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Abstract

For a group G and X a subset of G the commuting graph of G on X, denoted by
C(G,X), is the graph whose vertex set is X with x,y € X joined by an edge if x # y
and x and y commute. If the elements in X are involutions, then C(G, X) is called a
commuting involution graph. This paper studies C(G,X) when G is a 4-dimensional
projective symplectic group over a finite field and X a G-conjugacy class of invo-
lutions, determining the diameters and structure of the discs of these graphs.

Keywords Involutions - Commuting involution graphs - Symplectic
Groups

Mathematics Subject Classification 05C12 - 20E99

1 Introduction

For G a group and X a subset of G, the commuting graph of G on X, C(G, X), is the
graph whose vertex set is X with x,y € X joined whenever x # y and xy = yx. In
effect commuting graphs first appeared in the paper of Brauer and Fowler [14],
famous for containing a proof that up to isomorphism only finitely many non-
abelian simple groups can have a given centralizer of an involution. The commuting
graphs considered in [14] had X = G\{1}-such graphs have played an important
role in recent work related to the Margulis—Platanov conjecture (see [41]). Various
kinds of commuting graphs have been deployed in the study of finite groups,
particularly the non-abelian simple groups. For example, the analysis and
subsequent construction by Fischer [24] of the three simple Fischer groups used
the commuting graph on the conjugacy class of 3-transpositions. While a computer-
free uniqueness proof of the Lyons simple group by Aschbacher and Segev [6]
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employed a commuting graph where the vertices consisted of the 3-central
subgroups of order 3. For G either a symmetric group, or more generally a finite
Coxeter group, or a projective special linear group and X a certain conjugacy class
of G, the structure of C(G, X) has been investigated at length by Bundy [16], Bates,
Bundy, Hart, Perkins and Rowley [9-13], Nawawi and Rowley [38], Jafari [31].
And for the double covers of symmetric groups and 3-dimensional unitary groups,
see Aubad [8] and Everett [23] respectively. Also, commuting involution graphs for
infinite Coxeter groups have been analysed in Perkins [40], Hart and Clarke [29]. A
different flavour of graph (also called a commuting graph) has also been studied
extensively. In this case, for a group G, the vertex set is G\Z(G) with two distinct
elements being joined if they commute. For a selection of work on various aspects
of these graphs, consult Akbari, Mohammadian, Radjavi and Raja [3], Britnell and
Gill [15], Cassell [19], Giudici and Kuzma [25], Giudici and Parker [26], Giudici
and Pope [27], Iranmanesh and Jafarzadeh [30], Leshchenko and Zorya [34],
Leshchenko [33], Mahmoudifar and Moghaddamfar [35], Mohammadian, Erfanian,
Forrokhi and Wilkens [36], Morgan and Parker [37], Parker [39]. Recently there has
been work on commuting graphs for rings (see, for example, [1, 2, 20, 21, 43]).

This paper investigates C(G,X) when G is a finite 4-dimensional projective
symplectic group and X is a G-conjugacy class of involutions. Such graphs are
referred to as commuting involution graphs. From now on H will denote the
symplectic group Sp(4, q), ¢ = p® and p a prime. Let V be the natural (symplectic)
GF(g)H-module, and set G = H/Z(H). So G = PSp(4,q) and G = H when p = 2.
For t € X, we define

Ai(r) = {x € X|d(t,x) = i}

where d is the standard distance metric on C(G, X). So A;(f) consists of all vertices
in C(G,X) distance i from r—we call A;(¢) the ith disc of 7 (or just a disc of 7).

In the case when p = 2, G has three conjugacy classes of involutions. Recalling
that for an involution x of G, V(x) = {v € V|(v,v*) =0} these three classes
X1,X>, X3 may be described thus (see [7])

X; = {xeG]x* =1, dim Cy(x)=3};
={xeG]¥* =1, dim Cy(x) =2, dim V(x) =3}; and
X;={x€Glx¥* =1, dim Cy(x) =2, V(x) =V}

Our four main theorems are as follows.

Theorem 1.1 Suppose that p =2 and i =1,3. Then C(G,X;) is connected of
diameter 2 with the disc sizes being

|AL(1)| = ¢* —2; and
1A (D) = ¢* (g — 1).

Theorem 1.2 Suppose that p = 2. Then C(G,Xa) is connected of diameter 4, the
disc sizes being
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IA(0)] = ¢°(2q — 3);

1A (0)] = 247 (q — 1)%;
|As(1)] = 2¢°(q — 1)2; and
|A4(1)] = g*(g — 1)*.

Turning to the case when p is odd, we have that there are two G-involution
conjugacy classes Y| and Y,. We shall let Y, denote the G-conjugacy class whose
elements are the images of an involution in H, and Y, to denote the G-conjugacy
class whose elements are the image of an element of H of order 4 which squares to
the non-trivial element of Z(H).

Theorem 1.3 If p is odd, then C(G,Y)) is connected of diameter 2 with disc sizes
L
|Ax(r)] = 54(g” — 1); and

1
|As ()] =§(614 -+ +q-2).

Theorem 1.4

(i) If g = —1(mod 4) then C(G, Y>) is connected of diameter 3. Furthermore,
A1) = 5(4> + 2~ 1);
|Aa(8)| = 1—16(q +1)(3¢° — 24" + 84’ — 30¢> + 13g — 8); and
185(0)] = 1 (67~ D)(54" ~ 94" + 74" ~ 3 +8).

(i) If g = 1(mod 4) then C(G, Y;) is connected of diameter 3. Furthermore,

A = 2 qlq> + 1);

2
1

1A (1)| = E(q —1)(3¢° — 6¢* +32¢° — 104> — 27 — 8); and
1

1A5(1)] = 1¢ (g~ 1)(5¢° +22¢" — 8¢° + 344" + 51q + 24).

Theorems 1.1 and 1.2 are established in Sect. 2. While in Sect. 3 we give a proof
of Theorem 1.3. The structure and properties of C(G, Y;), in Sect. 4, are a much
tougher nut to crack than the other four cases. The reason for this is that for
C(G,X;), (i=1,2,3) and C(G, Y;) the graph can be studied effectively by working
in H=Sp(4,q) and looking at certain configurations in the natural symplectic
module V involving Cy(x) for various x€X X=X, i=1,2,3 or
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XZ(H)/Z(H) = Y1). The key point being that, in these four cases for x € X, Cy(x)
is a non-trivial subspace of V whereas, for x of order 4 and squaring into Z(H),
Cy(x) is trivial. If we change tack and look at G acting on the projective symplectic
space things are not much better. When ¢ = —1(mod 4) elements of ¥, fix no
projective points, while in the case ¢ = 1(mod 4) they fix 2¢g + 2 projective points.
However, even in the latter case, the fixed projective points didn’t appear to be of
much assistance. It is the isomorphism PSp(4,q) = O(5,q) that comes to our
rescue. If now V is the 5-dimensional orthogonal module and x € Y, then
dim Cy(x) = 3. Even so, probing C(G,Y,) turns out to be a lengthy process. Fix
t € Y. Then by Lemma 4.3, Y, C Uy, Co(U) where U, is the set of all 1-
subspaces of Cy(f) and as a result, by Lemma 4.4, C(G, Y») may be viewed as the
union of commuting involution graphs for various subgroups of G. Up to
isomorphism there are three of these commuting involution graphs (called
C(G—,Y7), C(G*,Y") and C(G° Y°) in Sect. 4). After studying these three
commuting involution graphs in Theorems 4.6, 4.8 and 4.14 it follows immediately
(Theorem 4.15) that C(G,Y>) is connected and has diameter at most 3. Using the
sizes of the discs in C(G~,Y™), C(G*,Y") and C(G°, Y°) we then complete the
proof of Theorem 1.4. This “patching together” of the discs is quite complicated—
for example we must confront such issues as f and x in Y, being of distance 3 in each
of the commuting involution subgraphs which contain both ¢ and x, yet they have
distance 2 in C(G, Y») (see Lemmas 4.29-4.34).
Our group theoretic notation is standard as given, for example, in [5] or [28].

2 Structure of C(G,X;),i=1,2,3

We begin looking at Gy = Sp»,(q) where n > 2, g = p® and p = 2. Let V;, denote the
GF(q)Gy-symplectic module of dimension 2n and let #y be an involution in Gy for

which dim Cy(#y) = 2n — 1. Put X, = tg", the Gy-conjugacy class of f.
Theorem 2.1 C(Gy,Xy) is connected and has diameter 2.
Proof For x € Xy,

Cq, (x) < Stabg,(Cy,(x))

with  Stabg,(Cy,(x)) having shape ¢*""'SL,, 2(q)(g—1). Set K,=
02, (StabGO(CVO (x))) Then K, ~ q2n_lSL2n_2(q) and CGO (x) =K,. Letx € Xo\{to}.
If Cy,(t%) = Cy,(x), then x €K, and so x € A(tp). Now suppose that
Cy,(to) # Cy,(x). Then dim(Cy,(to) N Cy,(x)) = 2n — 2. Let U be a 1-dimensional
subspace of Cy,(fo) N Cy,(x). Since [Vy, 1] is a 1-space and Gy acts transitively on
the 1-spaces of Vj, there exists y € Xy such that [Vo,y] = U. So [Vo,y] < Cy,(to) N
Cy,(x) and hence y leaves both Cy,(y) and Cy,(x) invariant. Thus y € K,, N K, =
Cq,(t9) N Cg,(x) and so d(ty,x) <2 and we see that C(Gy,Xp) is connected. Since
C(Go,Xp) cannot have diameter 1 (as then (Xp) would be abelian), the theorem
follows. |
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The remainder of this section is devoted to establishing Theorems 1.1 and 1.2. So
we have G = Sp(4, ¢q) with ¢ = p® and p = 2. For V, the natural GF(g) module for
G, we choose the symplectic basis {vl,vz‘m, va} with (vi,v4) = (v2,v3) = 1. Thus
the matrix defining this form is

- o O O
[ R

0
0
0

oS O = O
()

1
and we may suppose that G = {A € GL(4,q) ‘ATJA = J}. We further define

1 a b c
0 1 d ad+b
S = “ a,b,c,d € GF(q) ¢,
0 0 1
0 0 0 1
1 a b ¢ 1 0 b ¢
= 0 10% b,c € GF(q) d = 0 1 db b,c,d € GF(q)
Ql* 00 1 a a,b,c q an QZ* 001 0 G,y q
0 0 0 1 0 0 0 1
Lemma 2.2

1) SeSyha.
i) S§= 010, with Q# U Qf consisting of all the involutions of §.

Proof 1t is straightforward to check that S is a subgroup of G. Since
|G| = ¢*(¢*> —1)(¢* — 1) and |S| = ¢* we have part (i). Part (ii) is an easy
calculation. (]

The following three involutions are elements of G.

1 0 0 1 1 0 1 1 1 1 0 0
01 0 O 0O 1 0 1 01 0 0
h= o = » B=
0 0 1 0 0 01 0 0 0 1 1
0 0 0 1 0 0 0 1 0 0 0 1
Lemma 2.3

(i) Fori=1,23,1cX,.
(i) Cg(t1) ~¢’SL(2,q) with 02(Cg(t1)) = Q; of order ¢°.
(i) Cg(t) = S.

iv) X1 =¢* - 1.

