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Abstract
Neurogranin (Ng) is a post-synaptic protein that previously has been shown to be a biomarker for synaptic function 
when measured in cerebrospinal fluid (CSF). The CSF concentration of Ng is increased in Alzheimer’s disease dementia 
(ADD), and even in the pre-dementia stage. In this prospective study, we used an enzyme-linked immunosorbent assay that 
quantifies Ng in CSF to test the performance of Ng as a marker of synaptic function. In 915 patients, CSF Ng was evaluated 
across several different neurodegenerative diseases. Of these 915 patients, 116 had a neuropathologically confirmed definitive 
diagnosis and the relation between CSF Ng and topographical distribution of different pathologies in the brain was evalu-
ated. CSF Ng was specifically increased in ADD compared to eight other neurodegenerative diseases, including Parkinson’s 
disease (p < 0.0001), frontotemporal dementia (p < 0.0001), and amyotrophic lateral sclerosis (p = 0.0002). Similar results 
were obtained in neuropathologically confirmed cases. Using a biomarker index to evaluate whether CSF Ng contributed 
diagnostic information to the core AD CSF biomarkers (amyloid β (Aβ), t-tau, and p-tau), we show that Ng significantly 
increased the discrimination between AD and several other disorders. Higher CSF Ng levels were positively associated 
with greater Aβ neuritic plaque (Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) neuritic plaque 
score, p = 0.0002) and tau tangle pathology (Braak neurofibrillary tangles staging, p = 0.0007) scores. In the hippocampus 
and amygdala, two brain regions heavily affected in ADD with high expression of Ng, CSF Ng was associated with plaque 
(p = 0.0006 and p < 0.0001), but not with tangle, α-synuclein, or TAR DNA-binding protein 43 loads. These data support 
that CSF Ng is increased specifically in ADD, that high CSF Ng concentrations likely reflect synaptic dysfunction and that 
CSF Ng is associated with β-amyloid plaque pathology.
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Introduction

Synaptic density, and thus synaptic protein expression, is 
highest in the associative cortical areas, probably reflecting 
cognitive processing [4]. In Alzheimer’s disease dementia 

(ADD) these brain regions show synaptic dysfunction, 
degeneration, and loss; synaptic pathology occurs early 
in the disease process, perhaps even earlier than neuronal 
degeneration and loss [2, 10], which is supported by studies 
of a tauopathy mouse model [56]. In addition, neuropatho-
logical studies have shown that this synaptic dysfunction is 
more linked to memory dysfunction than plaque and tangle 
pathologies, which are the two major pathological hallmarks 
of ADD [3, 9, 29, 48].

Neurogranin (Ng) is a neuronal protein that is highly 
expressed in the cortex, hippocampus, and amygdala, with 
the highest concentrations at the dendritic spines [16, 42]. 
Since the discovery that Ng is present in CSF [8], and that 
levels are increased in ADD [50], several recent studies have 
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reported higher cerebrospinal fluid (CSF) Ng concentration 
in ADD and mild cognitive impairment (MCI) patients com-
pared to cognitively unimpaired elderly subjects [26–28, 43]. 
Further, other studies suggest that increased CSF Ng con-
centrations may be specific for ADD [25, 41, 53].

Recently, we showed that CSF Ng concentrations can 
predict the rate of cognitive decline in prodromal ADD and 
conversion from MCI to ADD [39]. Accordingly, CSF Ng 
seems to be a novel biomarker reflecting ADD-associated 
synaptic dysfunction, which may be used to improve early 
diagnosis and prognostication, as well as monitoring effects 
of disease-modifying drug candidates on synaptic status.

In CSF, Ng is present as several endogenous peptides of 
different lengths, as well as full-length protein (78 amino 
acids) [27]. To further explore CSF Ng as a biomarker for 
ADD, we optimized and validated an enzyme-linked immu-
nosorbent assay (ELISA) that quantifies C-terminal Ng pep-
tides and full-length Ng protein in CSF. Here we present 
results on CSF Ng in a very large clinical cohort including 
several different neurodegenerative diseases with a subset 
followed to autopsy for determination of the neuropathology 
definitive diagnoses. The specific hypotheses tested were 
that increased CSF Ng is specific to ADD, and that patients 
with autopsy-confirmed ADD have higher CSF Ng con-
centrations compared to patients with dementia with Lewy 
bodies (DLB), frontotemporal dementia (FTD), progressive 
supranuclear palsy (PSP) or amyotrophic lateral sclerosis 
(ALS). Last, we wanted to explore the relationship between 
CSF Ng concentrations and the topographical distribution 
of neuritic plaques and tau tangles in the brain.

