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Abstract
For a group G and X a subset of G the commuting graph of G on X, denoted by

CðG;XÞ, is the graph whose vertex set is X with x; y 2 X joined by an edge if x 6¼ y

and x and y commute. If the elements in X are involutions, then CðG;XÞ is called a

commuting involution graph. This paper studies CðG;XÞ when G is a 4-dimensional

projective symplectic group over a finite field and X a G-conjugacy class of invo-

lutions, determining the diameters and structure of the discs of these graphs.

Keywords Involutions � Commuting involution graphs � Symplectic

Groups

Mathematics Subject Classification 05C12 � 20E99

1 Introduction

For G a group and X a subset of G, the commuting graph of G on X, CðG;XÞ, is the
graph whose vertex set is X with x; y 2 X joined whenever x 6¼ y and xy ¼ yx. In

effect commuting graphs first appeared in the paper of Brauer and Fowler [14],

famous for containing a proof that up to isomorphism only finitely many non-

abelian simple groups can have a given centralizer of an involution. The commuting

graphs considered in [14] had X ¼ Gnf1g-such graphs have played an important

role in recent work related to the Margulis–Platanov conjecture (see [41]). Various

kinds of commuting graphs have been deployed in the study of finite groups,

particularly the non-abelian simple groups. For example, the analysis and

subsequent construction by Fischer [24] of the three simple Fischer groups used

the commuting graph on the conjugacy class of 3-transpositions. While a computer-

free uniqueness proof of the Lyons simple group by Aschbacher and Segev [6]
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employed a commuting graph where the vertices consisted of the 3-central

subgroups of order 3. For G either a symmetric group, or more generally a finite

Coxeter group, or a projective special linear group and X a certain conjugacy class

of G, the structure of CðG;XÞ has been investigated at length by Bundy [16], Bates,

Bundy, Hart, Perkins and Rowley [9–13], Nawawi and Rowley [38], Jafari [31].

And for the double covers of symmetric groups and 3-dimensional unitary groups,

see Aubad [8] and Everett [23] respectively. Also, commuting involution graphs for

infinite Coxeter groups have been analysed in Perkins [40], Hart and Clarke [29]. A

different flavour of graph (also called a commuting graph) has also been studied

extensively. In this case, for a group G, the vertex set is GnZðGÞ with two distinct

elements being joined if they commute. For a selection of work on various aspects

of these graphs, consult Akbari, Mohammadian, Radjavi and Raja [3], Britnell and

Gill [15], Cassell [19], Giudici and Kuzma [25], Giudici and Parker [26], Giudici

and Pope [27], Iranmanesh and Jafarzadeh [30], Leshchenko and Zorya [34],

Leshchenko [33], Mahmoudifar and Moghaddamfar [35], Mohammadian, Erfanian,

Forrokhi and Wilkens [36], Morgan and Parker [37], Parker [39]. Recently there has

been work on commuting graphs for rings (see, for example, [1, 2, 20, 21, 43]).

This paper investigates CðG;XÞ when G is a finite 4-dimensional projective

symplectic group and X is a G-conjugacy class of involutions. Such graphs are

referred to as commuting involution graphs. From now on H will denote the

symplectic group Sp(4, q), q ¼ pa and p a prime. Let V be the natural (symplectic)

GF(q)H-module, and set G ¼ H=ZðHÞ. So G ffi PSpð4; qÞ and G ffi H when p ¼ 2.

For t 2 X, we define

DiðtÞ ¼ x 2 Xjdðt; xÞ ¼ if g

where d is the standard distance metric on CðG;XÞ. So DiðtÞ consists of all vertices
in CðG;XÞ distance i from t—we call DiðtÞ the ith disc of t (or just a disc of t).

In the case when p ¼ 2, G has three conjugacy classes of involutions. Recalling

that for an involution x of G, VðxÞ ¼ fv 2 Vjðv; vxÞ ¼ 0g these three classes

X1;X2;X3 may be described thus (see [7])

X1 ¼ x 2 G
�
�x2 ¼ 1; dim CVðxÞ ¼ 3

� �

;

X2 ¼ x 2 G
�
�x2 ¼ 1; dim CVðxÞ ¼ 2; dim VðxÞ ¼ 3

� �

; and

X3 ¼ x 2 G
�
�x2 ¼ 1; dim CVðxÞ ¼ 2; VðxÞ ¼ V

� �

:

Our four main theorems are as follows.

Theorem 1.1 Suppose that p ¼ 2 and i ¼ 1; 3. Then CðG;XiÞ is connected of

diameter 2 with the disc sizes being

D1ðtÞj j ¼ q3 � 2; and

D2ðtÞj j ¼ q3ðq� 1Þ:

Theorem 1.2 Suppose that p ¼ 2. Then CðG;X2Þ is connected of diameter 4, the

disc sizes being
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D1ðtÞj j ¼ q2ð2q� 3Þ;
D2ðtÞj j ¼ 2q2ðq� 1Þ2;
D3ðtÞj j ¼ 2q3ðq� 1Þ2; and

D4ðtÞj j ¼ q4ðq� 1Þ2:

Turning to the case when p is odd, we have that there are two G-involution

conjugacy classes Y1 and Y2. We shall let Y1 denote the G-conjugacy class whose

elements are the images of an involution in H, and Y2 to denote the G-conjugacy

class whose elements are the image of an element of H of order 4 which squares to

the non-trivial element of Z(H).

Theorem 1.3 If p is odd, then CðG; Y1Þ is connected of diameter 2 with disc sizes

D1ðtÞj j ¼ 1

2
qðq2 � 1Þ; and

D2ðtÞj j ¼ 1

2
q4 � q3 þ q2 þ q� 2
� �

:

Theorem 1.4

(i) If q � �1ðmod 4Þ then CðG; Y2Þ is connected of diameter 3. Furthermore,

D1ðtÞj j ¼ 1

2
qðq2 þ 2q� 1Þ;

D2ðtÞj j ¼ 1

16
ðqþ 1Þ 3q5 � 2q4 þ 8q3 � 30q2 þ 13q� 8

� �

; and

D3ðtÞj j ¼ 1

16
ðq2 � 1Þ 5q4 � 9q3 þ 7q2 � 3qþ 8

� �

:

(ii) If q � 1ðmod 4Þ then CðG; Y2Þ is connected of diameter 3. Furthermore,

D1ðtÞj j ¼ 1

2
qðq2 þ 1Þ;

D2ðtÞj j ¼ 1

16
ðq� 1Þ 3q5 � 6q4 þ 32q3 � 10q2 � 27q� 8

� �

; and

D3ðtÞj j ¼ 1

16
ðq� 1Þ 5q5 þ 22q4 � 8q3 þ 34q2 þ 51qþ 24

� �

:

Theorems 1.1 and 1.2 are established in Sect. 2. While in Sect. 3 we give a proof

of Theorem 1.3. The structure and properties of CðG; Y2Þ, in Sect. 4, are a much

tougher nut to crack than the other four cases. The reason for this is that for

CðG;XiÞ; ði ¼ 1; 2; 3Þ and CðG; Y1Þ the graph can be studied effectively by working

in H ¼ Spð4; qÞ and looking at certain configurations in the natural symplectic

module V involving CVðxÞ for various x 2 X (X ¼ Xi; i ¼ 1; 2; 3 or
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XZðHÞ=ZðHÞ ¼ Y1). The key point being that, in these four cases for x 2 X, CVðxÞ
is a non-trivial subspace of V whereas, for x of order 4 and squaring into Z(H),

CVðxÞ is trivial. If we change tack and look at G acting on the projective symplectic

space things are not much better. When q � �1ðmod 4Þ elements of Y2 fix no

projective points, while in the case q � 1ðmod 4Þ they fix 2qþ 2 projective points.

However, even in the latter case, the fixed projective points didn’t appear to be of

much assistance. It is the isomorphism PSpð4; qÞ ffi Oð5; qÞ that comes to our

rescue. If now V is the 5-dimensional orthogonal module and x 2 Y2, then

dimCVðxÞ ¼ 3. Even so, probing CðG; Y2Þ turns out to be a lengthy process. Fix

t 2 Y2. Then by Lemma 4.3, Y2 �
S

U2U1
CGðUÞ where U1 is the set of all 1-

subspaces of CVðtÞ and as a result, by Lemma 4.4, CðG; Y2Þ may be viewed as the

union of commuting involution graphs for various subgroups of G. Up to

isomorphism there are three of these commuting involution graphs (called

CðG�; Y�Þ, CðGþ; YþÞ and CðG0; Y0Þ in Sect. 4). After studying these three

commuting involution graphs in Theorems 4.6, 4.8 and 4.14 it follows immediately

(Theorem 4.15) that CðG; Y2Þ is connected and has diameter at most 3. Using the

sizes of the discs in CðG�; Y�Þ, CðGþ; YþÞ and CðG0; Y0Þ we then complete the

proof of Theorem 1.4. This ‘‘patching together’’ of the discs is quite complicated—

for example we must confront such issues as t and x in Y2 being of distance 3 in each

of the commuting involution subgraphs which contain both t and x, yet they have

distance 2 in CðG; Y2Þ (see Lemmas 4.29–4.34).

Our group theoretic notation is standard as given, for example, in [5] or [28].

2 Structure of CðG,XiÞ,i = 1,2,3

We begin looking at G0 ¼ Sp2nðqÞ where n� 2, q ¼ pa and p ¼ 2. Let V0 denote the

GFðqÞG0-symplectic module of dimension 2n and let t0 be an involution in G0 for

which dimCVðt0Þ ¼ 2n� 1. Put X0 ¼ tG0

0 , the G0-conjugacy class of t0.

Theorem 2.1 CðG0;X0Þ is connected and has diameter 2.

Proof For x 2 X0,

CG0
ðxÞ� StabG0

ðCV0
ðxÞÞ

with StabG0
ðCV0

ðxÞÞ having shape q2n�1SL2n�2ðqÞðq� 1Þ. Set Kx ¼
O20 ðStabG0

ðCV0
ðxÞÞÞ. Then Kx 	 q2n�1SL2n�2ðqÞ and CG0

ðxÞ ¼ Kx. Let x 2 X0nft0g.
If CV0

ðt0Þ ¼ CV0
ðxÞ, then x 2 Kt0 and so x 2 D1ðt0Þ. Now suppose that

CV0
ðt0Þ 6¼ CV0

ðxÞ. Then dimðCV0
ðt0Þ \ CV0

ðxÞÞ ¼ 2n� 2. Let U be a 1-dimensional

subspace of CV0
ðt0Þ \ CV0

ðxÞ. Since ½V0; t0
 is a 1-space and G0 acts transitively on

the 1-spaces of V0, there exists y 2 X0 such that ½V0; y
 ¼ U. So ½V0; y
 �CV0
ðt0Þ \

CV0
ðxÞ and hence y leaves both CV0

ðt0Þ and CV0
ðxÞ invariant. Thus y 2 Kt0 \ Kx ¼

CG0
ðt0Þ \ CG0

ðxÞ and so dðt0; xÞ� 2 and we see that CðG0;X0Þ is connected. Since
CðG0;X0Þ cannot have diameter 1 (as then hX0i would be abelian), the theorem

follows. h
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The remainder of this section is devoted to establishing Theorems 1.1 and 1.2. So

we have G ¼ Spð4; qÞ with q ¼ pa and p ¼ 2. For V, the natural GF(q) module for

G, we choose the symplectic basis fv1; v2
�
�v3; v4g with ðv1; v4Þ ¼ ðv2; v3Þ ¼ 1. Thus

the matrix defining this form is

J ¼

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0

B
B
B
@

1

C
C
C
A
;

and we may suppose that G ¼ fA 2 GLð4; qÞ
�
�ATJA ¼ Jg. We further define

S ¼

1 a b c

0 1 d ad þ b

0 0 1 a

0 0 0 1

0

B
B
B
@

1

C
C
C
A

�
�
�
�
�
�
�
�
�

a; b; c; d 2 GFðqÞ

8

>>><

>>>:

9

>>>=

>>>;

;

Q1 ¼

1 a b c

0 1 0 b

0 0 1 a

0 0 0 1

0

B
B
B
@

1

C
C
C
A

�
�
�
�
�
�
�
�
�

a; b; c 2 GFðqÞ

8

>>><

>>>:

9

>>>=

>>>;

and Q2 ¼

1 0 b c

0 1 d b

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A

�
�
�
�
�
�
�
�
�

b; c; d 2 GFðqÞ

8

>>><

>>>:

9

>>>=

>>>;

:

Lemma 2.2

(i) S 2 Syl2G.

(ii) S ¼ Q1Q2 with Q
#
1 [ Q

#
2 consisting of all the involutions of S.

Proof It is straightforward to check that S is a subgroup of G. Since

jGj ¼ q4ðq2 � 1Þðq4 � 1Þ and jSj ¼ q4, we have part (i). Part (ii) is an easy

calculation. h

The following three involutions are elements of G.

t1 ¼

1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A
; t2 ¼

1 0 1 1

0 1 0 1

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A
; t3 ¼

1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1

0

B
B
B
@

1

C
C
C
A
:

Lemma 2.3

(i) For i ¼ 1; 2; 3; ti 2 Xi.

(ii) CGðt1Þ	 q3SLð2; qÞ with O2ðCGðt1ÞÞ ¼ Q1 of order q3.

(iii) CGðt2Þ ¼ S.

(iv) jX1j ¼ q4 � 1.

(v) jX2j ¼ ðq2 � 1Þðq4 � 1Þ.
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Proof

(i) Let v ¼ ða; b; c; dÞ 2 V . Then vt1 ¼ ða; b; c; aþ dÞ, vt2 ¼ ða; b; aþ c; aþ
bþ dÞ and vt3 ¼ ða; aþ b; c; cþ dÞ. Hence ½v; t1
 ¼ ð0; 0; 0; aÞ, ½v; t2
 ¼
ð0; 0; a; aþ bÞ and ½v; t3
 ¼ ð0; a; 0; cÞ. Consequently dim ½V ; t1
 ¼ 1 and

dim ½V ; t2
 ¼ 2 ¼ dim ½V ; t3
. Thus t1 2 X1. Now

ðv; vt2Þ ¼ aðaþ bþ dÞ þ bðaþ cÞ þ cbþ da ¼ a2 ¼ 0

implies that a ¼ 0 and so dim Vðt3Þ ¼ 3. Therefore t2 2 X2. Turning to t3
we have that

ðv; vt3Þ ¼ aðcþ dÞ þ bcþ cðaþ bÞ þ da ¼ 0

implies that Vðt2Þ ¼ V , as v is an arbitrary vector of V. Hence t3 2 X3, and

we have (i).

(ii) By direct calculation we see that

CGðt1Þ ¼

1 b c d

0 f g h

0 k m n

0 0 0 1

0

B
B
B
@

1

C
C
C
A

�
�
�
�
�
�
�
�
�

b; c; d; f ; g; h; k;m; n 2 GFðqÞ
gk þ fm ¼ 1

bþ hk þ fn ¼ 0

cþ mhþ gn ¼ 0

8

>>><

>>>:

9

>>>=

>>>;

:

Moreover

SL2ðqÞ ffi R ¼

1 0 0 0

0 f g 0

0 k m 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A

�
�
�
�
�
�
�
�
�

f ; g; k;m 2 GFðqÞ
fgþ km ¼ 1

8

>>><

>>>:

9

>>>=

>>>;

�CGðt1Þ

with Q1 a normal elementary abelian subgroup of CGðt1Þ and jQ1j ¼ q3. So

CGðt1Þ ¼ RQ1. Thus (ii) holds.

