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Abstract To analyse delaminated composite beams with high accuracy under mixed-mode I/II fracture condi-
tions first-, second-, third- and Reddy’s third-order shear deformable theories are discussed in this paper. The
developed models are based on the concept of two equivalent single layers and the system of exact kinematic
conditions. To deduce the equilibrium equations of the linearly elastic system, the principle of virtual work
is utilised. As an example, a built-in configuration with different delamination position and external loads
are investigated. The mechanical fields at the delamination tip are provided and compared to finite element
results. To carry out the fracture mechanical investigation, the J -integral with zero-area path is introduced.
Moreover, by taking the advantage of the J -integral, a partitioningmethod is proposed to determine the ratio of
mode-I and mode-II in-plane fracture modes. Finally, in terms of the mode mixity, the results of the presented
evaluation techniques are compared to numerical solutions and previously published models in the literature.

Keywords Delamination · Energy release rate · Mixed-mode I/II fracture · J -integral · Higher-order beam
theories

1 Introduction

As the composite materials play important role in the industrial applications [11], the strong adhesion between
the laminated layers is essential and must remain reliable even at high strains and high stresses [15]. Presence
andpropagationof a delamination in lightweight compositematerials [35,38] can significantly decrease the load
bearing capability of the structure [7,26,28], modify the dynamic properties [6,20,27,39,40], and furthermore,
they can easily lead to sudden and catastrophic failure of the brittle mechanical system. Thus, the description
[22,36] and the avoidance [10,59] of an interlaminar failure, which may take place because of low-velocity
impact [5,24], blast loading [32,37], manufacturing defects [16–18] and free edge effects [13], are inevitable
from engineering point of view.

The application of the linear elastic fracture mechanics is one possibility to characterise the interlaminar
fracture resistance of conventional high performance composites with inherent brittleness [8,9]. The critical
value of the energy release rate Gc, which can be considered as a material property, is suitable to characterise
the strength of an interface layer between two elastic plies [19]. Like any other material parameters, mechanical
tests must be carried out to be determined. In the case of fracture mechanical investigation, as linear elastic
fracture mechanics works only if the location, size andshape of the crack are known, the experiments must be
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Fig. 1 Beam elements with different delamination position over the beam thickness

carried out on different type of pre-cracked specimens including mode-I [23], mode-II [8], mixed-mode I/II
[58], mode-III [14,25], mixed-mode I/III [1], mixed-mode II/III [43,50] and mixed-mode I/II/III [57] fracture
conditions. Finally, these experiments must be evaluated based on very simple mechanical structures where
the delamination zone is known a priori, such as delaminated beam and plate structures.

To increase the accuracy of the evaluation techniques and to capture more precisely the complex frac-
ture mechanical behaviour of these mechanical systems, the researchers have been inspired to introduce novel,
higher-order beamandplate theories [33,53,54]. Thefirst-order shear deformable beam theory (FSDT) assumes
independent rotation around the bending axes [46]. As a next step, the second-order shear deformable theory
(SSDT) describes the in-plane displacement as a quadratic function in terms of the through-thickness coordi-
nate. The third-order shear deformable theory (TSDT) captures the longitudinal displacement in the form of
cubic function [12]. And finally but not least, in order to satisfy dynamic boundary conditions at the top and
bottom surfaces of the beam, Reddy’s third-order shear deformable theory is also developed [41,47].

In the following, to analyse a delaminated composite beam under mixed-mode I/II fracture conditions, the
basic idea of higher-order beam theories is utilised with the semi-layerwise approach [51]. The concept of the
proposed description can be seen in Fig. 1. where beam elements with an artificial delamination are depicted.
To perform fracture mechanical investigation, the J -integral with zero-area path is applied [42,50]. Moreover,
a partitioning method is proposed to determine the mode-I and mode-II in-plane fracture modes without any
semi-analytical considerations [29]. Finally, the obtained results of the mode partitioning are compared to
previously published evaluation methods in the literature [4,21,34,56].

Applications already exist in the literature which uses the J -integral to evaluate delaminated composite
beams [3,30,44] under pure mode-I or pure mode-II fracture conditions. The effect of reinforcement direction
and delamination length on the energy release rate have already been investigated in numerous studies, but
J -integral- based mode mixity evaluation, which undeniably requires complicated mechanical models, has not
been extensively studied.

It is important to note that the methods described herein are only suitable for describing brittle composite
materials. If the brittle carbon or glass fibres are protected bymore damage tolerant resin system, the application
of the linear elastic fracture mechanics is no longer appropriate. The nonlinear fracture process zone and the
growth of multiple cracks at small scale should also be considered [55].

2 Mechanical model: the method of two equivalent single layers (ESLs)

A delaminated beamwith an arbitrary stacking sequence including orthotropic or transversely isotropic plies is
depicted in Fig. 2. As it is illustrated by this figure, differentmathematicalmodelsmust be applied to capture the
displacement field of the cracked and uncracked portion separately [50]. Firstly, to describe the undelaminated
portion, the membrane displacement field must remain continuous along the thickness coordinate. While
in the case of the delaminated portion, the presence of the delamination splits the functions into separated
displacement fields resulting in two individual sub-laminates [48]. To handle this phenomenon properly, each
and every sub-laminate is modelled as an equivalent single layer (ESL). This method is the so-called semi-
layerwise technique, which has already been introduced and used in numerous studies to describe delaminated
composite plates under mixed-mode II/III fracture conditions [45]. Furthermore, thedisplacement field can be
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Fig. 2 Cross section and the assumed deformation of the undelaminated portion in the X−Z plane (a) and distributions of the
transverse shear strain by different theories (b) using 2ESLs

expressed by using the above-mentioned higher-order polynomials to increase the accuracy in terms of shear
stress distribution:

u(i)(x, z
(i)) = u0(x) + u0i (x) + θi (x)z

(i) + φi (x)[z(i)]2 + λi (x)[z(i)]3,
w(i)(x) = w(i)(x),

(1)

where i denotes the index of actual ESL, z(i) is the local thickness coordinate of the i th ESL and always
coincides with the local midplane, u0 is the global, u0i is the local membrane displacement, θ denotes the
rotation of the cross section about the Y axes, φ means the second-order, and λ expresses the third-order
polynomial terms. Moreover, w(i) represents the separate transverse deflection functions. The displacement
field of FSDT and SSDT can be obtained by substituting φ = 0 and λ = 0 into the Eq. (1), respectively. In
the case of the undelaminated part, the kinematic continuity between ESLs can be imposed by the system of
exact kinematic conditions [50].