Materials and methods

Subjects

Subjects included 75 controls (CTRL), 114 MCI, 397 ADD, 
6 posterior cortical atrophy (PCA), 96 FTD [46 behavioral 
variant FTD (bvFTD), 12 logopenic variant primary pro-
gressive aphasia (lvPPA), 20 non-fluent variant primary 
progressive aphasia (nfvPPA), 18 semantic variant PPA 
(svPPA)], 68 ALS, 37 Parkinson’s disease with normal cog-
nition (PD), 19 PD with MCI (PD MCI), 29 PD with demen-
tia (PDD), 33 DLB, 21 corticobasal syndrome (CBS), and 20 
PSP patients. Recruitment of the patients and diagnostic cri-
teria for the groups have been described previously in detail 
[20, 52, 55]. Demographic and biomarker characteristics 
of the patients included in the study are shown in Table 1. 
Patients were clinically evaluated at each clinical core [52] 
and current clinical criteria were used for diagnosis of AD 
[31, 32], bvFTD [40], PPA [15], CBS [1], PSP [17], ALS 
[46] and DLB [30]. The onset of disease was defined by the 
year reported by patients/family of functional impairment 

in cognitive/motor features. Standardized neuropsychologi-
cal assessments were collected by trained examiners at each 
center. All patients were evaluated at the clinical cores at 
the University Of Pennsylvania Perelman School Of Medi-
cine including the Penn Alzheimer’s disease core center, 
Frontotemporal degeneration center, Udall Center for Par-
kinson’s’ disease research and Amyotrophic lateral sclero-
sis center. CSF samples were collected in a standardized 
manner using the standard operating procedures of ADNI as 
described (http://www.adni-info.org/). Out of the 915 sub-
jects included in the study, 116 had a definitive diagnosis by 
neuropathology. The definitive diagnostic groups included 
ADD (n = 75), DLB (n = 16), FTD (n = 12), ALS (n = 7), and 
PSP (n = 6) subjects. The neuropathological data and criteria 
have been described elsewhere [19, 37, 51, 52]. See Online 
Resource 1 for demographics.

Genomic DNA was extracted from peripheral blood 
before death or frozen brain samples postmortem as 
described elsewhere [23]. APOE allele status was defined 
using two SNPs (rs7412 and rs429358) which were geno-
typed by TaqMan allelic discrimination assays (Thermo-
Fisher, USA).

Braak tau neurofibrillary tangle staging (PHF-1) and 
the Consortium to Establish a Registry for Alzheimer’s 
Disease (CERAD) neuritic plaque score (thioflavin stain) 
were used to classify ADD neuropathology into four groups 
as described previously [19, 21]: no (or negligible) ADD 
neuropathology (0), low-level ADD (1), intermediate-level 
ADD (2), and high-level ADD (3). For the determination of 
neuronal loss, the brain sections were stained with hema-
toxylin–eosin and Thal staging (nab228) (n = 114) was 
performed as described elsewhere [52]. An ABC score that 
incorporates histopathologic assessments of Aβ deposits 
(A), staging of neurofibrillary tangles (B), and scoring of 
neuritic plaques (C) was calculated as described [37].

Postmortem examination and scoring of tau, Aβ, 
α-synuclein, and TAR DNA-binding protein 43 (TDP-43) 
pathology were performed on amygdala and cornu ammonis/
subiculum-hippocampus as described elsewhere [52].

The Alzheimer’s Disease Core Center (ADCC), Penn 
Memory Center, the Frontotemporal Degeneration Center, 
the ALS Center, the Parkinson’s Disease and Movement 
Disorder Clinic, and the Penn Udall Center for Parkinson’s 
Research each have protocols approved by the institutional 
review board to recruit patients, along with their clinical 
data, into research studies. In addition, these centers invite 
patients to participate in the brain donation program.