V) [Xa| = (¢ = 1)(¢* — ).
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Proof
(i) Letv=(a,p,y,0)€V. Then v = (o, f, 7,004 ), v2 = (o, B0 + 7y, 00 +
B+9) and V3 = (o, 00+ f,7,7 + J). Hence [v,11] =(0,0,0,0), [v,2] =
(0,0,0,00+ ) and [v,53] = (0,,0,7). Consequently dim [V,#] =1 and
dim [V, 1] =2 =dim [V, #3]. Thus 7, € X;. Now

(v, v?) =a(a+ B+ )+ fla+7) +yB+da=0>=0

implies that o = 0 and so dim V(#3) = 3. Therefore #, € X,. Turning to 3
we have that

(v, v?) =a(y+9)+ py+ y(a+ p) + e =0

implies that V(#,) = V, as v is an arbitrary vector of V. Hence #; € X3, and
we have (i).
(i) By direct calculation we see that

1 b ¢ d\|byedf g hkmnéeGF(q)
0 f g h gk +fm =1
C(;(ll):
0 k m n b+hk+m=0
00 0 1 c+mh+gn=20
Moreover
1 0 0 O
0 f g 0]|f.&kmeGF(q
SLz(q)%R: ( ) SCG(II)
0 k m O fe+km=1
00 0 1

with Q1 a normal elementary abelian subgroup of Cs(#) and |Q;| = ¢*. So
Cs(t1) = RQ;. Thus (ii) holds.

(iii)  This is a routine calculation. From parts (ii) and (iii) |Cs(#))| = ¢*(¢*> — 1)
and |Cg(ty)| = ¢*. Combining this with |G| = ¢*(¢* — 1)(¢* — 1) yields
@iv) and (v). O

Lemma 2.4 |Cs(t)NX | =¢> — 1.

Proof Let s be an involution in S. Then, by Lemma 2.2(ii), s € Qf’E U Q#. Let
v = (a,f,7,5) be a vector in V. Assume for the moment that s € Q. Then

a b
1

0

S O o =
—_Q oo

0
1
00

where a,b,c € GF(q). So v* = (a,a0+ B,bf + 7, co+ b + ay + J). Suppose that
at least one of a and b is non-zero. If ve& Cy(s), then we have
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ao=bf = co+ b+ ay = 0. If, say, a # 0 then this gives o = 0 and bff + ay = 0.
Hence y = Ap for some 4 € GF(q). Thus dim Cy(s) = 2, with the same conclusion
if b#£0.

When a = b = 0 we see that dim Cy/(s) = 3. Therefore we conclude that

0 NX|=q—1. (2.4.1)

Now we suppose s € Q>\Q;. Then

S o o =

oS O = O
o

- o Q@ &

0

where a,b,c € GF(q) and ¢ # 0. Here v' = («, a0 + c¢f + y,boa + aff + o) and
s0,if v € Cy(s), ae + ¢ff = ba+ aff = 0. Suppose that a = 0 and b # 0. Then ¢ff =
bo. = 0 which yields « = 0 = 5. Hence dim Cy(s) = 2. Likewise, when a # 0 and
b =0 we get dim Cy(s) = 2. On the other hand, a = 0 = b gives dim Cy(s) = 3.

Now consider the case when a # 0 # b and a®> + bc = 0. From ao + ¢ff = 0 we
obtain f=auc™! and so 0= bo+af =bo+a*c'a=(b+a*c ") Since
a* + be = 0, this equation holds for all « € GF(g) and consequently dim Cy(s) = 3.
Similar considerations show that dim Cy(s) = 2 when a # 0 # b and a® + bc # 0.
So, to summarize, for s € Q,\Qi, s € X; when eithera =0=5 or a # 0 # b and
a*> + bc = 0. For the former, there are g — 1 such involutions (as ¢ # 0). For the
latter, there are g — 1 choices for each of b and ¢ and in each case a is uniquely
determined (as GF(q)" is cyclic of odd order), so giving (¢ — 1)* involutions.
Therefore

(X1 NS\Q1| = [X1 N (Q2\Q1)| = q(q — 1). (2.4.2)

Since any two distinct Sylow 2-subgroups of SL(2, ¢g) have trivial intersection and
SL(2, q) possesses g + 1 Sylow 2-subgroups, Lemma 2.3(ii) together with (2.4.1)
and (2.4.2) yields that

[Ca()NXi| = (g—1)+q(g—1D(g+1)
=(@-1N(1+¢+q)=q¢ —1L
This proves Lemma 2.4. U

Proof of Theorem 1.1 As is well-known—see for example [18] — G has an outer
automorphism arising from the Dynkin diagram of type C, = B,. This outer
automorphism interchanges the two involution conjugacy classes X; and X3 and as a
consequence C(G,X;) and C(G,X3) are isomorphic graphs. Thus we need only
consider C(G, X;). From Lemma 2.4, as A;(t) = (Cg(t1) N X1)\{#1},

M) =(@ —1)—1=¢"—2.
By Theorem 2.1, C(G, X;) has diameter 2. Hence, by Lemma 2.3(iv),
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M) =X - (@ -1 =" -1)— (@ -1)=¢"—q"'=4¢(¢g— 1),

so proving Theorem 1.1.
Before moving on to prove Theorem 1.2 we need additional preparatory material.
If W is a subspace of V, then W+ denotes the subspace of V defined by

Wt = {v € V|(v,w) =0 for all w € W}

and we recall that dim W + dim W+ = dimV = 4.

By Lemma 2.3(i), (iii) we see that Cy(Cg(22)) = {(0,0,0,a)|x € GF(q)} is 1-
dimensional. For xe€ X, set U;(x) = Cy(Cg(x)) and Ux(x) = Cy(x). So
dim U, (x) = 1 and dim U,(x) = 2 (with the subscripts acting as a reminder). We
denote the stabilizer in G of Uj(1,), respectively U,(t,), by P;, respectively P,.
Then P;~¢q*SLy(q)(q— 1) for i = 1,2. Also Q; = O,(P;) with Cp,(Q;) = Q; for
i=1,2.

We start analyzing C(G,X>) by determining A(z). For x € X, we let Z¢,
denote Z(Cg(x)) N Xz.

Lemma 2.5

X = Zx.
2 Resyl,G R

Proof Clearly X, = URGSYIZG Zg by Lemma 23(ii). If ZgNZy =g for
R,T € Syl,G, then we have some x € Z(R) N Z(T) N X, whence, using Lemma
2.3(iii), R = Cg(x) = T. So the lemma holds. O

Lemma 2.6 LetR, T € Syl,G. If there exists x € Zg and y € Zy such that [x,y] = 1,
then [ZR7ZT] =1.

Proof Since xy=yx, y€ Cs(x)=R. Hence Z(R)<Cg(y)=T and so
(Zr, Zr] = 1. O

Let A be the building for G and C(A) denote the chamber graph of A. We may
view the vertices (chambers) of C(A) as being {Ng(R)|R € Syl,G} with two distinct
chambers Ng(R) and Ng(T) being adjacent whenever (Ng(R),Ng(T)) <P§ for
some g € G and some i € {1,2}. We use d° to denote the standard distance metric
in C(A) and for a chamber ¢ put Af (c) = {d € C(A)|d’(c,d) = j}. The structure of
C(A) is well-known.

Lemma 2.7 C(A) has diameter 4 and |Af(c)| = 2g; |Ag(c)} =24¢% |A§(c)| =24¢%
and ’Ag(c)} =q*.
Proof A straightforward calculation. ([

We now introduce a graph Z whose vertex set is V(Z) = {Zg|R € Syl,G} with
ZR,ZT S V(Z) joined if ZR 7& ZT and [ZR,ZT] =1.
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Lemma 2.8 The graphs Z and C(A) are isomorphic.

Proof Define ¢ : V(Z) — V(C(A)) by ¢ : Zg—Ng(R) (R € SyL,G). If ¢(Zg) =
¢o(Zr) for R, T € Syl,G, then Ng(R) = Ng(T) and so R =T and then Zg = Zy.
Thus ¢ is a bijection between V(Z) and V(C(A)). Suppose Ng(R) and Ng(T) are
distinct, adjacent chambers in C(A). Without loss of generality we may assume
T =S. Then Ng(R),Ng(S) <P; for i € {1,2}. The structure of P; then forces
Z(R),Z(S) < Q;. Since Q; is abelian, we deduce that [Zg, Zs] = 1. So Zg and Zg are
adjacent in Z. Conversely, suppose Zg and Zg are adjacent in Z. Then [Zg, Zs] = 1
with, by Lemma 2.5, ZxNZs = J. Hence Zg C S and so by Lemma 2.2(ii),
Zr CO1UQ;. Now O1NQOrNX, =Zg and so we must have Zz C Q; for
i € {1,2}. The structure of P; now gives Ng(R) <P; and therefore Ng(R) and
Ng(S) are adjacent in C(A), which proves the lemma. O

Proof of Theorem 1.2 Since for all x;,x; € X5, [x1,x;] =1 if and only if
(Zco(v)> Zes(x)] = 1 by Lemma 2.5, then for i > 1, d®(x,x;) = i if and only if
d? (Zeo(x)s Zegn)) =1 (Where d? denotes the distance in Z). Note that if
d(x1,x2) = 1, then either Zc,(,) = Zcy() OF d°(Zcy()s Zeg(vs)) = 1. Since X5 is
a disjoint union of the elements of Z, then C(G, X») is connected of diameter 4. Now

M= | Z and A(r)= U Zr, i>1
R € Syl,G R € Syl,G
Zs, Zg] = 1 d®(Zs,Zg) = i

and  so  |A(1)] = |Zs| +29|Zs| — 1. From |Zg=(q—1)* we get
|AL(1)] = (g —1)* +2q(qg — 1)* = 1 = ¢*(2q — 3). The remaining disc sizes are
immediate from the structure of the chamber graph C(A). O

3 Structure of C(G,Y,)

This section is devoted to the proof of Theorem 1.3. In order to investigate the disc
structure of C(G,Y;) it is advantageous for us to work in H = Sps(gq) (and so
H = H/Z(H) = G). We assume that {v;,v,,v3, v4} is a hyperbolic basis for V with
(va,v1) = (v4,v3) = 1. Thus if J is the matrix defining this form then

0O -1 0 O
1 0 0 O
J= ,
0 0 0 -1
0O o0 1 O
. 0 -1
and J has two diagonal blocks Jy where Jy = 1 o /)
- -
We may suppose that for t € Y|, we have s =t where § = . Put

I
X = s#. Then Y, = {X|x € X}. For x € X, set N, = Ny({x,Z(H))). Evidently, for
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X1,x €Yy (where x;,x; € X) ¥/ and X; commute if and only if x; € N,, (or
equivalently x, € Ny,). Now N, consists of g € H for which s =5 or s = —s.

Letting g = é’ ZB; where A, B, C and D are 2 x 2 matrices over GF(q), direct

calculation reveals that either B=C =0 or A =D = 0. Also, as g € H, we must
have ATJoA = DTJyD = J, and therefore

(ALY (1A
=1 (5 () |2 m e o)

~ (SLy(q) x SLx(q)) : 2

Lemma 3.1

M) = 3ala” 1)

Proof Since X = s consists of all the involutions in H\Z(H), a quick calculation

gives
A
XNN; = e A€ SLy(q) p U{s,—s}.
Under the natural homomorphism to G, for x€X X=—x, and so
A1 ()] = 3 [SLa(q)| = 3a(q” — 1). O
Put E = (v3,v4). Then E+ = (v;,v,) and we note that Cy(s) = E. Furthermore
we have that Staby ({E,E*}) = N,. Put

Y = {{F,F+}|F is a hyperbolic 2-subspace of V}. Now let 8 € GF(q) and set
Up =((1,0,1,0),(0,3,0,—f — 1)). Then Uy is a hyperbolic 2-subspace of V and

so {Up, Uj } € T. The Ny-orbit of { Uy, U} will be denoted by .
Lemma 3.2 Let F be a hyperbolic 2-subspace of V with F #E or E*. Then
{F,F*+} € X for some € GF(q). Moreover, for f € GF(q), Zp = Z_4_;.

