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smaller regions or with single-model signals, indicating the 
large uncertainty in regional SWE changes, possibly due to 
stronger influence of natural climate variability.
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1  Introduction

Snow, with its large areal extent next to sea ice among cry-
osphere components, is important for regional and global 
land–atmosphere processes and water balance. Snow cover 
extent (SCE) modifies the surface albedo, thermal conduc-
tivity, heat capacity, and aerodynamic roughness (Gong 
et al. 2004; Hancock et al. 2013) and thus also influences 
the atmospheric circulation. The Northern Hemisphere 
has about 98 % of the global snow cover (Armstrong and 
Brodzik 2001), which has a strong seasonal cycle and 
ranges (on average for 1966–2004) from 44.2 million 
km2 in January to 1.9 million km2 in August (Lemke et al. 
2007). Snow water equivalent (SWE), a more comprehen-
sive parameter than SCE that takes into account snow depth 
and density, has a direct influence on the hydrologic cycle 
and water supply in snowmelt-dominated regions (Barnett 
et al. 2005; Egli et al. 2009; Takala et al. 2011; Gan et al. 
2013).

Observations of SCE are available from ground mete-
orological stations since 1880s over the former Soviet 
Union and North America, and from satellite-based obser-
vations since 1967 over the Northern Hemisphere (Brown 
2000; Brown and Robinson 2011). According to the Inter-
governmental Panel on Climate Change (IPCC 2013), the 
spring (March–April) SCE for the Northern Hemisphere 
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storage and supply in snowmelt-dominated regions. This 
study evaluates the temporal evolution of snow water 
equivalent (SWE) for the February–April spring period 
using the GlobSnow observation dataset for the 1980–2012 
period. The analysis is performed for different regions of 
hemispherical to sub-continental scales for the Northern 
Hemisphere. The detection–attribution analysis is then per-
formed to demonstrate anthropogenic and natural effects 
on spring SWE changes for different regions, by compar-
ing observations with six CMIP5 model simulations for 
three different external forcings: all major anthropogenic 
and natural (ALL) forcings, greenhouse gas (GHG) forc-
ing only, and natural forcing only. The observed spring 
SWE generally displays a decreasing trend, due to increas-
ing spring temperatures. However, it exhibits a remark-
able increasing trend for the southern parts of East Eura-
sia. The six CMIP5 models with ALL forcings reproduce 
well the observed spring SWE decreases at the hemispheri-
cal scale and continental scales, whereas important differ-
ences are noted for smaller regions such as southern and 
northern parts of East Eurasia and northern part of North 
America. The effects of ALL and GHG forcings are clearly 
detected for the spring SWE decline at the hemispherical 
scale, based on multi-model ensemble signals. The effects 
of ALL and GHG forcings, however, are less clear for the 
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has decreased on average by 1.6  % per decade for the 
1967–2012 period. Shrinkage of spring SCE over the last 
few decades has also been reported for the Arctic region 
(Brown et al. 2010), East Europe (Bednorz 2004), and the 
Northern Hemisphere (Brown 2000; Brown and Robinson 
2011). Observations of SWE are generally shorter than 
those of SCE and are available from satellite-based passive 
microwave measurements and ground measuring stations 
since 1979 to present over the Northern Hemisphere. Based 
on the satellite-based datasets, several studies (e.g., Luojus 
et al. 2011; Gan et al. 2013; Li et al. 2014) have reported 
decline of spring SWE during the last three decades over 
the Northern Hemisphere.

This study focuses on detection and attribution (D–A) 
on spring SWE changes for the Northern Hemisphere. The 
D–A approach includes a ‘detection’ process to demonstrate 
whether observed changes in a climate variable are outside 
of internal climate variability and an ‘attribution’ process 
demonstrates whether the detected change is consistent with 
the changes simulated by global climate models based on 
anthropogenic forcings such as greenhouse gases and sul-
fate aerosol (Stott et  al. 2010; Hegerl and Zwiers 2011). 
Based on the D–A analysis, anthropogenic contributions 
to the shrinkage of spring SCE have been demonstrated 
over the Northern Hemisphere (Bindoff et  al. 2013; Rupp 
et al. 2013; IPCC 2013). However, attributions of anthropo-
genic effects to the decline of spring SWE have been dem-
onstrated only for Western U.S., based on the analysis of 
snow course measurements and two different global climate 
model simulations (Pierce et  al. 2008), and have not been 
done for the remaining Northern Hemisphere regions from 
Hemisphere to sub-continental scales. It is notable that the 
D–A analyses for the spring SCE change have been demon-
strated only for the Northern Hemisphere scale.