CSF measurements

The generation and purification of the anti-Ng monoclonal 
antibodies (Mab) NG22 (epitope 63–75) and NG2 (epitope 
52–63) were performed as described previously [44]. 

http://www.adni-info.org/
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96-well plates were coated with 3 µg/mL (100 µL/well) of 
the Mab NG22 in 50 mM bicarbonate buffer (pH 9.6) and 
incubated overnight (16–18 h) at + 4 °C. After washing four 
times with 0.05% Tween 20 in PBS (PBS–Tween) (350 µL/
well), the remaining protein binding sites were blocked 
with 1% bovine serum albumin (BSA) in PBS (0.01 M 
phosphate buffer, 0.14 M NaCl, pH 7.4) for 1 h at + 20 °C 
(250 μL/well). Coated plates were then stored at − 20 °C. 
Prior to ELISA measurement, the plates were thawed and 
then washed with PBS–0.05% Tween four times (350 μL 
per well and wash), followed by addition of 100 µL of sam-
ples, controls, and calibrators to the plate. Recombinant full-
length Ng protein with a GST-tag was used as calibrator. 
The calibration curve ranged from 25.9 to 3310 pg/mL (1:2 
dilutions in 0.5% octyl beta-d-glucopyranoside, 1% BSA in 
PBS). The samples, blanks, and calibrators were incubated 
overnight at + 4 °C. Next day the plates were washed and 
then incubated for 1 h at 350 rpm (room temperature) with 
the detector antibody, biotinylated NG2 (2.7 µg/mL) in 1% 
BSA in PBS–Tween (100 µL/well). After another wash-
ing step, the plates were incubated for 30 min (room tem-
perature) with 100 µL/well of enhanced streptavidin–HRP 
(Kem En Tech #4740 N) diluted 1:20 000 in 1% BSA in 
PBS–Tween. The plates were then washed and color reac-
tion was started using 100 µL/well of substrate (TMB one, 
ready to use, Kem En Tech #4380A). After 20 min in dark 
the reaction was stopped using 100 µL/well of 0.2 M of 
 H2SO4 and the absorbance was measured at 450 nm (refer-
ence wavelength 650 nm) using an ELISA plate reader (Vmax, 
Molecular Devices, USA). A fitted four-parameter logistic 
model was used as the calibration curve (SoftMax Pro v. 
4.0, Molecular Devices, USA). The analyses were performed 
by board-certified laboratory technicians blinded to clinical 
information.

CSF collection, processing, and storage procedures have 
been described previously [45]. CSF Aβ42, total-tau (t-tau), 
and phosphorylated tau (p-tau) were measured using the 
multiplex xMAP Luminex platform (Luminex Corp, Aus-
tin, TX, USA) with the INNOBIA AlzBio3 kit (Innogenet-
ics, Ghent, Belgium) as described previously [45]. Subjects 
were classified as ADD biomarker positive or negative using 
previously established cutoffs (CSF Aβ42 < 192 pg/mL, CSF 
t-tau > 93 pg/mL) that maximized the separation of autopsy-
confirmed ADD cases with Aβ pathology from controls 
without Aβ pathology as described by Shaw et al. [45].

Statistical analysis

Statistical analyses were performed using GraphPad Prism 
7 and the R programming language (version 3.4.3), while 
the biomarker index model was developed using Python 3.6. 
Because biomarker values were skewed, non-parametric 
tests were used. Differences between groups were assessed 

using the non-parametric Kruskal–Wallis test followed by 
Dunn’s multiple-comparison test if significant. Because 
post hoc analysis involved a large number of comparisons, 
reported p values were adjusted using Holm–Bonferroni pro-
cedure to control the family-wise error rate. The associations 
of Ng with the other CSF biomarkers Aβ42, t-tau and p-tau 
were investigated with Spearman’s rank correlation  (rhos). 
All tests were two sided and significance threshold was set at 
p < 0.05. We investigated the relationship between CSF Ng 
and MMSE change per year while adjusting for age, sex, and 
disease duration using partial Spearman’s rank correlation. 
We tested this relationship in the whole study population, 
only the MCI group, and only the ADD group. Additionally, 
a biomarker index model was developed with the goal of 
accurately discriminating between two disease groups on 
the basis of their CSF biomarker measurements. The base-
line model included CSF Aβ42, CSF t-tau and CSF p-tau, 
and the Ng model included CSF Ng in addition to the three 
aforementioned CSF measurements. The discriminator itself 
is a support vector machine (SVM), see Online Resource 2 
for a detailed description.