Proof Since F # E or E*, we may find w; € F with w; = (o, ;,7,,01) and
{o1,8,} # {0} # {y,,01}. Now N; contains two SL(g) subgroups for which
(vi,v2) and (v3,v4) are natural GF(q)SL»(q)-modules. Because SLy(g) acts

@ Springer



Graphs and Combinatorics (2020) 36:959-1000 969

transitively on the non-zero vectors of such modules, we may suppose
wy = (1,0,1,0). Now choose w; € F such that (w;,w;)=1 (and so
(wi,wy) = F). Then if wy = (o, f,7,0) we must have f+J=—1 and so
wy = (a, ,7, —f — 1). The matrices in N; fixing w, are

el Y
S | U R N B

1
ay

1) ai,as € GF(q)

Let

where ay,ay € GF(q). Then wi = wy.
We single out the cases f = 0 and ff = —1 for special attention. If, say, f =0,

then wy = (,0,7,—1). Hence wy —owy = (0,0, — o, —1) and
F = (wy,wy — owy). Since (0,0,y —a, —1)g = (0,0, (y — &) — ap, —1) and choos-
ing ay = —y + o, we obtain Fg = Uy. For f = —1 a similar argument works (using

wy — ywy instead of wy — aw;). So we may assume that § # 0, —1. From

Wi g = (Ot,ﬁ7’)),—ﬁ— l) = (a+ﬁa1aﬁvy+(_ﬁ_ l)a21_ﬁ_ 1)

by a suitable choice of a; and a, as f§ # 0,—1, we get wog = (0,4,0,—f — 1),
whence Fg = Ug. Thus we have shown {F, F*} € Z; for some § € GF(q). Finally,
for f € GF(q), Zp = Z_p_, follows from

(07/6707_5_1) 1 :(07_/6_1707/6)'

Let ¢ : GF(q)\{—1} — GF(q) be defined by
o) =~(1+(+1)2(1 - 12))71 (1 € GF(q)).

There is a possibility that this is not well-defined should 1 + (4 4 1)"*(1 — %) = 0.

This would then give (4 + 1)* + (1 — 42) = 0 from which we infer that 2 = —1. So
we conclude that ¢ is well-defined.

Lemma 3.3 ¢ is injective.
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Proof Suppose ¢(1) = ¢(u) for A, u € GF(q)\{—1} with 2 # u. Hence

(1 A+ - /12))71: (1 +(p+1) 721 - uz))

Simplifying and using the fact that g is odd gives

-1

W — i =22 =+ iyt =0,
and then

(H+A)(n—2)+ (n—2) + Au(p — 4) = 0.

Hence (u — A)(u+ A4+ 1+ ) =0. Since pu # A, we get u+ A+ 1 + 2 = 0 from
which we deduce that either A = —1 or u = —1, a contradiction. So the lemma
holds. O
Proof of Theorem 1.3 We first show that Diam C(G, Y;) = 2. So let x € X be such

that x & {t} UA;(t). Now {Cv(x),CV(x)L} € X as Cy(x) # E or E* (otherwise
x € {s,—s} and then ¥ = r). Hence {Cv(x), Cv(x)L} € X, for some u € GF(q) by

I

Lemma 3.2. Lety = .

Iy

Then y € Ay (#). Our aim is to choose an x; € NyNX (so X; € A(¥)) for which
{Cv(xi),Cv(x;,)l} € X,. Since X, is an N,-orbit, there exists 2 € Ny such that

h
{Cv(xi)7Cv(x;~)l} = {Cv(x), Cyv(x)" . As a consequence either x = x! or x; '
and therefore X = xﬁﬁ, whence d(t,%) <2. O
We first look at the case when = —2~!. Then = —p — 1 and hence
U 1 =((1,0,1,0),(0,1,0,1)).

Observing that U_, 1+ = Cy(y), we see that for g = —27!, ¥ € A (y), which we are
not concerned with here. So we may assume p # —271.

Ao

Let x\ = 5 _)\B} where A € GF(q)\{0} and such that B has zero trace
—Alg

and determinant 1 — /2. So x;, € X N N,. We now move onto the case when p =0

2 =2 .
o 2), noting that B

satisfies the conditions to ensure that X7 € Ay(y). Let v = (a, f,7,0) € V. Then
v € Cy(x;) precisely when
2y+2=0; —2y—26=0;
2a—-2f—y=1y; 20+2f—0=0;

(or equivalently 4 = —1). Here we take A =1 and B =
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and thus the only conditions we get are y = —ff — o and o + = 6. Thus

Cv(x) = {(2 ﬁ, —a— B0+ f)}
<( ) (Oala_lal»'
It is straightforward to check that {C v(x1), Cy(x; )l} € %. Therefore we may also
RV

assume that u # 0, —1. Choosing B = ( ) we see that the requisite con-

-1 =2
ditions are satisfied. Take v = (a, 8,7, d) € V and calculating v** gives the relations

(A=1Da+9p2—062=0; A-Dp+yp2"'=6.=0

o+ - (A+1)y=0; — 1 'a+ip—(A+1)d=0
which, after rearranging gives

— -1 G =) B=2A-1) -G

=G+ D) B 5=+ 1) =G+ 1)

and note that the relations for y and J are satisfied after substitution for o and p.
Hence

Cy(x;) = {(a,ﬁ, 2O+ B—a), A+ D) p— 2 1)*105)}

- <(1,o, O N 1)“), (o, LA+ D)7 200+ 1)“)>.
(33.1)

We want to determine which Nj-orbit, X, that Cy(x,) lies in. Our representative,
Up, for gy has w; = (1,0, 1,0) as one component of the hyperbolic pair, so we need
an element of N, to send the first generator in (3.3.1) to w;. We need to find
conditions on C,D € SL,(g) such that

(L,0, =AM+ 1)~ =2t A+ 1) % = (1,0,1,0)

and so without loss of generality we can take C = I,. This reduces to solving

(—A(H ) =+ 1)1)<2 Z) = (1,0)

and after multiplying out, we get that d3 = —(d; + 1)/12 — Jand dy = —d»)>. Since
D has determinant 1, we find that d» = A" (A +1)"" and so dy = —A(A+1)""
Without loss of generality, by taking d; = 1 we have that

Do 1 a4+
22— =0+
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and a quick check shows that the first generator in (3.3.1) is mapped to w;. Using the
same matrix, by multiplying on the right of the second generator in (3.3.1), we get

Iy

O, LAA+D N AA+1)7 #, 1,5, A+ 1)72(1= X)) =

D:(777

and (wy,u’) is a hyperbolic 2-subspace conjugate to some Up. Recall that for a fixed
p € GF(q), Ny is transitive on {(a, f8,y,—f — 1)|o,y € GF(q)}. Hence, we need
only find the hyperbolic pair representing such a conjugate of Ug, to determine f.
This is found by requiring that some multiple of «’ has inner product 1 with wy, that
is

f1=-1 —/3((14r )21 —12))

for some f§ € GF(q). By expanding, we get that § = —(1 + A+ (1 - /12))71
and so Cy(x;) € £5. By Lemma 3.3, ¢p: A= — (1 + (A +1)2(1 = 2%)"" is an
injective map from GF(q)\{—1} into GF(q). Since u# —27!, u# —u—1 and
therefore there exists 4 € GF(g)\{—1} such that ¢(4) = y or —u — 1. Bearing in
mind that U, = U_,_; by Lemma 3.2, we conclude that {Cv(xi), Cv(x;,)l} €z,
Consequently we have proved that Diam C(G, Y;) = 2.

From |G| =% (4> —1)(¢* —1) and [Co(t)| = (2 —1)* we see that
Y| = %(q2 + 1). Using Lemma 3.1 then gives

1
|As ()] :5(44 ¢+ +q-2),

which completes the proof of Theorem 1.3.

4 Structure of C(G,Y>)

In this section we present a proof of Theorem 1.4. The uncovering of the disc
structures of C(G,Y,) will be a long haul. As discussed in Sect. 1, it will be
advantageous for us to use the well known isomorphism that PSp(4,q) = O(5,q)
(see Corollary 12.32 of [44]). So we take G = O(5,¢) and from now on V will
denote the 5-dimensional GF(q) orthogonal module for G. Thus the elements of G
are 5 x 5 orthogonal matrices with respect to the orthogonal form ( , ) which have
spinor norm a square in GF(q). We may assume that the Gram matrix with respect
to (, )is
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Let

(L] \

t =

_ o O
|

O = O

o O =

Then ¢t € G and Y, = 6. Let § = £1 where ¢ = d(mod 4).
Lemma 4.1

@ dim(Cv( ) =
(i) Cy(n*" =]V, ] is a 2-subspace of V of J-type.
(i) V=Cy(t) LCy(1)"

Proof An easy calculation. O
Put L, = Cg( )ﬁCG([V,I]).
Lemma 4.2

(i) Letx € Y,. Then ¢ = x if and only if Cy(z) = Cy(x).
(i)  Co(t) = Stabg(Cy (1)) ~ (La(q) x 52).22.
(iii) L, acts faithfully on Cy(¢) and L, = L,(q).

Proof

(i) Suppose  Cy(x) =Cy(t). Then, wusing Lemma 4.1 (i),
[V,x] = Cy(x)" = Cy(t)" =[V,1]. Hence by Lemma 4.1(iii), tx acts
trivially on V and thus zx = 1. Therefore ¢ = x and (i) holds.

(i)  Plainly CG(I) < Stabg(CV(T)), and if ge¢ StabG(Cv(I)), then
Cy (1) = Cy(t)* = Cy(#%). Hence, as 18 € Y5, t =% by part (i). So g €
Cs(r) and thus Cg(t) = Stabg(Cy(#)). That Stabg(Cy(2))~ (L2(g) X
%).22 can be read off from Proposition 4.1.6 of [32].

(iiiy Forany g € Cg(r), we have [V, 1] = Cy(1)™¢ = Cy(8)" = Cy(1)" = [V, 1]
and so Cg(t) < Stabg [V, #]. If any element in L, acts trivially on Cy (¢), then it
would act trivially on V and thus be the identity. Hence L, acts faithfully on

Cy(1). Let v € Cy(r) and by Lemma 4.1(iii), we have [V, 7] < (v)". Hence
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(W= [V,1]®W where W < Cy(). But since dim({v)") =4, we have
dim(W) = 2 and so Cy(r)£(v)". Therefore for all u € Cy(z), (v,u) = 0 if
and only if v =0 and thus (, ) is non-degenerate on restriction to Cy(¢).
Hence we have L, —GO(Cy(t)) ~GOs(q) as L, fixes [V, ] pointwise, by
definition. Since L, < G and acts as determinant 1 on [V, ¢], then it must act as
determinant 1 on Cy(¢). In addition, as L, fixes [V, f] pointwise, when the
elements of L, are decomposed as products of refections, the vectors reflected
will lie in Cy (7). Since the spinor norm of the elements of L, are a square in
GF(g) and the vectors reflected lie in Cy (), then the spinor norm doesn’t
change on restriction to Cy(¢). Hence, L, ~ O3(q) ~ L(g) proving (iii).

O

Let U; denote the set of i-dimensional subspaces of Cy(f), i = 1,2. In proving
Theorem 1.4, our divide and conquer strategy is based on the following observation.

Lemma 4.3

Y, C U Cs(U).
el

Proof Let x € Y,\{t} and set U = Cy(t) N Cy(x). By Lemmas 4.1(i) and 4.2(i),
U €U, UU,. Since t,x € C5(U), we have Lemma 4.3. O

The three cases we must chase down are presaged by our next result.