Based on the above assumed displacement fields, the nonzero terms of the strain field become

εx(i) = ∂u(i)

∂x
, γxz(i) = ∂u(i)

∂z(i)
+ ∂w(i)

∂x
, (2)

where εx(i) is the normal strain of the i th ESL in the X -direction, and γxz(i) is the shear strain of the i th layer
in the X−Z plane. The in-plane strains can be decomposed into constant, linear and higher-order terms with
respect to the through-thickness coordinate:

εx(i) = ε
(0)
x(i) + z(i) · ε(1)

x(i) + [z(i)]2 · ε(2)
x(i) + [z(i)]3 · ε

(3)
z(i), (3)

and:
γxz(i) = γ

(0)
xz(i) + z(i) · γ

(1)
xz(i) + [z(i)]2 · γ

(2)
xz(i). (4)

By applying the constitutive equation of orthotropic materials the stress resultants can be introduced for each
ESL: ⎛

⎜⎝
Nx
Mx
Lx
Px

⎞
⎟⎠

(i)

=
b∫

0

ti/2∫

−ti /2

σx

⎛
⎜⎝

1
z
z2

z3

⎞
⎟⎠

(i)

dz(i)dy, (5)

and: ⎛
⎝

Qx
Rx
Sx

⎞
⎠

(i)

=
b∫

0

ti/2∫

−ti/2

τxz

⎛
⎝

1
z
z2

⎞
⎠

(i)

dz(i)dy, (6)

where Nx(i) defines the normal force, Mx(i) denotes the bending moment, Qx(i) is the transverse shear force,
and Lx(i), Px(i), Rx(i), Sx(i) are the higher-order stress resultants [41,50]. By using the through-thickness
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coordinate dependence and the presented constitutive law, the relationship between the strain field and the
stress resultants can be formulated as:

⎛
⎜⎝

Nx
Mx
Lx
Px

⎞
⎟⎠

(i)

=
⎡
⎢⎣
A11 B11 D11 E11
B11 D11 E11 F11
D11 E11 F11 G11
E11 F11 G11 H11

⎤
⎥⎦

(i)

⎛
⎜⎜⎝

ε(0)

ε(1)

ε(2)

ε(3)

⎞
⎟⎟⎠

(i)

, (7)

and ⎛
⎝

Qx
Rx
Sx

⎞
⎠

(i)

=
⎡
⎣
A55 B55 D55
B55 D55 E55
D55 E55 F55

⎤
⎦

(i)

⎛
⎜⎝

γ
(0)
xz

γ
(1)
xz

γ
(2)
xz

⎞
⎟⎠

(i)

, (8)

where App(i) denotes the extensional, Bpp(i) represents the coupling, Dpp(i) is the bending, Epp(i), Fpp(i),
Gpp(i) and Hpp(i) are the higher-order stiffnesses. These terms can be calculated by [41,49]:

(App, Bpp, Dpp, Epp, Fpp,Gpp, Hpp)(i)

=
Nl(i)∑
m=1

b∫

0

z(i)m+1∫

z(i)m

C
(m)

pp(i)(1, z, z
2, z3, z4, z5, z6)(i)dz(i)dy, p = 1 or 5,

(9)

where Nl(i) is the number of orthotropic layers within the actual i th ESL, b defines the width of the beam, zim
and zim+1 are the local bottom and top coordinates of the mth layer in the i th ESL [49]. Furthermore, C

(m)

(i) is
the stiffness matrix of the mth layer within the i th ESL expressed as:

(
σx
τxz

)

(i)
=

[
C11 0
0 C55

](m)

(i)

(
εx
γxz

)

(i)
=

[
E11/(1 − ν21ν12) 0

0 G13

](m)

(i)

(
εx
γxz

)

(i)
. (10)

2.1 Description of the undelaminated portion

In order to impose the continuity between two ESLs, the following condition can be formulated [50]:

(u(1), w(1))

∣∣∣
z(1)=t1/2

= (u(2), w(2))

∣∣∣
z(2)=−t2/2

, (11)

which imposes the displacement continuity and the identity of the transverse deflections. The second condition
defines the position of the global reference plane:

u(1)

∣∣∣
z(1)=t2/2

− u0(x) = 0, (12)

with respect to ESL1. As a first step, to develop semi-layerwise model only for FSDT solution, these equations
are already enough. However, it is reasonable to increase the accuracy of the model further by using SSDT
and TSDT. Thus, the shear strain continuity at the interface plane, referring to Fig. 2, can be also imposed:

γxz(1)

∣∣∣
z(1)=t1/2

= γxz(2)

∣∣∣
z(2)=−t2/2

. (13)

Furthermore, in accordance with the basic concept of Reddy-TSDT theory, even the traction-free boundary
condition can be imposed on the bottom and top surfaces of the beam:

γxz(1)

∣∣∣
z(1)=−t1/2

= γxz(2)

∣∣∣
z(2)=t2/2

= 0 . (14)
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Finally, by taking into account the previously discussed conditions, in each and every case the in-pane dis-
placement functions can be expressed in the following invariant form:

u(i) = u0 +
(
K (0)
i j + K (1)

i j z(i) + K (2)
i j [z(i)]2 + K (3)

i j [z(i)]3
)
ψ j ,

w(i) = w(x),
(15)

where the Ki j matrices depend on the actual ESL thicknesses and the order of the applied theory, i refers to
the ESL number, the summation index j defines the component in ψ j primary parameter vector, and w(x)
expresses the transverse deflection of the beam [49].