(iii) This is a routine calculation. From parts (ii) and (iii) jCGðt1Þj ¼ q4ðq2 � 1Þ
and jCGðt2Þj ¼ q4. Combining this with jGj ¼ q4ðq2 � 1Þðq4 � 1Þ yields

(iv) and (v). h

Lemma 2.4 jCGðt1Þ \ X1j ¼ q3 � 1.

Proof Let s be an involution in S. Then, by Lemma 2.2(ii), s 2 Q
#
1 [ Q

#
2 . Let

v ¼ ða; b; c; dÞ be a vector in V. Assume for the moment that s 2 Q1. Then

s ¼

1 a b c

0 1 0 b

0 0 1 a

0 0 0 1

0

B
B
B
@

1

C
C
C
A

where a; b; c 2 GFðqÞ. So vs ¼ ða; aaþ b; bbþ c; caþ bbþ acþ dÞ. Suppose that
at least one of a and b is non-zero. If v 2 CVðsÞ, then we have
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aa ¼ bb ¼ caþ bbþ ac ¼ 0. If, say, a 6¼ 0 then this gives a ¼ 0 and bbþ ac ¼ 0.

Hence c ¼ kb for some k 2 GFðqÞ. Thus dimCVðsÞ ¼ 2, with the same conclusion

if b 6¼ 0.

When a ¼ b ¼ 0 we see that dimCVðsÞ ¼ 3. Therefore we conclude that

Q1 \ X1j j ¼ q� 1: ð2:4:1Þ

Now we suppose s 2 Q2nQ1. Then

s ¼

1 0 a b

0 1 c a

0 0 1 0

0 0 0 1

0

B
B
B
@

1

C
C
C
A

where a; b; c 2 GFðqÞ and c 6¼ 0. Here vs ¼ ða; b; aaþ cbþ c; baþ abþ dÞ and

so, if v 2 CVðsÞ, aaþ cb ¼ baþ ab ¼ 0. Suppose that a ¼ 0 and b 6¼ 0. Then cb ¼
ba ¼ 0 which yields a ¼ 0 ¼ b. Hence dimCVðsÞ ¼ 2. Likewise, when a 6¼ 0 and

b ¼ 0 we get dimCVðsÞ ¼ 2. On the other hand, a ¼ 0 ¼ b gives dimCVðsÞ ¼ 3.

Now consider the case when a 6¼ 0 6¼ b and a2 þ bc ¼ 0. From aaþ cb ¼ 0 we

obtain b ¼ aac�1 and so 0 ¼ baþ ab ¼ baþ a2c�1a ¼ ðbþ a2c�1Þa. Since

a2 þ bc ¼ 0, this equation holds for all a 2 GFðqÞ and consequently dimCVðsÞ ¼ 3.

Similar considerations show that dimCVðsÞ ¼ 2 when a 6¼ 0 6¼ b and a2 þ bc 6¼ 0.

So, to summarize, for s 2 Q2nQ1, s 2 X1 when either a ¼ 0 ¼ b or a 6¼ 0 6¼ b and

a2 þ bc ¼ 0. For the former, there are q� 1 such involutions (as c 6¼ 0). For the

latter, there are q� 1 choices for each of b and c and in each case a is uniquely

determined (as GFðqÞ# is cyclic of odd order), so giving ðq� 1Þ2 involutions.

Therefore

ðX1 \ SÞnQ1j j ¼ X1 \ ðQ2nQ1Þj j ¼ qðq� 1Þ: ð2:4:2Þ

Since any two distinct Sylow 2-subgroups of SL(2, q) have trivial intersection and

SL(2, q) possesses qþ 1 Sylow 2-subgroups, Lemma 2.3(ii) together with (2.4.1)

and (2.4.2) yields that

CGðt1Þ \ X1j j ¼ ðq� 1Þ þ qðq� 1Þðqþ 1Þ
¼ ðq� 1Þð1þ q2 þ qÞ ¼ q3 � 1:

This proves Lemma 2.4. h

Proof of Theorem 1.1 As is well-known—see for example [18] – G has an outer

automorphism arising from the Dynkin diagram of type C2 ¼ B2. This outer

automorphism interchanges the two involution conjugacy classes X1 and X3 and as a

consequence CðG;X1Þ and CðG;X3Þ are isomorphic graphs. Thus we need only

consider CðG;X1Þ. From Lemma 2.4, as D1ðtÞ ¼ ðCGðt1Þ \ X1Þnft1g,

jD1ðt1Þj ¼ ðq3 � 1Þ � 1 ¼ q3 � 2:

By Theorem 2.1, CðG;X1Þ has diameter 2. Hence, by Lemma 2.3(iv),

123

Graphs and Combinatorics (2020) 36:959–1000 965



jD2ðt1Þj ¼ jX1j � ðq3 � 1Þ ¼ ðq4 � 1Þ � ðq3 � 1Þ ¼ q4 � q4 ¼ q3ðq� 1Þ;

so proving Theorem 1.1.

Before moving on to prove Theorem 1.2 we need additional preparatory material.

If W is a subspace of V, then W? denotes the subspace of V defined by

W? ¼ v 2 V jðv;wÞ ¼ 0 for all w 2 Wf g

and we recall that dimW þ dimW? ¼ dimV ¼ 4.

By Lemma 2.3(i), (iii) we see that CVðCGðt2ÞÞ ¼ ð0; 0; 0; aÞja 2 GFðqÞf g is 1-

dimensional. For x 2 X2 set U1ðxÞ ¼ CVðCGðxÞÞ and U2ðxÞ ¼ CVðxÞ. So

dimU1ðxÞ ¼ 1 and dimU2ðxÞ ¼ 2 (with the subscripts acting as a reminder). We

denote the stabilizer in G of U1ðt2Þ, respectively U2ðt2Þ, by P1, respectively P2.

Then Pi 	 q3SL2ðqÞðq� 1Þ for i ¼ 1; 2. Also Qi ¼ O2ðPiÞ with CPi
ðQiÞ ¼ Qi for

i ¼ 1; 2.
We start analyzing CðG;X2Þ by determining D1ðt2Þ. For x 2 X2 we let ZCGðxÞ

denote ZðCGðxÞÞ \ X2.

Lemma 2.5

X2 ¼ _[

R2Syl2G
ZR:

Proof Clearly X2 ¼
S

R2Syl2G ZR by Lemma 2.3(iii). If ZR \ ZT ¼ £ for

R; T 2 Syl2G, then we have some x 2 ZðRÞ \ ZðTÞ \ X2 whence, using Lemma

2.3(iii), R ¼ CGðxÞ ¼ T . So the lemma holds. h

Lemma 2.6 Let R; T 2 Syl2G. If there exists x 2 ZR and y 2 ZT such that ½x; y
 ¼ 1,

then ½ZR; ZT 
 ¼ 1.

Proof Since xy ¼ yx, y 2 CGðxÞ ¼ R. Hence ZðRÞ�CGðyÞ ¼ T and so

½ZR; ZT 
 ¼ 1. h

Let D be the building for G and CðDÞ denote the chamber graph of D. We may

view the vertices (chambers) of CðDÞ as being NGðRÞjR 2 Syl2Gf g with two distinct

chambers NGðRÞ and NGðTÞ being adjacent whenever NGðRÞ;NGðTÞh i�P
g
i for

some g 2 G and some i 2 1; 2f g. We use dC to denote the standard distance metric

in CðDÞ and for a chamber c put DC
j ðcÞ ¼ d 2 CðDÞjdCðc; dÞ ¼ j

� �

. The structure of

CðDÞ is well-known.

Lemma 2.7 CðDÞ has diameter 4 and DC
1ðcÞ

�
�

�
� ¼ 2q; DC

2ðcÞ
�
�

�
� ¼ 2q2; DC

3ðcÞ
�
�

�
� ¼ 2q3;

and DC
4ðcÞ

�
�

�
� ¼ q4.

Proof A straightforward calculation. h

We now introduce a graph Z whose vertex set is VðZÞ ¼ ZRjR 2 Syl2Gf g with

ZR; ZT 2 VðZÞ joined if ZR 6¼ ZT and ½ZR; ZT 
 ¼ 1.
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Lemma 2.8 The graphs Z and CðDÞ are isomorphic.

Proof Define u : VðZÞ ! VðCðDÞÞ by u : ZR 7!NGðRÞ ðR 2 Syl2GÞ. If uðZRÞ ¼
uðZTÞ for R; T 2 Syl2G, then NGðRÞ ¼ NGðTÞ and so R ¼ T and then ZR ¼ ZT .

Thus u is a bijection between VðZÞ and VðCðDÞÞ. Suppose NGðRÞ and NGðTÞ are
distinct, adjacent chambers in CðDÞ. Without loss of generality we may assume

T ¼ S. Then NGðRÞ;NGðSÞ�Pi for i 2 1; 2f g. The structure of Pi then forces

ZðRÞ; ZðSÞ�Qi. Since Qi is abelian, we deduce that ½ZR; ZS
 ¼ 1. So ZR and ZS are

adjacent in Z. Conversely, suppose ZR and ZS are adjacent in Z. Then ½ZR; ZS
 ¼ 1

with, by Lemma 2.5, ZR \ ZS ¼ £. Hence ZR � S and so by Lemma 2.2(ii),

ZR � Q1 [ Q2. Now Q1 \ Q2 \ X2 ¼ ZS and so we must have ZR � Qi for

i 2 1; 2f g. The structure of Pi now gives NGðRÞ�Pi and therefore NGðRÞ and

NGðSÞ are adjacent in CðDÞ, which proves the lemma. h

Proof of Theorem 1.2 Since for all x1; x2 2 X2, ½x1; x2
 ¼ 1 if and only if

½ZCGðx1Þ; ZCGðx2Þ
 ¼ 1 by Lemma 2.5, then for i[ 1, dCðx1; x2Þ ¼ i if and only if

dZðZCGðx1Þ; ZCGðx2ÞÞ ¼ i (where dZ denotes the distance in Z). Note that if

dCðx1; x2Þ ¼ 1, then either ZCGðx1Þ ¼ ZCGðx2Þ or d
ZðZCGðx1Þ; ZCGðx2ÞÞ ¼ 1. Since X2 is

a disjoint union of the elements of Z, then CðG;X2Þ is connected of diameter 4. Now

D1ðtÞ ¼
[

R 2 Syl2G

½ZS; ZR
 ¼ 1

ZR and DiðtÞ ¼
[

R 2 Syl2G

dZðZS; ZRÞ ¼ i

ZR; i[ 1

and so D1ðtÞj j ¼ ZSj j þ 2q ZSj j � 1. From ZSj j ¼ ðq� 1Þ2 we get

D1ðtÞj j ¼ ðq� 1Þ2 þ 2qðq� 1Þ2 � 1 ¼ q2ð2q� 3Þ. The remaining disc sizes are

immediate from the structure of the chamber graph CðDÞ. h

3 Structure of CðG,Y1Þ

This section is devoted to the proof of Theorem 1.3. In order to investigate the disc

structure of CðG;Y1Þ it is advantageous for us to work in H ¼ Sp4ðqÞ (and so

H ¼ H=ZðHÞ ffi G). We assume that v1; v2; v3; v4f g is a hyperbolic basis for V with

ðv2; v1Þ ¼ ðv4; v3Þ ¼ 1. Thus if J is the matrix defining this form then

J ¼

0 � 1 0 0

1 0 0 0

0 0 0 � 1

0 0 1 0

0

B
B
B
@

1

C
C
C
A
;

and J has two diagonal blocks J0 where J0 ¼
0 � 1

1 0

� �

.

We may suppose that for t 2 Y1, we have s ¼ t where . Put

X ¼ sH . Then Y1 ¼ xjx 2 Xf g. For x 2 X, set Nx ¼ NHð x; ZðHÞh iÞ. Evidently, for
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x1; x2 2 Y1 (where x1; x2 2 X) x1 and x2 commute if and only if x1 2 Nx2 (or

equivalently x2 2 Nx1 ). Now Ns consists of g 2 H for which sg ¼ s or sg ¼ �s.

Letting g =
(

A B
C D

)
where A, B, C and D are 2� 2 matrices over GF(q), direct

calculation reveals that either B ¼ C ¼ 0 or A ¼ D ¼ 0. Also, as g 2 H, we must

have ATJ0A ¼ DTJ0D ¼ J0 and therefore

Lemma 3.1

D1ðtÞj j ¼ 1

2
qðq2 � 1Þ:

Proof Since X ¼ sH consists of all the involutions in HnZðHÞ, a quick calculation

gives

Under the natural homomorphism to G, for x 2 X x ¼ �x, and so

D1ðtÞj j ¼ 1
2
SL2ðqÞj j ¼ 1

2
qðq2 � 1Þ. h

Put E ¼ v3; v4h i. Then E? ¼ v1; v2h i and we note that CVðsÞ ¼ E. Furthermore

we have that StabHð E;E?f gÞ ¼ Ns. Put

R ¼ F;F?f gjF is a hyperbolic 2-subspace of Vf g. Now let b 2 GFðqÞ and set

Ub ¼ ð1; 0; 1; 0Þ; ð0; b; 0;�b� 1Þh i. Then Ub is a hyperbolic 2-subspace of V and

so Ub;U
?
b

n o

2 R. The Ns-orbit of Ub;U
?
b

n o

will be denoted by Rb.

Lemma 3.2 Let F be a hyperbolic 2-subspace of V with F 6¼ E or E?. Then

F;F?f g 2 Rb for some b 2 GFðqÞ. Moreover, for b 2 GFðqÞ, Rb ¼ R�b�1.

Proof Since F 6¼ E or E?, we may find w1 2 F with w1 ¼ ða1; b1; c1; d1Þ and

a1; b1f g 6¼ 0f g 6¼ c1; d1f g. Now Ns contains two SL2ðqÞ subgroups for which

v1; v2h i and v3; v4h i are natural GFðqÞSL2ðqÞ-modules. Because SL2ðqÞ acts
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transitively on the non-zero vectors of such modules, we may suppose

w1 ¼ ð1; 0; 1; 0Þ. Now choose w2 2 F such that ðw1;w2Þ ¼ 1 (and so

w1;w2h i ¼ F). Then if w2 ¼ ða; b; c; dÞ we must have bþ d ¼ �1 and so

w2 ¼ ða; b; c;�b� 1Þ. The matrices in Ns fixing w1 are

Let

where a1; a2 2 GFðqÞ. Then w
g
1 ¼ w1.

We single out the cases b ¼ 0 and b ¼ �1 for special attention. If, say, b ¼ 0,

then w2 ¼ ða; 0; c;�1Þ. Hence w2 � aw1 ¼ ð0; 0; c� a;�1Þ and

F ¼ w1;w2 � aw1h i. Since ð0; 0; c� a;�1Þg ¼ ð0; 0; ðc� aÞ � a2;�1Þ and choos-

ing a2 ¼ �cþ a, we obtain Fg ¼ U0. For b ¼ �1 a similar argument works (using

w2 � cw1 instead of w2 � aw1). So we may assume that b 6¼ 0;�1. From

w2g ¼ a; b; c;�b� 1ð Þ ¼ aþ ba1; b; cþ ð�b� 1Þa2;�b� 1ð Þ

by a suitable choice of a1 and a2, as b 6¼ 0;�1, we get w2g ¼ ð0; b; 0;�b� 1Þ,
whence Fg ¼ Ub. Thus we have shown F;F?f g 2 Rb for some b 2 GFðqÞ. Finally,
for b 2 GFðqÞ, Rb ¼ R�b�1 follows from

h

Let / : GFðqÞn �1f g ! GFðqÞ be defined by

/ðkÞ ¼ � 1þ ðkþ 1Þ�2ð1� k2Þ
	 
�1

ðk 2 GFðqÞÞ:

There is a possibility that this is not well-defined should 1þ ðkþ 1Þ�2ð1� k2Þ ¼ 0.

