. 33b—d represented by damage w exhibit that the same region is marked for the degraded material, but
the issue of too wide spread distribution of this variable is noticed. The gradient enhancement guarantees the
response which is not sensitive to the discretization; nevertheless, the constant internal length scale parameter
in the CGD model involves the spurious damage growth during the loading process.
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Fig. 42 Damage distributions in final stage for CGD and PSGD models (R = 0.01, n = 5)—influence of 1, mesh C

The application of the SVSGD model demands the selection of the following extra parameters: initial length
scale squared ¢y = 0.05 mm?, equivalent strain €px = 0.0015 = 20 «, where function ¢;(€) is changed
from linear to constant and intensity n = 1.0. The load—displacement diagrams in Fig. 34a almost overlap and
their character is similar to the one presented for the CGD model, but now the maximum value of P is slightly
smaller. Damage distributions for mesh A, B and C look the same, see Fig. 34b—d. The solution for the SVSGD
model is mesh-objective. The most intensive damage zones (black colour) are narrower in comparison to the
zone in the contour plots for the CGD model. Barely visible grey region at the bottom can be connected with
the presence of excessive ductility effects in the simulated material model. It was mentioned that in this model
the gradient activity has the increasing character. Function ¢ (€) activates the gradient terms inside and nearby
the localization zone and it makes the incremental-iterative computations for the SVSGD model as stable as
for the CGD model. However, as concluded in [35], the interaction should rather decrease with the damage
evolution progress, so the physical interpretation and the range of applicability for quasi-brittle materials like
concrete can be questioned. More results of similar calculations for a four-point bending beam are reported in
[39].

The mesh sensitivity study for the cantilever beam using the PSGD model is divided into two parts. In this
model, for function ¢, which decreases with damage w, two parameters have to be set: the minimum level
R of nonlocal interactions within the localization zone and power n as the degree of the decreasing intensity
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of gradient activity. It is also recalled that now parameter 1 equals 75, i.e. four times less than for CGD and
SVSGD models. Figure 35 presents the solution for R = 0.1 and n = 1.0. After the peak the load—displacement
diagram for mesh A differs from the others. The paths for meshes B and C almost coincide. However, damage
patterns for all discretizations have exactly the same character, cf. Fig. 35b—d. Hence, mesh-independent results
are observed although mesh A is coarse and produces a stiffer response; compare as well the maximum load
for the models—here P > 2000 N. The employed parameters R = 0.1 and n = 1.0 in the PSGD model give
as one of the results a quite slim zone for w = 1, but for lower and lower levels of damage plot this distribution
becomes even more spread than for the CGD model. The reason is that in this case the localizing character of
the PSGD model is weaker. If R becomes ten times smaller for example, i.e. equals 0.01, then after the peak
equilibrium paths for meshes A, B and C run differently, see Fig. 36a. It does not mean that mesh dependence
occurs, since it is observed that load—displacement diagrams for mesh C and the finest mesh D are close to
each other. Notice that damage zones shown in Fig. 36b, c as well as Fig. 37a, b (both plots are enlarged) are
similar. The question is how strongly the applied mesh should be densified. All results for two dimensional
problems using the so-called localizing gradient damage model in the literature, see, for example, [35,38,43],
are obtained with the discretization of thousands FEs or using additional mesh adaptivity during the nonlinear
analysis, cf. [37]. Hence, meshes A and B can be not enough to obtain overlapped diagrams. It is demonstrated
that for the PSGD model with assumed small level of residual interaction R a quite dense discretization should
be employed. Figure 38a shows the load—displacement diagrams, where R = 0.01 is kept and » is raised to
5.0. Identical tendency as in Fig. 36a is observed, but now the peak of P is lower. The larger value of power n
accelerates the decrease of the gradient activity interaction between microcracks during the loading process.
It seems to be more physical in the modelling of strain localization. Moreover, the effect of spreading for
damage patterns illustrated in Figs. 38b, ¢ and 39 disappears. The most degraded zone is much thinner than for
the CGD model, so the issue with spuriously too broad band of damage in gradient-enhanced damage models
is reduced using the PSGD model. However, it should be noted that during the computations the quadratic
convergence can be lost due to many overlapping nonlinear effects.