Lemma 4.4

(i) Let Uy be an isotropic 1-subspace of Cy(t). Then Cs(Up) ~¢° : Ly(q).
(ii) Let U, be a 1-subspace of Cy (), such that U} N Cy(r) is a 2-space of &-type
(¢ = +£1). Then

SLz(q) o SLz(q) d=z¢

CG(U;;)N{ Lz(qz) o= —¢.

Proof Let Uy be an isotropic 1-subspace of Cy(¢). From Proposition 4.1.20 of [32],
we know that Stabg(Uy) ~ Co : (Cy x C)(r) where C; acts as scalars on Up, r a
reflection of Uy and Cy~gq’, Cy~ILy(q) fixing Uy pointwise. Hence
C(Up) ~¢* : La(g), so proving (i).

If =1, then [V,r] is a 2-subspace of V of +-type, and hence Ui- =
(Uy NCy (1)) L [V,1] is a 4-subspace of +-type. Similarly, UL = (UX N Cy(r)) L
[V,1] is a 4-space of —-type. If 6 = —1, then [V, ¢] is a 2-subspace of V of —-type,
and the results for when 6 = 1 interchange. Let W and W_ be 4-subspaces of V of
+ and —-type respectively, such that Wi and W* are l-subspaces of Cy(r),
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observing that Stabg(W.) = Stabg(W1). From Proposition 4.1.6 of [32], we have

StabG(W+) ~ C+ <S+>
Stabg(W_) ~ C_(s_)
where C; ~ SLy(q) o SLy(g) fixes W1 pointwise, C_ ~ L,(g?) fixes W+ pointwise

and s, s_ are reflections of Wi- and W+ respectively. This proves (ii) and hence
the lemma. O

Lemma 4.5

(i) Let Uy be a 2-subspace of Cy(f) such that Uy N Cy(t) is an isotropic 1-

space. Then Cg(Up) ~¢* : 1°.

(i) Let U, be a 2-subspace of Cy () of e-type (¢ = £1). Then Cs(U,) = Ly(q).

Proof See Propositions 4.1.6 and 4.1.20 of [32]. O
Define the following subsets of U;, i = 1,2.
U ={U e Uy|C5(U) = SLy(q) o SLy(q) }
Uy ={U € Ui|Ca(U) = La(q) }
U = {U elh|Co(U) ~q : La(9)}
Uy ={U € U»|U is of +-type}
Uy, ={U € U,|U is of — -type}

Co(U)~q :ﬂ}.

u‘;:{Ueuz 5

In the notation of Lemma 4.4, U is the case d = ¢ while U] is when § = —e. Note
by Lemmas 4.4 and 4.5 that U; = U) UUS UU;, i = 1,2. We now study Cg(U) N
Y, for U € U,. By Lemma 4.4 there are three possibilities for the structure of
Cs(U). First we look at the case U € U7, and set G~ = C(U). Then G~ = L, (¢?)
by definition of U] . Define A; (1) = {x € G- N Ya|d (t,x) = i} where i € N and
d~ is the distance metric on the commuting graph C(G~,G~ NY,).

Theorem 4.6 If q # 3 then C(G—,G~ NY,) is connected of diameter 3 with

A7 ()] =5 (4~ 1)
|A; ()] = %(Qz —1)(¢* =5); and
45 0)] =3 (8~ (& + 7).

Proof Since ¢>=1(mod 4) and ¢ # 3 implies ¢*> > 13, this follows from
Theorem 1.1(ii) of [11]. O
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We move on to analyze G = Cg(U) where U € U/ . Hence, by definition of U,
Gt =L oL, where L = SL,(gq) = L, (with the central product identifying Z(L,)
and Z(L,)). Set Y* = G NY,. We begin by describing Y+.

Lemma 4.7

Y™ = {xix2)x; € L; and x; has order 4, i = 1,2}.

Proof Apart from the central involution z of G*, all other involutions of G are of
the form g; g, where g; € L; (i = 1,2) has order 4. Since all involutions in L;/Z(G™")
are conjugate, it quickly follows that {g;g|g; € L; and g; has order 4, i = 1,2} is
a G -conjugacy class. Now z acts as —1 on U~ and thus dim Cy(z) = 1. Therefore
t # z whence, as t € G, the lemma holds. O

Let d* denote the distance metric on the commuting graph C(G", Y™) and, for
ieN,Af(t) = {xeYT|d"(t,x) =i}.

Theorem 4.8 Assume that q & {3,5,9,13}. Then C(G",Y") is connected of
diameter 3 with

A7) =500~ 97+ 1;
830 = g(a =07 (g—4-0) + (g~ )(g—2-0); and
A7) = 24* +3.(1430)° — 37+ 69)g” + 2 (1 +8)g — (29 +205).

Proof Let G = G'/Z(G") (= L x Ly). Note that for x;x € YT, x;'xy = x1x; !
and xjx; = xl’lxg I and so the inverse image of X1x; contains two elements of Y.
Let ') denote the distance metric on the commuting graph of L; and AJ@ (x7) the jth
disc of x; in the commuting graph of L. By Lemma 4.7, t = t11, where, fori = 1,2,
t; € L; has order 4. Let x = xyx, € YT with x # ¢. Then tx = xt if and only if #x has
order 2. So, bearing in mind that Y* U{z} (where (z) =Z(G")) are all the
involutions of G, we have that rx = xt if and only if one of the following holds:-

xi=t, n=44x =4 xn=nx¢€ A<11>(E) and X3 € AE”(E). Thus

Af (1) = {xlxz

TeA)@), i= 1,2}u{mgl}. (4.8.1)
Hence, using [11],

1

AT (1) 2(2(q5)> +l==(q— 0> +1. (4.8.2)

| =

Next we examine Aj(f). Let x € Y. Assume that x =x;, or xit,' where
X € A(ll)(ﬁ). Then x € Af(tltz’l) (recall tltz’l = tl’ltz) which implies, by (4.8.1),
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that x € A; (¢). If x = f1x, or t; 'x, where X; € A§2> (f2), we similarly get x € Aj (7).
Therefore

{xlxz‘x_l e AV@), = 5} u {mz‘@ e AV @), 7= a} CAL(r). (4.83)

Now suppose x = x1x; where X7 € Agl)(ﬂ) and X; € A(lz) (2). So there exists y; € L
such that (7,y1,X7) is a path of length 2 in the commuting graph for L;. Then
(t =tita, y1x3', x1x2 = x) is a path of length 2 in C(G",Y™"). Thus, by (4.8.1),
x € A5 (1). If, on the other hand, X7 € A(,l)(ﬁ) and X; € Ag) (f;) we obtain the same
conclusion. Should we have X7 € A;I)(E) and x; € Ag) (), similar arguments also
give x € AJ (1). So

{xfs e Al @), w5 e AP @} Ulnnfmealm), weal®m)}
U {xlxz‘x_l e AV@), ;e AV (n )} C AL (1)
(4.8.4)

Since x = x;x; € A (t) implies d¥) (7, %) <2 for i = 1,2, A (¢) is the union of the
two sets in (4.8.3) and (4.8.4). Thus, employing [11],

AT (1)] = é(q 8> (g—4—08)+(q—5)(qg—2—9). (4.8.5)

Now, as g € {3,5,9,13}, by [11] the commuting graph for L; is connected of
diameter 3. Arguing as above we deduce that C(G+ Y1) is also connected with

diameter 3. Because |Y| —2‘_L‘H_L’ ¢*(q + 0)*, combining (4.8.2) and

(4.8.5) we may determine |A] ()| to be as stated, so completing the proof of
Theorem 4.8. O

Finally we look at Cg(U) where U € Z/l(l). This will prove to be trickier than the
other two cases. Put G° = Cg(U). So G~ ¢’ : Ly(q). We require an explicit
description of G° which we now give. Let Q = {(«, ,7)|o, B,7 € GF(q)} and

a? 2ab b?
L= ac ad—+bc bd
c? 2cd d?

a,b,c,d € GF(q)
ad —bc =1

with L acting on Q by right multiplication. Then Q ~ ¢* and L 2 L,(q). Since Q is
the 3-dimensional GF(qg)L-module (see the description on page 15 of [4]),
G’ =~ QOx L. We will identify this semidirect product with G°, writing G° = QL.
Any g € G has a unique expression g = gpg; where go € Q and g, € L - in what
follows we use such subscripts to describe this expression. Set Y° = G N Y5, let 4°
denote the distance metric and A%(z) the ith disc of the commuting graph C(GY, Y°).
In determining the discs of C(G°, Y?) we make use of the commuting involution
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graph of L 2 L,(q) (as given in [11]). So we shall use d* to denote the distance
metric on C(L,LNYY) and for xeLNY’ and ieN,
Af(x) = {y € LN Y°|d(x,y) = i}. It is straightforward to check that

a2 2ab b?

a,b,c € GF
LNY’= ac bc—a*> —ab 5 5 (@)
5 ) a +b-=-1
c —2ac a
and, as G° has one conjugacy class of involutions,

Y = {xQxL|xL € LN Y and x; inverts xQ}. Without loss of generality, we take

0 0 1
t=t,=10 -1 0
1 0 O

and, up until Theorem 4.14, we will assume that ¢ ¢ {3,5,9, 13}. Thus the diameter
of C(L,LN YY) is 3.

Lemma 4.9
i) 0rnY® = {(a, B, —a)t|a, p € GF(q)} and ‘Qtﬂ YOI = ¢
(i) QrnA)r) =@
Proof A straightforward calculation. O
Lemma 4.10 We have
a 2ab b?
A?(t) =< xlxg = (0,0,0), x, = [ ab b*—a*> —ab |, aA+bv=—15,
b* —2ab
and |A(r)] = Lq(q — 9).
Proof Let x,y € Y°. If [x,y] = 1 then clearly [x;,y;] = 1. From [11] we have
a’ 2ab b?
AL (t) = ab b*—da® —ab ||d*+b* =1
b —2ab &
If xp = (2, f,7) and x; € AX(7) then [t,x] = 1 implies & = y and f = 0. Moreover,
every x = («,0, %)x;, where x; € Ak(z), is in ¥°. Hence, A)(7) is as described above.

By [11], for any involution x; € L we have ’Af(xL)‘ =1(q— ) and there are ¢
possible values that o can take for a fixed such x;, proving the lemma. O

Lemma 4.11 Let x € Y° with x; € A(r). If x ¢ A)(1), then x € A(¢).

Proof Suppose x € Y where xp = (2, ,7) and
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a? 2ab b?
xp=|ab bV*—a* —ab

> —2ab
Then x;, inverts x¢ if and only if

a*ou+2abf + b*y = —a
abo + (b* — a*)B — aby = —f (4.11.1)

bPo — 2abf + a*y = —y.
Suppose first that 6 = —1. Then, since —1 is not square in GF(g), we must have
a,b # 0. Rearranging the first equation gives o = 2ab~'f 4 7 and (4.11.1) remains

consistent. Note that when =0, we have o« =y and so x € A?(t). So assume
B #0. Let y € AY(r) where yp = (ab™'f +7,0,ab™" 4 y) and

b? —2ab &
yo=| —ab da*—b* ab
a? 2ab b?