This would then give ðkþ 1Þ2 þ ð1� k2Þ ¼ 0 from which we infer that k ¼ �1. So

we conclude that / is well-defined.

Lemma 3.3 / is injective.
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Proof Suppose /ðkÞ ¼ /ðlÞ for k; l 2 GFðqÞn �1f g with k 6¼ l. Hence

1þ ðkþ 1Þ�2ð1� k2Þ
	 
�1

¼ 1þ ðlþ 1Þ�2ð1� l2Þ
	 
�1

:

Simplifying and using the fact that q is odd gives

l2 þ l� lk2 � k2 � kþ kl2 ¼ 0;

and then

ðlþ kÞðl� kÞ þ ðl� kÞ þ klðl� kÞ ¼ 0:

Hence ðl� kÞðlþ kþ 1þ klÞ ¼ 0. Since l 6¼ k, we get lþ kþ 1þ kl ¼ 0 from

which we deduce that either k ¼ �1 or l ¼ �1, a contradiction. So the lemma

holds. h

Proof of Theorem 1.3 We first show that Diam CðG; Y1Þ ¼ 2. So let x 2 X be such

that x 62 tf g [ D1ðtÞ. Now CVðxÞ;CVðxÞ?
n o

2 R as CVðxÞ 6¼ E or E? (otherwise

x 2 s;�sf g and then x ¼ t). Hence CVðxÞ;CVðxÞ?
n o

2 Rl for some l 2 GFðqÞ by

Lemma 3.2. Let .

Then y 2 D1ðtÞ. Our aim is to choose an xk 2 Ny \ X (so xk 2 D1ðyÞ) for which

CVðxkÞ;CVðxkÞ?
n o

2 Rl. Since Rl is an Ns-orbit, there exists h 2 Ns such that

CVðxkÞ;CVðxkÞ?
n oh

¼ CVðxÞ;CVðxÞ?
n o

. As a consequence either x ¼ xhk or x�1h
k

and therefore x ¼ xk
h, whence dðt; xÞ� 2. h

We first look at the case when l ¼ �2�1. Then l ¼ �l� 1 and hence

U�2�1 ¼ ð1; 0; 1; 0Þ; ð0; 1; 0; 1Þh i:

Observing that U�2�1 ¼ CVðyÞ, we see that for l ¼ �2�1, x 2 D1ðyÞ, which we are

not concerned with here. So we may assume l 6¼ �2�1.

Let xλ =
(
λI2 −B
B −λI2

)
where k 2 GFðqÞn 0f g and such that B has zero trace

and determinant 1� k2. So xk 2 X \ Ny. We now move onto the case when l ¼ 0

(or equivalently l ¼ �1). Here we take k ¼ 1 and B ¼ 2 � 2

2 � 2

� �

, noting that B

satisfies the conditions to ensure that x1 2 D1ðyÞ. Let v ¼ ða; b; c; dÞ 2 V . Then

v 2 CVðx1Þ precisely when

2cþ 2d ¼ 0; � 2c� 2d ¼ 0;

�2a� 2b� c ¼ c; 2aþ 2b� d ¼ d;
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and thus the only conditions we get are c ¼ �b� a and aþ b ¼ d. Thus

CVðx1Þ ¼ ða; b;�a� b; aþ bÞf g
¼ ð1; 0;�1; 1Þ; ð0; 1;�1; 1Þh i:

It is straightforward to check that CVðx1Þ;CVðx1Þ?
n o

2 R0. Therefore we may also

assume that l 6¼ 0;�1. Choosing B ¼ k k�1

�k � k

� �

we see that the requisite con-

ditions are satisfied. Take v ¼ ða; b; c; dÞ 2 V and calculating vxk gives the relations

ðk� 1Þaþ ck� dk ¼ 0; ðk� 1Þbþ ck�1 � dk ¼ 0;

�kaþ kb� ðkþ 1Þc ¼ 0; � k�1aþ kb� ðkþ 1Þd ¼ 0;

which, after rearranging gives

a ¼ kðk� 1Þ�1ðd� cÞ; b ¼ kðk� 1Þ�1d� k�1ðk� 1Þ�1c;

c ¼ kðkþ 1Þ�1ðb� aÞ; d ¼ kðkþ 1Þ�1a� k�1ðkþ 1Þ�1a;

and note that the relations for c and d are satisfied after substitution for a and b.
Hence

CVðxkÞ ¼ a; b; kðkþ 1Þ�1ðb� aÞ; kðkþ 1Þ�1b� k�1ðkþ 1Þ�1a
	 
n o

¼ 1; 0;�kðkþ 1Þ�1;�k�1ðkþ 1Þ�1
	 


; 0; 1; kðkþ 1Þ�1; kðkþ 1Þ�1
	 
D E

:

ð3:3:1Þ

We want to determine which Ns-orbit, Rb, that CVðxkÞ lies in. Our representative,
Ub, for Rb has w1 ¼ ð1; 0; 1; 0Þ as one component of the hyperbolic pair, so we need

an element of Ns to send the first generator in (3.3.1) to w1. We need to find

conditions on C;D 2 SL2ðqÞ such that

and so without loss of generality we can take C ¼ I2. This reduces to solving

�kðkþ 1Þ�1;�k�1ðkþ 1Þ�1
	 
 d1 d2

d3 d4

� �

¼ ð1; 0Þ

and after multiplying out, we get that d3 ¼ �ðd1 þ 1Þk2 � k and d4 ¼ �d2k
2. Since

D has determinant 1, we find that d2 ¼ k�1ðkþ 1Þ�1
and so d4 ¼ �kðkþ 1Þ�1

.

Without loss of generality, by taking d1 ¼ 1 we have that

D ¼ 1 k�1ðkþ 1Þ�1

�2k2 � k � kðkþ 1Þ�1

 !
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and a quick check shows that the first generator in (3.3.1) is mapped to w1. Using the

same matrix, by multiplying on the right of the second generator in (3.3.1), we get

and w1; u
0h i is a hyperbolic 2-subspace conjugate to some Ub. Recall that for a fixed

b 2 GFðqÞ, Ns is transitive on ða; b; c;�b� 1Þja; c 2 GFðqÞf g. Hence, we need

only find the hyperbolic pair representing such a conjugate of Ub, to determine b.
This is found by requiring that some multiple of u0 has inner product 1 with w1, that

is

b � 1 ¼ �1� b ðkþ 1Þ�2ð1� k2Þ
	 


for some b 2 GFðqÞ. By expanding, we get that b ¼ � 1þ ðkþ 1Þ�2ð1� k2Þ
	 
�1

and so CVðxkÞ 2 Rb. By Lemma 3.3, / : k 7! � ð1þ ðkþ 1Þ�2ð1� k2ÞÞ�1
is an

injective map from GFðqÞn �1f g into GF(q). Since l 6¼ �2�1, l 6¼ �l� 1 and

therefore there exists k 2 GFðqÞn �1f g such that /ðkÞ ¼ l or �l� 1. Bearing in

mind that Ul ¼ U�l�1 by Lemma 3.2, we conclude that CVðxkÞ;CVðxkÞ?
n o

2 Rl.

Consequently we have proved that Diam CðG; Y1Þ ¼ 2.

From Gj j ¼ q4

2
ðq2 � 1Þðq4 � 1Þ and CGðtÞj j ¼ q2ðq2 � 1Þ2 we see that

Y1j j ¼ q2

2
ðq2 þ 1Þ. Using Lemma 3.1 then gives

D2ðtÞj j ¼ 1

2
q4 � q3 þ q2 þ q� 2
� �

;

which completes the proof of Theorem 1.3.

4 Structure of CðG,Y2Þ

In this section we present a proof of Theorem 1.4. The uncovering of the disc

structures of CðG; Y2Þ will be a long haul. As discussed in Sect. 1, it will be

advantageous for us to use the well known isomorphism that PSpð4; qÞ ffi Oð5; qÞ
(see Corollary 12.32 of [44]). So we take G ¼ Oð5; qÞ and from now on V will

denote the 5-dimensional GF(q) orthogonal module for G. Thus the elements of G

are 5� 5 orthogonal matrices with respect to the orthogonal form ð ; Þ which have

spinor norm a square in GF(q). We may assume that the Gram matrix with respect

to ð ; Þ is
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Let

Then t 2 G and Y2 ¼ tG. Let d ¼ �1 where q � dðmod 4Þ.
Lemma 4.1

(i) dimðCVðtÞÞ ¼ 3.

(ii) CVðtÞ? ¼ ½V ; t
 is a 2-subspace of V of d-type.

(iii) V ¼ CVðtÞ ? CVðtÞ?.

Proof An easy calculation. h

Put Lt ¼ CGðtÞ \ CGð½V ; t
Þ.

Lemma 4.2

(i) Let x 2 Y2. Then t ¼ x if and only if CVðtÞ ¼ CVðxÞ.
(ii) CGðtÞ ¼ StabGðCVðtÞÞ	 ðL2ðqÞ � q�d

2
Þ:22.

(iii) Lt acts faithfully on CVðtÞ and Lt ffi L2ðqÞ.

Proof

(i) Suppose CVðxÞ ¼ CVðtÞ. Then, using Lemma 4.1 (ii),

½V ; x
 ¼ CVðxÞ? ¼ CVðtÞ? ¼ ½V ; t
. Hence by Lemma 4.1(iii), tx acts

trivially on V and thus tx ¼ 1. Therefore t ¼ x and (i) holds.

(ii) Plainly CGðtÞ� StabGðCVðtÞÞ, and if g 2 StabGðCVðtÞÞ, then

CVðtÞ ¼ CVðtÞg ¼ CVðtgÞ. Hence, as tg 2 Y2, t ¼ tg by part (i). So g 2
CGðtÞ and thus CGðtÞ ¼ StabGðCVðtÞÞ. That StabGðCVðtÞÞ	 ðL2ðqÞ �
q�d
2
Þ:22 can be read off from Proposition 4.1.6 of [32].

(iii) For any g 2 CGðtÞ, we have ½V ; t
g ¼ CVðtÞ?g ¼ CVðtgÞ? ¼ CVðtÞ? ¼ ½V; t

and so CGðtÞ� StabG½V; t
. If any element in Lt acts trivially on CVðtÞ, then it
would act trivially on V and thus be the identity. Hence Lt acts faithfully on

CVðtÞ. Let v 2 CVðtÞ and by Lemma 4.1(iii), we have ½V ; t
 � vh i?. Hence
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vh i?¼ ½V ; t
 
W where W �CVðtÞ. But since dimð vh i?Þ ¼ 4, we have

dimðWÞ ¼ 2 and so CVðtÞ£ vh i?. Therefore for all u 2 CVðtÞ, ðv; uÞ ¼ 0 if

and only if v ¼ 0 and thus ð ; Þ is non-degenerate on restriction to CVðtÞ.
Hence we have Lt,!GOðCVðtÞÞ	GO3ðqÞ as Lt fixes [V, t] pointwise, by

definition. Since Lt �G and acts as determinant 1 on [V, t], then it must act as

determinant 1 on CVðtÞ. In addition, as Lt fixes [V, t] pointwise, when the

elements of Lt are decomposed as products of refections, the vectors reflected

will lie in CVðtÞ. Since the spinor norm of the elements of Lt are a square in

GF(q) and the vectors reflected lie in CVðtÞ, then the spinor norm doesn’t

change on restriction to CVðtÞ. Hence, Lt 	O3ðqÞ	 L2ðqÞ proving (iii).

h

Let U i denote the set of i-dimensional subspaces of CVðtÞ, i ¼ 1; 2. In proving

Theorem 1.4, our divide and conquer strategy is based on the following observation.

Lemma 4.3

Y2 �
[

U2U1[U2

CGðUÞ:

Proof Let x 2 Y2n tf g and set U ¼ CVðtÞ \ CVðxÞ. By Lemmas 4.1(i) and 4.2(i),

U 2 U1 [ U2. Since t; x 2 CGðUÞ, we have Lemma 4.3. h

The three cases we must chase down are presaged by our next result.

Lemma 4.4

(i) Let U0 be an isotropic 1-subspace of CVðtÞ. Then CGðU0Þ	 q3 : L2ðqÞ.
(ii) Let Ue be a 1-subspace of CVðtÞ, such that U?

e \ CVðtÞ is a 2-space of e-type
(e ¼ �1). Then

CGðUeÞ	
SL2ðqÞ � SL2ðqÞ d ¼ e

L2ðq2Þ d ¼ �e:

�

Proof Let U0 be an isotropic 1-subspace of CVðtÞ. From Proposition 4.1.20 of [32],

we know that StabGðU0Þ	C0 : ðC1 � C2Þ rh i where C1 acts as scalars on U0, r a

reflection of U0 and C0 	 q3, C2 	 L2ðqÞ fixing U0 pointwise. Hence

CGðU0Þ	 q3 : L2ðqÞ, so proving (i).

If d ¼ 1, then [V, t] is a 2-subspace of V of þ-type, and hence U?
þ ¼

ðU?
þ \ CVðtÞÞ ? ½V ; t
 is a 4-subspace of þ-type. Similarly, U?

� ¼ ðU?
� \ CVðtÞÞ ?

½V; t
 is a 4-space of --type. If d ¼ �1, then [V, t] is a 2-subspace of V of --type,

and the results for when d ¼ 1 interchange. Let Wþ and W� be 4-subspaces of V of

þ and --type respectively, such that W?
þ and W?

� are 1-subspaces of CVðtÞ,
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observing that StabGðW�Þ ¼ StabGðW?
�Þ. From Proposition 4.1.6 of [32], we have

StabGðWþÞ	Cþ sþh i
StabGðW�Þ	C� s�h i

where Cþ 	 SL2ðqÞ � SL2ðqÞ fixes W?
þ pointwise, C� 	 L2ðq2Þ fixes W?

� pointwise

and sþ; s� are reflections of W?
þ and W?

� respectively. This proves (ii) and hence

the lemma. h

Lemma 4.5

(i) Let U0 be a 2-subspace of CVðtÞ such that U?
0 \ CVðtÞ is an isotropic 1-

space. Then CGðU0Þ	 q2 : q�d
2
.

(ii) Let Ue be a 2-subspace of CVðtÞ of e-type (e ¼ �1). Then CGðUeÞ ffi L2ðqÞ.

Proof See Propositions 4.1.6 and 4.1.20 of [32]. h

Define the following subsets of U i, i ¼ 1; 2.