In this study, the temporal evolution of spring (Febru-
ary–April) SWE over the Northern Hemisphere land-sur-
face area is evaluated using the GlobSnow SWE (v2.0) 
observation dataset for the 1980–2012 period. Trends in 
the spring SWE are investigated at various spatial scales 
from local (i.e., 5° ×  5° grid cell) to hemispherical (i.e., 
north of 45°N) scales. The D–A approach is then applied 
to demonstrate the anthropogenic and natural effects on the 
spring SWE changes, by comparing the observations with 
six CMIP5 (Coupled Model Intercomparison Project phase 
5) model simulations that consider (1) all major anthro-
pogenic and natural forcings; (2) greenhouse gas forcing 
only; and (3) natural forcing only.

2 � Datasets and preprocessing

The SWE data considered in this study is the GlobSnow 
v2.0, which is the latest version released by the European 

Space Agency (ESA 2014). This dataset is derived based 
on the Pulliainen assimilation methodology (Pulliainen 
2006, Takala et al. 2011) and utilizes two different satellite-
based passive radiometer data [i.e., Scanning Multichan-
nel Microwave Radiometer (SMMR) and Special Sensor 
Microwave/Imager (SSM/I)] combined with ground-based 
meteorological station data, covering the September 1979 
to the present period. The GlobSnow dataset is selected 
as the observed dataset in this study as it is a combination 
of earth observation and ground data and reproduces well 
maximum accumulation and seasonal cycle of SWE com-
pared to the other earth observation derived products such 
as NASA/JAXA’s AMSR-E/Aqua Daily L3 Global Snow 
Water Equivalent EASA-Grids (AE_DySno) and NSIDC’s 
Global EASE-Grid 8-day Blended SSM/I and MODIS 
Snow Cover (NSIDC-0321) (Hancock et al. 2013; Li et al. 
2014). The GlobSnow dataset provides monthly time series 
of SWE for the Northern Hemisphere land surface, exclud-
ing mountainous regions, glaciers, and Greenland, at a spa-
tial resolution of 25 km (Fig. 1a). Luojus et al. (2011) eval-
uated the monthly GlobSnow SWE product by comparing it 
to ground observations from 1264 former Soviet Union and 
Russian stations for the 1979–2000 period, and they report 
good agreement with a root mean squared error of 32.8 mm 
for SWE values ranging between 0 and 150 mm. Li et al. 
(2014) compared the monthly GlobSnow and NSIDC SWE 
products to ground observations from 7388 Global Histori-
cal Climatology Network-Daily (GHCN-DAILY) weather 
stations and reported much better accuracy of GlobSnow 
dataset than NSIDS for SWE values ranging between 30 
and 200 mm. However, GlobSnow SWE generally showed 
underestimation in the above two studies, for SWE larger 
than 100  mm, as the passive microwave SWE retrieval 
algorithms do not have the ability to detect deep snow. In 
this study, we focus on the landmass north of 45°N, as it is 
predominantly snow covered until the end of April.

A reference grid of 5°  ×  5° resolution covering the 
Northern Hemisphere is established to facilitate the assess-
ment. Monthly SWE series for each grid cell of this ref-
erence grid is obtained by averaging monthly SWE series 
of the 25 km resolution pixels within the grid cell, for the 
1980–2012 period. The number of pixels is different for 
each grid cell, based on the location and area of the grid 
cell (see Fig. 1b). This study considers land grid cells with 
more than 60 pixels for the analysis. Figure 1c shows mean 
February–April SWE for the 1980–2012 period for the grid 
cells included in this assessment.

Large regions encompassing several reference grid 
cells, from hemispheric scale to sub-continental scales, 
are defined for the analysis. The hemispheric scale region 
covers all land points north of 45°N, and will be referred 
to as region (A). Two sub-hemispheric scale regions are 
defined: southern (S) region, between 45°N–60°N and 
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northern (N) region between 60°N–90°N. Three continen-
tal scale regions are defined: West Eurasia (WE) between 
45°N–90°N and 30°W–60°E, East Eurasia (EE), covering 
area enclosed by 45°N–90°N and 60°E–175°W, and North 
America (NA) covering 45°N–90°N and 175°W–30°W. 
Three southern sub-continental (WES, EES, and NAS) and 
three corresponding northern sub-continental (WEN, EEN, 
and NAN) regions are defined within the three continental 
regions (see Fig. 1d). These continental and sub-continen-
tal regions are defined following Wan et  al. (2015). The 
monthly SWE series representing each region is then pre-
pared by area-weighted averaging of the monthly series of 
grid cells that fall within the respective region.