It is a routine calculation to show that [x,y] = 1, proving the lemma for 6 = —1.
Now assume ¢ = 1. If a, b # 0 then the argument from the previous case still holds,
so assume first that a = 0, and hence b is an element in GF(g) that squares to —1.
Then (4.11.1) simplifies to « = 7, and so xp = («, f,%). Let z € AY(r) where zgp =
(2,0, 0) and

-1 0 O
7L = 0 1 0
0O 0 -1

An easy calculation shows that [x, z] = 1. Similarly, assuming b = 0 then « is an
element of GF(g) squaring to —1 and (4.11.1) simplifies to = 0. Then xp =

(2,0,7) and if w € AJ(r) where wo = (27" (2 +7),0,2 " (« + 7)) and

0 0 -1
wp = 0O -1 0
-1 0 0
then an easy check shows that [x, w] = 1, proving the lemma for 6 = 1. O

Lemma 412 We have Qr N Y° C {t} U A(t) U AS(t). Moreover,

|0t N AY(1)| :l(q2 — (14 68)g+96); and

2
|0t N AY()] =%(q2+ (1+0)g— (2+9)).
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Proof 1f x € QrN Y° and x # ¢ then xp = (, f§, —a) and x & AY(r) by Lemma 4.9.
Let y € A%(r) where yo = (7,0,7) and

a? 2ab b?
ve=|ab b*—da*> —ab
b2 —2ab a2

with a®> + b*> = —1. Then [x,y] = 1 if and only if —a*a = abf and —b*f = abo.

Assume first that 6 = —1. Since —1 is not square in GF(g), we have a,b # 0 and
so o= —a 'bf. Hence if y € Ot is such that yo = (—a 'bB,B,a 'bp), then
y € A)(r). By looking at AL(r), we see there are ¢+ 1 ordered pairs (a, b) that
satisfy a®> + b*> = —1. However, if (a,b) # (c,d) where a* +b* = +d* = —1
and a~'b = ¢~'d, then an easy calculation shows that (c,d) = (—a,—b). Hence
there are %(q—i— 1) distinct values of a~'b satisfying the relevant conditions. If
B =0, then x = ¢ and if § # O there are }(¢*> — 1) elements in Qr N AS(1).

Assume now that 6 = 1. If a, b # 0 then the arguments of the previous case still
hold, with the exception that there are now g — 1 ordered pairs (a, b) that satisfy
a® + b* = —1. However, as a, b # 0 we exclude the pairs (£i,0) and (0, +i) where
i is an element of GF(g) squaring to —1. Hence there are ¢ — 5 ordered pairs (a, b)
satisfying a® + b*> = —1, a,b # 0 and thus 1 (g — 5) distinct values of a~'b. Hence
there are 1(g—5)(g—1) elements z€ QN AS(r) such that zp=
(—a='bp, B,a='bp) where B # 0 (note that if f =0, then z = r). Suppose a = 0,
then b # 0 and so ff = 0. Hence xp = (2,0, —«) and all such x lie in A9(z) if o # 0.
Similarly, if b = 0 then a # 0 and xo = (0, 5,0) where § # 0 and all such x lie in
AS(t). Therefore, |orn Ag(r)’ =1g-5(qg-1)+2(q-1)=1%(q- 1)*  as
required.

Hence it suffices to show that the remaining involutions all lie in A}(r). Let
w € Qt be such that wg = (y,¢,—7). Choose s€ Y such that s = (abe —
b*y,aby — a’¢,b*y — abe) with aby # a’¢ and

b2 —2ab &
st= | —ab a®>—-b*> ab |,

a? 2ab »?

with @> +b*> = —1. It is an easy check to show that s € Ag(t), and moreover
[w,s] = 1. This accounts for the remaining involutions in Qf, thus proving the
lemma. |

Lemma 4.13  Suppose x € Y° with x; € A5(1). Then x € AS(t).

Proof It can be shown (see Remark 2.3 of [11], noting the result holds for any odd
q) that for a fixed a,b € GF(q) such that a*> + b* = —1,
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a? 2ab b? c? 2cd d? N
) ) ) c“+de=—1
Cp ab b*—a —ab = ce de—c —cd ble +d) 5
e = —2ac
b2 —2ab a? &2 —2ce 2

Let y € Y° be such that yp = («, ,7) and

c? 2cd d?
yvo=|ce de—c* —cd | € Ar).

&2 — 2ce 2

So there exists a,b € GF(q) such that a*> +b*> = —1 and b(e + d) = —2ac with
d # e. Since y;, inverts yo, we have

a4 2cdp+ d?y = —u
cea+ (de — ¢*)B — cdy = —B (4.13.1)
e —2cef + cty = —y.

Assume first that 6 = —1. Since —1 is not square in GF(g), then d,e # 0 and any
a,b € GF(q) such that b(d + ¢) = —2ac and a* + b> = —1 must also be non-zero.
Moreover, if ¢ = 0 then d = —e~! and b(d — d~!) = 0 implying that d = —1. But
then y, =t¢&A5(t), so c¢#0. The system (4.13.1) now simplifies to
o =2ce”' B+ de~'y. Let x € A)(¢) be such that xp = (&,0,¢) and

a? 2ab b?
xx=|ab V*—da*> —ab

»: = 2ab a?

where £ = —abc™ e (y 4 (d — e) ' (2c +a 'be — ab~'e — (ab)'e)p). Using the
PolynomialAlgebra command in Magma [17] we verify that [x,y] = 1 and so
y € 85(1).

Assume now that = 1. Let a,b € GF(q) be such that a*> +b* = —1 and
b(d + e) = —2ac. Suppose c¢,d, e # 0 and d # —e. Then b(d + ¢) = —2ac # 0 and
so a,b # 0. The argument for the case when = —1 then holds. Suppose then
¢,d,e #0 and d = —e. Then b(d + ¢) = —2ac = 0 and since ¢ # 0 we must have

a = 0and b> = —1. The system (4.13.1) then becomes o = 2ce™'f — . If x € A%(7)
is such that xp = (—c~'e™'B,0, —c"'e~!p) and

0 0 -1

then a routine check shows that [x,y] = 1.
Now assume ¢ # 0 and d = 0. Since y, € A5(¢), we must have e # 0 and so
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c? = —1. The system (4.13.1) becomes o = 2ce”'f and using Macma [17] we
deduce that if x € A(¢) where xp = (¢,0,¢),

a* 2ab b?
xp=\|ab b>—d®> —ab
b*  —2ab a*
and ¢ = (ce (1 — a®) — ab)B — 27'b*y, then [x,y] = 1. Similarly, if ¢ # 0 and
e=0,thend # 0 and ¢> = —1. The system (4.13.1) becomes f§ = 2~ 'cdy and [17]
will verify that if x € A)(r) where xp = (&,0,¢),

a? 2ab b?
xp=\|ab b>—da®> —ab
»: = 2ab a?

and ¢ = 27! (y — b*a + abedy — a*y), then [ v =1
Finally, if ¢ = 0 then d = —e~! and so a®> = —1 and b = 0 satisfies the relevant
conditions. Note that if d = £1 then y; = ¢, so we may assume d # +1. The system

(4.13.1) becomes o = d?y, so if x € Al(t) where xp = (2d%y(1 —d?)™",0,2d%y(1 —
d?)~") and

-1 0 0
x=1 0 1 0
0 0 -1

then a routine check again shows that [x,y] = 1. Therefore, for all y € Y° such that
yi € A5(t), there exists x € Ak(z) such that [x,y] = 1, so proving the lemma. (]

Theorem 4.14 If q & {3,5,9,13}, then C(G°, Y°) is connected of diameter 3, with
disc sizes

189()] = 54(q — 9
|AY(1)| = i(q — (26 +2)q” + (1 +268)q* — 2q + 26); and
IA(1)| = %(q +2(1428)g” — (3+28)g> +2(1 + 8)g — 2(2 + 9)).

Proof 1t is known that C(L, L N Y°) has diameter 3. Hence, for any h; € AX(r), there
exists hy € Al j[l(t) that commutes with A;, i = 1,2. Therefore for any x € Yo
where x;, € Ak(r), there exists y € Y* with y, € AL () and such that [x,y] = .
Since any z € Y* where z; € A}(r) must commute with some w € Y0 with w; €
A5(t) (which lies in AS(z) by Lemma 4.13), z € A(¢). This finally covers all
possible involutions in ¥° and so the diameter of C(G°, ¥°) is 3. Now for each

@ Springer



Graphs and Combinatorics (2020) 36:959-1000 983

x, €LNYY, |0x, NY’| =¢* by Lemma 4.9, and therefore there are 14%(q — 6)
involutions y € Y° such that y; € A¥(f). From Lemma 4.10, A?(t)’ =1q(q—9).
Therefore

1 1 1
U 0unad®)] =54 (a-0) —54a—8) = 5ag— 1)(g - 9).
x €Ak (r)

There are q2|A§ ()| involutions z € Y° such that z; € A% (1), which is known to be
g (q—0)(g—4-9) (see [11]). Also, by Lemma 4.12,
|orn Ag(t)| =1(¢* = (1+ 9)q — ). Hence

M0 =0 A0|+| | 0xnAd@0)| +¢*|A5()]

xp€AL(r)

1
=1(¢" = 20+ 2)¢’ + (1 +20)4" — 2 +29).

Finally, there are |Y°| = ¢*|L N Y°| =14*(¢q + 0) involutions in G° and therefore
A3 = |¥°] = [A3(0)] - [A ()] -1

= % (¢* +2(1+20)g° — (3+28)g” +2(1 4 0)g — 2(2 + 9))

which proves Theorem 4.14. O
Theorem 4.15 C(G,Y,) is connected of diameter at most 3.

Proof For g <13, this is easily checked using Magma [17], so assume g > 13.
Combining Lemma 4.3 with Theorems 4.6, 4.8 and 4.14 yields the theorem. [

We now focus on finding the disc sizes of C(G, Y»). First, we need the following
four lemmas.

Lemma 4.16 The sets U, U; and U3 are single Cs(t)-orbits. Moreover,
Ui =gq+1;

1
‘Uﬂ = Eq(qu d); and

1 )
Uy | =5ala—9).

Proof Since Cg(t) acts orthogonally on Cy(t), the first statement is immediate.
Recall the Gram matrix J for V with respect to (, ) and the basis {v;}. Observe that
Cy(t) = {(2, B,7,0,7)|e, B,7 € GF(q)} and so a basis for Cy(¢) is {v,vz,v3 + vs}.
Let v = (2, B,7,0,7) be a non-zero vector in Cy () and so (v,v) = 208 + 272
Suppose v is isotropic, so Cg((v)) ~¢* : Ly(q) and (v,v) = 2af + 29> = 0. If
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y = 0, then off = 0 and so either o = 0 or § = 0 (but not both as v # 0). Hence there
are 2(q — 1) such vectors with y = 0. If 7 = 0, then o = —p~'? and there are
(g —1)* such vectors satisfying this. Hence there are 2(q — 1)+ (¢ —1)* =
(g —1)(g+ 1) non-zero isotropic vectors contained in Cy(¢) and thus g+ 1
isotropic 1-subspaces of Cy ().

Suppose now v is Cg(#)-conjugate to vs + vs, which is non-isotropic. Note that
(vs + V5>lﬂCV(l‘) is a 2-subspace of V of +-type. If 6 = 1, then by Lemma 4.1(ii),
(v3 4 vs)" is a 4-subspace of V of +-type and so Cs((v3 + vs)) ~SLy(q) o SLy(q).
While § = —1 gives that (v3 +vs)™ is a 4-subspace of V of —-type and so
C((vs +vs)) ~Ly(q*). A quick check shows that (v3 4+ vs,v3 +vs) =2 and so
(v,v) = 20f 4+ 2y* = 2/% for some /. € GF(g)". Thus, aff + 7> =J* for some
/. € GF(q)". If y =0, then o= B~'2% and so there are ¢ — 1 such vectors that
satisfy this. If y = +4, then 8 = 0 and so for both values of y, there are 2(g —
1) + 1 vectors that satisfy this. Finally, if y € GF(q)\{0, 4, —A}, then of = 1 —y? # 0
and so o= f'(1 —9y?). There are (¢ — 1)(g — 3) such vectors that satisfy this.
Hence for any given A, there exist (¢ —1)+4(g—1)+2+(g—1)(¢—3) =
q(q + 1) vectors that satisfy o8 + 7> = 12. Since there are % (g — 1) squares in GF(q),
there are g(q+ 1)(¢ — 1) vectors that are Cg(f)-conjugate to v + vs and hence
2q(g+ 1) 1-subspaces of Cy(r) that are Cg(r)-conjugate to (vs + vs).