Uþ
1 ¼ U 2 U1jCGðUÞ ffi SL2ðqÞ � SL2ðqÞf g

U�
1 ¼ U 2 U1jCGðUÞ ffi L2ðq2Þ

� �

U0
1 ¼ U 2 U1jCGðUÞ	 q3 : L2ðqÞ

� �

Uþ
2 ¼ U 2 U2jU is of +-typef g

U�
2 ¼ U 2 U2jU is of � -typef g

U0
2 ¼ U 2 U2 CGðUÞ	 q2 :

q� d
2

�
�
�
�

� �

:

In the notation of Lemma 4.4, Uþ
1 is the case d ¼ e while U�

1 is when d ¼ �e. Note
by Lemmas 4.4 and 4.5 that U i ¼ U0

i [ Uþ
i [ U�

i , i ¼ 1; 2. We now study CGðUÞ \
Y2 for U 2 U1. By Lemma 4.4 there are three possibilities for the structure of

CGðUÞ. First we look at the case U 2 U�
1 , and set G� ¼ CGðUÞ. Then G� ffi L2ðq2Þ

by definition of U�
1 . Define D�

i ðtÞ ¼ x 2 G� \ Y2jd�ðt; xÞ ¼ if g where i 2 N and

d� is the distance metric on the commuting graph CðG�;G� \ Y2Þ.

Theorem 4.6 If q 6¼ 3 then CðG�;G� \ Y2Þ is connected of diameter 3 with

D�
1 ðtÞ

�
�

�
� ¼ 1

2
ðq2 � 1Þ;

D�
2 ðtÞ

�
�

�
� ¼ 1

4
ðq2 � 1Þðq2 � 5Þ; and

D�
3 ðtÞ

�
�

�
� ¼ 1

4
ðq2 � 1Þðq2 þ 7Þ:

Proof Since q2 � 1ðmod 4Þ and q 6¼ 3 implies q2 [ 13, this follows from

Theorem 1.1(iii) of [11]. h
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We move on to analyze Gþ ¼ CGðUÞ where U 2 Uþ
1 . Hence, by definition of Uþ

1 ,

Gþ ffi L1 � L2 where L1 ffi SL2ðqÞ ffi L2 (with the central product identifying ZðL1Þ
and ZðL2Þ). Set Yþ ¼ Gþ \ Y2. We begin by describing Yþ.

Lemma 4.7

Yþ ¼ x1x2jxi 2 Li and xi has order 4; i ¼ 1; 2f g:

Proof Apart from the central involution z of Gþ, all other involutions of Gþ are of

the form g1g2 where gi 2 Li ði ¼ 1; 2Þ has order 4. Since all involutions in Li=ZðGþÞ
are conjugate, it quickly follows that g1g2jgi 2 Li and gi has order 4; i ¼ 1; 2f g is

a Gþ-conjugacy class. Now z acts as �1 on U? and thus dim CVðzÞ ¼ 1. Therefore

t 6¼ z whence, as t 2 Gþ, the lemma holds. h

Let dþ denote the distance metric on the commuting graph CðGþ; YþÞ and, for
i 2 N, Dþ

i ðtÞ ¼ x 2 Yþjdþðt; xÞ ¼ if g.

Theorem 4.8 Assume that q 62 3; 5; 9; 13f g. Then CðGþ; YþÞ is connected of

diameter 3 with

Dþ
1 ðtÞ

�
�

�
� ¼ 1

2
ðq� dÞ2 þ 1;

Dþ
2 ðtÞ

�
�

�
� ¼ 1

8
ðq� dÞ3ðq� 4� dÞ þ ðq� dÞðq� 2� dÞ; and

Dþ
3 ðtÞ

�
�

�
� ¼ 3

8
q4 þ 1

2
ð1þ 3dÞq3 � 1

4
ð7þ 6dÞq2 þ 7

2
ð1þ dÞq� 1

8
ð29þ 20dÞ:

Proof Let Gþ ¼ Gþ=ZðGþÞ ð¼ L1 � L2Þ. Note that for x1x2 2 Yþ, x�1
1 x2 ¼ x1x

�1
2

and x1x2 ¼ x�1
1 x�1

2 and so the inverse image of x1x2 contains two elements of Yþ.

Let dðiÞ denote the distance metric on the commuting graph of Li and DðiÞ
j ðxiÞ the jth

disc of xi in the commuting graph of Li. By Lemma 4.7, t ¼ t1t2 where, for i ¼ 1; 2,
ti 2 Li has order 4. Let x ¼ x1x2 2 Yþ with x 6¼ t. Then tx ¼ xt if and only if tx has

order 2. So, bearing in mind that Yþ [ zf g (where zh i ¼ ZðGþÞ) are all the

involutions of Gþ, we have that tx ¼ xt if and only if one of the following holds:-

x1 ¼ t1; x2 ¼ t�1
2 ; x1 ¼ t�1

1 , x2 ¼ t2; x1 2 Dð1Þ
1 ðt1Þ and x2 2 Dð2Þ

1 ðt2Þ. Thus

Dþ
1 ðtÞ ¼ x1x2 xi 2 DðiÞ

1 ðtiÞ; i ¼ 1; 2
�
�
�

n o

[ t1t
�1
2

� �

: ð4:8:1Þ

Hence, using [11],

Dþ
1 ðtÞ

�
�

�
� ¼ 2

1

2
ðq� dÞ

� �2

þ1 ¼ 1

2
ðq� dÞ2 þ 1: ð4:8:2Þ

Next we examine Dþ
2 ðtÞ. Let x 2 Yþ. Assume that x ¼ x1t2 or x1t

�1
2 where

x1 2 Dð1Þ
1 ðt1Þ. Then x 2 Dþ

1 ðt1t�1
2 Þ (recall t1t

�1
2 ¼ t�1

1 t2) which implies, by (4.8.1),
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that x 2 Dþ
2 ðtÞ. If x ¼ t1x2 or t

�1
1 x2 where x2 2 Dð2Þ

1 ðt2Þ, we similarly get x 2 Dþ
2 ðtÞ.

Therefore

x1x2 x1 2 Dð1Þ
1 ðt1Þ; x2 ¼ t2

�
�
�

n o

[ x1x2 x2 2 Dð2Þ
1 ðt2Þ; x1 ¼ t1

�
�
�

n o

� Dþ
2 ðtÞ: ð4:8:3Þ

Now suppose x ¼ x1x2 where x1 2 Dð1Þ
2 ðt1Þ and x2 2 Dð2Þ

1 ðt2Þ. So there exists y1 2 L1

such that ðt1; y1; x1Þ is a path of length 2 in the commuting graph for L1. Then

ðt ¼ t1t2; y1x
�1
2 ; x1x2 ¼ xÞ is a path of length 2 in CðGþ; YþÞ. Thus, by (4.8.1),

x 2 Dþ
2 ðtÞ. If, on the other hand, x1 2 Dð1Þ

1 ðt1Þ and x2 2 Dð2Þ
2 ðt2Þ we obtain the same

conclusion. Should we have x1 2 Dð1Þ
2 ðt1Þ and x2 2 Dð2Þ

2 ðt2Þ, similar arguments also

give x 2 Dþ
2 ðtÞ. So

x1x2 x1 2 Dð1Þ
2 ðt1Þ; x2 2 Dð2Þ

1 ðt2Þ
�
�
�

n o

[ x1x2 x1 2 Dð1Þ
1 ðt1Þ; x2 2 Dð2Þ

2 ðt2Þ
�
�
�

n o

[ x1x2 x1 2 Dð1Þ
2 ðt1Þ; x2 2 Dð2Þ

2 ðt2Þ
�
�
�

n o

� Dþ
2 ðtÞ:

ð4:8:4Þ

Since x ¼ x1x2 2 Dþ
2 ðtÞ implies dðiÞðti; xiÞ� 2 for i ¼ 1; 2, Dþ

2 ðtÞ is the union of the

two sets in (4.8.3) and (4.8.4). Thus, employing [11],

Dþ
2 ðtÞ

�
�

�
� ¼ 1

8
ðq� dÞ3ðq� 4� dÞ þ ðq� dÞðq� 2� dÞ: ð4:8:5Þ

Now, as q 62 3; 5; 9; 13f g, by [11] the commuting graph for Li is connected of

diameter 3. Arguing as above we deduce that CðGþ; YþÞ is also connected with

diameter 3. Because Yþj j ¼ 2 t1
L1

�
�
�

�
�
� t2

L2
�
�
�

�
�
� ¼ 1

2
q2ðqþ dÞ2, combining (4.8.2) and

(4.8.5) we may determine Dþ
3 ðtÞ

�
�

�
� to be as stated, so completing the proof of

Theorem 4.8. h

Finally we look at CGðUÞ where U 2 U0
1. This will prove to be trickier than the

other two cases. Put G0 ¼ CGðUÞ. So G0 	 q3 : L2ðqÞ. We require an explicit

description of G0 which we now give. Let Q ¼ ða; b; cÞja; b; c 2 GFðqÞf g and

L ¼
a2 2ab b2

ac ad þ bc bd

c2 2cd d2

0

B
@

1

C
A

�
�
�
�
�
�
�

a; b; c; d 2 GFðqÞ
ad � bc ¼ 1

8

><

>:

9

>=

>;

:

with L acting on Q by right multiplication. Then Q	 q3 and L ffi L2ðqÞ. Since Q is

the 3-dimensional GF(q)L-module (see the description on page 15 of [4]),

G0 ffi QoL. We will identify this semidirect product with G0, writing G0 ¼ QL.

Any g 2 G0 has a unique expression g ¼ gQgL where gQ 2 Q and gL 2 L - in what

follows we use such subscripts to describe this expression. Set Y0 ¼ G0 \ Y2, let d
0

denote the distance metric and D0
i ðtÞ the ith disc of the commuting graph CðG0; Y0Þ.

In determining the discs of CðG0; Y0Þ we make use of the commuting involution
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graph of L ffi L2ðqÞ (as given in [11]). So we shall use dL to denote the distance

metric on CðL; L \ Y0Þ and for x 2 L \ Y0 and i 2 N,

DL
i ðxÞ ¼ y 2 L \ Y0

�
�dLðx; yÞ ¼ i

� �

. It is straightforward to check that

L \ Y0 ¼
a2 2ab b2

ac bc� a2 � ab

c2 � 2ac a2

0

B
@

1

C
A

�
�
�
�
�
�
�

a; b; c 2 GFðqÞ
a2 þ b2 ¼ �1

8

><

>:

9

>=

>;

and, as G0 has one conjugacy class of involutions,

Y0 ¼ xQxL
�
�xL 2 L \ Y0 and xL inverts xQ

� �

. Without loss of generality, we take

t ¼ tL ¼
0 0 1

0 � 1 0

1 0 0

0

B
@

1

C
A

and, up until Theorem 4.14, we will assume that q 62 3; 5; 9; 13f g. Thus the diameter

of CðL;L \ Y0Þ is 3.

Lemma 4.9

(i) Qt \ Y0 ¼ ða; b;�aÞtja; b 2 GFðqÞf g and Qt \ Y0
�
�

�
� ¼ q2.

(ii) Qt \ D0
1ðtÞ ¼ £.

Proof A straightforward calculation. h

Lemma 4.10 We have

D0
1ðtÞ ¼ x xQ ¼ ða; 0; aÞ; xL ¼

a2 2ab b2

ab b2 � a2 � ab

b2 � 2ab a2

0

B
@

1

C
A; a2 þ b2 ¼ �1

�
�
�
�
�
�
�

8

><

>:

9

>=

>;

;

and D0
1ðtÞ

�
�

�
� ¼ 1

2
qðq� dÞ.

Proof Let x; y 2 Y0. If ½x; y
 ¼ 1 then clearly ½xL; yL
 ¼ 1. From [11] we have

DL
1ðtÞ ¼

a2 2ab b2

ab b2 � a2 � ab

b2 � 2ab a2

0

B
@

1

C
A

�
�
�
�
�
�
�

a2 þ b2 ¼ �1

8

><

>:

9

>=

>;

:

If xQ ¼ ða; b; cÞ and xL 2 DL
1ðtÞ then ½t; x
 ¼ 1 implies a ¼ c and b ¼ 0. Moreover,

every x ¼ ða; 0; aÞxL, where xL 2 DL
1ðtÞ, is in Y0. Hence, D0

1ðtÞ is as described above.
By [11], for any involution xL 2 L we have DL

1ðxLÞ
�
�

�
� ¼ 1

2
ðq� dÞ and there are q

possible values that a can take for a fixed such xL, proving the lemma. h

Lemma 4.11 Let x 2 Y0 with xL 2 DL
1ðtÞ. If x 62 D0

1ðtÞ, then x 2 D0
2ðtÞ.

Proof Suppose x 2 Y0 where xQ ¼ ða; b; cÞ and
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xL ¼
a2 2ab b2

ab b2 � a2 � ab

b2 � 2ab a2

0

B
@

1

C
A:

Then xL inverts xQ if and only if

a2aþ 2abbþ b2c ¼ �a

abaþ ðb2 � a2Þb� abc ¼ �b

b2a� 2abbþ a2c ¼ �c:

ð4:11:1Þ

Suppose first that d ¼ �1. Then, since �1 is not square in GF(q), we must have

a; b 6¼ 0. Rearranging the first equation gives a ¼ 2ab�1bþ c and (4.11.1) remains

consistent. Note that when b ¼ 0, we have a ¼ c and so x 2 D0
1ðtÞ. So assume

b 6¼ 0. Let y 2 D0
1ðtÞ where yQ ¼ ðab�1bþ c; 0; ab�1bþ cÞ and

yL ¼
b2 � 2ab a2

�ab a2 � b2 ab

a2 2ab b2

0

B
@

1

C
A:

It is a routine calculation to show that ½x; y
 ¼ 1, proving the lemma for d ¼ �1.

Now assume d ¼ 1. If a; b 6¼ 0 then the argument from the previous case still holds,

so assume first that a ¼ 0, and hence b is an element in GF(q) that squares to �1.

Then (4.11.1) simplifies to a ¼ c, and so xQ ¼ ða; b; aÞ. Let z 2 D0
1ðtÞ where zQ ¼

ða; 0; aÞ and

zL ¼
�1 0 0

0 1 0

0 0 � 1

0

B
@

1

C
A:

An easy calculation shows that ½x; z
 ¼ 1. Similarly, assuming b ¼ 0 then a is an

element of GF(q) squaring to �1 and (4.11.1) simplifies to b ¼ 0. Then xQ ¼
ða; 0; cÞ and if w 2 D0

1ðtÞ where wQ ¼ ð2�1ðaþ cÞ; 0; 2�1ðaþ cÞÞ and

wL ¼
0 0 � 1

0 � 1 0

�1 0 0

0

B
@

1

C
A

then an easy check shows that ½x;w
 ¼ 1, proving the lemma for d ¼ 1. h

Lemma 4.12 We have Qt \ Y0 � tf g [ D0
2ðtÞ [ D0

3ðtÞ. Moreover,

Qt \ D0
2ðtÞ

�
�

�
� ¼ 1

2
q2 � ð1þ dÞqþ d
� �

; and

Qt \ D0
3ðtÞ

�
�

�
� ¼ 1

2
q2 þ ð1þ dÞq� ð2þ dÞ
� �

:
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Proof If x 2 Qt \ Y0 and x 6¼ t then xQ ¼ ða; b;�aÞ and x 62 D0
1ðtÞ by Lemma 4.9.