2.1.1 Reddy’s third-order beam theory

Using the above-mentioned exact kinematic conditions by Eqs. (11)–(14), 5 unknown displacement parameters
can be eliminated from the original 10 parameters. The secondary parameters are: u0i , φi for i = 1..2 and θ2.
The unknown terms and the vector of primary parameters become:

u0, w, ψ p =
(
θ1 λ1 λ2

∂w

∂x

)T
. (16)

The nonzero elements of the K (0)
i j ,K (1)

i j ,K (2)
i j and K (3)

i j matrices in Eq. (15) can be found in Appendix A.1.1.
It is important to highlight, by the application of the Reddy’s third-order beam theory, the first derivate of
the deflection becomes also a primary parameter. Later on we will see that it results much more complicated
differential equation with respect to the transverse deflection than the other higher-order theories.

2.1.2 Third-order beam theory

Using again the above discussed exact kinematic conditions [(referring to Eqs. (11)–(13)], apart from the
traction-free condition, 3 unknown displacement parameters can be eliminated from the original 10 parameters.
The secondary parameters are: u0i for i = 1..2 andλ1. The unknown terms and the vector of primary parameters
are:

u0, w, ψ p =
(
θ1 θ2 φ1 φ2 λ2

)T
. (17)

The nonzero elements of the K (0)
i j ,K (1)

i j ,K (2)
i j and K (3)

i j matrices in Eq. (15) are defined in Appendix A.2.1.

2.1.3 Second-order beam theory

In the case of SSDT, 3 unknown displacement parameters can be eliminated from the original 8 parameters
by using Eqs. (11)–(13). The secondary parameters are: u0i for i = 1..2 and φ1. The unknown terms and the
vector of primary parameters become

u0, w, ψ p =
(
θ1 θ2 φ1

)T
. (18)

Obviously, K (3)
i j = 0 in this case. The elements of the K (0)

i j ,K (1)
i j and K (2)

i j matrices in Eq. (15) are specified
by Appendix A.3.1.

2.1.4 First-order beam theory

As it was previously discussed, in the case of FSDT theory, only the continuity conditions by Eqs. (11)–(12)
continuity can be imposed, meaning that 2 unknown displacement parameters are eliminated from the original
6 parameters. These secondary parameters are: u0(i) for i = 1, 2. The vector of primary parameters becomes

u0, w, ψ p =
(
θ1 θ2

)T
. (19)

Using FSDT theory K (3)
i j = K (2)

i j = 0, the elements of the K (0)
i j and K (1)

i j matrices in Eq. (15) can be found in
Appendix A.4.1.
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2.1.5 Equilibrium equations

The equilibrium equations of the undelaminated beam can be deduced from the virtual work principle [41],
by setting the sum of coefficients for the virtual membrane displacement δu0:

δu0 :
2∑

i=1

(
∂Nx(i)

∂x

)
= 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reddy
TSDT
SSDT
FSDT

(20)

the primary parameters δψ j :

δψ j :
2∑

i=1

(
K (0)
i j

∂Nx(i)

∂x
+ K (1)

i j
∂Mx(i)

∂x
+ K (2)

i j
∂Lx(i)

∂x
+ K (3)

i j
∂Px(i)

∂x
− K (1)

i j Qx(i)

− 2K (2)
i j Rx(i) − 3K (3)

i j Sx(i)
)

= 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reddy: j = 1..3,
TSDT : j = 1..5,
SSDT : j = 1..3,
FSDT : j = 1..2,

(21)

and the deflection δw:

δw :
2∑

i=1

(
−K (0)

i4
∂2Nx(i)

∂x2
− K (1)

i4
∂2Mx(i)

∂x2
− K (2)

i4
∂2Lx(i)

∂x2
− K (3)

i4
∂2Px(i)

∂x2

+ K (1)
i4

∂Qx(i)

∂x
+ 2K (2)

i4
∂Rx(i)

∂x
+ 3K (3)

i4
∂Sx(i)
∂x

)
+ q = 0,

{
Reddy, (22)

δw :
2∑

i=1

(
∂Qx(i)

∂x

)
+ q = 0,

⎧⎪⎨
⎪⎩
TSDT
SSDT
FSDT

(23)

to zero. It is worth giving attention to Eq. (22) where the application of Reddy’s third-order theory results a
more complex equilibrium equation [41] compared to the other theories.

2.2 Description of the delaminated portion

As it was previously discussed, the presence of a delamination divides the beam into a top and a bottom
sub-laminates. Thus, diverse mathematical functions are applied to the top and bottom parts:

u(1) = u0b +
(
K (0)
1 j + K (1)

1 j z
(1) + K (2)

1 j [z(1)]2 + K (3)
1 j [z(1)]3

)
ψ j ,

u(2) = u0t +
(
K (0)
2 j + K (1)

2 j z
(2) + K (2)

2 j [z(2)]2 + K (3)
2 j [z(2)]3

)
ψ j ,

w(1) = wb(x),

w(2) = wt (x),

(24)

where notations are exactly the same as they were in Eq. (15). Although in this context, u0b and u0t express the
global membrane displacement of the bottom and top sub-laminates, local membrane displacement parameters
are not defined, and finally but not least wb describes the transverse deflection of the bottom beam and wt
represents the deflection of the top beam [49].
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2.2.1 Reddy’s third-order beam theory

According to Reddy’s third-order beam theory, the top and bottom beams are traction-free at their top and
bottomboundaries, aswell. But based on our computational experience, if these conditions are strictly imposed,
we always get inconsistent and over-constrained shear strain distribution around the delamination tip. In order
to avoid this phenomenon in this paper, the traction-free conditions are only imposed at the top boundary
of the top sub-laminate and at the bottom boundary of the bottom sub-laminate. Referring to Fig. 2 and
Eq. (13), 2 unknowndisplacement parameters can be eliminated from the original 10 parameters. The secondary
parameters are: φi for i = 1..2. The unknown terms and the vector of primary parameters become:

u0b, u0t , wb, wt , ψ p =
(
θ1 λ1

∂wb

∂x
θ2 λ2

∂wt

∂x

)T
, (25)

where circles denote the auto-continuity parameters. The role of these parameters will be important when
the displacement continuity between the delaminated and undelaminated portions is discussed. The nonzero
elements of the matrices K (0)

i j , K (1)
i j , K (2)

i j and K (3)
i j in Eq. (24) can be found in Appendix A.1.2. Similarly to

the case of undelaminated portion, the derivative of the deflections become also primary parameters which
results more complex differential equations in terms of the transverse deflections.