This leaves the remaining orbit Z/Il";. Recall there are ¢*> + ¢ + 1 subspaces of
Cy(t;) of dimension 1, and hence the size of the remaining orbit is
+q+1—(q+1)—3q(qg+1)=1q(q— 1), so proving the lemma. O

Corollary 4.17 The sets Uy, U, and U3 are single C(t)-orbits. Moreover,

L] = a+1;

|L[{| = %q(q +1); and
1

Uy | =5ala—1).

Proof Since Cy(t) is 3-dimensional, U+ N Cy(t) € U, for any U € U,, and so the
result is immediate by Lemma 4.16. O

Lemma 418 Let U, U €U, be  such that U#U. Then
CG(U) N C(;(U/) ny, = {l}

Proof Suppose x € Cg(U)NCs(U')NY,. Since U # U’ and x fixes each 2-
subspace pointwise, U + U’ = Cy(¢) and so x fixes Cy(¢) pointwise. That is to say,
Cy(x) = Cy(t) and so t = x by Lemma 4.2(i). O

Lemma 4.19 Let Uy € U3, and G° = QL, Y° be as defined in the discussion prior
to Lemma 4.9. Let p : Co(Uy N Cy(t)) — G° be an isomorphism such that
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0 0 1
=10 -1 0
I 0 O

Then Cg(Uy) is totally disconnected and (Cg(Up) N Y2)” = QrN YP.

Proof Since Uy NCy(t) is isotropic, it must lie inside of Uy and so
Cs(Up) < C(Uy NCy(r)). As t fixes Uy pointwise, ¥ € (C6(Up)) ~q* - q%(j by
Lemma 4.5(i). The subgroup of L with shape qTf‘s contains one single involution
which must necessarily be #*. For all x € Y°, we have x7 = 1 and x,, inverts xg, 0
(Cs(Uy) NY,)” € Ot N YO, By comparing the orders of both sides, we get equality.
By Lemma 4.9(ii) Cg(Up) N Cg(t) NY, = {1}, hence Cs(Up) is totally discon-
nected. O

Lemma 4.20

[A(0)] = %q(q2 +(1-0)g +9).

Proof Clearly, x € A (¢) if and only if x € A;(¢) N Cs(U) for U = Cy(t) N Cy(x),
$0

M= | (AN Ca(U)).
veld\UuU,

IfW, W el with W# W, then We W €U, and if y € Co(W) N Cg(W'), then
y € Co(W @ W') and hence y € Co(W") for any 1-subspace W” of W & W'. Since
there are g + 1 subspaces of W” of dimension 1, any such y will lie in exactly g + 1
such Cg(U) for U € U,. Together with Cg(W") and Lemma 4.18,

AL = D 1M (1) N Ca(U)[ =g > |Ai(1n) N Co(U)).

el Ueld,

Combining Lemmas 4.16, 4.19 and Corollary 4.17 with Theorems 4.6, 4.8, 4.14 and
[11], we have

1

M0 = g0t + 1 = 0)+ 3ala-+0) 3 g =07 +1] + ala -~ )

—%q(q —9) Bq(q +1) +%q(q - 1)}
= Sald + (1= 8)q +9)

as required. O

We now consider the second disc A;(¢). Here, we must be careful as elements
that are distance 2 from ¢ in some subgroup Cg(U) may not be distance 2 from 7 in
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Table 1 List of cases in Ay (7)

Case | Configuration Properties Description as Set
Oa(Un) .
1 h./\z S A(dbl)( t) U ' (Ca(U))
Cv<< )) el Uel,
/0\ %o ) Ca(th@Us)
# z (RS AZ (t) :
2 o —w [rmow UL @ Uy = Cy((t,z)) U Ty (Ce(W))
\/ Co(ts) U, e U, Well
/\ Oa(Uh)
”’M Co(Ui @ Us)
\./ Ca(Ua)
/._.\ Ca(U1)
tZM Catrota) Ca(U2)
\/ RSIARS (t)
Cc(@2) for some U, < Cy ((t, x)) .
3 N Ca(Uh) x ¢ A(( Ll%Uz)(f) U Ly (Ce(U)) \ U I5(Ce(W))
fa.\/ ° \;.w Ca(t: 0 Ua) Ui®Us = CV(<t $>) ve Wette
T (Jz S Z’{l
\/ Ca(Uz)
° Q Ca(Uh)
"( ° )" o (s 0 12)
\/ Ca(Ua)
e x € A§(t) .
4 P ; x ¢ AT (1) Li(@)\ U I'1(Ca(U))
S~ Uy, =Cy((t,x)) €lh veu,
/._.\ Oa(U1) = AG( )
ooy |t z ¢ ASeU) (1) Dy (G)\ U Dy (Ce(U))
5 \\ (/ . for any U; < Cv(<t x)) =
U1 D U2 ((t L>>
\/ U, € Z/[l

another subgroup Cs(U’). Moreover, there may be elements that are distance 3 from
t in every such subgroup centralizing an element of {{;, but actually are distance 2
from ¢ in G. We introduce the following notation. Let A§ (¢) be the second disc in the
commuting involution graph C(K,K N Y;) and

Ty(K) = {x € A ()| dim Cy (£, x)) = i}

for K = C(U), U € Uy UU,. Clearly, Ax(t) = T'1(G)UI'2(G). A full list of cases
with corresponding notation is found in Table 1. Also we use the following notation:
for any U < Cy(t), define U;(U) to be the totality of i-dimensional subspaces of U
and W;(U) to be the totality of i-dimensional subspaces of Cy(#) containing U. Note
that U; = Z/(,(Cv(l))
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Lemma 4.21
() IfWeud, then [UNUIW)| =1and U NUI(W y:q
(i) If Weus, then W Ny (w)| = and

Ui e ()] = fuy o (w)] =15
(iii) If W €Uy, then [Uf NU(W)| = Uy Nty (W)| =4

Proof Recall the Gram matrix J, with respect to the ordered basis {v;},i =1,...,5.
Suppose Wt NCy(t) =Uy €U). Without loss of generality, choose
W = (vi,v3 +vs). Clearly (v;) € UY, and (v + vs)"NCy(t) € U5 . Since

(Vl + ;L(VS + V5), v + /1(\13 + V5)) = /12(\/3 +Vvs5,v3 + V5),

vi+A(vs+vs) lies in the same Cg(f)-orbit as wv3+vs and so
(vi 4 A(v3 +vs))"NCy (1) € U, proving (i).

Suppose now W € U, . Without loss of generality, choose W = (v;,v,). Clearly
(vi), (m)yeud. Let U;=(v+in) for 1#0 and note that
(vi + Avy, v + Avy) = 24 = u # 0. Since the type of U} ) is determined by whether
1 is a square or a non-square in GF(q), and there are 5~ Lof each, it is clear that there
exist qT such U; for which U3 is of +-type, and s1m11ar1y for —-type, proving (ii).

Finally suppose W € U, , so for all ve W, (v,v) #0. The simple orthogonal
group on W is cyclic of order " L and acts on the 1- -subspaces of W in exactly two
orbits with representatives (u;) and (up) where (uy,u;) is a square and (up,up) is a
non-square in GF(q). Since |U,(W)| = g + 1, both orbits must be of size %1. This
proves (iii) and hence the lemma follows. U

Corollary 4.22 Let U € U,. Then the following:

0 MaU)=q+1.
(i) If UelU, then [USNW,(U)| =1 and [UF NW1(U)| =q.

Gii) If U el then s nwW,(U)| =2 and
U3 WL (U)] = Uy n WL (U)] =44
(iv) If U €Us®, then [y N WH(U)| = [Uy nWL(U)| =4

Proof Let U<W <Cy(t). Then WX N Cy(t) <UL N Cy(t) < Cy(t). The result
follows from Lemma 4.21. O

Lemma 4.23 Let U € U and W € Uy N Wy(U). If x € Y, N C(W) is such that
dW)(t,x) = 3, then d°\Y)(1,x) = 3. Moreover,

o Jaa-3a 17 q=1(mod4)
1 G =
Zq(qfl)z(qul) g = —1(mod 4).
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Proof Recall that Cg(U) = QL ~ G° where G is defined as in the discussion prior
to Lemma 4.9. By conjugacy, we may assume L = Cg(W). Now Cg(U) N Cg(t) =
QoCp(t) ~q : Dih(q — 0) where Qyp<Q is elementary abelian of order g. Let
x € QoCL(t) N Y2, so x7 = 1 and x;, inverts x. Clearly, x{Q = xszQ & L since Qy is
of odd order. Hence, C.(¢) is self-normalizing in QyCr(¢) and thus there are ¢
distinct conjugates of Cz(¢) in QoCr(t). Let g € QoCr(¢t)\Cy(2), so Cr()® # CL(2).
Now [CL(1),1] = [CL(t)%,1] =1 and so (CL(t),C(1)®) centralizes 1. If Cp(z),
CL(t)*<L" for some heQL, then (Cr(t),CL(t)*)<L". However,
CL(1)S(CL(1), CL(1)*) < CL(t), a contradiction. Hence every conjugate of Cp(¢)
lies in a different conjugate of L and so there are ¢ distinct QyCy(¢)-conjugates of L.
Therefore, U; NW,(U) is contained in the same Cg(U) N Cg(t)-orbit, and
}Z/{; NWL(U )| = g by Corollary 4.22. There are exactly g +-type 2-subspaces of
Cy (1) containing U, all of which lie in the same Cg(U) N Cg(¢) orbit.

Let x € Cg(W) N Y, be such that @MW) (¢, x) = 3. Suppose W¢ € U3 N W, (U)
for some g€ CG( YN C(t), W#AWS If  dW(,x)=2 then
d%W) (8 x8) = d%W)(1,x8) =2, and dW)(z,x) = dW)(¢,x%) = 3. Hence it
suffices to prove the lemma for C5(W). By Theorem 4.14, any involution distance 3
away from 7 in L is necessarily distance 3 away from ¢ in Cg(U), proving the first
statement.

Let Wy eUSNWy(U), so Co(Wo)~g*: q;‘s. By Lemma 4.19,
AZCG<U)(I) NCs(Wy) = 0tN AZCG(U>(I). Let W;, i=1,...,q be the subspaces in
Us NW,(U). From Lemma 4.18, Cg(W;) N C(W;) N Y, = {r} if and only if i = j.
Using Corollary 4.22(i) with [11], we have

oW 4 q(g—0)(qg—4—9). (4.23.1)

Combining Lemma 4.12 with (4.23.1),

Dy (Ca(U qu + A5 1) 0 Co(Wo)
e (4.23.2)
:%( 21+ 8)¢* + (26 — 1)q +29).
Together, (4.23.2) and Theorem 4.14 give
T (Ca())] = A5 (1) = IT2(Co(V)
= %q(cf —(20+3)¢* + (45 +3)g — 25 — 1)
as required. U

Lemma 4.24 Let t,x € Ly(q). Then d9(t,x) <2 if and only if the order of tx
divides % (q — 9).
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Proof See Lemma 2.11 of [11]. O
Lemma 4.25 Let U € U], and W € (U; UU; ) N W, (U).