Temporal evolutions of temperature and precipitation 
are also evaluated for the reference domain land points for 
the 1980–2012 period, to investigate the effects of these 
parameters on SWE changes. Gridded monthly anomalies 
of temperature for the 5°  ×  5° reference resolution are 
directly obtained from the Climatic Research Unit (CRU) 
CRUTEP3 dataset (Brohan et  al. 2006). Gridded monthly 
precipitation is obtained from the 1° × 1° resolution Global 
Precipitation Climatology Centre (GPCC) dataset (Schnei-
der et al. 2014) and up-scaled to the 5° × 5° reference grid.

Simulated SWE datasets are obtained from CMIP5 
multi-model ensemble (Taylor et  al. 2012). Many CMIP5 
models provide historical simulation outputs from 1850 
to 2005. This study employs six CMIP5 models (Table 1), 

which provide simulation outputs untill 2012, to maximize 
record length for the D–A analysis. From the six CMIP5 
models, the following ensembles are considered in this 
study: 33 simulations with all major anthropogenic and 
natural forcings (ALL; ‘historical’ experiment), 23 simu-
lations of greenhouse gas forcing only (GHG; ‘historical-
GHG’ experiment), and 23 simulations of natural forcing 
only (NAT; ‘historicalNat’ experiment). Unforced control 
simulation (CTL; ‘piControl’ experiment) of 3000  years 
length is prepared by obtaining 500 years of CTL simula-
tions from each CMIP5 model. Since the six CMIP5 mod-
els have different spatial resolutions (Table  1), monthly 
series of SWE are prepared by using the same procedures 
applied to the GlobSnow SWE dataset. Temporally filtered 
(i.e., 3 year mean area-averaged) SWE anomaly time series 
for CMIP5 and observations are then prepared for the 12 
different regions discussed earlier for the D–A analysis.

Figure 2a presents the ensemble mean of February–April 
SWE for the six CMIP5 models, for the ALL forcing case 
for the 1980–2012 period. The six CMIP5 models simulate 
the observed spatial pattern with spatial correlation coeffi-
cients with observation in the 0.43 to 0.73 range. Among 
the six CMIP5 models, CanESM2 and NorESM1-M yield 
the highest and the lowest spatial correlation coefficients, 
respectively, with observation. The six CMIP5 models gen-
erally overestimate SWE for all sub-continental regions, 
expect for NorESM1-M for the ‘WES’, ‘NAS’, and ‘WEN’ 

Fig. 1   a Spatial distribution 
of GlobSnow pixels (red dots), 
b the number of GlobSnow 
pixels for the gridcells of the 
5° × 5° resolution reference 
domain, and c February–April 
GlobSnow SWE means (mm) 
for the 1980–2012 period on 
the reference gird. The six sub-
continental regions defined for 
analysis are presented in (d)

(a) (b)

(c) (d)

NAS NAN
EES

[mm]
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regions, explaining the lowest spatial correlation of this 
model with observation. Models generally yield large posi-
tive biases for northern sub-continental regions, such as 
GISS-E2-H and GISS-E2-R for ‘WEN’ and BCC_CSM1-1 
and NorESM1-M for ‘NAN’.

3 � Methodology

Linear trends (decrease/increase) in spring SWE, tempera-
ture, and precipitation are investigated by using simple 
linear regression analysis with the ordinary least squares. 
The linear trends and their statistical significances at the 
two-tailed 90 % confidence level are estimated based on the 
t-statistics at the reference grid-cell and the regional scales.

The optimal fingerprinting D–A approach discussed in 
Allen and Stott (2003), Min et al. (2008) and Zhang et al. 
(2013) is used in this study. In this approach, the tempo-
rally filtered version of observation y is regressed against 
the simulated response patterns to the externally forced sig-
nals X with internal variability ε: y = Xβ + ε. The scal-
ing factors (β) are estimated for the signals X prepared 
from both multi-model ensemble means and single-model 
ensemble means obtained from the six CMIP5 model simu-
lations. It is well-known that the multi-model ensemble 
generally gives more robust detection results than a sin-
gle model (Gillett et  al. 2002), which is investigated with 
respect to spring SWE changes in this study. Residual 
consistency test is used to evaluate modeled internal vari-
ability. The uncertainty ranges of the scaling factors can be 
assessed by the internal variability ε, estimated from the 
long CLT simulation with no variations in external forcing 
and the empirical orthogonal functions (EOFs) are gener-
ally used to reduce the dimension of the data and improve 
the estimate of internal climate variability (Allen and Tett 
1999; Ribes et al. 2013). In this study, the scaling factors β 
and their uncertainty are estimated by the total least squares 