2.2.2 Third-order beam theory

Since no other condition can be imposed, the primary parameters become:

u0b, u0t , wb, wt , ψ p =
(
θ1 φ1 λ1 θ2 φ2 λ2

)T
, (26)

where circle denotes the above-mentioned auto-continuity parameter [50]. The corresponding K (0)
i j , K (1)

i j , K (2)
i j

and K (3)
i j matrices in Eq. (24) can be found in Appendix A.2.2.

2.2.3 Second-order beam theory

No other condition can be imposed against the displacement field in the case of SSDT, as well. We only have
primary parameters:

u0b, u0t , wb, wt , ψ p =
(
θ1 φ1 θ2 φ2

)T
(27)

and K (3)
i j = 0. The nonzero elements of the K (0)

i j , K (1)
i j and K (2)

i j matrices in Eq. (24) are given in Appendix
A.3.2.

2.2.4 First-order beam theory

In the case of FSDT, the primary parameters are:

u0b, u0t , wb, wt , ψ p =
(
θ1 θ2

)T
(28)

The elements of the K (0)
i j and K (1)

i j matrices in Eq. (24) can be found in Appendix A.4.2. By using this theory,

there is no need to define auto-continuity parameter and K (3)
i j = K (2)

i j = 0.
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Fig. 3 Built-in configuration of a delaminated beam with orthotropic plies

Table 1 Elastic properties of the composite layers

E11 E22 E33 G23 G13 G12 ν23 ν13 ν12
[GPa] [GPa] [GPa] [GPa] [GPa] [GPa] [–] [–] [–]

0 148 9.65 9.65 4.91 4.66 3.71 0.27 0.25 0.25
± 30 82.4 82.4 82.4 6.61 6.61 6.61 0.4 0.4 0.4

2.2.5 Equilibrium equations

Using the principle of virtual work, it is possible to determine the equilibrium equations of the delaminated
part also, by setting the sum of coefficients for the virtual membrane displacements δu0b and δu0t :

δu0b : ∂Nx(1)

∂x
= 0, δu0t : ∂Nx(2)

∂x
= 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reddy
TSDT
SSDT
FSDT

(29)

the primary parameters δψ j :

δψ j : K (0)
i j

∂Nx(i)

∂x
+ K (1)

i j
∂Mx(i)

∂x
+ K (2)

i j
∂Lx(i)

∂x
+ K (3)

i j
∂Px(i)

∂x
− K (1)

i j Qx(i)

−2K (2)
i j Rx(i) − 3K (3)

i j Sx(i) = 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reddy: j = 1, 2, 4, 5
TSDT: j = 1..6, Bot. : i = 1,
SSDT: j = 1..4, Top. : i = 2,
FSDT: j = 1..2,

(30)

and the transverse deflection terms δwb and δwt :

δwb : − K (0)
13

∂2Nx(1)

∂x2
− K (1)

13
∂2Mx(1)

∂x2
− K (2)

13
∂2Lx(1)

∂x2
− K (3)

13
∂2Px(1)

∂x2

+ K (1)
13

∂Qx(1)

∂x
+ 2K (2)

13
∂Rx(1)

∂x
+ 3K (3)

13
∂Sx(1)

∂x
+ qb = 0,

{
Reddy, (31)

δwt : − K (0)
26

∂2Nx(2)

∂x2
− K (1)

26
∂2Mx(2)

∂x2
− K (2)

26
∂2Lx(2)

∂x2
− K (3)

26
∂2Px(2)

∂x2

+ K (1)
26

∂Qx(2)

∂x
+ 2K (2)

26
∂Rx(2)

∂x
+ 3K (3)

26
∂Sx(2)

∂x
+ qt = 0,

{
Reddy, (32)

δwb : ∂Qx(1)

∂x
+ qb = 0, δwt : ∂Qx(2)

∂x
+ qt = 0

⎧⎪⎨
⎪⎩
TSDT
SSDT
FSDT

(33)

to zero. As we can see, the application of Reddy’s third-order theory results much more complex equilibrium
equations in terms of the transverse deflections than the other higher-order theories [41].
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3 Example: built-in configuration of a delaminated beam

As an example a built-in beam with asymmetric delamination is considered. The geometry of the structure is
depicted by Fig. 3, where l denotes the total length, a represents the length of the delamination, b is the beam
width and 2h is the total thickness of the beamwith [±30/02/±30/0]S lay-up. The corresponding thicknesses
of the sub-laminates are denoted by t1 and t2. Thematerial properties of the transversely isotropic and cross-ply
layers are given by Table 1 [49,52]. The structure of the ELSs in each and every case is determined according
to Fig. 1.