Let y 2 D0
1ðtÞ where yQ ¼ ðc; 0; cÞ and

yL ¼
a2 2ab b2

ab b2 � a2 � ab

b2 � 2ab a2

0

B
@

1

C
A

with a2 þ b2 ¼ �1. Then ½x; y
 ¼ 1 if and only if �a2a ¼ abb and �b2b ¼ aba.
Assume first that d ¼ �1. Since �1 is not square in GF(q), we have a; b 6¼ 0 and

so a ¼ �a�1bb. Hence if y 2 Qt is such that yQ ¼ ð�a�1bb; b; a�1bbÞ, then

y 2 D0
2ðtÞ. By looking at DL

1ðtÞ, we see there are qþ 1 ordered pairs (a, b) that

satisfy a2 þ b2 ¼ �1. However, if ða; bÞ 6¼ ðc; dÞ where a2 þ b2 ¼ c2 þ d2 ¼ �1

and a�1b ¼ c�1d, then an easy calculation shows that ðc; dÞ ¼ ð�a;�bÞ. Hence
there are 1

2
ðqþ 1Þ distinct values of a�1b satisfying the relevant conditions. If

b ¼ 0, then x ¼ t and if b 6¼ 0 there are 1
2
ðq2 � 1Þ elements in Qt \ D0

2ðtÞ.
Assume now that d ¼ 1. If a; b 6¼ 0 then the arguments of the previous case still

hold, with the exception that there are now q� 1 ordered pairs (a, b) that satisfy

a2 þ b2 ¼ �1. However, as a; b 6¼ 0 we exclude the pairs ð�i; 0Þ and ð0;�iÞ where
i is an element of GF(q) squaring to �1. Hence there are q� 5 ordered pairs (a, b)

satisfying a2 þ b2 ¼ �1, a; b 6¼ 0 and thus 1
2
ðq� 5Þ distinct values of a�1b. Hence

there are 1
2
ðq� 5Þðq� 1Þ elements z 2 Qt \ D0

2ðtÞ such that zQ ¼
ð�a�1bb; b; a�1bbÞ where b 6¼ 0 (note that if b ¼ 0, then z ¼ t). Suppose a ¼ 0,

then b 6¼ 0 and so b ¼ 0. Hence xQ ¼ ða; 0;�aÞ and all such x lie in D0
2ðtÞ if a 6¼ 0.

Similarly, if b ¼ 0 then a 6¼ 0 and xQ ¼ ð0; b; 0Þ where b 6¼ 0 and all such x lie in

D0
2ðtÞ. Therefore, Qt \ D0

2ðtÞ
�
�

�
� ¼ 1

2
ðq� 5Þðq� 1Þ þ 2ðq� 1Þ ¼ 1

2
ðq� 1Þ2 as

required.

Hence it suffices to show that the remaining involutions all lie in D0
3ðtÞ. Let

w 2 Qt be such that wQ ¼ ðc; e;�cÞ. Choose s 2 Y0 such that sQ ¼ ðabe�
b2c; abc� a2e; b2c� abeÞ with abc 6¼ a2e and

sL ¼
b2 � 2ab a2

�ab a2 � b2 ab

a2 2ab b2

0

B
@

1

C
A;

with a2 þ b2 ¼ �1. It is an easy check to show that s 2 D0
2ðtÞ, and moreover

½w; s
 ¼ 1. This accounts for the remaining involutions in Qt, thus proving the

lemma. h

Lemma 4.13 Suppose x 2 Y0 with xL 2 DL
2ðtÞ. Then x 2 D0

2ðtÞ.

Proof It can be shown (see Remark 2.3 of [11], noting the result holds for any odd

q) that for a fixed a; b 2 GFðqÞ such that a2 þ b2 ¼ �1,
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CL

a2 2ab b2

ab b2 � a2 � ab

b2 � 2ab a2

0

B
@

1

C
A

0

B
@

1

C
A ¼

c2 2cd d2

ce de� c2 � cd

e2 � 2ce c2

0

B
@

1

C
A

�
�
�
�
�
�
�

c2 þ de ¼ �1

bðeþ dÞ ¼ �2ac

8

><

>:

9

>=

>;

:

Let y 2 Y0 be such that yQ ¼ ða; b; cÞ and

yL ¼
c2 2cd d2

ce de� c2 � cd

e2 � 2ce c2

0

B
@

1

C
A 2 DL

2ðtÞ:

So there exists a; b 2 GFðqÞ such that a2 þ b2 ¼ �1 and bðeþ dÞ ¼ �2ac with

d 6¼ e. Since yL inverts yQ, we have

c2aþ 2cdbþ d2c ¼ �a

ceaþ ðde� c2Þb� cdc ¼ �b

e2a� 2cebþ c2c ¼ �c:

ð4:13:1Þ

Assume first that d ¼ �1. Since �1 is not square in GF(q), then d; e 6¼ 0 and any

a; b 2 GFðqÞ such that bðd þ eÞ ¼ �2ac and a2 þ b2 ¼ �1 must also be non-zero.

Moreover, if c ¼ 0 then d ¼ �e�1 and bðd � d�1Þ ¼ 0 implying that d ¼ �1. But

then yL ¼ t 62 DL
2ðtÞ, so c 6¼ 0. The system (4.13.1) now simplifies to

a ¼ 2ce�1bþ de�1c. Let x 2 D0
1ðtÞ be such that xQ ¼ ðe; 0; eÞ and

xL ¼
a2 2ab b2

ab b2 � a2 � ab

b2 � 2ab a2

0

B
@

1

C
A

where e ¼ �abc�1e�1ðcþ ðd � eÞ�1ð2cþ a�1be� ab�1e� ðabÞ�1
eÞbÞ. Using the

PolynomialAlgebra command in MAGMA [17] we verify that ½x; y
 ¼ 1 and so

y 2 D0
2ðtÞ.

Assume now that d ¼ 1. Let a; b 2 GFðqÞ be such that a2 þ b2 ¼ �1 and

bðd þ eÞ ¼ �2ac. Suppose c; d; e 6¼ 0 and d 6¼ �e. Then bðd þ eÞ ¼ �2ac 6¼ 0 and

so a; b 6¼ 0. The argument for the case when d ¼ �1 then holds. Suppose then

c; d; e 6¼ 0 and d ¼ �e. Then bðd þ eÞ ¼ �2ac ¼ 0 and since c 6¼ 0 we must have

a ¼ 0 and b2 ¼ �1. The system (4.13.1) then becomes a ¼ 2ce�1b� c. If x 2 D0
1ðtÞ

is such that xQ ¼ ð�c�1e�1b; 0;�c�1e�1bÞ and

xL ¼
0 0 � 1

0 � 1 0

�1 0 0

0

B
@

1

C
A

then a routine check shows that ½x; y
 ¼ 1.

Now assume c 6¼ 0 and d ¼ 0. Since yL 2 DL
2ðtÞ, we must have e 6¼ 0 and so
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c2 ¼ �1. The system (4.13.1) becomes a ¼ 2ce�1b and using MAGMA [17] we

deduce that if x 2 D0
1ðtÞ where xQ ¼ ðe; 0; eÞ,

xL ¼
a2 2ab b2

ab b2 � a2 � ab

b2 � 2ab a2

0

B
@

1

C
A

and e ¼ ðce�1ð1� a2Þ � abÞb� 2�1b2c, then ½x; y
 ¼ 1. Similarly, if c 6¼ 0 and

e ¼ 0, then d 6¼ 0 and c2 ¼ �1. The system (4.13.1) becomes b ¼ 2�1cdc and [17]

will verify that if x 2 D0
1ðtÞ where xQ ¼ ðe; 0; eÞ,

xL ¼
a2 2ab b2

ab b2 � a2 � ab

b2 � 2ab a2

0

B
@

1

C
A

and e ¼ 2�1ðc� b2aþ abcdc� a2cÞ, then ½x; y
 ¼ 1.

Finally, if c ¼ 0 then d ¼ �e�1 and so a2 ¼ �1 and b ¼ 0 satisfies the relevant

conditions. Note that if d ¼ �1 then yL ¼ t, so we may assume d 6¼ �1. The system

(4.13.1) becomes a ¼ d2c, so if x 2 D0
1ðtÞ where xQ ¼ ð2d2cð1� d2Þ�1; 0; 2d2cð1�

d2Þ�1Þ and

xL ¼
�1 0 0

0 1 0

0 0 � 1

0

B
@

1

C
A

then a routine check again shows that ½x; y
 ¼ 1. Therefore, for all y 2 Y0 such that

yL 2 DL
2ðtÞ, there exists x 2 DL

1ðtÞ such that ½x; y
 ¼ 1, so proving the lemma. h

Theorem 4.14 If q 62 3; 5; 9; 13f g, then CðG0; Y0Þ is connected of diameter 3, with

disc sizes

D0
1ðtÞ

�
�

�
� ¼ 1

2
qðq� dÞ;

D0
2ðtÞ

�
�

�
� ¼ 1

4
q4 � ð2dþ 2Þq3 þ ð1þ 2dÞq2 � 2qþ 2d
� �

; and

D0
3ðtÞ

�
�

�
� ¼ 1

4
q4 þ 2ð1þ 2dÞq3 � ð3þ 2dÞq2 þ 2ð1þ dÞq� 2ð2þ dÞ
� �

:

Proof It is known that CðL; L \ Y0Þ has diameter 3. Hence, for any hi 2 DL
i ðtÞ, there

exists hi�1 2 DL
i�1ðtÞ that commutes with hi, i ¼ 1; 2. Therefore for any x 2 Y0

where xL 2 DL
i ðtÞ, there exists y 2 Y0 with yL 2 DL

i�1ðtÞ and such that ½x; y
 ¼ 1.

Since any z 2 Y0 where zL 2 DL
3ðtÞ must commute with some w 2 Y0 with wL 2

DL
2ðtÞ (which lies in D0

2ðtÞ by Lemma 4.13), z 2 D0
3ðtÞ. This finally covers all

possible involutions in Y0 and so the diameter of CðG0; Y0Þ is 3. Now for each
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xL 2 L \ Y0, QxL \ Y0
�
�

�
� ¼ q2 by Lemma 4.9, and therefore there are 1

2
q2ðq� dÞ

involutions y 2 Y0 such that yL 2 DL
1ðtÞ. From Lemma 4.10, D0

1ðtÞ
�
�

�
� ¼ 1

2
qðq� dÞ.

Therefore

[

xL2DL
1ðtÞ

QxL \ D0
2ðtÞ

�
�
�
�
�
�

�
�
�
�
�
�

¼ 1

2
q2ðq� dÞ � 1

2
qðq� dÞ ¼ 1

2
qðq� 1Þðq� dÞ:

There are q2 DL
2ðtÞ

�
�

�
� involutions z 2 Y0 such that zL 2 DL

2ðtÞ, which is known to be
1
4
q2ðq� dÞðq� 4� dÞ (see [11]). Also, by Lemma 4.12,

Qt \ D0
2ðtÞ

�
�

�
� ¼ 1

2
ðq2 � ð1þ dÞq� dÞ. Hence

D0
2ðtÞ

�
�

�
� ¼ Qt \ D0

2ðtÞ
�
�

�
�þ

[

xL2DL
1ðtÞ

QxL \ D0
2ðtÞ

�
�
�
�
�
�

�
�
�
�
�
�

þ q2 DL
2ðtÞ

�
�

�
�

¼ 1

4
q4 � ð2dþ 2Þq3 þ ð1þ 2dÞq2 � 2qþ 2d
� �

:

Finally, there are Y0
�
�
�
� ¼ q2 L \ Y0

�
�

�
� ¼ 1

2
q3ðqþ dÞ involutions in G0 and therefore

D0
3ðtÞ

�
�

�
� ¼ Y0

�
�
�
�� D0

2ðtÞ
�
�

�
�� D0

1ðtÞ
�
�

�
�� 1

¼ 1

4
q4 þ 2ð1þ 2dÞq3 � ð3þ 2dÞq2 þ 2ð1þ dÞq� 2ð2þ dÞ
� �

which proves Theorem 4.14. h

Theorem 4.15 CðG; Y2Þ is connected of diameter at most 3.

Proof For q� 13, this is easily checked using MAGMA [17], so assume q[ 13.

Combining Lemma 4.3 with Theorems 4.6, 4.8 and 4.14 yields the theorem. h

We now focus on finding the disc sizes of CðG; Y2Þ. First, we need the following

four lemmas.

Lemma 4.16 The sets Uþ
1 , U�

1 and U0
1 are single CGðtÞ-orbits. Moreover,

U0
1

�
�
�
� ¼ qþ 1;

Uþ
1

�
�

�
� ¼ 1

2
qðqþ dÞ; and

U�
1

�
�

�
� ¼ 1

2
qðq� dÞ:

Proof Since CGðtÞ acts orthogonally on CVðtÞ, the first statement is immediate.

Recall the Gram matrix J for V with respect to ð ; Þ and the basis vif g. Observe that
CVðtÞ ¼ ða; b; c; 0; cÞja; b; c 2 GFðqÞf g and so a basis for CVðtÞ is v1; v2; v3 þ v5f g.
Let v ¼ ða; b; c; 0; cÞ be a non-zero vector in CVðtÞ and so ðv; vÞ ¼ 2abþ 2c2.

Suppose v is isotropic, so CGð vh iÞ	 q3 : L2ðqÞ and ðv; vÞ ¼ 2abþ 2c2 ¼ 0. If
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c ¼ 0, then ab ¼ 0 and so either a ¼ 0 or b ¼ 0 (but not both as v 6¼ 0). Hence there

are 2ðq� 1Þ such vectors with c ¼ 0. If c 6¼ 0, then a ¼ �b�1c2 and there are

ðq� 1Þ2 such vectors satisfying this. Hence there are 2ðq� 1Þ þ ðq� 1Þ2 ¼
ðq� 1Þðqþ 1Þ non-zero isotropic vectors contained in CVðtÞ and thus qþ 1

isotropic 1-subspaces of CVðtÞ.
Suppose now v is CGðtÞ-conjugate to v3 þ v5, which is non-isotropic. Note that

v3 þ v5h i?\CVðtÞ is a 2-subspace of V of þ-type. If d ¼ 1, then by Lemma 4.1(ii),

v3 þ v5h i? is a 4-subspace of V of þ-type and so CGð v3 þ v5h iÞ	 SL2ðqÞ � SL2ðqÞ.
While d ¼ �1 gives that v3 þ v5h i? is a 4-subspace of V of --type and so

CGð v3 þ v5h iÞ	 L2ðq2Þ. A quick check shows that ðv3 þ v5; v3 þ v5Þ ¼ 2 and so

ðv; vÞ ¼ 2abþ 2c2 ¼ 2k2 for some k 2 GFðqÞ�. Thus, abþ c2 ¼ k2 for some

k 2 GFðqÞ�. If c ¼ 0, then a ¼ b�1k2 and so there are q� 1 such vectors that

satisfy this. If c ¼ �k, then ab ¼ 0 and so for both values of c, there are 2ðq�
1Þ þ 1 vectors that satisfy this. Finally, if c 2 GFðqÞn 0; k;�kf g, then ab ¼ 1� c2 6¼ 0

and so a ¼ b�1ð1� c2Þ. There are ðq� 1Þðq� 3Þ such vectors that satisfy this.