method and the residual consistency test based on the regu-
larized optimal fingerprinting (ROF) technique, which can 
produce better results than the standard EOF approach in 
a mean square error sense, by using a specific estimate of 
the covariance matrix of the internal climate variability ε 
instead of decreasing the dimension by the EOFs (Ribes 
et al. 2013). Observed change is argued to be attributed in 
part to the external forcing when the 5–95  % confidence 
range of the scaling factor includes unity and excludes 
zero, as the observed and simulated changes are consist-
ent in magnitude (Min et al. 2008; Zhang et al. 2013). We 
conduct single-signal analysis by regressing observation 
against simulated SWE for the ALL, GHG, and NAT cases 
for the multi-model and single-model ensemble means.

4 � Results

The linear trends of observed SWEs, presented in Fig. 3a 
for the February, March, and April months, display large 
spatial variability and also show differences among the 
defined sub-regions. Grids located in the eastern part of 
the ‘NAS’ and ‘NAN’ regions show statistically signifi-
cant decreasing trends for SWE, which are mainly due to 
increasing temperatures for the same months (Fig. 3b) and/
or decreasing cumulative precipitation from the Decem-
ber to spring months (Fig. 3c). Grids located in the ‘WES’ 
and ‘WEN’ regions generally exhibit decreasing trends for 
SWE, which are again generally due to the increasing tem-
peratures for the same months, although some increases in 
cumulative precipitation from the previous December to 
spring months can be noted. On the contrary, many grids 
located in the region ‘EES’ and few grids located in the 
region ‘EEN’ produce statistically significant increasing 
trends for SWE, which could be due to significant increases 
in the cumulative precipitation from the previous winter to 
spring months (Fig. 3c). Peng et al. (2010) and Cohen et al. 

Table 1   CMIP5 models used in this study

Name Resolution 
(lon × lat)

Size of the ensemble Control 
run year

ALL GHG NAT

Beijing Climate Center, Climate System Model, version 1.1 (BCC_CSM1-1) 2.8° × 2.8° 3 1 1 500

Second Generation Canadian Earth System Model (CanESM2) 2.8° × 2.8° 5 5 5 996

Centre National de Recherches Météorologiques Coupled Global Climate Model,  
version 5 (CNRM-CM5)

1.4° × 1.4° 10 6 6 850

Goddard Institute for Space Studies Model E, coupled with the HYCOM ocean model 
(GISS-E2-H)

2.5° × 2.0° 6 5 5 1841

Goddard Institute for Space Studies Model E, coupled with the Russell ocean model  
(GISS-E2-R)

2.5° × 2.0° 6 5 5 550

Norwegian Earth System Model, version 1 (intermediate resolution) (NorESM1-M) 2.5° × 1.9° 3 1 1 501
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(2012; 2014) reported an increase in mean winter (Decem-
ber–February) snow depth and a decrease in winter tem-
perature for the ‘EE’ region during the recent two or three 
decades. Changes in storm track, jet stream, and planetary 
waves, and their associated energy propagation induced by 
recent Arctic warming have been suspected as a main cause 

for widespread winter cooling for this region (Cohen et al. 
2012, 2014).

Observed SWE for the hemispherical to the sub-con-
tinental scale regions shows overall decreasing trends for 
the 1980–2012 period, except for the regions ‘EE’ and 
‘EES’ (Fig.  4). Statistically significant decreasing trends 

M1: BCC_CSM1-1 M2: CanESM2 M3: CNRM-CM5

[mm]

M4: GISS-E2-H M5: GISS-E2-R M6: NorESM1-M

(b)

(a)

Fig. 2   a Ensemble averages of February–April mean SWE for the 
six CMIP5 models (i.e., M1–M6) based on ALL forcing run for the 
1980–2012 period. Spatial correlation coefficients (r) with observa-

tions (shown in Fig. 1c) are provided at the top of each panel. Mean 
biases in SWE when compared to GlobSnow for all sub-continental 
regions, for the six models, are shown in (b)
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are observed for the regions ‘A’, ‘N’, ‘WE’, ‘NA’, ‘WEN’, 
and ‘NAN’ for February, for regions ‘N’ and ‘NAN’ for 
March, and for regions ‘N’, ‘NA’ and ‘NAS’ for April, at 
the 90  % confidence level (i.e., p value of the two-tailed 
test is smaller than 0.1). Spring SWE for the region ‘EES’, 

however, displays statistically significant positive trends 
at the 90  % confidence level, which also results in weak 
upward trends for the region ‘EE’, particularly for March 
and April. The general decrease in the spring month SWE 
noted here is consistent with previous studies (Takala et al. 