3.1 Continuity conditions of the displacement field

The continuity conditions between the regions can be imposed by using the discussed primary parameters. The
conditions for the components of the membrane displacement and the transverse deflection can be ensured by:

(
u0 +

qundel∑
j=1

K (0)
1 j ψ j

∣∣∣(undel)
x=−0

)
= u0b

∣∣∣(del)
x=+0

, w

∣∣∣(undel)
x=−0

= wb

∣∣∣(del)
x=+0

, (34)

(
u0 +

qundel∑
j=1

K (0)
2 j ψ j

∣∣∣(undel)
x=−0

)
= u0t

∣∣∣(del)
x=+0

, w

∣∣∣(undel)
x=−0

= wt

∣∣∣(del)
x=+0

, (35)

where qundel is the number of the primary parameters in ψ p vector. Independently of the order of the applied
theory, these equations always represent four conditions. The continuity of the first-, second-, and third-order
terms in the displacement functions can be specified through the element of the primary parameter vectors
by connecting the first-order terms with first-order, the second-order terms with second-order, the third-order
with the third-order terms and the deflection derivatives with the corresponding deflection derivatives. These
represent qundel number of conditions between the undelaminated and delaminated portions. For the Reddy’s
TSDT theory, by referring to Eqs. (16) and (25), these conditions can be formulated as:

(
θ1 λ1 λ2

)∣∣∣(undel)
x=−0

=
(
θ1 λ1 λ2

)∣∣∣(del)
x=+0

, (36)

and (∂w

∂x

)∣∣∣(undel)
x=−0

=
(∂wb

∂x

)∣∣∣(del)
x=0

. (37)

As the number of parameters in the ψ p vector for the undelaminated and delaminated parts is generally not
equal to each other, i.e.: qdel �= qundel, the continuity of the remaining terms cannot be expressed directly.

The remaining θ2 and ∂wt
∂x terms in the primary parameter vector of the delaminated part, which are indi-

cated by circles in Eq. (25), can be defined as auto-continuity parameters [50]. According to the theorem of
auto-continuity, the continuity of these terms can be ensured by using only the primary parameters of the
undelaminated part. The equations can be written as:

θ2

∣∣∣(del)
x=+0

=
qundel∑
j=2

K (1)
2 j ψ j

∣∣∣(undel)
x=−0

=
(
θ1 + 3

4
t21λ1 − 3

4
t22λ2

)∣∣∣(undel)
x=−0

, (38)

and (∂w

∂x

)∣∣∣(undel)
x=−0

=
(∂wt

∂x

)∣∣∣(del)
x=0

, (39)

representing qundel + 2 = 4 + 2 = 6 for Reddy’s TSDT. Regarding TSDT, the situation is exactly the same.
The inequality, by referring to Eqs. (17) and (26), can be handled in a similar way:

(
θ1 θ2 φ1 φ2 λ2

)∣∣∣(undel)
x=−0

=
(
θ1 θ2 φ1 φ2 λ2

)∣∣∣(del)
x=+0

, (40)

and

λ1

∣∣∣(del)
x=+0

=
qundel∑
j=1

K (3)
1 j ψ j

∣∣∣(undel)
x=−0

= 4

3

(θ2 − θ1 − t2φ2 + t1φ1 + t22λ2

t21

)∣∣∣(del)
x=+0

, (41)
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Fig. 4 Continuity of the stress resultants at the delamination tip

meaning qundel + 1 = 5 + 1 = 6 number of conditions. In connection with SSDT, referring to Eqs. (18) and
(27), the continuity can be written as:

(
θ1 θ2 φ1

)∣∣∣(undel)
x=−0

=
(
θ1 θ2 φ1

)∣∣∣(del)
x=+0

, (42)

and

φ2

∣∣∣(del)
x=+0

=
qundel∑
j=1

K (2)
2 j ψ j

∣∣∣(undel)
x=−0

=
(−θ1 + θ2 − t1φ1

t2

)∣∣∣(undel)
x=−0

, (43)

representing qundel+1 = 3+1 = 4 conditions. Fortunately, in connection with FSDT, by referring to Eqs. (19)
and (28), the number of terms in the primary parameter vector for undelaminated and delaminated portions
are equal to each other qdel = qundel. No further auto-continuity condition is required to be imposed. It can be
expressed easily by:

(
θ1 θ2

)∣∣∣(undel)
x=−0

=
(
θ1 θ2

)∣∣∣(del)
x=+0

, (44)

meaning qdel = qundel = 2 conditions [50].

3.2 Continuity conditions of the stress resultants

As a result of arbitrary external forces, Qx(i), Rx(i), Sx(i) Nx(i),Mx(i), Lx(i) and Px(i) unknown stress resultants
take place at the left end of the delaminated portion in each ESL. These stress resultants and their derivatives
are transferred between the portions resulting equivalent normal force, equivalent shear force and equivalent
bending moments on the right hand side of the undelaminated portion. The basic concept of the idea is depicted
by Fig. 4, where the same arrows are used to sign Rx(i), Sx(i), and Lx(i), Px(i). The form of the equations can
be read out from the presented equilibrium equations [49]. Thus, the continuity of the normal forces, which
means one condition for each theory, can be formulated as:

N̂ (undel)
x :=

2∑
i=1

(
Nx(i)

)∣∣∣∣
(undel)

x=−0

=
(
Nx(1) + Nx(2)

)∣∣∣∣
(del)

x=+0

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reddy,
TSDT,
SSDT,
FSDT,

(45)

where N̂ (undel)
x represents the equivalent normal force. The next conditions between the portions are the

continuity of the equivalent bending moments. These continuity conditions can be formulated as:
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M̂ (undel)
x( j) :=

2∑
i=1

(
K (undel)

i j

)T ·
⎛
⎜⎝

Nx(i)
Mx(i)
Lx(i)
Px(i)

⎞
⎟⎠

∣∣∣∣∣∣∣

(undel)

x=−0

=
2∑

i=1

(
K (undel)

i j

)T ·
⎛
⎜⎝

Nx(i)
Mx(i)
Lx(i)
Px(i)

⎞
⎟⎠

∣∣∣∣∣∣∣

(del)

x=+0

,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reddy: j = 1..4,
TSDT: j = 1..5,
SSDT: j = 1..3,
FSDT: j = 1..2,

(46)

where K (undel)
i j collects the Ki j matrix elements of the undelaminated part:

(
K (undel)

i j

)T =
(
K (0)
i j K (1)

i j K (2)
i j K (3)

i j

)∣∣∣(undel), (47)

and M̂ (undel)
x( j) denotes the equivalent bending moments imposing four conditions for the Reddy’s TSDT, five

for the TSDT, three for the SSDT and two for the FSDT. It is worth giving attention to Reddy’s TSDT where
we obtained an additional bending continuity condition in terms of the deflection derivative (Reddy: j = 4),
referring to Eqs. (16) and (22). Finally, the shear force continuity of the problem can be imposed for Reddy’s
TSDT as:

Q̂(undel)
x :=

2∑
i=1

(
K (undel)

i4

)T ·

⎛
⎜⎜⎜⎝

− ∂Nx(i)
∂x

− ∂Mx(i)
∂x + Qx(i)

− ∂Lx(i)
∂x + 2Rx(i)

− ∂Px(i)
∂x + 3Sx(i)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

(undel)

x=−0

=
2∑

i=1

(
K (undel)

i4

)T ·

⎛
⎜⎜⎜⎝

− ∂Nx(i)
∂x

− ∂Mx(i)
∂x + Qx(i)

− ∂Lx(i)
∂x + 2Rx(i)

− ∂Px(i)
∂x + 3Sx(i)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

(del)

x=+0

,
{
Reddy,

(48)

and for the other theories:

Q̂(undel)
x :=

2∑
i=1

(
Qx(i)

)∣∣∣∣
(undel)

x=−0

=
(
Qx(1) + Qx(2)

)∣∣∣∣
(del)

x=+0

,

⎧⎪⎨
⎪⎩
TSDT,
SSDT,
FSDT,

(49)

resulting one more condition for each case.

3.3 Boundary conditions

In order to impose built-in boundary condition at the left end of the undelaminated part the displacement field
must be zero. This condition can be easily prescribed by using the primary parameters:

u0|(undel)x=−l+a = 0, w

∣∣∣(undel)
x=−l+a

= 0, ψ p

∣∣∣(undel)
x=−l+a

= 0. (50)

The external forces acting on the right hand side of the sub-laminates can be considered as equivalent stress
resultants in accordance with Eqs. (29)–(30) and (31)–(33). In the lack of external forces in the axial direction,
two boundary conditions can be imposed for each theory:

(
Nx(1)

)∣∣∣∣
(del)

x=−l+a

= 0,

(
Nx(2)

)∣∣∣∣
(del)

x=−l+a

= 0,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reddy,
TSDT,
SSDT,
FSDT.

(51)
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In the lack of external bending moments, the caused equivalent bending moments can be formulated as:

(
K (del)

i j

)T ·
⎛
⎜⎝

Nx(i)
Mx(i)
Lx(i)
Px(i)

⎞
⎟⎠

∣∣∣∣∣∣∣

(del)

x=−l+a

= 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reddy: j = 1..6,
TSDT: j = 1..6, Bot. : i = 1,
SSDT: j = 1..4, Top. : i = 2,
FSDT: j = 1..2,

(52)

where K (del)
i j arranges the Ki j matrix elements of the delaminated part:

(
K (del)

i j

)T =
(
K (0)
i j K (1)

i j K (2)
i j K (3)

i j

)∣∣∣(del). (53)

And finally, according to Fig. 3, the top and bottom parts of the delaminated regions are subjected to Ft and
Fb forces, causing the following two boundary conditions for the Reddy’s TSDT:

(
K (del)

13

)T ·

⎛
⎜⎜⎜⎝

− ∂Nx(1)
∂x

− ∂Mx(1)
∂x + Qxz(1)

− ∂Lx(1)
∂x + 2Rxz(1)

− ∂Px(1)
∂x + 3Sxz(1)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

(del)

x=−l+a

= Fb,
{
Reddy, (54)

(
K (del)

26

)T ·

⎛
⎜⎜⎜⎝

− ∂Nx(2)
∂x

− ∂Mx(2)
∂x + Qxz(2))

− ∂Lx(2)
∂x + 2Rxz(2)

− ∂Px(2)
∂x + 3Sxz(2)

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

(del)

x=−l+a

= Ft,
{
Reddy, (55)

and causing two boundary conditions for the other theories:

(
Qx(1)

)∣∣∣∣
(del)

x=−l+a

= Fb,

(
Qx(2)

)∣∣∣∣
(del)

x=−l+a

= Ft,

⎧⎪⎨
⎪⎩
TSDT,
SSDT,
FSDT.

(56)

4 Displacements and stress distributions

Two different delamination scenarios are considered in this section in order to investigate the performance
of the higher-order shear deformable theories. In each end every case, according to the presented Fig. 1, the
analysis is carried out based on the novel semi-layerwise beam models. Moreover, to verify the obtained
analytical results finite element (FE) analyses with the so- called virtual crack closure technique (FE-VCCT)
are carried out [31], as well.

Regarding “Case I” delamination scenario, when the top and bottom sub-laminates are subjected to Ft = 10
N and Fb = −10 N external forces, the u in-plane displacement fields and the w deflections are depicted by
Fig. 5. As we can see, by using any kind of higher-order theories, the results show good agreement with the
finite element solution in connection with u in-plane displacement field. In terms of the w deflections the
agreement between the numerical and the analytical results is also quite good. The application of the higher-
order beam theories results only a bit smaller function values than the FEA solution. As it is also illustrated
by the highlighted part of the figure, the contribution of the higher-order theories to the deflection becomes
smaller and smaller by increasing the order of theory. Thus, the deflection improvement of the SSDT, TSDT
and Reddy’s TSDT compared with the FSDT is negligible. From this point of view, application of the higher-
order theories is not necessary. In order to present the essence of the higher-order beam theories, Fig. 6 depicts
further results regarding the σx normal and τxz shear stresses. The stresses are provided at the delamination
tip, separately at the undelaminated X = +0 [mm] and the delaminated X = −0 [mm] portions. As we can
see, certain stress discontinuities take place at the crack tip which result different σx normal and τxz shear
stress distributions on the sides. Based on Fig. 6a, apart from the singular nature of the numerical solution, σx
normal stresses are in good agreement with each other. Although, if we take a look at the delaminated part,
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a b