() If 6=1and Wy € U3 N W,(U), then ¥, N Ce(Wo)\{t} C AV (1),
(i) If x € Y2 N Cg(W) is such that W) (¢, x) = 3, then d(Y)(¢,x) = 3 and

(g—1)(qg—3)(q> — 6q + 13) q = 1(mod 4)

oo | —

IT1(Co(U))] =

—_

g(qz—l)(q2—2q+5) g = —1(mod 4).
Proof Recall that C(U) ~ Gt ~ Ly o L, for L; ~SLy(q) ~ L,. Suppose y € Cg(W)
is such that d%(")(z,y) = 3. Since Cg(W) ~ L,(q) is simple, then y = gg? for some

g€L; and ¢ : Ly — L. Since t € Cg(W), write t = ss? for some s € L;. Then
d" (s,g) = 3, s0 d°Y)(t,y) = 3 by Theorem 4.8, and thus

A (1) € ASSY (1) for all W e (UG UUG) N WL (U). (4.25.1)

If §=—1, then U(z’ NW,L(U) = & by Corollary 4.22. If 6 =1, there exists
Wo € US N Wy (U). Recall that Wi N Cy(t) €U $0
Ce(Wo) < C6(Wgi N Cy(t)) ~G® = QL. By Lemma 4.19, if x € C5(W,) NY, then
x = xot and xg is inverted by ¢ and has order p. Since x¢ also lies in C¢(U), we can
write  xgp =hh? for some helL,. Now x;'=hr"'A"'? and so
x’Q = x‘QSw = hs(h(P)sw = h~'h~1%_ Therefore, h* = h~! and h** = h~1?. Moreover,
x = xgt = (hs)(hs)? where hs € L, is an element of order 4 squaring to the non-
trivial element of Z(L;), and h = (hs)s has order p. By Lemma 4.24 and [11],
d" (hs,s) = 3 and so d°cY)(t,xpt) = 3 by Theorem 4.8. Therefore,

Co(Wo) NASY (1) = 5 for all Wy € U N W,(U). (4.25.2)
Hence combining (4.25.1) with Lemma 4.21, [11] and, if 6 = 1, (4.25.2) we get

U 4™

U<w

= [2(Co(U))] = 7 (g - 8)*(g — 4 - 9).

B

This, together with Theorem 4.8 yields

T1(Co(U)] = A5 0)] - ITa(Co())

1

=@ 1Da—1-20)(q" - (4+20)g+9 +49),

which proves the lemma. O

Lemma 4.26 Let U € Uy, and W € (Uy; UU; ) N W, (U).
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() If 6= —1and Wy € U N W (U), then ¥, N Ca(Wo)\ {1} C AV ().
(i1) We have

(g—2+40)(¢"—1)

4>|~

v U ma(cew

WeWz (U)
and |I'(Co(U))] = L(g — 1)(g + 1)

Proof First assume o6 = —1, and consider Cg(W;). By Lemma 4.19, every
involution in Cg(W,) can be written as xt where x has order p. But (xt)t = x has
order p, which does not divide 1(¢> — 1), and hence d“¢(Y)(xt,t) = 3. In other

words, Y2 N Co(Wo)\{7} C AgG(U)(t), so proving (i).

Consider then Cg(W)~Ly(q). We utilize the character table of L,(g) from
Chapter 38 of [22] (see also Schur [42]). Recall that L,(g) contains one conjugacy
class of involutions, and two conjugacy classes of elements of order p. The
remaining conjugacy classes partition into two cases: those whose order divides
1(g—1) and those whose order divides 1 (g + 1). Let C be a conjugacy class of
elements in Cg(W) and define Xc = {x € ¥, N Cg(W)|tx € C}. Tt is a well-known
character theoretic result (see, for example, Theorem 4.2.12 of [28]) that

v (tx 2
|XC| _ |C| Z /C(t ) »(t)|

[Ceam @] < x(1) (4.26.1)

Irreducible

and all X¢c are pairwise disjoint. Let x € Y, N Cg(W). If the order of #x divides
1(g* — 1) butnot § (g — &) then it must necessanly divide § (¢ + 6). Hence, if Cis a
conjugacy class of elements of order dividing 4+ T’ then any y € X¢ has the property
that d“W)(t,y) =3 but d%WW(r,y) =2, by Lemma 4.24. Recall that
FQ(CG(U))\UWGWZ(WFZ(CG(W)) is the set consisting of all such involutions.
Therefore, it suffices to calculate the sizes of all such relevant Xo. We use F to

denote to be the set of all conjugacy classes of elements with order dividing ‘”b.

By [22], we see that for any C€ F, |C|=¢(¢q—0) and so for any
xecC |CCG(W) (x)| = (g — 9). Hence (4.26.1) and [22] gives |X¢| =g — J. Now if
=1, then |F|=%4' by [22]. If &6=-1, then |F|=4%> Since
.A3CG(W>(t) N A§°‘<U>’ = |Xc||F|, and by Corollary 4.22,
WL (U) N (U3 UU5)| = g+ 5, we obtain
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LG\ | Ta(Ca(W))| = Wa(U) n W uly)|IXc|lF|
wWew,(U)

(g—1)(g*—1)  g=1(mod4)

e it S

(@=3)(¢* 1)  g=—1(mod 4)
which proves the first part of (ii). We now prove the last part of (ii). Recall that

U Ta(Caw)| = (g + 9| A" 0| = 3 (¢~ 1)(g —4-9)
Wews(U)

by [11] and Corollary 4.22. Together with the above statement, we have

L) =] | Ta(CaW))|+ |Ta(Co)\ | Ta(Co(W))
WeW,(U) Wew,(U)
=@ D(g—4-0)+ (&~ Dg—2+9)
=@~ 1)(g-3)
Hence
N1 (Ca(W))| = A5 ()] = ITa(Ca(v))]
= 1la= g+ 1),
and Lemma 4.26 holds. O
Lemma 4.27

1
) —q(* —1)(3¢ — 11> +21g—29) g = 1(mod 4)
Uruaﬂmﬁ— e

ve 1690 —1D(g—1)B¢* +29+7)  g=—1(mod 4).

Proof Since U; = U)UU; VU, with each orbit size given in Lemma 4.16, the
result follows immediately from Lemmas 4.23, 4.25 and 4.26. O

Recall the list of cases in Table 1. The next lemma concerns Cases 2 and 3, in
other words, (Jy¢y, [2(Ca(U)).

Lemma 4.28
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U T(Cow))] =5 (a - 9)(a® - 24 ~ 1)

veld,

Proof By Lemmas 4.12 and 4.19, for any W,E¢€ L{g we  have
.AZCG(U)(I) N CG(WO)‘ =1(qg—1)(qg — 6) for some U € U;(Wp). Additionally, for
any W € (U3 UU, ) we have

A5 0y 1 Co(W)| = A5 ()| + 5™ (1) 0 AT 1)

= J(a-9)lg-3),

for some U € U (W), by [11] and Lemma 4.26. Since U, = UgUU;UL{Z’, with the
orbit sizes given in Corollary 4.17, this covers every involution in
Uvey, T2(C6(U)), and the lemma follows. O

We now concern ourselves with the final two cases. These concern involutions
that are distance 3 from ¢ in every Cg(U) that they appear in, but actually are
distance 2 from ¢ in G. Recall that for any involution y € Y, Cg(y) =
StabgCy (y) = LyK, where L, = Cg(y) N Cg([V,y]) ~La(g) and |K,| =2(q — 9).
Also note that L,dCg(y) acts faithfully on Cy(y), and Syl,Cq(y) = Syl,L,. The
following three lemmas concern Case 5.

Lemma 4.29 Let W € U UU,° and x € Cs(W) be such that d°\V)(t,x) = 3 for
all U € U (W). Then d(t,x) = 3.

Proof If W € UY, then any involution in Cs(W) can be written as x = xot where
xg = xt has order p. If W e U, 5, then, from Lemma 4.26, any involution x €
Cg(W) such that x has order dividing § (¢* — 1) must be distance 2 from 7 in C5(U)
for some U € U;(W). Hence, any x satisfying the hypothesis must have the property
that the order of x is p.

Let W € US UU,° and suppose d(t,x) =2, then there exists y € ¥, such that
t,x € Cg(y) = LyK,. Since tx has order p, tx € L, and so tx € Cg([V,y]). As L, acts
faithfully on Cy(y), any element of order p must fix a 1-subspace of Cy(y), say Uj.
Therefore, tx € Cs(U, @ [V, y]). But tx € Co(W + [V, y]) and since [V,y] € U3, we
have W # [V,y]. Set W + [V,y] = U, & [V, y].

Suppose U, <W. Then t,x,y € Cs(U,) and so d“(")(¢,x) = 2, contradicting
our assumption. Hence U,«W and so U, = (u; +u,) for uy € W\[V,y] and
uy € [V,y]. Since y € Cs(y), (ur +u2)* = uy + up. However, (u; +up)’ = uj +
wy=u, —uy and so up = —2"'u; +27'u}. Thus u; +ur =27 (u; + ) and so
Uy = (uy + u). Recall that 7, x € Cg(y) and u; € W\[V,y], so u} = u} = u;. Hence
uy + uy is centralized by both ¢ and x and so U, <W = Cy((t,x)), a contradiction.
Therefore, d(t,x) # 2 and the lemma holds. O
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Lemma 430 Let W € US. Then A3CG(W>(I) C Ay (t). In particular,

_{q(qz—l) g = 1(mod 4)

[2(G)\ U [2(Ce(V))| = 0 g = —1(mod 4).

Uel,

Proof We deal first with the case when 6 = —1. From Lemma 4.26, the number of
involutions distance 3 from ¢ in Cg(W) that are actually distance 2 from ¢ in some

Uel (W) is L(g+1)(g—3) = ‘AgG(W)(t)‘. That is to say all elements in

A3CG<W)(t) are distance 2 from ¢ in Cg(U) for some U € U,(W). This occurs for
every such W € U3 and so I'2(G) = Uyey, N2(Ca(U)).

Assume now that 6 = 1. As before, any element x in I'2(G)\ Uy, [2(C6(U))
must have the property that the order of zx is p. Suppose d(t,x) = 2, and so there
exists y € ¥, such that 7,x € Cg(y). If W # [V,y] then the argument from Lemma
4.29 holds and results in a contradiction. So we must have W = [V,y]. Since
StabsCy(y) = Stabg[V,y] = Cs(y), Cs([V,y]) <Cs(y) and so any element in
Cs([V,y]) = Cg(W) centralizes y. In particular, A3CG(W)(1‘) C A,(1), establishing the
first statement. By Lemma 4.26, the number of involutions distance 3 from ¢ in
Cg(W) that are actually distance 2 from 7 in some U € U (W) is t (g — 1)*. By [11],

’Ag“ ‘ =3(¢g—1)(g+7) and so by subtracting the two, there are 2(g — 1)

involutions in A3 )( t) that are distance 3 from ¢ in Cg(U) for all U € U, (W), but
are actually distance 2 from 7 in C(G, Y;). Since ’ng! =14(q+ 0) by Corollary
4.17, the lemma follows. O

Finally we turn to Case 4, FI(G)\UUeuIFI(CG(U))'

Lemma 4.31 Let U € U; UUY and x € Cg(U) be such that Cy({t,x)) = U and
d%W)(t,x) = 3. Then d(t,x) = 3.