Results

CSF Ng in AD and other diagnoses

CSF Ng concentrations were significantly higher in ADD 
compared to both MCI (p < 0.0001) and CTRL (p = 0.0001) 
while the concentrations were similar in CTRL and MCI 
(Fig. 1a). Based on previously defined cutoff concentrations 
for t-tau (93 pg/mL) and Aβ1-42 (192 pg/mL) [45], subjects 
were classified as AD biomarker positive or negative by cal-
culating a ratio between the two biomarkers (t-tau/Aβ1-42). 
A value of < 0.48 was considered as AD biomarker nega-
tive. When applying this cutoff on the CTRL group, the AD 
biomarker-positive CTRL subjects (n = 9) had significantly 
higher CSF Ng concentrations than the AD biomarker-
negative CTRL group subjects (n = 64, p = 0.03) (Fig. 1b). 
Subjects in the former group (n = 9) were excluded from 
the control group, as they were considered having preclini-
cal AD pathology. Similarly, the AD biomarker-positive 
ADD and MCI groups both had significantly increased CSF 
Ng concentrations compared to the biomarker-negative 
group (p < 0.0001 for both) (Fig. 1c, d). In addition, AD 
biomarker-positive DLB patients had significantly increased 
Ng concentrations compared to biomarker-negative DLB 
and ADD subjects (p = 0.0005 and p = 0.002, respectively) 
(Fig. 1e). The ADD and MCI biomarker-negative patients 
were excluded from further analysis (n = 83 and n = 74 for 
ADD and MCI, respectively).
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Relative to ADD, the Ng concentrations were signifi-
cantly lower in the PD (p < 0.0001), PD MCI (p = 0.005), 
PDD (p < 0.0001), DLB (p = 0.002), CBS (p = 0.03), and 
PSP (p = 0.004) (Fig. 2a). There were no significant dif-
ferences in CSF Ng concentrations between the atypical 
parkinsonian diagnosis (CBS and PSP), DLB, and PD. The 
ADD group had significantly higher Ng concentrations 
compared to both FTD (p < 0.0001) and ALS (p < 0.0001) 
(Fig. 2b). FTD is a pathologically heterogeneous entity 
that includes several related disorders in which progres-
sive degeneration of the frontal and temporal lobes is 
common [15, 40]. On the basis of clinical phenotypes, 
we divided the FTD group into the following subgroups; 
bvFTD and PPA of which the latter can be further divided 
into nfvPPA, lvPPA, and svPPA [15]. Compared to ADD, 
nfvPPA, svPPA, and bvFTD had significantly lower CSF 
Ng concentrations (p = 0.0004, p = 0.01, and p < 0.0001) 
(Fig. 2c). Interestingly, lvPPA had significantly increased 
concentrations compared to bvFTD (p < 0.02) and similar 

CSF Ng concentrations as ADD (Fig. 2c). In contrast, 
bvFTD had a tendency towards decreased CSF Ng con-
centrations compared to CTRL but this did not reach sta-
tistical significance (Fig. 2c).

To test if CSF Ng contributed additional information 
in the context of discriminating between neurodegenera-
tive disorders we developed a biomarker index model with 
the goal of accurately discriminating between two disease 
groups on the basis of their CSF biomarker measure-
ments (Aβ, t-tau, p-tau and Ng). We found that Ng signifi-
cantly increased the SVM model’s ability to discriminate 
between numerous pairs of disorders. More specifically, 
the inclusion of Ng led to an increase in 24% accuracy in 
distinguishing between CTRL and bvFTD, 3.6% increase 
for MCI vs bvFTD, and 9.5% increase for PD vs bvFTD. 
Including Ng also led to a 7.7% increase in accuracy in 
distinguishing between MCI and PD, 6.4% increase for 
MCI vs PD MCI, and 4.3% increase for MCI vs PDD (see 
Online Resource 3).

Fig. 1  a Scatterplots displaying the CSF Ng concentrations in ADD, 
MCI and CTRL. The CTRL (b), ADD  (c) MCI (d)  and DLB (e) 
groups were divided into biomarker positive (+) or negative (−) for 
ADD based on previously established cutoff concentrations for t-tau 

and Aβ42 [45]. The bars presented in the figures are medians with 
interquartile ranges and comparisons between groups were performed 
using Kruskal–Wallis test, followed by the Mann–Whitney U test
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CSF Ng in relation to tau and Aβ