Fig. 5 Distribution of the u displacement at the delamination tip cross section (a) and comparison of the deflection along the
beam (b), “Case I”, Ft = 10 N and Fb = −10 N

a

b

Fig. 6 Distribution of the σx normal stresses (a) and the τxz shear stresses at the delamination tip cross section (b), “Case I”,
Ft = 10 N and Fb = −10 N.

the Reddy’s TSDT solution shows a little perturbation. It can only be explained by the rigorously imposed
traction-free conditions. The application of the higher-order beam theories becomes quite important only if
the τxz shear stresses are investigated. Based on Fig. 6b, by increasing the order of the solutions, the τxz shear
stress can be described with a more and more accurate way. If the exact description of the τxz shear stress at the
crack tip is important, the application of higher-order theories becomes inevitable. It is worth giving attention
to τxz shear stress distribution which is obtained by the Reddy’s TSDT. As it was discussed previously, it is
already able to satisfy the traction-free boundary conditions all along the top and bottom surfaces of the beam.
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a b

Fig. 7 Distribution of the u displacement at the delamination tip cross section (a) and comparison of the deflection along the
beam (b), “Case II”, Ft = 10 N and Fb = −10 N

a

b

Fig. 8 Distribution of the σx normal stresses (a) and the τxz shear stresses at the delamination tip cross section (b), “Case II”,
Ft = 10 N and Fb = −10 N

Although, it is important to emphasise, it cannot satisfy the boundary conditions at the bottom surface of the top
sub-laminate and at the top surface of the bottom sub-laminate. According to our computational experience, if
these conditions had been strictly imposed it would have resulted in over-constrained shear strain distribution
around the crack tip.

In the case of “Case II” scenario the structure is also loaded by Ft = 10 N and Fb = −10 N external
forces (Figs. 7, 8). Quite similarly to the “Case I” scenario, if only the deflection function is taken into account,
the application of SSDT and TSDT theories would not be important. Nevertheless, if the knowledge of τxz
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a

b c

Fig. 9 Defintion of the J -integral for plane problems (a). The application of the J -integral for semi-layerwise model using
zero-area concept and the inevitable extension (b). The opening (Mode-I) and the sliding (Mode-II) fracture modes (c)

shear stress distribution represents key role of the fracture mechanical investigation, the application of the
higher-order theories is unavoidable. Although, if we investigate the delaminated portion of the structure, the
perturbation caused by the Reddy’s TSDT solution is no longer negligible. Unfortunately, the traction-free
condition can significantly disturb the σx normal stress distribution.

5 J-integral

In order to perform in-plane fracture mechanical investigation the so-called J -integral can be applied [42].
Based on the basic definition, considering any arbitrary counterclockwise C contour around the crack tip, the
J -integral can be formulated as:

J =
∫

C

{
Un1 − σi j n j

∂ui
∂x1

}
ds, (57)

where U is the strain energy density, σi j are the components of the stress tensors, ui means the displacement
vector components, ds is the length increment along the contour and ni represents the components of the
outward unit vector in the given (X1 − X2) Cartesian coordinate system. The basic concept is depicted by
Fig. 9a. Moreover, considering only linear elastic fracture mechanics, the fundamental property of this integral
is the following [2]:

J = GT, (58)

where GT denotes the total energy release rate and J represents the value of the contour integral. Regarding
delaminated beams, and based on the discussed semi-layerwise approach, the J -integral can be calculated as
a zero-area path integral. The idea is depicted by Fig. 9b, where the n unit vector always remains parallel to
the X -axis. Finally, taking into consideration the actual coordinate system (X1 = −X and X2 = z(i)) and the
actual number of ESLs, the total value of the energy release rate becomes

GT =
2∑

i=1

ti /2∫

−ti/2

(
−1

2
σx(i)εx(i) + τxz(i)

(
1

2
γxz(i) − ∂w(i)

∂x

))∣∣∣∣
(undel)

x=−0
dz(i)

+
2∑

i=1

ti/2∫

−ti/2

(
1

2
σx(i)εx(i) − τxz(i)

(
1

2
γxz(i) − ∂w(i)

∂x

))∣∣∣∣
(del)

x=+0
dz(i).

(59)
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a b

Fig. 10 Linear function transformation of theσx function (a) and the obtained symmetrical and asymmetrical function components
of the field (b) for “Case I”

5.1 Mode partitioning

Many models were developed in the literature to perform mode partitioning in beam-type fracture specimens,
but generally these evaluation strategies, apart from the Suo–Hutchinson method [21], apply semi-analytical
considerations [34] or arbitrary assumptions to make the separation feasible [4,56]. Fortunately, the appli-
cation of the J -integral makes these type of considerations absolutely avoidable and provides a methodical
separation technique. For this purpose, we only have to separate the strain and stress fields into symmetrical
and asymmetrical function components with respect to the delamination plane:

f(sym) = f (+zd) + f (−zd)

2
, f(ant) = f (+zd) − f (−zd)

2
, (60)

where the (sym) and (ant) subscripts indicate the symmetrical and asymmetrical function components, respec-
tively [29]. To make it understandable, Fig. 10 represents an example based on a previously calculated stress
distribution function (TSDT solution of “Case I”). Finally, knowing the symmetrical and asymmetrical function
components of the field quantities [29], the mode-I fracture mode becomes

GI =
+t∫

−t

(
−1

2
σx(sym)εx(sym) + τxz(ant)

(
1

2
γxz(ant) − ∂w(ant)

∂x

))∣∣∣∣
(undel)

x=−0
dzd

+
+t∫

−t

(
1

2
σx(sym)εx(sym) − τxz(ant)

(
1

2
γxz(ant) − ∂w(ant)

∂x

))∣∣∣∣
(del)

x=+0
dzd ,

(61)

and the mode-II fracture mode can be calculated as:

GII =
+t∫

−t

(
−1

2
σx(ant)εx(ant) + τxz(sym)

(
1

2
γxz(sym) − ∂w(sym)

∂x

))∣∣∣∣
(undel)

x=−0
dzd

+
+t∫

−t

(
1

2
σx(ant)εx(ant) − τxz(sym)

(
1

2
γxz(sym) − ∂w(sym)

∂x

))∣∣∣∣
(del)

x=+0
dzd .