Proof Assume first that U € U{;. By Lemma 4.24, tx has order p or divides
1(q* + 1). Suppose d(t,x) = 2, then there exists y € Y, such that 7,x € Cg(y). Since
1(g* + 1) is coprime to [Cs(y)| = g(¢* — 1)(g — ), tx must have order p. Indeed,
clearly ;(q2 +1)is coprime to both ¢ and ¢*> — 1, and any factor dividing g — &
must divide g — 1 and so 1 (q + 1) is coprime to ¢ — J. Since #x has order p, then
ix €L,

Assume now that U € U°. Let x be an involution in Cg(U) = QL ~ G° as defined
in the discussion prior to Lemma 4.9. Then #x € Qtx; which has order n dividing
(g + 6) in QL/L. Therefore, (Qtx,)" € Q and so (zx)" has order p. Therefore, tx has
order dividing 1¢(q + d). Suppose d(r,x) = 2. Then there exists y € ¥, such that
t,x € Cg(y). By the structure of Cg(y) ~ (L2(q) x & 0) 22, the order of rx forces
tx € Ly.
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We may now assume U €U; UUY, so tx €L, = Cg([V,y]) and hence
tx € Cg(U +[V,y]). Suppose U%[V,y], then tx € Cq(U @ [V,y]) Also, mx €
Ce(Uy & [V y]) for some U, <Cy(y). However, if U = U, then t,x,y € Cg(U)
and d%W(z, x) = 2. While U, # U results in a contradiction using an analogous
argument from Lemma 4.29. Hence U < [V,y].

Ast,x € Cg(y) = Stabg([V,y]), tx € Ly = Cs([V,y]) and [V,y] = U L U’ where
U = U+ N[V,y]. Then for u € [V,y] we have u™ = u and so u' = u". In particular,
ifue U then ' = u* = —u. Hence [V,y] = U L ([V,]N[V,x]). If Cy({t,y)) is 1-
dimensional, then Cy(y) = Cy({t,y)) L [V,1] since t stabilizes Cy(y). However,
then [V,#] @ ([V,f] N [V,x]) is 3-dimensional, a contradiction. A similar argument
holds for Cy({x,y)). Therefore both Cy({t,y)) and Cy({x,y)) are 2-dimensional.
But since dimCy(y) =3, this means Cy((z,y)) and Cy({x,y)) intersect non-
trivially, that is Cy({(t,x,y)) # 0, contradicting our assumption. Therefore,
d(t,x) # 2, and consequently d(r,x) = 3. O

The final case when U € U/ is slightly trickier. Recall the definition of Y;. For
any z € Y, we have Cg(z) ~SLy(q) o SL>(q) : 2 and Cy(z) is 1-dimensional. We
choose z such that t € Cs(z) and Cy(z) = U, and return to work in the setting of
Sp(4,q)/{—1y) = G" ~G. We denote the image of any subgroup K <G by K".
Choose

and note that Cg:(z) ~ Cg(U) : 2. Hence,

{ GH‘A B € SLy(q )}/<_[4> _ Co(U)

Let #* be the image of 7 in G*. We start with a preliminary lemma concerning the
commuting involution graph C(L,(g),X) where X is the sole conjugacy class of

involutions. Denote by L~ L,(g) and L ~ PGL,(q).
Lemma 4.32 Let x be an involution in L. Then A%(x) splits into 1 Lg+2+50)
Cr(x)-orbits of length q — 0. Moreover, every Cp(x)-orbit in Aé( ) is CZ< x)-

invariant.

0

Proof Assume first that 6 = —1. Choose x = <1

_01> and let x; =

( O, l) for some A€ GF(q)\{£1}. There are two possibilities for an

-2 o
B ( a az) B (b1 by )
81 —ay a ) 82 b2 . b] .

element of Cy(x):
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By direct calculation, if gy'x,g1 =x, for some Z,u€ GF(q)\{£1} then
(—}fl + A)aja, = 0. Note that since 1 # +1, then A # 27V Ifa; = 0, then a% =1,
and so u = 27!, On the other hand, if a, = 0 then a% = 1 and so u = A. Note that in
the case of g,, neither by or b, can be 0 and so g, Ix,80 = X, Tequires
xy(2.— 2~') =0, a contradiction. Hence for 2, € GF(q)\{£1}, x; and x, lie in
different Cy,(x) orbits if and only if u & {4,2'}. As we work modulo (—1), there
are at least § (¢ — 3) Cp(x)-orbits in A%(x). However for any 4 # +1, Cp(x,x;) = 1
and so, each Cp(x)-orbit containing an x, is of length g+ 1. But |A§(x)| =
1(g—3)(g+ 1) and so all involutions in A%(x) are accounted for. Hence the first
statement holds for 6 = —1, and each C;(x)-orbit has representative x; for some

)4 +1. Let
1 0 -~
e:( )6L\L
0 -1

and note that Cz(x) = (e)CL(x), and an easy check shows [e,x;] = 1 forall A # +£1.
Let y € Aj(x), then y =x} for some s € Cp(x). Let g=er € Cz(x) for some
r € Cr(x). Then y¢ = x{" and since CL(x)gC/L\(x), s°r € Cr(x). That is, every Cr(x)-

orbit in A% (x) is Cz(x)—invariant.

Assume now that 6 = 1. Choose x = (é i)z) where i = —1 and let y =

(: 'L::> for some o, u, v € GF(g), 0 # 0 and u a non-square in GF(g). By [11],

y € A%(x). There are two possibilities for an element of Cy(x):

_(a_] 0) _( 0 b)
81 = 0 a) 82 = b1 o0)

By direct calculation, if g;'yg =y then a = 1. Note that g;'yg, # y as +b* # u
for any non-square p. Hence Cr((x , y)) = 1. Since y was arbitrary, each Cr(x)-orbit
has length ¢ — 1. Now |AL | =3(g+7)(g—1) and so the first statement holds

for 6 = 1. Let
0 v ~
e, = < ) €L\L
1 0

and note that Cz(x) = (e,)Cr(x) for any non-square v. It is easy to check that
yr=y Letg=e,re Cz(x) for some r € Cz(x). Then y$ = y*’ = y" and since y
was arbitrary and r € C(x), every Cy(x)-orbit in A%(x) is Cz(x)—invariant. O

Lemma 4.33

A () NT(G)| == (g — 8)*(g+ 2+ 56).

4;|~
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Proof We first work in the setting of G*. Choose

tT:((f_é} ) y
e

By direct calculation, it is easily seen that

A | A
CGT (tT> g { A:l)) Ai ’AzljoAl = JO (mod <—I4>)}

and any involution y € Cg: (%) has the additional properties that

detA; + detA; = detA, +detA; =1 and
A% + AyAz = A3A, -I—A‘z‘ =—I.

A
Recall that if x € Cg(U)" then x = % for some A,B € SLy(¢q) and by

Theorem 4.8, x € AS G(U)I(tf) if and only if A, B are involutions in L and either
d“(A,Jo) =3 or d“(B,Jy) = 3. So without loss of generality, set A = B; where
d“(B;,Jo) = i and choose B € A% (Jp).

(4.33.1)

If x € AS(¢°) then there exists Yy = ﬁl ﬁ2 € Cgr(t7) such that V=1
3 4

and [x,y] =1. Suppose detA, =0. Then detA,=1 by (4.33.1), and so
A4 € CL(Jo). As [x,y] = 1, [A4, B] = 1. However CL({Jo,B)) = 1, by Lemma 4.32
and so A4 = £I,. But then A3A, = —2I, by (4.33.1), which is impossible as
detA; = 0. An analogous argument holds for detA;. Hence detA,, detA; # 0.
Since [x,y] = 1, BiA2B = £A; and so B; and B must be CZ(JO)-conjugate. In other

words, if B; and B are not CZ(JO)—conjugate, then [x,y] # 1. By Lemma 4.32, every
Cr(Jo) orbit is an CZ(JO)-orbit and so if [x,y] = 1 then B; and B must be Cp(Jo)-
conjugate. Assume then B; and B are Cy(Jp)-conjugate and let A € C;(Jp) be such

that B'l4 = B. Hence if Yya = %’% [ OGT (tT), then b/A7x] =1 and so

d% (1%, x) = 2. By Lemma 4.32, each Cy(Jo)-orbit of A} (Jy) is of length ¢ — &, and
there are }(g+ 2+ 56) such orbits. Moreover, for any involution xg € Cg(U)"
conjugate to %, zxo is also an involution in Cg(U)" conjugate to #* which has not
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been accounted for. Therefore, the number of involutions in AS G<U>I(tf) that are
actually distance 2 from ¢ in G" is § (g — 8)(q + 2+ 50).

We now return to the setting of G, and first assume that § = —1 and so by
Corollary 4.22(i), [Wa(U)| = g+ 1, and for every W € W, (U), Co(W) ~ Ly(q).
For each W, there exists Uy € U] such that Cg(W) < Cg(Uw) ~ L (¢*) by Lemma
4.21, and Agc(w)(t) - A2CG<UW (r) by Lemma 4.30. Hence, there are § (g + 1)%(g —

3) involutions already counted (from Case 3) and the remaining 1nv01ut10ns do not
fix a 2-subspace of Cy(t). Therefore

(g+D*g—3)—2(g+1)%g-3)

A NT(G)| = :
(q+1)*(q—3),

-lkl'—‘l\-)l'—‘

as required. Now assume that 6 = 1 and so by Corollary 4.22. For each W, there
exists Uy € U; such that Cg(W)<Cs(Uy)~La(g*) by Lemma 4.21 and
’ACG ) N ACG w) (t)‘ =1(qg- 1)* by Lemma 4.26. Since
|W2 nwuuuy) ‘ = ¢ — 1 by Corollary 4.22(iii), this accounts for § (g — 1)?

involutions. Suppose now Wy € W, (U) N Ug. By Lemma 4.21, there exists Uy € L{?
such  that Cg(Wy)<Cgs(Up). From Lemmas 4.12 and 4.19,
(CG ) A AS W) (g )‘ = 1(g— 1) Since |[W,(U) NU2| = 2 by Corollary 4.22(jii),
this yields a further (¢ — 1)2 involutions. Finally, if W € U}, then by Lemma 4.30,
AgG(W)(t) C Ay(t) and there are Z(q — 1) involutions in ACG(W>(t) not already
enumerated. Now |Z/{2+ NW,L(U ‘ =5 (g — 1) by Corollary 4.22(iii), and this yields
another (¢ — 1)* involutions. Hence, there are §(q — 32 +2(g—1)7 = 1(g—

1)*(¢ + 7) involutions already counted (from Cases 3 and 5) and the remaining
involutions do not fix a 2-subspace of Cy(f). Consequently

(@- 12 g+7) —s(g- g +7)

AF @y <G>] - :

(a—1*(g+7),

-hl»—*t\JI»—*

as required. O

Corollary 4.34

o)\ | Ti(Co(u

Ueld,

8 q(q —0)(q* — 1)(g + 2 + 59).

Proof Since ‘L{H = 14(g + 0), the result holds by Lemmas 4.32 and 4.33. O

Lemma 4.35 [f ¢ = —1(mod 4), then
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i) [Ax()
(i) |As(1)

| = %(CI+1)(361 —2¢* +8¢° —30¢*> + 13¢ — 8); and
| =16 1

(> — 1)(5¢* — 9¢> + 74> — 3¢ + 8).
If ¢ = 1(mod 4), then

(i) |Ax(r)| =
() |As(1)] =

(g —1)(3¢° — 6q* + 32¢° — 104> — 27 — 8); and
(g —1)(5¢° +22¢* — 84 + 344> + 51q + 24).

Proof The cases listed in Table 1 are disjoint. Hence |A,(¢)| is determined by
summing the values calculated in Lemmas 4.27, 4.28, 4.30 and 4.34. By
Theorem 4.15, C(G,Y2) has diameter 3 and SO
[As(1)] = V2| = [Ai(1)] = |Ax(r)] = 1. Since |G| =34*(¢> = 1)(¢* — 1) and
|ICa(t)| = q(q* —1)(q —9), |Y2| =34°(q+9)(¢* +1). Together with Lemma
4.20, this proves the lemma. O

Together, Theorem 4.15 and Lemmas 4.20 and 4.35 complete the proof of
Theorem 1.4.
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