t-tau correlated positively with CSF Ng in all diagnos-
tic groups except in PSP, PCA and lvPPA (see Table 2 
for  rhos and p values). p-tau correlated with CSF Ng 
in CTRL  (rhos = 0.39), MCI  (rhos = 0.60), and ADD 
 (rhos = 0.56) (p < 0.001 for all groups) as well in PD MCI 
 (rhos = 0.52, p < 0.05), DLB  (rhos = 0.56, p < 0.01), and 
bvFTD  (rhos = 0.49, p < 0.01) but not in the other diagno-
ses (Table 2). CSF Ng concentration showed a weak nega-
tive correlation with CSF Aβ42 in ADD  (rhos = −0.15, 
p = 0.004) while a stronger positive correlation with CSF 
Aβ42 was found in ALS  (rhos = 0.48, p < 0.0001) (Fig. 3a, 
b). There were no correlations between CSF Ng and Aβ42 
in the other groups.

CSF Ng in relation to MMSE

While controlling for age, gender, and disease duration, 
we found a significant association between CSF Ng con-
centration and longitudinal decline in MMSE scores per 
year in the whole study population  (rhos = 0.17, p = 0.001) 
(Fig. 4a). In the ADD group there was a suggestive rela-
tionship without covariate adjustment  (rhos = 0.12, 
p = 0.085) which was no longer observed after covariate 
adjustment  (rhos = 0.07, p = 0.3) (Fig. 4b). There was a 
significant relationship in the MCI group  (rhos = 0.45, 
p = 0.001) (Fig. 4c). CSF Ng concentrations did not cor-
relate with rates of change in MMSE in the FTD, ALS, or 
PD groups.

Fig. 2  Scatterplots displaying 
the CSF Ng concentrations in a 
biomarker-positive ADD, PD, 
PD MCI, PDD, DLB CBD and 
PSP and b biomarker-positive 
ADD, FTD and ALS. c Scat-
terplots showing the CSF Ng 
concentrations after that the 
FTD group was divided into the 
subgroups PPA log, PPA PNFA, 
PPA SD and bvFTD. The 
bars presented in the figures 
are medians with interquar-
tile ranges and comparisons 
between groups were performed 
using Kruskal–Wallis test, fol-
lowed by the Mann–Whitney U 
test. The dashed lines represent 
the median for biomarker-nega-
tive CTRL
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CSF Ng in relation to APOE genotype

When grouping according to the number of APOE ε4 
alleles, CSF Ng increased in a gene dose-dependent 
manner with the highest Ng concentrations in the group 
homozygous for the ε4 allele (Fig. 5a). CSF Ng concen-
trations were also strongly associated with the number 
of copies of the ε4 allele within the ADD group with the 
highest concentrations in the group having two copies 
of the ε4 allele (p = 0.002) (Fig. 5b). There was a trend 
towards increased CSF Ng concentrations with increasing 
number of APOE ε4 alleles within the MCI group, but 
this did not reach statistical significance (Fig. 5c).

CSF Ng in relation to autopsy‑confirmed patients

In the autopsy-confirmed cases with definitive diagnoses, 
CSF Ng was significantly increased in ADD compared to 
DLB (p = 0.03), frontotemporal lobar degeneration FTLD 
(p = 0.006), and ALS (p = 0.03) (Fig. 6a). We also exam-
ined the association between CSF Ng and the burden of 
neurofibrillary tangles and plaques in the brain. Braak neu-
rofibrillary staging and CERAD were used to classify the 
neuropathology into four groups as described previously 
[37] ranging from no AD to high-level AD pathology. In 
this analysis, CSF Ng was significantly increased in the 
high-level pathology AD group having most widespread 
tau (p = 0.0007) and Aβ plaque (p = 0.0002) pathology com-
pared to no (or negligible) AD pathology (Fig. 6b, c).

Since Ng is highly expressed in the cerebral cortex, hip-
pocampus and amygdala, which are the same brain regions 
that are affected in ADD [42], we investigated the relation-
ship between CSF Ng concentrations and neuropathology 
findings in amygdala and hippocampus. While there were 
no associations between CSF Ng and tau neurofibrillary 
tangles, α-synuclein, or TDP-43 load in amygdala or hip-
pocampus, we found that higher Aβ plaque load in the amyg-
dala and hippocampus correlated with increasing CSF Ng 
concentrations (p < 0.0001 in amygdala and p = 0.0006 in 
hippocampus) (Fig. 6d, e). In addition, we also found an 
association between CSF Ng concentrations and neuronal 
loss in the hippocampus (p = 0.04) (Fig. 6f) while there were 
no association between CSF Ng and neuronal loss in the 
amygdala.