(a)

(b)

(c)

February March April

February March April

December to February December to March December to April

Fig. 3   Linear trends for the February–April months for a SWE (mm/
year) and b mean temperatures (oC/year), and c cumulative precipita-
tion  (mm/year) for the December to the February–April months for 

the 1980–2012 period. Grid boxes with statistically significant lin-
ear trends at the 90 % confidence level (two-tailed test) are indicated 
using the ‘ + ’ symbol
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2011; Luojus et  al. 2011; Li et  al. 2014) at both hemi-
spheric and sub-continental scales. The increase in spring 
SWE, for the southern part of East Eurasia, during the last 
few decades is also consistent with the results of Bulygina 
et  al. (2009, 2011) based on 820 meteorological station 
data and those of Wu et al. (2014) based on satellite-based 
passive radiometer data SSM/I.

Linear trends of the spring SWE estimated from the 
ensemble mean signal of multi-model and each CMIP5 
model for the ALL forcing case are presented in Fig. 5. The 
CMIP5 models generally reproduce the observed decreas-
ing trends for the ‘NA’ and ‘WE’ regions and the observed 
increasing trends in some eastern parts of the ‘EES’ and 
western parts of the ‘WEN’ regions. The models, however, 
indicate significant decreasing trends for the western part 
of the region ‘EES’, where the observation yielded some 
increasing trends. They also show increasing trends for the 
‘EEN’ and ‘NAN’ regions, where the observation generally 
yielded decreasing trends. All six CMIP5 models generally 
show large mean biases for the ‘EES’, ‘WEN’, and ‘NAN’ 
regions (Fig.  2b). However, NorESM1-M reproduces 
well the observed temporal tendency of the spring month 
SWEs, especially for regions ‘EEN’ and ‘NAN’, although 
it yielded the lowest spatial correlation coefficient and 
large mean biases when compared with observations for the 
spring SWE amounts as shown in Fig. 2.

Prior to applying the D–A analysis for the spring (Feb-
ruary–April average) SWE changes, the simulated sig-
nals for the three different forcings (i.e., ALL, GHG, and 
NAT) are compared with observations. Figure  6 presents 
annual series of spring SWE anomalies for observation and 

simulations for all three forcing cases, for region ‘A’. The 
anomalies observed and modelled for ALL and GHG cases 
show a clear decreasing trend for the last three decades. 
However, the multi-model ensemble mean displays smaller 
inter-annual variability than observation and also individual 
ensemble member signals. Low temporal coherence among 
the individual runs, induced by the diversity of the CMIP5 
model physics and structures and initial conditions, can 
result in small inter-annual variability of the multi-model 
ensemble mean (Jeong and Kim 2009). The spring SWE 
anomalies simulated by the CMIP5 models based on the 
NAT forcing do not show any decreasing trend (Fig.  6c). 
However, effects of volcanic eruptions are reflected in the 
SWE anomalies. For instance, the spring SWE anomalies 
of both observation and simulations based on NAT forc-
ing show a small increase for few years after 1992 as a 
response to the Pinatubo eruption, which was also noted by 
observed Rupp et al. (2013) in their study, but for SCE.

Linear trends and their 5–95 % confidence intervals of 
the spring SWE anomalies estimated from multi-model 
ensemble mean signals, for the three different cases (ALL, 
NAT, and GHG) are compared to those from observations 
for the 12 different regions for the 1980–2012 period in 
Fig.  7. The multi-model ensemble mean signal for ALL 
forcing reproduces the observed decreasing trend for the 
hemispheric-scale region ‘A’, while larger differences are 
noted for the sub-hemispheric scale regions ‘S’ and ‘N’. 
As shown in Figs. 2 and 5, the multi-model ensemble mean 
with ALL forcing fails to reproduce the statistically sig-
nificant decreasing trends for regions ‘EEN’ and ‘NAN’, 
which results in the misrepresentation of the observed 