Hence for any given k, there exist ðq� 1Þ þ 4ðq� 1Þ þ 2þ ðq� 1Þðq� 3Þ ¼
qðqþ 1Þ vectors that satisfy abþ c2 ¼ k2. Since there are 1

2
ðq� 1Þ squares in GF(q),

there are qðqþ 1Þðq� 1Þ vectors that are CGðtÞ-conjugate to v3 þ v5 and hence
1
2
qðqþ 1Þ 1-subspaces of CVðtÞ that are CGðtÞ-conjugate to v3 þ v5h i.
This leaves the remaining orbit U�d

1 . Recall there are q2 þ qþ 1 subspaces of

CVðt1Þ of dimension 1, and hence the size of the remaining orbit is

q2 þ qþ 1� ðqþ 1Þ � 1
2
qðqþ 1Þ ¼ 1

2
qðq� 1Þ, so proving the lemma. h

Corollary 4.17 The sets Uþ
2 , U�

2 and U0
2 are single CGðtÞ-orbits. Moreover,

U0
2

�
�
�
� ¼ qþ 1;

Uþ
2

�
�

�
� ¼ 1

2
qðqþ 1Þ; and

U�
2

�
�

�
� ¼ 1

2
qðq� 1Þ:

Proof Since CVðtÞ is 3-dimensional, U? \ CVðtÞ 2 U1 for any U 2 U2, and so the

result is immediate by Lemma 4.16. h

Lemma 4.18 Let U;U0 2 U2 be such that U 6¼ U0. Then

CGðUÞ \ CGðU0Þ \ Y2 ¼ tf g.

Proof Suppose x 2 CGðUÞ \ CGðU0Þ \ Y2. Since U 6¼ U0 and x fixes each 2-

subspace pointwise, U þ U0 ¼ CVðtÞ and so x fixes CVðtÞ pointwise. That is to say,

CVðxÞ ¼ CVðtÞ and so t ¼ x by Lemma 4.2(i). h

Lemma 4.19 Let U0 2 U0
2, and G0 ¼ QL; Y0 be as defined in the discussion prior

to Lemma 4.9. Let q : CGðU?
0 \ CVðtÞÞ ! G0 be an isomorphism such that
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tq ¼
0 0 1

0 � 1 0

1 0 0

0

B
@

1

C
A:

Then CGðU0Þ is totally disconnected and ðCGðU0Þ \ Y2Þq ¼ Qt \ Y0.

Proof Since U?
0 \ CVðtÞ is isotropic, it must lie inside of U0 and so

CGðU0Þ�CGðU?
0 \ CVðtÞÞ. As t fixes U0 pointwise, tq 2 ðCGðU0ÞÞq 	 q2 : q�d

2
by

Lemma 4.5(i). The subgroup of L with shape q�d
2

contains one single involution

which must necessarily be tq. For all x 2 Y0, we have x2L ¼ 1 and xL inverts xQ, so

ðCGðU0Þ \ Y2Þq � Qt \ Y0. By comparing the orders of both sides, we get equality.

By Lemma 4.9(ii) CGðU0Þ \ CGðtÞ \ Y2 ¼ tf g, hence CGðU0Þ is totally discon-

nected. h

Lemma 4.20

D1ðtÞj j ¼ 1

2
q q2 þ ð1� dÞqþ d
� �

:

Proof Clearly, x 2 D1ðtÞ if and only if x 2 D1ðtÞ \ CGðUÞ for U ¼ CVðtÞ \ CVðxÞ,
so

D1ðtÞ ¼
[

U2U1[U2

D1ðtÞ \ CGðUÞð Þ:

If W ;W 0 2 U1 with W 6¼ W 0, then W 
W 0 2 U2 and if y 2 CGðWÞ \ CGðW 0Þ, then
y 2 CGðW 
W 0Þ and hence y 2 CGðW 00Þ for any 1-subspace W 00 of W 
W 0. Since
there are qþ 1 subspaces of W 00 of dimension 1, any such y will lie in exactly qþ 1

such CGðUÞ for U 2 U1. Together with CGðW 00Þ and Lemma 4.18,

D1ðtÞj j ¼
X

U2U1

D1ðtÞ \ CGðUÞj j � q
X

U2U2

D1ðt1Þ \ CGðUÞj j:

Combining Lemmas 4.16, 4.19 and Corollary 4.17 with Theorems 4.6, 4.8, 4.14 and

[11], we have

D1ðtÞj j ¼ 1

2
qðqþ 1Þðq� dÞ þ 1

2
qðqþ dÞ 1

2
ðq� dÞ2 þ 1


 �

þ 1

4
qðq� dÞðq2 � 1Þ

� 1

2
qðq� dÞ 1

2
qðqþ 1Þ þ 1

2
qðq� 1Þ


 �

¼ 1

2
qðq2 þ ð1� dÞqþ dÞ

as required. h

We now consider the second disc D2ðtÞ. Here, we must be careful as elements

that are distance 2 from t in some subgroup CGðUÞ may not be distance 2 from t in
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another subgroup CGðU0Þ. Moreover, there may be elements that are distance 3 from

t in every such subgroup centralizing an element of U1, but actually are distance 2

from t in G. We introduce the following notation. Let DK
2 ðtÞ be the second disc in the

commuting involution graph CðK;K \ Y2Þ and

CiðKÞ ¼ x 2 DK
2 ðtÞ

�
� dimCVð t; xh iÞ ¼ i

� �

for K ¼ CGðUÞ, U 2 U1 [ U2. Clearly, D2ðtÞ ¼ C1ðGÞ _[C2ðGÞ. A full list of cases

with corresponding notation is found in Table 1. Also we use the following notation:

for any U�CVðtÞ, define U iðUÞ to be the totality of i-dimensional subspaces of U

andW iðUÞ to be the totality of i-dimensional subspaces of CVðtÞ containing U. Note
that U i ¼ U iðCVðtÞÞ.

Table 1 List of cases in D2ðtÞ
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Lemma 4.21

(i) If W 2 U0
2, then U0

1 \ U1ðWÞ
�
�

�
� ¼ 1 and Uþ

1 \ U1ðWÞ
�
�

�
� ¼ q.

(ii) If W 2 Uþ
2 , then U0

1 \ U1ðWÞ
�
�

�
� ¼ 2 and

Uþ
1 \ U1ðWÞ

�
�

�
� ¼ U�

1 \ U1ðWÞ
�
�

�
� ¼ q�1

2
.

(iii) If W 2 U�
2 , then Uþ

1 \ U1ðWÞ
�
�

�
� ¼ U�

1 \ U1ðWÞ
�
�

�
� ¼ qþ1

2
.

Proof Recall the Gram matrix J, with respect to the ordered basis vif g, i ¼ 1; . . .; 5.

Suppose W? \ CVðtÞ ¼ U0 2 U0
1. Without loss of generality, choose

W ¼ v1; v3 þ v5h i. Clearly v1h i 2 U0
1, and v3 þ v5h i?\CVðtÞ 2 Uþ

2 . Since

v1 þ kðv3 þ v5Þ; v1 þ kðv3 þ v5Þð Þ ¼ k2ðv3 þ v5; v3 þ v5Þ;

v1 þ kðv3 þ v5Þ lies in the same CGðtÞ-orbit as v3 þ v5 and so

v1 þ kðv3 þ v5Þh i?\CVðtÞ 2 Uþ
2 , proving (i).

Suppose now W 2 Uþ
2 . Without loss of generality, choose W ¼ v1; v2h i. Clearly

v1h i; v2h i 2 U0
1. Let Uk ¼ v1 þ kv2h i for k 6¼ 0 and note that

ðv1 þ kv2; v1 þ kv2Þ ¼ 2k ¼ l 6¼ 0. Since the type of U?
k is determined by whether

l is a square or a non-square in GF(q), and there are q�1
2

of each, it is clear that there

exist q�1
2

such Uk for which U?
k is of þ-type, and similarly for --type, proving (ii).

Finally suppose W 2 U�
2 , so for all v 2 W , ðv; vÞ 6¼ 0. The simple orthogonal

group on W is cyclic of order qþ1
2

and acts on the 1-subspaces of W in exactly two

orbits with representatives u1h i and u2h i where ðu1; u1Þ is a square and ðu2; u2Þ is a
non-square in GF(q). Since U1ðWÞj j ¼ qþ 1, both orbits must be of size qþ1

2
. This

proves (iii) and hence the lemma follows. h

Corollary 4.22 Let U 2 U1. Then the following:

(i) W2ðUÞj j ¼ qþ 1:

(ii) If U 2 U0
1, then U0

2 \W2ðUÞ
�
�

�
� ¼ 1 and Uþ

2 \W2ðUÞ
�
�

�
� ¼ q.

(iii) If U 2 Ud
1, then U0

2 \W2ðUÞ
�
�

�
� ¼ 2 and

Uþ
2 \W2ðUÞ

�
�

�
� ¼ U�

2 \W2ðUÞ
�
�

�
� ¼ q�1

2
.

(iv) If U 2 U�d
2 , then Uþ

2 \W2ðUÞ
�
�

�
� ¼ U�

2 \W2ðUÞ
�
�

�
� ¼ qþ1

2
.

Proof Let U�W �CVðtÞ. Then W? \ CVðtÞ�U? \ CVðtÞ�CVðtÞ. The result

follows from Lemma 4.21. h

Lemma 4.23 Let U 2 U0
1 and W 2 Uþ

2 \W2ðUÞ. If x 2 Y2 \ CGðWÞ is such that

dCGðWÞðt; xÞ ¼ 3, then dCGðUÞðt; xÞ ¼ 3. Moreover,

C1ðCGðUÞÞj j ¼

1

4
qðq� 3Þðq� 1Þ2 q � 1ðmod 4Þ

1

4
qðq� 1Þ2ðqþ 1Þ q � �1ðmod 4Þ:

8

><

>:
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Proof Recall that CGðUÞ ¼ QL	G0 where G0 is defined as in the discussion prior

to Lemma 4.9. By conjugacy, we may assume L ¼ CGðWÞ. Now CGðUÞ \ CGðtÞ ¼
Q0CLðtÞ	 q : Dihðq� dÞ where Q0 �Q is elementary abelian of order q. Let

x 2 Q0CLðtÞ \ Y2, so x2L ¼ 1 and xL inverts xQ. Clearly, x
xQ
L ¼ xLx

2
Q 62 L since Q0 is

of odd order. Hence, CLðtÞ is self-normalizing in Q0CLðtÞ and thus there are q

distinct conjugates of CLðtÞ in Q0CLðtÞ. Let g 2 Q0CLðtÞnCLðtÞ, so CLðtÞg 6¼ CLðtÞ.
Now ½CLðtÞ; t
 ¼ ½CLðtÞg; t
 ¼ 1 and so CLðtÞ;CLðtÞgh i centralizes t. If CLðtÞ,
CLðtÞg � Lh for some h 2 QL, then CLðtÞ;CLðtÞgh i� Lh. However,

CLðtÞ' CLðtÞ;CLðtÞgh i�CLðtÞ, a contradiction. Hence every conjugate of CLðtÞ
lies in a different conjugate of L and so there are q distinct Q0CLðtÞ-conjugates of L.
Therefore, Uþ

2 \W2ðUÞ is contained in the same CGðUÞ \ CGðtÞ-orbit, and

Uþ
2 \W2ðUÞ

�
�

�
� ¼ q by Corollary 4.22. There are exactly q þ-type 2-subspaces of

CVðtÞ containing U, all of which lie in the same CGðUÞ \ CGðtÞ orbit.
Let x 2 CGðWÞ \ Y2 be such that dCGðWÞðt; xÞ ¼ 3. Suppose Wg 2 Uþ

2 \W2ðUÞ
for some g 2 CGðUÞ \ CGðtÞ, W 6¼ Wg. If dCGðUÞðt; xÞ ¼ 2 then

dCGðUÞðtg; xgÞ ¼ dCGðUÞðt; xgÞ ¼ 2, and dCGðWÞðt; xÞ ¼ dCGðWgÞðt; xgÞ ¼ 3. Hence it

suffices to prove the lemma for CGðWÞ. By Theorem 4.14, any involution distance 3

away from t in L is necessarily distance 3 away from t in CGðUÞ, proving the first

statement.

Let W0 2 U0
2 \W2ðUÞ, so CGðW0Þ	 q2 : q�d

2
. By Lemma 4.19,

DCGðUÞ
2 ðtÞ \ CGðW0Þ ¼ Qt \ DCGðUÞ

2 ðtÞ. Let Wi, i ¼ 1; . . .; q be the subspaces in

Uþ
2 \W2ðUÞ. From Lemma 4.18, CGðWiÞ \ CGðWjÞ \ Y2 ¼ tf g if and only if i ¼ j.

Using Corollary 4.22(i) with [11], we have

[q

i¼1

DCGðWiÞ
2 ðtÞ

�
�
�
�
�

�
�
�
�
�
¼ 1

4
qðq� dÞðq� 4� dÞ: ð4:23:1Þ

Combining Lemma 4.12 with (4.23.1),

C2ðCGðUÞÞj j ¼
[q

i¼1

DCGðWiÞ
2 ðtÞ

�
�
�
�
�

�
�
�
�
�
þ DCGðUÞ

2 ðtÞ \ CGðW0Þ
�
�
�

�
�
�

¼ 1

4
q3 � 2ð1þ dÞq2 þ ð2d� 1Þqþ 2d
� �

:

ð4:23:2Þ

Together, (4.23.2) and Theorem 4.14 give

C1ðCGðUÞÞj j ¼ DCGðUÞ
2 ðtÞ

�
�
�

�
�
�� C2ðCGðUÞÞj j

¼ 1

4
q q3 � ð2dþ 3Þq2 þ ð4dþ 3Þq� 2d� 1
� �

as required. h

Lemma 4.24 Let t; x 2 L2ðqÞ. Then dL2ðqÞðt; xÞ� 2 if and only if the order of tx

divides 1
2
ðq� dÞ.
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Proof See Lemma 2.11 of [11]. h

Lemma 4.25 Let U 2 Uþ
1 , and W 2 ðUþ

2 [ U�
2 Þ \W2ðUÞ.

(i) If d ¼ 1 and W0 2 U0
2 \W2ðUÞ, then Y2 \ CGðW0Þn tf g � DCGðUÞ

3 ðtÞ.
(ii) If x 2 Y2 \ CGðWÞ is such that dCGðWÞðt; xÞ ¼ 3, then dCGðUÞðt; xÞ ¼ 3 and

C1ðCGðUÞÞj j ¼

1

8
ðq� 1Þðq� 3Þðq2 � 6qþ 13Þ q � 1ðmod 4Þ
1

8
ðq2 � 1Þðq2 � 2qþ 5Þ q � �1ðmod 4Þ:

8

><

>:

Proof Recall that CGðUÞ	Gþ 	 L1 � L2 for L1 	 SL2ðqÞ	 L2. Suppose y 2 CGðWÞ
is such that dCGðWÞðt; yÞ ¼ 3. Since CGðWÞ	 L2ðqÞ is simple, then y ¼ ggu for some

g 2 L1 and u : L1 ! L2. Since t 2 CGðWÞ, write t ¼ ssu for some s 2 L1. Then

dL1ðs; gÞ ¼ 3, so dCGðUÞðt; yÞ ¼ 3 by Theorem 4.8, and thus

DCGðWÞ
3 ðtÞ � DCGðUÞ

3 ðtÞ for all W 2 ðUþ
2 [ U�

2 Þ \ W2ðUÞ: ð4:25:1Þ

If d ¼ �1, then U0
2 \W2ðUÞ ¼ £ by Corollary 4.22. If d ¼ 1, there exists

W0 2 U0
2 \W2ðUÞ. Recall that W?