In this paragraph the comparison of the results for the cantilever beam benchmark using the models
discussed in the paper is performed. Mesh C is only applied. The load—displacement diagrams gathered in
Fig. 40 are compared for the cases for which the damage distributions are presented in Figs. 33d, 34d, 35d,
37a and additionally for the case where n = 75 is used for the CGD model. This last case is represented by
the damage pattern in Fig. 42a. It is seen that for n = 75 the response for the CGD model is very ductile and
the localized band is extremely broadened. The diagrams for CGD and SVSGD models with n = 300 are
comparable. On the other hand, the solution for the PSGD model is strongly dependent on parameter R which
is responsible for the final level of decreasing function > (w), i.e. it governs how the gradient activity interacts
in the model. Figure 41 in turn illustrates the influence of intensity # in the PSGD model. Of course, peaks and
the progress of softening are quite different, but finally all diagrams coincide. In the last comparison, attention
is focused on parameter n defined for the PSGD model. The equilibrium paths are shown in Fig. 43 together
with the diagram for the CGD model and n = 300 as a reference solution. Corresponding damage distributions
are depicted in Figs. 42b—d and 39a. It has been expected that the smaller 7 is the more ductile behaviour is
observed. Hence, the value of this parameter should be as large as possible to simulate quasi-brittle materials
using the PSGD model.
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6 Conclusions

The gradient-enhanced damage models with a constant or evolving gradient influence are discussed in the paper.
The issue of spuriously wide zone for damage using the conventional gradient damage (CGD) model is shown.
Two alternative formulations with an increasing or decreasing gradient activity function are implemented by
the author in the FEAP package [44]. There are: the SVS gradient damage (SVSGD) model based on [39] and
the PS gradient damage (PSGD) model based on [35,43]. The PSGD model has been also called the localizing
gradient damage model in the literature, see, for example, [23,35,37]. The efficiency of regularization for used
models is assessed. Different options of gradient activity functions are examined. The models are compared
in two tests, namely the tensile bar with imperfection and the cantilever beam under in-plane bending.

While an uncontrolled damage zone in the CGD model is observed, two concepts of gradient activity with
an evolving length scale parameter are considered. Activating or localizing character of the evolution can be
adopted. With reference to [35,39], a generalization of both models is derived in Egs. (52) and (61). The
gradient activity function can now be determined by equivalent strain or damage in both models. It is possible
to use a function with localizing character for the SVSGD model and use a function with activating character
for the PSGD model. However, increasing gradient activity in the function of the equivalent strain measure is
preferred for the SVSGD model as in [39]. It is also confirmed that the function proposed originally in [35],
where the damage growth causes a decrease of nonlocality, is favourable for the PSGD model.

In the formulation, the interpolation of a third extra independent field for gradient activity as in [19] is
unnecessary. Therefore, the numerical framework is similar to the CGD model and, as a consequence, limited
modifications in the code are required. The Newton—Raphson algorithm converges easier for the SVSGD
model than for the PSGD model.

A parametric study of the models with different gradient activity functions is performed. Despite the fact
that the results for the SVSGD model are correct, a physical motivation to employ an increasing gradient activity
seems to be inadequate for quasi-brittle materials. The PSGD model provides a more suitable interpretation
when the gradient activity function decreases together with the degradation progress. In fact, proper selection
of the gradient activity function is crucial.

When the SVSGD model is applied, the achievement of the maximum internal length scale squared should
be delayed as much as possible. However, then numerical instabilities or even divergence of the computations
can occur. The PSGD model is also sensitive to its parameters, especially to the rate of the damage growth
determined by parameter 1 and the minimum level of interaction between microprocesses within the localization
band determined by parameter R. Both parameters are able to change completely the response of the material
model. Itis suggested to apply a possibly large value for n and a possibly small value for R. On the other hand, as
for the SVSGD model numerical divergence can appear in the analysis, so both parameters should be carefully
selected. It should also be indicated that for the PSGD model, when low residual interaction R is applied, a
refined mesh with thousands of finite elements is suggested to ensure a fully mesh-independent solution. The
third parameter for the PSGD model which is called the intensity does not modify the solution so strongly
as those two previous ones. Summarizing, both approaches are able to overcome the issue of excessively
broadening damage region in the simulations of concrete cracking, but the values of model parameters should
be fitted with caution.
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