Fig. 4   Annual time series of SWE and their trend lines for the 12 different regions for February (black), March (red) and April (blue). Estimated 
linear trends (mm/year) and their p values based on the two-tailed test are provided in the figures for the 3 months
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[mm/yr]

Multi-model

BCC_CSM1-1

CanESM2

CNRM-CM5

GISS-E2-H

GISS-E2-R

NorESM1-M
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decreasing trend for region ‘N’. The multi-model ensemble 
mean also fails to reproduce the observed statistically sig-
nificant increasing trend for the region ‘EES’, which results 
in an overestimation of the observed decreasing trend for 
region ‘S’. However, the multi-model ensemble mean 
reproduces well the observed decreasing trends for other 
regions. The multi-model ensemble mean with GHG forc-
ing displays a very similar pattern to that with ALL forcing, 

implying that the GHG forcing is the main external forcing 
of the spring SWE changes in the CMIP5 model simula-
tions. The 5–95 % confidence intervals of the linear trends 
of the multi-model ensemble mean based on ALL and 
GHG forcings are much smaller than those for the observa-
tion for all regions, implying that the inter-annual variabil-
ity of the multi-model ensemble mean is smaller than that 
observed. The multi-model ensemble mean based on NAT 
forcing produces statistically insignificant small trends for 
all regions. The internal variability estimated from the CTL 
simulations (column 5 of Fig.  7) is higher for the region 
‘N’ compared to the region ‘S’ and similarly increase with 
decreasing area. The regions, which have large internal 
variability, generally yield large confidence intervals for 

Fig. 6   Observed and simu-
lated spring (February–April 
average) SWE anomalies at the 
hemispheric scale region ‘A’ 
from the 1980–2010 baseline 
period based on a all major 
anthropogenic and natural 
(ALL) forcing, b greenhouse 
gas (GHG) forcing only, and 
c natural (NAT) forcing only. 
The black dots are observations. 
The green lines (33, 23 and 
23 respectively for the ALL, 
GHG, and NAT cases) are SWE 
anomalies from the six CMIP5 
models considered in this study. 
The thick red lines are the full 
ensemble average. Major vol-
canic eruptions are presented in 
(c) as vertical gray lines
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Fig. 5   Linear trends in SWE estimated from ensemble means of 
multi-model and individual CMIP5 models based on ALL forcing 
for the February–April months for the 1980–2012 period. Grid boxes 
with statistically significant linear trends at the 90  % confidence 
level (two-tailed test) are indicated using the ‘ + ’ symbbol. Red and 
blue contours enclose regions where linear trends of simulations are 
1 mm/year larger and smaller, respectively, than those of observation

◂
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the linear trends for both observation and the multi-model 
ensemble.

Figure 8 shows the temporally smoothed time series of 
spring SWE anomalies observed and modelled (for ALL), 
for the hemisphere scale region ‘A’. The smoothed observa-
tion shows a significant downward trend particularly after 
1996 and an important decreasing for the last 6 years. The 
individual signals obtained from the six CMIP5 models 
also suggest a decreasing trend for the SWE anomalies. The 
multi-model ensemble mean of the 33 ALL forcing runs 
reproduces the observed decreasing trend, though it dis-
plays smaller temporal variability compared to both obser-
vation and individual ensemble members. The individual 

CMIP5 models reproduce the observed decreasing trend in 
the smoothed observation to varying degrees. BCC_CSM1-
1, CNRM-CM5, GISS-E2-H, and NorESM1-M repro-
duce the temporal variability of the smoothed observation 
relatively well, compared to CanESM2 and GISS-E2-R in 
terms of Pearson’s linear correlation coefficient. Ensem-
ble means of the individual models tend to exhibit larger 
variance than the multi-model ensemble mean. However, 
ensemble means of individual CMIP5 models yield lower 
linear correlation coefficients with observations than the 
multi-model ensemble mean.