Next we averaged CSF Ng values for subjects with post-
mortem evaluation of AD pathology according to a pathol-
ogy classification table as previously described [37]. We 
then aggregated CSF Ng values over each pathology stage 
for each of the three classification schemes to understand the 
relationship between CSF Ng and each classification scheme 
individually. We found a significant difference in CSF Ng 
concentrations between the different pathology stages in the 

Table 2  Correlations between CSF Ng and tau

The values are Spearman’s rank correlation coefficient
*p < 0.05, **p < 0.01, ***p < 0.001

Clinical diagnosis t-tau p-tau

CTRL 0.61*** 0.39***
MCI 0.79*** 0.60***
ADD 0.77*** 0.56***
PD MCI 0.51* 0.52*
PD 0.75*** 0.14
PDD 0.48** 0.18
PCA 0.3 − 0.3
DLB 0.77*** 0.56**
CBS 0.87*** 0.2
PSP 0.37 − 0.26
ALS 0.48*** − 0.097
bvFTD 0.57*** 0.49**
lvPPA 0.64 0.33
nfvPPA 0.76** 0.19
svPPA 0.80** 0.35

Fig. 3  Correlations between 
CSF Ng concentrations and 
Aβ42 in clinically diagnosed 
ADD (a) and clinically diag-
nosed ALS (b) patients. The 
dashed lines represent the 95% 
confidence bands of the best-fit 
line. The associations were 
investigated with Spearman’s 
rank correlation
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Thal stage (H = 22.75, p < 0.0001), as well as in the Braak 
stage (H = 27.32, p < 0.0001), and in the CERAD score 
(H = 25.50, p < 0.0001) (Fig. 7). After post hoc analysis, 
there was a significant difference in CSF Ng between stages 

0 and 3 (p = 0.0003) and between stages 1 and 3 (p = 0.02) 
in Thal staging, along with a significant difference between 
stages 2 and 3 which was no longer significant after multi-
ple comparisons correction (p = 0.03 before, p = 0.12 after). 

Fig. 4  Correlations between 
CSF Ng concentrations and loss 
in MMSE points/year in a all 
subjects included in the study, b 
clinically diagnosed ADD and c 
clinically diagnosed MCI. The 
dashed lines represent the 95% 
confidence bands of the best-fit 
line. The associations were 
investigated with Spearman’s 
rank correlation

Fig. 5  Scatterplots displaying the CSF Ng concentrations in patients 
having zero, one or two APOE ε4 alleles in a all subjects included 
in the study b clinically diagnosed ADD and c clinically diagnosed 

MCI. The bars presented in the figures are medians with interquar-
tile ranges and comparisons between groups were performed using 
Kruskal–Wallis test, followed by the Mann–Whitney U test
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For Braak staging, there was a significant difference in CSF 
Ng between stages 0 and 3 (p < 0.0001) and between stages 
1 and 3 (p = 0.002), along with a significant difference 
between stages 0 and 2 which was no longer significant after 
multiple comparisons correction (p = 0.04 before, p = 0.18 
after). Finally, in the CERAD scheme there was a significant 
difference in CSF Ng between stages 0 and 3 (p < 0.0001) 
and a nearly significant difference between stages 1 and 3 
(p = 0.054).

Discussion

Here, we report on CSF Ng concentrations in both clinically 
diagnosed and in neuropathologically confirmed subjects, 
and show that CSF Ng concentrations were significantly 

Fig. 6  Scatterplots displaying the CSF Ng concentrations in rela-
tion to a autopsy confirmed cases, b tau neurofibrillary tangles, c Aβ 
neuritic plaques, d Aβ neuritic plaques in amygdala, e Aβ neuritic 
plaques in hippocampus, and f neuronal loss in hippocampus. The 

bars presented in the figures are medians with interquartile ranges and 
comparisons between groups were performed using Kruskal–Wallis 
test, followed by the Mann–Whitney U test

Fig. 7  (a) A heat map displaying the mean CSF Ng concentrations 
for 114 autopsy-confirmed subjects as defined by the ABC classifi-
cation scheme. The ABC score incorporates histopathologic assess-
ments of Aβ deposits (A), staging of neurofibrillary tangles (B), and 
scoring of neuritic plaques (C). a NFT stage should be determined 
by the method of Braak [5, 6], b Aβ/amyloid plaque score should be 
determined by the method of Thal et al. [49], c Neuritic plaque score 
should be determined by the method of CERAD [35]
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higher in ADD compared to DLB, FTD and ALS. Further, 
increased CSF Ng concentrations correlated with increased 
Aβ plaque load, specifically in the hippocampus and amyg-
dala, probably reflecting synaptic damage induced by aggre-
gation of Aβ and accumulation in plaques.