0 \ CVðtÞ 2 U0
1 so

CGðW0Þ�CGðW?
0 \ CVðtÞÞ	G0 ¼ QL. By Lemma 4.19, if x 2 CGðW0Þ \ Y2 then

x ¼ xQt and xQ is inverted by t and has order p. Since xQ also lies in CGðUÞ, we can
write xQ ¼ hhu for some h 2 L1. Now x�1

Q ¼ h�1h�1u and so

xtQ ¼ xss
u

Q ¼ hsðhuÞs
u

¼ h�1h�1u. Therefore, hs ¼ h�1 and hus
u ¼ h�1u. Moreover,

x ¼ xQt ¼ ðhsÞðhsÞu where hs 2 L1 is an element of order 4 squaring to the non-

trivial element of ZðL1Þ, and h ¼ ðhsÞs has order p. By Lemma 4.24 and [11],

dL1ðhs; sÞ ¼ 3 and so dCGðUÞðt; xQtÞ ¼ 3 by Theorem 4.8. Therefore,

CGðW0Þ \ DCGðUÞ
2 ðtÞ ¼ £ for all W0 2 U0

2 \W2ðUÞ: ð4:25:2Þ

Hence combining (4.25.1) with Lemma 4.21, [11] and, if d ¼ 1, (4.25.2) we get

[

U�W

DCGðWÞ
2 ðtÞ

�
�
�
�
�

�
�
�
�
�
¼ C2ðCGðUÞÞj j ¼ 1

4
ðq� dÞ2ðq� 4� dÞ:

This, together with Theorem 4.8 yields

C1ðCGðUÞÞj j ¼ DCGðUÞ
2 ðtÞ

�
�
�

�
�
�� C2ðCGðUÞÞj j

¼ 1

8
ðq� 1Þðq� 1� 2dÞ q2 � ð4þ 2dÞqþ 9þ 4d

� �

;

which proves the lemma. h

Lemma 4.26 Let U 2 U�
1 , and W 2 ðUþ

2 [ U�
2 Þ \W2ðUÞ.
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(i) If d ¼ �1 and W0 2 U0
2 \W2ðUÞ, then Y2 \ CGðW0Þn tf g � DCGðUÞ

3 ðtÞ.
(ii) We have

C2ðCGðUÞÞn _[

W2W2ðUÞ
C2ðCGðWÞÞ

�
�
�
�
�
�

�
�
�
�
�
�

¼ 1

4
ðq� 2þ dÞðq2 � 1Þ

and C1ðCGðUÞÞj j ¼ 1
4
ðq� 1Þ3ðqþ 1Þ.

Proof First assume d ¼ �1, and consider CGðW0Þ. By Lemma 4.19, every

involution in CGðW0Þ can be written as xt where x has order p. But ðxtÞt ¼ x has

order p, which does not divide 1
2
ðq2 � 1Þ, and hence dCGðUÞðxt; tÞ ¼ 3. In other

words, Y2 \ CGðW0Þn tf g � DCGðUÞ
3 ðtÞ, so proving (i).

Consider then CGðWÞ	 L2ðqÞ. We utilize the character table of L2ðqÞ from

Chapter 38 of [22] (see also Schur [42]). Recall that L2ðqÞ contains one conjugacy

class of involutions, and two conjugacy classes of elements of order p. The

remaining conjugacy classes partition into two cases: those whose order divides
1
2
ðq� 1Þ and those whose order divides 1

2
ðqþ 1Þ. Let C be a conjugacy class of

elements in CGðWÞ and define XC ¼ x 2 Y2 \ CGðWÞjtx 2 Cf g. It is a well-known

character theoretic result (see, for example, Theorem 4.2.12 of [28]) that

XCj j ¼ Cj j
CCGðWÞðtÞ
�
�

�
�

X

v

Irreducible

vðtxÞ vðtÞj j2

vð1Þ ð4:26:1Þ

and all XC are pairwise disjoint. Let x 2 Y2 \ CGðWÞ. If the order of tx divides
1
2
ðq2 � 1Þ but not 1

2
ðq� dÞ then it must necessarily divide 1

2
ðqþ dÞ. Hence, if C is a

conjugacy class of elements of order dividing qþd
2
, then any y 2 XC has the property

that dCGðWÞðt; yÞ ¼ 3 but dCGðUÞðt; yÞ ¼ 2, by Lemma 4.24. Recall that

C2ðCGðUÞÞn _S
W2W2ðUÞC2ðCGðWÞÞ is the set consisting of all such involutions.

Therefore, it suffices to calculate the sizes of all such relevant XC. We use F to

denote to be the set of all conjugacy classes of elements with order dividing qþd
2
.

By [22], we see that for any C 2 F , Cj j ¼ qðq� dÞ and so for any

x 2 C CCGðWÞðxÞ
�
�

�
� ¼ ðq� dÞ. Hence (4.26.1) and [22] gives XCj j ¼ q� d. Now if

d ¼ 1, then Fj j ¼ q�1
4

by [22]. If d ¼ �1, then Fj j ¼ q�3
4
. Since

DCGðWÞ
3 ðtÞ \ DCGðUÞ

2

�
�
�

�
�
� ¼ XCj j Fj j, and by Corollary 4.22,

W2ðUÞ \ ðUþ
2 [ U�

2 Þ
�
�

�
� ¼ qþ d, we obtain

123

990 Graphs and Combinatorics (2020) 36:959–1000



C2ðCGðUÞÞn _[

W2W2ðUÞ
C2ðCGðWÞÞ

�
�
�
�
�
�

�
�
�
�
�
�

¼ W2ðUÞ \ ðUþ
2 [ U�

2 Þ
�
�

�
� XCj j Fj j

¼

1

4
ðq� 1Þðq2 � 1Þ q � 1ðmod 4Þ

1

4
ðq� 3Þðq2 � 1Þ q � �1ðmod 4Þ

8

><

>:

which proves the first part of (ii). We now prove the last part of (ii). Recall that

_[

W2W2ðUÞ
C2ðCGðWÞÞ

�
�
�
�
�
�

�
�
�
�
�
�

¼ ðqþ dÞ DCGðWÞ
2 ðtÞ

�
�
�

�
�
� ¼ 1

4
ðq2 � 1Þðq� 4� dÞ

by [11] and Corollary 4.22. Together with the above statement, we have

C2ðCGðUÞÞj j ¼ _[

W2W2ðUÞ
C2ðCGðWÞÞ

�
�
�
�
�
�

�
�
�
�
�
�

þ C2ðCGðUÞÞn _[

W2W2ðUÞ
C2ðCGðWÞÞ

�
�
�
�
�
�

�
�
�
�
�
�

¼ 1

4
ðq2 � 1Þðq� 4� dÞ þ 1

4
ðq2 � 1Þðq� 2þ dÞ

¼ 1

2
ðq2 � 1Þðq� 3Þ:

Hence

C1ðCGðUÞÞj j ¼ DCGðUÞ
2 ðtÞ

�
�
�

�
�
�� C2ðCGðUÞÞj j

¼ 1

4
ðq� 1Þ3ðqþ 1Þ;

and Lemma 4.26 holds. h

Lemma 4.27

_[

U2U1

C1ðCGðUÞÞ
�
�
�
�
�

�
�
�
�
�
¼

1

16
qðq2 � 1Þð3q3 � 11q2 þ 21q� 29Þ q � 1ðmod 4Þ
1

16
qðq2 � 1Þðq� 1Þð3q2 þ 2qþ 7Þ q � �1ðmod 4Þ:

8

><

>:

Proof Since U1 ¼ U0
1 _[Uþ

1 _[U�
1 , with each orbit size given in Lemma 4.16, the

result follows immediately from Lemmas 4.23, 4.25 and 4.26. h

Recall the list of cases in Table 1. The next lemma concerns Cases 2 and 3, in

other words,
S

U2U1
C2ðCGðUÞÞ.

Lemma 4.28
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[

U2U1

C2ðCGðUÞÞ
�
�
�
�
�

�
�
�
�
�
¼ 1

2
ðq� dÞðq3 � 2q2 � 1Þ:

Proof By Lemmas 4.12 and 4.19, for any W0 2 U0
2 we have

DCGðUÞ
2 ðtÞ \ CGðW0Þ

�
�
�

�
�
� ¼ 1

2
ðq� 1Þðq� dÞ for some U 2 U1ðW0Þ. Additionally, for

any W 2 ðUþ
2 _[U�

2 Þ we have

DCGðUÞ
2 ðtÞ \ CGðWÞ

�
�
�

�
�
� ¼ DCGðWÞ

2 ðtÞ
�
�
�

�
�
�þ DCGðWÞ

3 ðtÞ \ DCGðUÞ
2 ðtÞ

�
�
�

�
�
�

¼ 1

2
ðq� dÞðq� 3Þ;

for some U 2 U1ðWÞ, by [11] and Lemma 4.26. Since U2 ¼ U0
2 _[Uþ

2 _[U�
2 , with the

orbit sizes given in Corollary 4.17, this covers every involution in
S

U2U1
C2ðCGðUÞÞ, and the lemma follows. h

We now concern ourselves with the final two cases. These concern involutions

that are distance 3 from t in every CGðUÞ that they appear in, but actually are

distance 2 from t in G. Recall that for any involution y 2 Y2, CGðyÞ ¼
StabGCVðyÞ ¼ LyKy where Ly ¼ CGðyÞ \ CGð½V; y
Þ 	 L2ðqÞ and Ky

�
�
�
� ¼ 2ðq� dÞ.

Also note that Ly/CGðyÞ acts faithfully on CVðyÞ, and SylpCGðyÞ ¼ SylpLy. The

following three lemmas concern Case 5.

Lemma 4.29 Let W 2 U0
2 [ U�d

2 and x 2 CGðWÞ be such that dCGðUÞðt; xÞ ¼ 3 for

all U 2 U1ðWÞ. Then dðt; xÞ ¼ 3.

Proof If W 2 U0
2, then any involution in CGðWÞ can be written as x ¼ xQt where

xQ ¼ xt has order p. If W 2 U�d
2 , then, from Lemma 4.26, any involution x 2

CGðWÞ such that tx has order dividing 1
2
ðq2 � 1Þ must be distance 2 from t in CGðUÞ

for some U 2 U1ðWÞ. Hence, any x satisfying the hypothesis must have the property

that the order of tx is p.

Let W 2 U0
2 [ U�d

2 and suppose dðt; xÞ ¼ 2, then there exists y 2 Y2 such that

t; x 2 CGðyÞ ¼ LyKy. Since tx has order p, tx 2 Ly and so tx 2 CGð½V ; y
Þ. As Ly acts
faithfully on CVðyÞ, any element of order p must fix a 1-subspace of CVðyÞ, say Uy.

Therefore, tx 2 CGðUy 
 ½V ; y
Þ. But tx 2 CGðW þ ½V; y
Þ and since ½V ; y
 2 Ud
2, we

have W 6¼ ½V ; y
. Set W þ ½V; y
 ¼ Uy 
 ½V ; y
.
Suppose Uy �W . Then t; x; y 2 CGðUyÞ and so dCGðUyÞðt; xÞ ¼ 2, contradicting

our assumption. Hence Uy£W and so Uy ¼ u1 þ u2h i for u1 2 Wn½V ; y
 and

u2 2 ½V ; y
. Since y 2 CGðyÞ, ðu1 þ u2Þy ¼ u1 þ u2. However, ðu1 þ u2Þy ¼ u
y
1 þ

u
y
2 ¼ u

y
1 � u2 and so u2 ¼ �2�1u1 þ 2�1u

y
1. Thus u1 þ u2 ¼ 2�1ðu1 þ u

y
1Þ and so

Uy ¼ u1 þ u
y
1

� �

. Recall that t; x 2 CGðyÞ and u1 2 Wn½V ; y
, so ut1 ¼ ux1 ¼ u1. Hence

u1 þ u
y
1 is centralized by both t and x and so Uy �W ¼ CVð t; xh iÞ, a contradiction.

Therefore, dðt; xÞ 6¼ 2 and the lemma holds. h
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Lemma 4.30 Let W 2 Ud
2. Then DCGðWÞ

3 ðtÞ � D2ðtÞ. In particular,

C2ðGÞn
[

U2U1

C2ðCGðUÞÞ
�
�
�
�
�

�
�
�
�
�
¼ qðq2 � 1Þ q � 1ðmod 4Þ

0 q � �1ðmod 4Þ:

�

Proof We deal first with the case when d ¼ �1. From Lemma 4.26, the number of

involutions distance 3 from t in CGðWÞ that are actually distance 2 from t in some

U 2 U1ðWÞ is 1
4
ðqþ 1Þðq� 3Þ ¼ DCGðWÞ

3 ðtÞ
�
�
�

�
�
�. That is to say all elements in

DCGðWÞ
3 ðtÞ are distance 2 from t in CGðUÞ for some U 2 U2ðWÞ. This occurs for

every such W 2 Ud
2 and so C2ðGÞ ¼

S

U2U1
C2ðCGðUÞÞ.

Assume now that d ¼ 1. As before, any element x in C2ðGÞn
S

U2U1
C2ðCGðUÞÞ

must have the property that the order of tx is p. Suppose dðt; xÞ ¼ 2, and so there

exists y 2 Y2 such that t; x 2 CGðyÞ. If W 6¼ ½V; y
 then the argument from Lemma

4.29 holds and results in a contradiction. So we must have W ¼ ½V ; y
. Since

StabGCVðyÞ ¼ StabG½V; y
 ¼ CGðyÞ, CGð½V ; y
Þ �CGðyÞ and so any element in

CGð½V ; y
Þ ¼ CGðWÞ centralizes y. In particular, DCGðWÞ
3 ðtÞ � D2ðtÞ, establishing the

first statement. By Lemma 4.26, the number of involutions distance 3 from t in

CGðWÞ that are actually distance 2 from t in some U 2 U1ðWÞ is 1
4
ðq� 1Þ2. By [11],

DCGðWÞ
3 ðtÞ

�
�
�

�
�
� ¼ 1

4
ðq� 1Þðqþ 7Þ and so by subtracting the two, there are 2ðq� 1Þ

involutions in DCGðWÞ
3 ðtÞ that are distance 3 from t in CGðUÞ for all U 2 U1ðWÞ, but

are actually distance 2 from t in CðG; Y2Þ. Since Ud
2

�
�
�
� ¼ 1

2
qðqþ dÞ by Corollary

4.17, the lemma follows. h

Finally we turn to Case 4, C1ðGÞn _S
U2U1

C1ðCGðUÞÞ.

Lemma 4.31 Let U 2 U�
1 [ U0

1 and x 2 CGðUÞ be such that CVð t; xh iÞ ¼ U and

dCGðUÞðt; xÞ ¼ 3. Then dðt; xÞ ¼ 3.

Proof Assume first that U 2 U�
1 . By Lemma 4.24, tx has order p or divides

1
2
ðq2 þ 1Þ. Suppose dðt; xÞ ¼ 2, then there exists y 2 Y2 such that t; x 2 CGðyÞ. Since

1
2
ðq2 þ 1Þ is coprime to CGðyÞj j ¼ qðq2 � 1Þðq� dÞ, tx must have order p. Indeed,

clearly 1
2
ðq2 þ 1Þ is coprime to both q and q2 � 1, and any factor dividing q� d

must divide q2 � 1 and so 1
2
ðq2 þ 1Þ is coprime to q� d. Since tx has order p, then

tx 2 Ly.