Figure  9 shows scaling factors and their 5–95  % con-
fidence ranges estimated by the D–A analysis of the 

Fig. 7   Spring SWE linear trends and their 5–95 % confidence inter-
vals for observations and multi-model ensemble mean signals simu-
lated by the six CMIP5 models based on the three different forcings 
for the 12 different regions for the 1980–2012 period. Green error 

bar in column 5 represents the 1-sigma (15.9–84.1 %) range of the 
standardized internal variability (SIV) noise estimated from control 
simulations (unit: m/m)
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multi-model ensemble mean signals for the three forcing 
cases for the 12 different regions. The scaling factors of 
both ALL and GHG forcings are significantly greater than 
zero for the hemispheric scale region ‘A’, indicating that 
the combined effects of external anthropogenic and natu-
ral forcings or the effect of GHG forcing alone are detected 
in spring SWE decline for the landmass north of 45°N. 
Moreover, the 5–95 % confidence ranges of the scaling fac-
tors include unity, indicating that the simulated signals of 

the spring SWE decreases under the ALL and GHG forc-
ings are consistent with the observed spring SWE decrease 
at the hemisphere-scale. However, detection and attribu-
tion of ALL and GHG forcings to spring SWE changes are 
less clear for the smaller regions. Scaling factors of both 
ALL and GHG forcings are statistically significant for the 
regions ‘N’, ‘WE’, ‘NA’, and ‘NAS’. However, some of 
them (i.e., scaling factors for regions ‘N’, ‘NA’, and ‘NAS’ 
for ALL and regions ‘N’ and ‘NA’ for GHG) indicate that 

Multi-model

BCC_CSM1-1 CanESM2 CNRM-CM5

GISS-E2-H GISS-E2-R NorESM1-M

Fig. 8   Time series of 3 year mean area-averaged spring SWE anoma-
lies for observations and CMIP5 models for the ALL forcing case for 
the hemisphere scale region ‘A’ for the 1981–2012 period. Green, red, 

and black lines represent the individual simulations, their ensemble 
average, and observations, respectively
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the simulated signals of the CMIP5 models, as a group, 
are not consistent with observations and tend to underes-
timate the spring SWE response to external forcings due 
to improper reproduction of temporal variability of indi-
vidual models, as their 5–95  % confidence ranges do not 
include unity. The observed decreasing trends of spring 
SWE were reproduced properly by multi-model ensemble 
signals at the sub-continental regions ‘WES’, ‘WEN’, and 
‘NAS’ (Fig. 7). However, the combined effect of ALL forc-
ing or GHG forcing alone are not detected clearly by the 
D–A analysis, indicating that the observed and simulated 
spring SWE changes have large noise range, which makes 
it difficult to detect signals outside the noise range for the 
small sub-continental scale regions. Scaling factors and 
their 5–95  % confidence ranges of the NAT forcing only 
are much larger than unity for the regions ‘A’, ‘WE’, ‘NA’, 
and ‘NAS’, include zero for regions ‘EE’, ‘WES’, ‘WEN’, 
and ‘NAN’, and is negative for regions ‘N’, and ‘EEN’, 
indicating that the effect of NAT forcing alone are gener-
ally undetectable or inconsistent with the observed spring 
SWE changes for the considered regions.

Figure 10 compares best estimates of scaling factors and 
their 5–95 % confidence ranges for the multi-model ensem-
ble mean and that of single-model ensemble means for the 
hemispheric scale region ‘A’. The effects of ALL and GHG 
forcings are generally detected by most individual model 
simulations, except for BCC_CSM1-1 for GHG forcing 

and CanESM2 for ALL forcing. The single-model ensem-
bles, however, tend to produce larger 5–95  % confidence 
ranges of scaling factors for the ALL and GHG forcings 
compared to the multi-model ensemble, except NorESM1-
M, supporting robustness of the detection results from 
multi-model ensemble mean. This result roughly implies 
that individual models usually have larger uncertainty in 
the estimation of SWE responses (fingerprints) (as shown 
in Fig.  8) and, therefore, the detection and attribution 
analysis based on the multi-model could provide more 
robust results than individual models, which has also been 
reported through the D–A analyses for the global surface 
temperature (Gillett et al. 2002) and Northern Hemisphere 
spring SCE (Rupp et al. 2013).