CSF Ng is a well-replicated biomarker for ADD (http://
www.alzfo rum.org/alzbi omark er). As Ng is expressed in 
dendrites and as CSF Ng concentrations correlate with mem-
ory impairment and reduced cerebral glucose metabolism in 
ADD-affected brain regions [39], this biomarker has been 
proposed to reflect synaptic dysfunction in ADD. Impor-
tantly, CSF Ng appears to be an ADD-specific biomarker; 
its concentration is unaltered or even reduced in several neu-
rodegenerative diseases, including FTD, PD and atypical 
parkinsonian disorders [25, 41, 53]. Here, we re-examine the 
ADD specificity of CSF Ng in a large cross-sectional serie 
of neurodegenerative diseases. We extended the analysis by 
examining the marker in pathologically confirmed cases and 
assessed its correlation with several pathological changes 
in the brain.

A common feature in several neurodegenerative dis-
eases affecting memory is the presence of brain amyloido-
sis, including plaques (Aβ), tangles (tau) and Lewy bodies 
(α-synuclein), and neuropathological studies have shown 
that ADD patients often have other concomitant patholo-
gies, besides plaques and tangles [12, 24, 37]. We found 
increased CSF Ng concentrations with increased Thal, 
CERAD and Braak scores demonstrating that Ng is linked 
to the ADD pathology. Our results also suggest that CSF Ng 
values began to differentiate relatively earlier in Braak stag-
ing (between stages 0 and 2) compared to the others, while 
CSF Ng differentiation between stages persisted relatively 
late in Thal staging (between stages 2 and 3). CSF Ng con-
centrations differentiated least in CERAD scores compared 
to the others. We also show that increased plaque load in the 
hippocampus and amygdala was paralleled by increased CSF 
Ng concentrations while there was no association between 
tau, α-synuclein or TDP-43 pathology and CSF Ng. These 
data support the hypothesis that Aβ neurotoxicity specifi-
cally affects synaptic function, and that plaque pathology 
associated with cognition can be translated into high CSF 
Ng concentrations. In addition, we found a weak negative 
correlation between CSF Aβ and CSF Ng concentrations in 
the ADD group. These data further support the association 
between CSF Ng and plaque load. The deposition of Aβ into 
plaques leads to a lowering of CSF Aβ42 concentrations, 
while CSF Ng is believed to increase as a consequence of 
synaptic dysfunction and degeneration. There was also an 
association between neuronal loss in hippocampus and CSF 
Ng in the groups with negligible ADD neuropathology and 
low-level ADD which may reflect that the neuronal loss at 
early stages is most dynamic. However, this needs to be fur-
ther evaluated and confirmed in additional studies.

We found that CSF Ng concentrations in ADD were 
higher in patients having one or two copies of the APOE 
ε4 allele compared to non-carriers. The same trend was 
observed for the MCI group but there was no statistically 
significant difference between the groups, which may be due 
to low number of patients included. This is in agreement 
with a previous study and shows that the number of copies 
of the ε4 allele may be associated with synaptic dysfunction 
which is reflected in the CSF as higher Ng concentrations 
[47]. One explanation could be that ADD patients with two 
copies of the ε4 allele have an increased plaque load com-
pared to patients with no ε4 allele [11]. Thus, the number of 
ε4 allele copies affects the amount of plaques (and/or neuro-
toxic Aβ species) which in turn induces synaptic pathology.

There was a significant association between the CSF Ng 
concentration and rate of cognitive decline, as measured by 
drop in MMSE scores per year in the MCI group. This is in 
agreement with previous studies [27] again showing that Ng 
is linked to synaptic function and cognition at early stages.

We show that increased CSF Ng concentration occurs 
only in ADD and not in the other neurodegenerative dis-
orders investigated in this study. One exception was lvPPA 
which displayed similar CSF Ng concentrations as those 
found in ADD. A plausible explanation is that a large num-
ber of lvPPA patients actually have ADD pathology [20, 33]. 
However, there were no correlations between CSF p-tau, 
t-tau, or Aβ42 with CSF Ng in the lvPPA group. Future 
studies should investigate pathology-confirmed lvPPA cases 
with regional plaque distribution to establish if this finding 
still holds.