(62)

First of all, to verify the proposed evaluation technique, the mode mixity of a symmetrically delaminated
beam with unidirectional composite layers has to be investigated. The geometry of the beam is exactly the
same as it is depicted by Fig. 3, but in this test problem the ESLs consist of transversely isotropic layers. The
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a b

Fig. 11 Mode mixity of symmetrically delaminated transversely isotropic composite beam under different loading scenarios
using analytical (a) and numerical (b) solutions, a/ l = 1/3, 2h = 4.5 mm

Fig. 12 Mode mixity of different loading scenarios with different evaluation techniques. The delamination is located between 0
and ±30 layers, a/ l = 1/3, b = 20 mm, 2h = 4.5 mm

results, referring to Fig. 11, need no further explanations. Comparing to other solutions from the literature
[4,21,34,56], the developed higher-order evaluation techniques predict the mode mixity quite well .

For “Case I” delamination scenario, the obtained results are depicted by Fig. 12. As can be seen, under
different external loadings the FSDT, SSDT and TSDT solutions give results quite close to each other and
the Euler–Bernoulli-based evaluation techniques. Furthermore, the agreement with the numerical FEA-VCCT
solution is also quite good. Although, the application of Reddy’s TSDT significantly decreases the ratio of
the mode-I energy release rate. The difference can only be explained by the rigorously imposed traction-free
boundary condition. The caused σx perturbation, referring to Fig. 6, is no longer insignificant and it certainly
disturbs the ratio of the symmetrical and asymmetrical function components, as well.

Figure 13 gives result of the mode mixity evaluations for “Case II”. In general, we can state that the FSDT,
SSDT and TSDT are located between the Williams’ curvature based and the Reddy’s TSDT solutions. The
FSDT and the Luo-Tong theory predict almost the samemodemixity values as the FEM-VCCT. Unfortunately,
as in the delamination scenario discussed above, the application of Reddy’s TSDT significantly decreases the
ratio of the mode-I energy release rate, which can only be attributable to the σx perturbation in Fig. 8.

6 Conclusion

To analyse brittle interlaminar fracture in composite structures under mixed-mode I/II fracture conditions
first-, second-, third- and Reddy’s third-order shear deformable theories were discussed in this paper with
two ESLs. The displacement continuity between the ESLs was described and imposed by using the system
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Fig. 13 Mode mixity of different loading scenarios with different evaluation techniques. The delamination is located between 0
and 0 layers, a/ l = 1/3, b = 20 mm, 2h = 4.5 mm

of exact kinematic conditions. Using Reddy’s TSDT theory, the traction-free boundary condition was also
imposed along the top and bottom surfaces of the beam. As an example, a built-in configuration with different
delamination scenario subjected to different external loads was presented. To solve the higher-order beam
problems, the corresponding continuity and boundary conditionswere discussed. Based on the obtained results,
the mechanical fields at the delamination tip were provided and compared to each other. As a next step, to
calculate the GT total energy release rate and to perform in-plane mode mixity analysis, the J -integral with
zero-area path was introduced. By using symmetric and asymmetric decomposition of the mechanical fields,
a well-ordered evaluation technique was proposed.

The results of different higher-order theories, apart form the Reddy’s TSDT, were close to each other and
the Luo-Tong solution. Furthermore, these evaluation methods gave results between the Williams’ curvature
based and the Bruno-Greco solutions, which defined the most extreme mode ratios. Unfortunately, regarding
Reddy’s TSDT it was not true. The rigorously imposed traction-free condition significantly decreased the ratio
of mode-I energy release rate and it significantly disturbed the σx normal stress distribution in the thinner
sub-laminate.

Nevertheless, this paper is the first attempt to performmode separation by combining the higher-order theo-
ries with the J -integral. The next step could be the semi-layerwise approach- based finite element development
and the consideration of the transverse stretch modelling [52].
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Appendix A: Matrix elements—method of 2ESLs

A.1 Reddy’s third-order beam theory

This Appendix collects the nonzero Ki j matrix elements for the third-order beam theory.

A.1.1 Undelaminated region

K (0)
11 = −1

4

t2(2t1 + t2)

t1
, K (0)

12 = − 1

16
t22 (3t1 + 2t2), K (0)

14 = −1

4

t22
t1

, (A.1)
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K (0)
21 = 1

4

3t12 + t1t2 − t22
t1

K (0)
22 = 1

16
(2t2 + t1)(5t

2
1 − t1t2 − t22 ), (A.2)

K (0)
23 = −1

4
t32 , K (0)

24 = 1

4

t21 + t1t2 − t22
t1

, K (1)
11 = 1, K (1)

21 = 1, (A.3)

K (1)
22 = 3

4
t21 , K (1)

23 = −3
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A.1.2 Delaminated region
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A.2 Third-order beam theory

This Appendix collects the nonzero Ki j matrix elements for the third-order beam theory.
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A.2.2 Delaminated region

K (1)
11 = 1, K (1)

24 = 1, K (2)
12 = 1, K (2)

25 = 1, K (3)
13 = 1, K (3)

26 = 1. (A.15)

A.3 Second-order beam theory

In this Appendix the nonzero Ki j matrix elements for the second-order beam theory are presented.



2504 B. Kiss, A. Szekrényes

A.3.1 Undelaminated region
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A.4 First-order beam theory

This Appendix collects the nonzero Ki j matrix elements of the FSDT solution.

A.4.1 Undelaminated region
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