5 � Summary and discussion

This study investigated spring (February–April) snow 
water equivalent (SWE) changes using the GlobSnow 
observation dataset for the 1980–2012 period, for different 
regions at local (5° × 5° resolution) to hemispheric (higher 
than 45°N) scales over the Northern Hemisphere land-
points. Consequently, this study provided spatially more 
comprehensive information about the spring SWE changes 
over the Northern Hemisphere, compared to previous sim-
ilar studies (i.e., Brown 2000; Luojus et  al. 2011; Takala 

Fig. 9   Best estimates (data 
points) and 5–95 % confidence 
intervals (error bars) of the 
scaling factors for spring SWE 
estimated from the multi-model 
ensemble signals simulated by 
six CMIP5 models based on 
ALL, GHG, and NAT forcings 
for the 12 different regions

Fig. 10   Best estimates (data 
points) and 5–95 % confidence 
interval (error bars) of the 
scaling factors of spring SWE 
estimated from the multi-model 
ensemble signals and single-
model ensemble signals based 
on ALL, GHG, and NAT forc-
ings for the hemispheric scale 
region ‘A’
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et al. 2011; Gen et al. 2013; Li et al. 2014) which mainly 
focused on hemispheric and/or continental scale, although 
these studies were not directly comparable with this study 
as their analysis periods and snow characteristics were dif-
ferent from those of this study. Results suggest statistically 
significant decreasing trends in spring SWE for the east-
ern parts of North America and West Eurasia, mainly due 
to increasing trends in the spring temperatures, as reported 
in previous studies. However, remarkable increasing trends 
were observed for the southern part of east Eurasia, mainly 
due to significant increases in accumulated precipitation 
from the previous winter to spring period. The increases in 
spring SWE for east Eurasia for the last few decades are 
consistent with the findings by Bulygina et al. (2009, 2011) 
and Wu et al. (2014), based on spring SCE and/or SWE.

This study applied the detection–attribution (D–A) 
approach to demonstrate the anthropogenic and natu-
ral effects on the spring SWE changes, by comparing the 
observations to six CMIP5 model simulations for different 
regions at sub-continental to hemispheric scales over the 
Northern Hemisphere. Six CMIP5 models with all major 
anthropogenic and natural (ALL) forcings reproduced the 
spatial distribution of observed spring SWE fairly well over 
the study area. They also reproduced properly temporal 
decreasing trends of observed spring SWE for West Eura-
sia and North America. The models, however, showed some 
difficulty in reproducing observed spring SWE changes for 
sub-continental scales such as southern and northern parts 
of East Eurasia and northern part of North America. Multi-
model ensemble mean of the six CMIP5 models with only 
greenhouse gas (GHG) forcing produced very similar trends 
to those with ALL forcing for the spring SWE changes, 
indicating that the temporal changes are mainly induced by 
the well mixed GHG forcing rather than the other anthropo-
genic (OANT) forcings and/or natural forcings for the anal-
ysis period. This is consistent with the study by Najafi et al. 
(2015), which reported little changes in the response of the 
mean annual Arctic temperature anomalies to OANT for the 
1980–2010 period. It must be noted though that the main 
control on February–April SWE is the spring temperature.

The D–A assessment suggests that multi-model ensem-
ble mean signals based on the combined effects of external 
anthropogenic and natural forcings and the effect of GHG 
forcing only are consistent with the observed spring SWE 
decrease over hemispheric scale landmass. However, the 
effects of ALL and/or GHG forcings were not detected 
clearly for the smaller regions. This might be due to the 
large temporal noise in observation and improper reproduc-
tion of the temporal variability by the CMIP5 models at the 
scale of small regions considered in this study. Hegerl et al. 
(2007) and Stott et al. (2010) also discussed the limitation 
of the D–A analysis at regional scale caused by the relative 
low signal-to-noise ratios and limitations of global climate 

models in capturing some characteristics of regional varia-
bility. Detection and attribution results based on single mod-
els for ALL and GHG forcings for spring SWE decreases 
show larger uncertainty compared to those based on the 
multi-model ensemble, at the hemispheric scale. This is due 
to the less coherent temporal variability of individual model 
signals with observations compared to that between multi-
model ensemble signals and observations. The detection 
and attribution analysis results based on single-models com-
pared to multi-model ensemble is consistent with the find-
ings of Gillett et al. (2002) and Rupp et al. (2013).

The analysis period of this study is relatively short and 
the estimated spring SWE trends during the period can 
be affected by natural decadal variability such as Pacific 
decadal oscillation (PDO) and North Atlantic oscilla-
tion (NAO) as shown in Trenberth et  al. (2014) and Ding 
et al. (2014). Possible influence of such natural variability 
modes on the observed SWE changes and detection/attribu-
tion results will be considered in future work. Additionally, 
trend and D–A analyses based on different combinations 
of sub-regions such as ‘NA’-’EE’ or ‘NA’–’WE’ could be 
considered in future work. Two-signal analysis using both 
anthropogenic (ANTH = ALL–NAT) and natural forcings 
simultaneously could also be employed in future to identify 
the separate contributions of these forcings.
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