The CSF Ng concentrations were significantly increased 
in ADD compared to svPPA and nfvPNFA but also increased 
in lvPPA compared to bvFTD. This may be explanted by that 
svPPA and nfvPNFA are more predictive of FTLD-TDP and 
FTLD-tau, respectively. Thus, the finding reflects that lvPPA 
patients are likely atypical variants of ADD [13]. In addition, 
out of the 12 lvPPA patients included in the study, ten had 
available CSF Aβ42 and t-tau concentrations measurements 
and eight of these were ADD biomarker positive, further 
supporting this statement.

bvFTD and PPA are diagnosed according the appearance 
of the symptoms. In the present study, CSF Ng concentra-
tions in bvFTD were significantly lower than in ADD and 
lvPPA but also lower compared to CTRL which is in agree-
ment with a previous study [53]. In addition, there were no 
correlations between CSF Ng and the core CSF ADD bio-
markers in bvFTD. However, adding CSF Ng to the core AD 
biomarkers (Aβ, t-tau and p-tau) significantly increased the 
accuracy in distinguishing between CTRL and bvFTD and 
MCI vs bvFTD. Thus, adding CSF Ng to the core AD bio-
markers (Aβ, t-tau and p-tau) adds diagnostic information. 
Further studies are warranted to confirm these findings since 

http://www.alzforum.org/alzbiomarker
http://www.alzforum.org/alzbiomarker
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the pathological heterogeneity of bvFTD may contribute to 
the results [22].

Interestingly, there was a strong positive correlation 
between CSF Aβ42 and Ng levels in the ALS group and 
at the same time, CSF Ng concentrations were signifi-
cantly lower in ALS compared to ADD and even slightly 
lower than in CTRL. It is known that a small percentage 
of ALS patients have ADD pathology [7] and it was shown 
recently that both amyloid precursor protein (APP) and 
intracellular Aβ are overexpressed in the hippocampus in 
ALS compared to CTRL [14]. In animal models of ADD it 
has been shown that increasing the soluble APP fragment 
cleaved by α-secretase may improve cognition and rescue 
long-term potentiation (LTP) [34, 38]. Ng has also been 
shown to be associated with cognition and to play a role 
in LTP [18, 36, 54]. In addition, there was no correlation 
between neuritic plaque load and the CSF Ng concentra-
tions in ALS. Thus, it is tempting to speculate that APP is 
involved in cell survival in ALS and that increased APP 
and Aβ expression in ALS, without plaque pathology, is 
reflected as low concentrations of CSF Ng which in turn 
reflect prosperous synapses. Further studies are warranted 
to confirm these findings.

When evaluating novel CSF biomarkers for ADD, it is 
important to consider that concomitant pathologies are com-
mon, especially in elderly patients with dementia. To test 
CSF Ng as a specific biomarker for ADD, we investigated 
its performance in ADD and other neurodegenerative disease 
cases with definitive diagnoses determined by postmortem 
examination. However, the number of patients was low in 
some groups. Thus, larger studies including neuropathology 
confirmed patients are warranted.

The study has a number of limitations that should be 
acknowledged. First, the sample size in some subgroups 
was small and the risk of false-positive statistical test war-
rants replication of the most interesting findings. There-
fore, interpretation should be made with caution. Second, 
although our study replicates the specificity of CSF Ng for 
ADD, a number of novel findings regarding what CSF Ng 
may add to other markers need to be replicated in independ-
ent cohorts. Thus, in the future, we will seek verification of 
these results in other, independent datasets to investigate 
their clinical relevance.

Some of the highest CSF Ng levels were found in two 
individuals in the CTRL group. Data from neuropathological 
examination were not available and, therefore, it is unknown 
whether these high levels are due to that these individuals 
have AD, or possibly other forms of pathology, a change in 
the overall clearance and production of Ng, or possibly if the 
very high values have analytical or technical explanations.

In conclusion, CSF Ng is a biomarker specifically reflect-
ing synaptic pathology in ADD and its concentration is 
linked to the extent of plaque pathology in the hippocampus 

and amygdala. The findings support the use of CSF Ng as a 
biomarker for diagnosing ADD and also for treatment trials, 
where disease-modifying drugs are evaluated, to monitor if 
treatment restores synaptic function in the patients.
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