Assume now that U 2 U0
1. Let x be an involution in CGðUÞ ¼ QL	G0 as defined

in the discussion prior to Lemma 4.9. Then tx 2 QtxL which has order n dividing
1
2
ðqþ dÞ in QL/L. Therefore, ðQtxLÞn 2 Q and so ðtxÞn has order p. Therefore, tx has

order dividing 1
2
qðqþ dÞ. Suppose dðt; xÞ ¼ 2. Then there exists y 2 Y2 such that

t; x 2 CGðyÞ. By the structure of CGðyÞ	 ðL2ðqÞ � q�d
2
Þ : 22, the order of tx forces

tx 2 Ly.
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We may now assume U 2 U�
1 [ U0

1, so tx 2 Ly ¼ CGð½V ; y
Þ and hence

tx 2 CGðU þ ½V ; y
Þ. Suppose U£½V; y
, then tx 2 CGðU 
 ½V ; y
Þ Also, tx 2
CGðUy 
 ½V; y
Þ for some Uy �CVðyÞ. However, if U ¼ Uy then t; x; y 2 CGðUÞ
and dCGðUÞðt; xÞ ¼ 2. While Uy 6¼ U results in a contradiction using an analogous

argument from Lemma 4.29. Hence U� ½V ; y
.
As t; x 2 CGðyÞ ¼ StabGð½V ; y
Þ, tx 2 Ly ¼ CGð½V; y
Þ and ½V ; y
 ¼ U ? U0 where

U0 ¼ U? \ ½V ; y
. Then for u 2 ½V ; y
 we have utx ¼ u and so ut ¼ ux. In particular,

if u 2 U0 then ut ¼ ux ¼ �u. Hence ½V ; y
 ¼ U ? ð½V ; t
 \ ½V; x
Þ. If CVð t; yh iÞ is 1-
dimensional, then CVðyÞ ¼ CVð t; yh iÞ ? ½V ; t
 since t stabilizes CVðyÞ. However,
then ½V ; t
 
 ð½V; t
 \ ½V ; x
Þ is 3-dimensional, a contradiction. A similar argument

holds for CVð x; yh iÞ. Therefore both CVð t; yh iÞ and CVð x; yh iÞ are 2-dimensional.

But since dimCVðyÞ ¼ 3, this means CVð t; yh iÞ and CVð x; yh iÞ intersect non-

trivially, that is CVð t; x; yh iÞ 6¼ 0, contradicting our assumption. Therefore,

dðt; xÞ 6¼ 2, and consequently dðt; xÞ ¼ 3. h

The final case when U 2 Uþ
1 is slightly trickier. Recall the definition of Y1. For

any z 2 Y1, we have CGðzÞ	 SL2ðqÞ � SL2ðqÞ : 2 and CVðzÞ is 1-dimensional. We

choose z such that t 2 CGðzÞ and CVðzÞ ¼ U, and return to work in the setting of

Spð4; qÞ= �I4h i ¼ Gs 	G. We denote the image of any subgroup K�G by Ks.

Choose

and note that CGsðzÞ	CGðUÞ : 2. Hence,

Let ts be the image of t in Gs. We start with a preliminary lemma concerning the

commuting involution graph CðL2ðqÞ;XÞ where X is the sole conjugacy class of

involutions. Denote by L	 L2ðqÞ and bL	PGL2ðqÞ.
Lemma 4.32 Let x be an involution in L. Then DL

3ðxÞ splits into 1
4
ðqþ 2þ 5dÞ

CLðxÞ-orbits of length q� d. Moreover, every CLðxÞ-orbit in DL
3ðxÞ is C

bL
ðxÞ-

invariant.

Proof Assume first that d ¼ �1. Choose x ¼ 0 � 1

1 0

� �

and let xk ¼

0 k
�k�1 0

� �

for some k 2 GFðqÞn �1f g. There are two possibilities for an

element of CLðxÞ:

g1 ¼
a1 a2

�a2 a1

� �

; g2 ¼
b1 b2

b2 � b1

� �

:
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By direct calculation, if g�1
1 xkg1 ¼ xl for some k; l 2 GFðqÞn �1f g then

ð�k�1 þ kÞa1a2 ¼ 0. Note that since k 6¼ �1, then k 6¼ k�1. If a1 ¼ 0, then a22 ¼ 1,

and so l ¼ k�1. On the other hand, if a2 ¼ 0 then a21 ¼ 1 and so l ¼ k. Note that in
the case of g2, neither b1 or b2 can be 0 and so g�1

2 xkg2 ¼ xl requires

xyðk� k�1Þ ¼ 0, a contradiction. Hence for k; l 2 GFðqÞn �1f g, xk and xl lie in

different CLðxÞ orbits if and only if l 62 k; k�1
� �

. As we work modulo �I4h i, there
are at least 1

4
ðq� 3Þ CLðxÞ-orbits in DL

3ðxÞ. However for any k 6¼ �1, CLðx; xkÞ ¼ 1

and so, each CLðxÞ-orbit containing an xk is of length qþ 1. But DL
3ðxÞ

�
�

�
� ¼

1
4
ðq� 3Þðqþ 1Þ and so all involutions in DL

3ðxÞ are accounted for. Hence the first

statement holds for d ¼ �1, and each CLðxÞ-orbit has representative xk for some

k 6¼ �1. Let

e ¼
1 0

0 � 1

� �

2 bLnL

and note that C
bL
ðxÞ ¼ eh iCLðxÞ, and an easy check shows ½e; xk
 ¼ 1 for all k 6¼ �1.

Let y 2 DL
3ðxÞ, then y ¼ xsk for some s 2 CLðxÞ. Let g ¼ er 2 C

bL
ðxÞ for some

r 2 CLðxÞ. Then yg ¼ xs
er
k and since CLðxÞ/CbLðxÞ, s

er 2 CLðxÞ. That is, every CLðxÞ-
orbit in DL

3ðxÞ is CbLðxÞ-invariant.

Assume now that d ¼ 1. Choose x ¼ i 0

0 � i

� �

where i2 ¼ �1 and let y ¼

r ls
s r

� �

for some r;l; s 2 GFðqÞ, r 6¼ 0 and l a non-square in GF(q). By [11],

y 2 DL
3ðxÞ. There are two possibilities for an element of CLðxÞ:

g1 ¼
a�1 0

0 a

� �

; g2 ¼
0 b

�b�1 0

� �

:

By direct calculation, if g�1
1 yg1 ¼ y then a ¼ 1. Note that g�1

2 yg2 6¼ y as �b2 6¼ l
for any non-square l. Hence CLð x; yh iÞ ¼ 1. Since y was arbitrary, each CLðxÞ-orbit
has length q� 1. Now DL

3ðxÞ
�
�

�
� ¼ 1

4
ðqþ 7Þðq� 1Þ and so the first statement holds

for d ¼ 1. Let

em ¼
0 m

1 0

� �

2 bLnL

and note that C
bL
ðxÞ ¼ emh iCLðxÞ for any non-square m. It is easy to check that

yel ¼ y. Let g ¼ elr 2 C
bL
ðxÞ for some r 2 CLðxÞ. Then yg ¼ yelr ¼ yr and since y

was arbitrary and r 2 CLðxÞ, every CLðxÞ-orbit in DL
3ðxÞ is CbLðxÞ-invariant. h

Lemma 4.33

DCGðUÞ
3 ðtÞ \ C1ðGÞ

�
�
�

�
�
� ¼ 1

4
ðq� dÞ2ðqþ 2þ 5dÞ:
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Proof We first work in the setting of Gs. Choose

By direct calculation, it is easily seen that

and any involution y 2 CGsðtsÞ has the additional properties that

detA1 þ detA3 ¼ detA2 þ detA4 ¼ 1 and

A2
1 þ A2A3 ¼ A3A2 þ A2

4 ¼ �I2:
ð4:33:1Þ

Recall that if x 2 CGðUÞs then for some A;B 2 SL2ðqÞ and by

Theorem 4.8, x 2 DCGðUÞs
3 ðtsÞ if and only if A; B are involutions in L and either

dLðA; J0Þ ¼ 3 or dLðB; J0Þ ¼ 3. So without loss of generality, set A ¼ Bi where

dLðBi; J0Þ ¼ i and choose B 2 DL
3ðJ0Þ.

If x 2 DGs

2 ðtsÞ then there exists y =
(
A1 A2

A3 A4

)
∈ CGτ (tτ ) such that y2 ¼ 1

and ½x; y
 ¼ 1. Suppose detA2 ¼ 0. Then detA4 ¼ 1 by (4.33.1), and so

A4 2 CLðJ0Þ. As ½x; y
 ¼ 1, ½A4;B
 ¼ 1. However CLð J0;Bh iÞ ¼ 1, by Lemma 4.32

and so A4 ¼ �I2. But then A3A2 ¼ �2I2 by (4.33.1), which is impossible as

detA2 ¼ 0. An analogous argument holds for detA3. Hence detA2, detA3 6¼ 0.

Since ½x; y
 ¼ 1, BiA2B ¼ �A2 and so Bi and B must be C
bL
ðJ0Þ-conjugate. In other

words, if Bi and B are not C
bL
ðJ0Þ-conjugate, then ½x; y
 6¼ 1. By Lemma 4.32, every

CLðJ0Þ orbit is an C
bL
ðJ0Þ-orbit and so if ½x; y
 ¼ 1 then Bi and B must be CLðJ0Þ-

conjugate. Assume then Bi and B are CLðJ0Þ-conjugate and let A 2 CLðJ0Þ be such

that BA
i ¼ B. Hence if yA =

(
A

−A−1

)
∈ CGτ (tτ ), then ½yA; x
 ¼ 1 and so

dG
sðts; xÞ ¼ 2. By Lemma 4.32, each CLðJ0Þ-orbit of DL

3ðJ0Þ is of length q� d, and
there are 1

4
ðqþ 2þ 5dÞ such orbits. Moreover, for any involution x0 2 CGðUÞs

conjugate to ts, zx0 is also an involution in CGðUÞs conjugate to ts which has not
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been accounted for. Therefore, the number of involutions in DCGðUÞs
3 ðtsÞ that are

actually distance 2 from ts in Gs is 1
2
ðq� dÞ2ðqþ 2þ 5dÞ.

We now return to the setting of G, and first assume that d ¼ �1 and so by

Corollary 4.22(i), W2ðUÞj j ¼ qþ 1, and for every W 2 W2ðUÞ, CGðWÞ	 L2ðqÞ.
For each W, there exists UW 2 Uþ

1 such that CGðWÞ�CGðUWÞ	 L2ðq2Þ by Lemma

4.21, and DCGðWÞ
3 ðtÞ � DCGðUW Þ

2 ðtÞ by Lemma 4.30. Hence, there are 1
4
ðqþ 1Þ2ðq�

3Þ involutions already counted (from Case 3) and the remaining involutions do not

fix a 2-subspace of CVðtÞ. Therefore

DCGðUÞ
3 ðtÞ \ C1ðGÞ

�
�
�

�
�
� ¼ 1

2
ðqþ 1Þ2ðq� 3Þ � 1

2
ðqþ 1Þ2ðq� 3Þ

¼ 1

4
ðqþ 1Þ2ðq� 3Þ;

as required. Now assume that d ¼ 1 and so by Corollary 4.22. For each W, there

exists UW 2 U�
1 such that CGðWÞ�CGðUWÞ	 L2ðq2Þ by Lemma 4.21 and

DCGðWÞ
3 ðtÞ \ DCGðUW Þ

2 ðtÞ
�
�
�

�
�
� ¼ 1

4
ðq� 1Þ2 by Lemma 4.26. Since

W2ðUÞ \ ðUþ
1 [ U�

1 Þ
�
�

�
� ¼ q� 1 by Corollary 4.22(iii), this accounts for 1

4
ðq� 1Þ3

involutions. Suppose nowW0 2 W2ðUÞ \ U0
2. By Lemma 4.21, there exists U0 2 U0

1

such that CGðW0Þ�CGðU0Þ. From Lemmas 4.12 and 4.19,

CGðWÞ \ DCGðU0Þ
2 ðtÞ

�
�
�

�
�
� ¼ 1

2
ðq� 1Þ2. Since W2ðUÞ \ U0

2

�
�

�
� ¼ 2 by Corollary 4.22(iii),

this yields a further ðq� 1Þ2 involutions. Finally, if W 2 Uþ
2 , then by Lemma 4.30,

DCGðWÞ
3 ðtÞ � D2ðtÞ and there are 2ðq� 1Þ involutions in DCGðWÞ

3 ðtÞ not already

enumerated. Now Uþ
2 \W2ðUÞ

�
�

�
� ¼ 1

2
ðq� 1Þ by Corollary 4.22(iii), and this yields

another ðq� 1Þ2 involutions. Hence, there are 1
4
ðq� 3Þ2 þ 2ðq� 1Þ2 ¼ 1

4
ðq�

1Þ2ðqþ 7Þ involutions already counted (from Cases 3 and 5) and the remaining

involutions do not fix a 2-subspace of CVðtÞ. Consequently

DCGðUÞ
3 ðtÞ \ C1ðGÞ

�
�
�

�
�
� ¼ 1

2
ðq� 1Þ2ðqþ 7Þ � 1

2
ðq� 1Þ2ðqþ 7Þ

¼ 1

4
ðq� 1Þ2ðqþ 7Þ;

as required. h

Corollary 4.34

C1ðGÞn _[

U2U1

C1ðCGðUÞÞ
�
�
�
�
�

�
�
�
�
�
¼ 1

8
qðq� dÞðq2 � 1Þðqþ 2þ 5dÞ:

Proof Since Uþ
1

�
�

�
� ¼ 1

2
qðqþ dÞ, the result holds by Lemmas 4.32 and 4.33. h

Lemma 4.35 If q � �1ðmod 4Þ, then
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(i) D2ðtÞj j ¼ 1
16
ðqþ 1Þð3q5 � 2q4 þ 8q3 � 30q2 þ 13q� 8Þ; and

(ii) D3ðtÞj j ¼ 1
16
ðq2 � 1Þð5q4 � 9q3 þ 7q2 � 3qþ 8Þ.

If q � 1ðmod 4Þ, then

(iii) D2ðtÞj j ¼ 1
16
ðq� 1Þð3q5 � 6q4 þ 32q3 � 10q2 � 27q� 8Þ; and

(iv) D3ðtÞj j ¼ 1
16
ðq� 1Þð5q5 þ 22q4 � 8q3 þ 34q2 þ 51qþ 24Þ.

Proof The cases listed in Table 1 are disjoint. Hence D2ðtÞj j is determined by

summing the values calculated in Lemmas 4.27, 4.28, 4.30 and 4.34. By

Theorem 4.15, CðG; Y2Þ has diameter 3 and so

D3ðtÞj j ¼ Y2j j � D1ðtÞj j � D2ðtÞj j � 1. Since Gj j ¼ 1
2
q4ðq2 � 1Þðq4 � 1Þ and

CGðtÞj j ¼ qðq2 � 1Þðq� dÞ, Y2j j ¼ 1
2
q3ðqþ dÞðq2 þ 1Þ. Together with Lemma

4.20, this proves the lemma. h

Together, Theorem 4.15 and Lemmas 4.20 and 4.35 complete the proof of

Theorem 1.4.
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